
HAL Id: hal-00153571
https://hal.science/hal-00153571

Submitted on 11 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propositional Dynamic Logic with Recursive Programs
Christof Loeding, Carsten Lutz, Olivier Serre

To cite this version:
Christof Loeding, Carsten Lutz, Olivier Serre. Propositional Dynamic Logic with Recursive Programs.
Journal of Logic and Algebraic Programming, 2007, 73 (1-2), pp.51-69. �10.1016/j.jlap.2006.11.003�.
�hal-00153571�

https://hal.science/hal-00153571
https://hal.archives-ouvertes.fr

Propositional Dynamic Logic with Recursive

Programs ⋆

Christof Löding

RWTH Aachen, Germany

Carsten Lutz

Dresden University of Technology, Germany

Olivier Serre ⋆⋆

LIAFA,CNRS & Université Paris VII, France

Abstract

We extend the propositional dynamic logic PDL of Fischer and Ladner with a
restricted kind of recursive programs using the formalism of visibly pushdown au-
tomata (Alur, Madhusudan 2004). We show that the satisfiability problem for this
extension remains decidable, generalising known decidability results for extensions
of PDL by non-regular programs. Our decision procedure establishes a 2-ExpTime

upper complexity bound, and we prove a matching lower bound that applies already
to rather weak extensions of PDL with non-regular programs. Thus, we also show
that such extensions tend to be more complex than standard PDL.

Key words: Propositional Dynamic Logic, Visibly Pushdown Automata

1 Introduction

Propositional Dynamic Logic (PDL) is a modal logic that was introduced
by Fischer and Ladner in [6] to capture the behaviour of programs, see also

⋆ This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (Games).
⋆⋆Most of this work was done when the author was a postdoctoral researcher at
RWTH Aachen.

Preprint submitted to Elsevier Science 5 December 2006

the surveys [9,14] and the monograph [10]. The models for PDL formulas
are transition systems whose edges are labelled with atomic programs and
whose states are labelled with atomic propositions. Formulas and programs are
inductively (and mutually) defined from atomic propositions and programs.
Formulas are closed by the standard Boolean operations, and for each program
α and each formula ϕ, 〈α〉ϕ is a formula meaning that there is an execution
of program α that ends in a state where ϕ holds. A program is a regular
language (represented by a regular expression or a finite automaton) over the
set of atomic programs and tests (which correspond to formulas).

While PDL is a suitable tool to specify properties of finite state programs,
it quickly reaches its limits when considering recursive programs. A simple
example for such a program (taken from [10]) is:

proc V { if p then {a; call V; b} else return }

The executions of this program can be described by the set {(p?a)i(¬p)?bi |
i ≥ 0}, which is not regular and, as implied by results in [8], thus cannot be
captured by standard PDL.

To overcome this weakness, in the 1980ies an investigation of non-regular
versions of PDL was initiated. Besides regular programs, these versions also
include context-free ones, or even go beyond that. This investigation has shown
decidability of PDL with context-free languages to be much more fragile than
decidability of standard PDL. It is rather easy to observe that allowing all
context-free languages as programs leads to undecidability because one can
easily encode the equivalence problem for context-free languages in terms of
satisfiability.

In [11] it is shown that even adding only a single context-free program can
lead to undecidability: the logic PDL+a#ba# is undecidable, where PDL+L
stands for the extension of PDL which allows only the language L as single new
program, and a#ba# is a short notation for the language {anban | n ∈ N}. A
further result from the same article shows that adding the two languages a#b#

and b#a# to PDL also leads to undecidability. In view of these results, it is
rather surprising that PDL+a#b# is decidable, as shown in [13]. These results
raise the question of the exact borderline between decidable and undecidable
extensions of PDL with context-free (or even more general) programs.

A step into this direction was made in [12], where a whole class of context-
free languages is identified which can be (simultaneously) added as programs
to PDL without losing decidability. This class consists of languages that can
be accepted by a rather restricted kind of pushdown automaton, called sim-
ple minded. The behaviour of such automata is completely determined by
the current input symbol, i.e., the input symbol determines the next control
state, the stack operation to be performed, and the symbol to be pushed in

2

case of a push operation. This result has been generalised in [7] to a larger
class of pushdown automata, called semi-simple minded, where only the stack
operation and the symbol to be pushed is determined by the input symbol,
but the next control state is not. The resulting class of languages covers all
context-free languages that are known to retain decidability when added as a
program to PDL.

The contribution of the current paper is to advance the study of PDL with
context-free programs in two directions. First, we follow the research agenda
set out by Harel and others in [11,12,7], who propose to identify as large
as possible classes of context-free languages that can be used in PDL with-
out losing decidability. Specifically, we consider the class of visibly pushdown
languages [3], i.e., languages that can be accepted by a visibly pushdown au-
tomaton (Vpa). These automata generalise semi-simple minded automata in
that only the operation to be performed is determined by the input symbol,
but (the next control state and) the symbol to be pushed is not. For example,
the language {anambm1 a

ℓbℓ2b
n
1 | n,m, ℓ ≥ 0} can be accepted by a Vpa, but not

by a semi-simple minded automaton.

We define a version of PDL that we call recursive PDL, and which includes all
visibly pushdown languages as programs. Recursive PDL is also more general
than existing extensions of PDL with non-regular programs in that it allows
the use of test operators inside context-free programs. Our main result is that
satisfiability in recursive PDL is decidable in 2-ExpTime, and that this upper
bound is preserved when further extending recursive PDL with a ∆ operator
which allows to describe infinite computations.

Our second contribution is to analyse the exact computational complexity of
PDL with context-free languages. We consider a specific class of parenthesis
languages and show that for every language L from this class, the extension
PDL+L with the single language L is 2-ExpTime-hard. This result covers
many natural languages such as a#b# and several of its variations. It is also
easy to adapt our lower bound to some non-context free languages such as
a#b#c#. Since a#b# can be accepted by a Vpa, we also obtain 2-ExpTime-
completeness of recursive PDL.

The remainder of the paper is organised as follows. In Section 2, we give basic
definitions and results regarding PDL and visibly pushdown automata, and
we define recursive PDL. In Section 3, we discuss the relation of recursive
PDL to previously defined extensions of PDL and other logics that allow to
capture the behaviour of recursive programs. We also give some examples
of useful properties that can be expressed in recursive PDL. Decidability of
satisfiability in recursive PDL is shown in Section 4, and Section 5 deals with
the lower bound for the complexity. Finally, we extend the results to infinite
computations in Section 6.

3

2 Definitions

In this section, we first define propositional dynamic logic (PDL) using regular
programs. Then we introduce visibly pushdown automata and use them to
extend PDL with more powerful programs.

2.1 Propositional Dynamic Logic

Formulas of propositional dynamic logic [6] are interpreted over transition
systems whose edges are labelled with atomic programs or actions and whose
states are labelled with atomic propositions. Hence, we fix a set P of atomic
propositions and a set Π of atomic programs. The set of formulas and the set
of programs are defined inductively as follows:

(1) ⊤ is a formula.
(2) Every atomic proposition is a formula.
(3) If ϕ1 and ϕ2 are formulas, then so are ¬ϕ1 and ϕ1 ∧ ϕ2.
(4) If ϕ is a formula, then ϕ? is a test. The set of tests is denoted by Test.
(5) If α is a program and ϕ is a formula, then 〈α〉ϕ is a formula. Such a

formula will be called a diamond formula. The negation of a diamond
formula will be called a box formula. The standard abbreviation for such
formulas is [α]ϕ ≡ ¬〈α〉¬ϕ.

(6) A regular expression over Π ∪ Test is a program.

In this definition, we refer to standard regular expressions α built from single
letters using concatenation, union, and Kleene-star. By L(α) we denote the
set of words defined by the regular expression α.

PDL formulas are interpreted over structures M = (S,R, ν) where S is a set
of states, R : Π → 2S×S is a transition relation, and ν : S → 2P assigns truth
values to each atomic proposition in P for each state in S. In the following, we
extend the relation R to all programs and tests, and in parallel define when
a formula ϕ is satisfied in a state s of the structure M , denoted as usual by
M, s |= ϕ:

• R(ϕ?) = {(s, s) |M, s |= ϕ} for a test ϕ?.
• R(α) for a program α contains the pairs (s, s′) for which there are
· a word w = w1 · · ·wm ∈ L(α) (with wi ∈ Π ∪ Test), and
· states s0, . . . , sm ∈ S with s = s0, s

′ = sm, and (si−1, si) ∈ R(wi) for all
1 ≤ i ≤ m.

• M, s |= ϕ1 ∧ ϕ2 if M, s |= ϕ1 and M, s |= ϕ2.
• M, s |= ¬ϕ if M, s |= ϕ does not hold.
• M, s |= 〈α〉ϕ if there exists a state s′ such that (s, s′) ∈ R(α) and M, s′ |= ϕ.

4

A formula ϕ is satisfiable if there is a structure M and a state s such that
M, s |= ϕ. The satisfiability problem is to determine, given a formula ϕ,
whether it is satisfiable.

To show decidability of the satisfiability problem we use tree structures as
defined in the following. Let Π = {a0, . . . , an−1} be a finite set of atomic
programs. A tree structure for Π is a structure M = (S,R, ν) such that for
some k ∈ N

• S ⊆ [k]∗ is a non-empty, prefix closed set (with [k] = {0, . . . , k − 1}), and
• R(aℓ) = {(x, xd) ∈ S × S | x ∈ [k]∗ and ℓ = d mod n}.

For x ∈ [k]∗ and d ∈ [k] we call xd the d-successor of x. The second item in
the above definition simply states that the relations for the atomic programs
are obtained by taking the number of the successor modulo n.

2.2 Visibly Pushdown Automata

In the following, we introduce a subclass of pushdown automata and consider
the logic obtained when replacing regular expressions by this kind of automata
for defining programs in PDL.

A pushdown automaton is called visibly pushdown automaton [3], if the type of
operation that is performed on the stack, i.e. push, skip, or pop, only depends
on the input symbol. For such an automaton one can partition the input
alphabet into three sets, consisting of the symbols that induce a push, a skip,
or a pop, respectively. In [2] these automata are used to solve verification
problems for recursive state machines. In this setting pushes correspond to
calls of procedures, skips correspond to internal actions, and pops correspond
to returns from procedures. This is where the notation used in the following
arises from.

A pushdown alphabet is a tuple Ã = 〈Ac, Ar, Aint〉 consisting of three disjoint
finite alphabets that can be interpreted as a finite set of calls (Ac), a finite set
of returns (Ar), and a finite set of internal actions (Aint). For any such Ã, let
A = Ac ∪ Ar ∪ Aint.

A visibly pushdown automaton (Vpa) over Ã is a tuple A = (Q,Γ, Qin, δ, F)
where Q is a finite set of states, Qin ⊆ Q is a set of initial states, F ⊆ Q is a
set of final states, Γ is a finite stack alphabet that contains a special bottom-of-
stack symbol ⊳ and δ ⊆ (Q×Ac×Q×(Γ\{⊳}))∪(Q×Ar×Γ×Q)∪(Q×Aint×Q)
is the transition relation.

A configuration of A is a pair (q, σ) ∈ Q × (Γ \ {⊳})∗⊳ of a state q and a

5

stack content σ. Note that the symbol ⊳ may only appear at the bottom of
the stack. We denote the set of all configurations of A by Cf(A).

For a letter a ∈ A, a configuration (q′, σ′) is an a-successor of (q, σ), denoted
by (q, σ)

a
−→ (q′, σ′), if one of the following holds:

• For a ∈ Ac, σ
′ = γσ and there is a transition (q, a, q′, γ) ∈ δ.

• For a ∈ Aint, σ
′ = σ and there is a transition (q, a, q′) ∈ δ.

• For a ∈ Ar, either σ = γσ′ and there is a transition (q, a, γ, q′) ∈ δ, or
σ = σ′ = ⊳ and there is a transition (q, a, ⊳, q′) ∈ δ.

For a finite word u = u0u1 · · ·un in A∗ (with ui ∈ A), a run of A on u is a
sequence ρ = (q0, σ0)(q1, σ1) · · · (qn+1, σn+1) of configurations with q0 ∈ Qin,
σ0 = ⊳, and (qi, σi)

ui−→ (qi+1, σi+1) for every i ∈ {1, . . . , n}. In this situation
we also write (q0, σ0)

u
−→ (qn+1, σn+1).

A word u ∈ A∗ is accepted by A if there is a run of A on u that ends in a
configuration (q, σ) with q ∈ F . The language L(A) of a Vpa A is the set of
words accepted by A.

Note that allowing Vpas to read return symbols on the empty stack enables
VPAs to accept all regular languages. We also point out that it is not a re-
striction that VPAs do not consider the top stack symbol on internal or call
symbols. This can easily be simulated by storing the current top stack symbol
in the control state.

As usual, we call a Vpa complete if for each configuration (q, σ) and each input
symbol a there is at least one a-successor of (q, σ). A Vpa is deterministic if
it has a unique initial state qin , and for each input letter and configuration
there is at most one successor configuration. For deterministic Vpas we write
δ(q, a) = (q′, γ) instead of (q, a, q′, γ) ∈ δ if a ∈ Ac, δ(q, a, γ) = q′ instead of
(q, a, γ, q′) ∈ δ if a ∈ Ar, and δ(q, a) = q′ instead of (q, a, q′) ∈ δ if a ∈ Aint.

One can easily show that visibly pushdown languages are closed under union
and intersection using ordinary product constructions. The closure under com-
plement follows from a more complicated construction for determinisation.

Theorem 1 ([19,3]) For each Vpa, there is an equivalent deterministic Vpa

of exponential size.

We need two extensions of Vpas: to infinite words and to infinite trees. For
nondeterministic automata, the extension to infinite words is straightforward
([3]). A run on an infinite input word is a sequence of configurations that
satisfies the conditions as given in the definition of runs on finite words. The
set F of final states is now interpreted as a set of Büchi states, i.e., an infinite
run is accepting if it infinitely often visits configurations with a state from F .

6

We call such automata nondeterministic Büchi Vpas. If we do not want to
explicitly specify the acceptance condition of a Vpa on infinite words, then
we call it an ω-Vpa.

For deterministic automata, the situation is a bit different. In [3] it is shown
that the standard acceptance conditions do not suffice to obtain a deterministic
model that is as expressive as nondeterministic Büchi Vpas. We can avoid this
problem if we evaluate the acceptance condition on a certain subsequence of
the run [15]. This leads to the model of stair parity Vpas.

A stair parity Vpa over Ã is of the form A = (Q,Γ, Qin, δ,Ω) where Q, Γ, Qin

and δ are as in Vpas and Ω : Q→ N is a priority function. To define acceptance
for stair parity Vpas we first have to filter out the relevant positions in a run.
Let ρ = (q0, σ0)(q1, σ1) · · · be an infinite run of A. For i ∈ N we call (qi, σi)
a step of ρ if in all successive positions the height of stack does not go below
the height of σi, i.e., |σj | ≥ |σi| for all j ≥ i.

Note that, since the height of the stack at each position solely depends on the
input, the set of positions of the steps is the same for different runs on the
same input word.

The run ρ = (q0, σ0)(q1, σ1) · · · is accepting if the maximal priority that occurs
infinitely often on a step is even, i.e., if

max{Ω(q) | q = qi for infinitely many steps (qi, σi) of ρ}

is even. The definition of deterministic stair parity Vpa is directly adapted
from the definition of deterministic Vpa.

Theorem 2 ([15]) For each nondeterministic Büchi Vpa there exists a de-
terministic stair parity Vpa recognising the same language.

We also need two very simple acceptance conditions for Vpas on infinite words:
reachability and safety. Both conditions are specified by a set F of states. A
run of a reachability Vpa is accepting if some state from F occurs in this run.
Dually, a run of a safety Vpa is accepting if no state from F occurs in the run.
Obviously, a complete deterministic safety Vpa accepts the complement of the
language accepted by the same automaton viewed as a reachability Vpa.

If a reachability Vpa A is complete, then the accepted language is of the form
L · Aω for the language L accepted by A viewed as a Vpa on finite words.
Hence, we obtain the following corollary to Theorem 1.

Corollary 3 For each complete nondeterministic reachability Vpa there ex-
ists an equivalent deterministic reachability Vpa of exponential size.

7

To define visibly pushdown tree automata, we consider infinite k-ary Σ-labelled
trees, i.e., mappings t : [k]∗ → Σ. By Tk,Σ we denote the set of all infinite k-ary
Σ-labelled trees.

The setting on trees that we need is slightly different from the word case: the
stack operation performed in a transition of a tree automaton is not deter-
mined by the node label but by the direction in the tree. Hence, we assume
that A = [k].

A visibly pushdown tree automaton (Vpta) over Ã (with A = [k]) is of the
form A = (Q,Σ,Γ, Qin, δ, Acc) where Q, Γ, Qin are as for Vpas on words, Σ
is a node label alphabet, Acc is the acceptance component, and δ is the set of
transitions. A transition is of the form (q, b, γ, τ) with q ∈ Q, b ∈ Σ, γ ∈ Γ,
and τ : [k] → Q∪(Q×Γ) such that τ(d) ∈ Q if d ∈ Aint∪Ar and τ(d) ∈ Q×Γ
if d ∈ Ac. A configuration of A is defined as before.

For a tree t : [k]∗ → Σ, a run of A on t is a mapping ρ : [k]∗ → Cf(A) such
that ρ(ε) ∈ Qin × {⊳} is an initial configuration, and for each x ∈ [k]∗ with
ρ(x) = (q, γσ) there is a transition (q, t(x), γ, τ) ∈ δ such that for all d ∈ A:

ρ(xd) =

(q′, γσ) if d ∈ Aint and τ(d) = q′,

(q′, σ) if d ∈ Ar, τ(d) = q′, and γ ∈ Γ \ {⊳},

(q′, ⊳) if d ∈ Ar, τ(d) = q′, σ = ε, and γ = ⊳,

(q′, γ′γσ) if d ∈ Ac and τ(d) = (q′, γ′).

Intuitively, if the automaton is at a certain node of the input tree, it reads
the label of the node and then sends copies of itself to all the successors of
the node. Depending on the type of the successor (call, return, or internal
action) the automaton performs a push, a pop, or leaves the stack unchanged.
Note that, in contrast to VPAs, VPTAs have access to the top stack symbol
even for internal and call symbols. We use this definition only for notational
convenience. As mentioned above, this does not make any difference for the
expressive power.

As for Vpas, we can consider different types of acceptance for Vptas, e.g.,
Büchi, parity, or stair parity conditions with the corresponding component
substituted for Acc. Then A accepts an input tree t if there is a run of A
on t such that each path through this run (which is an infinite sequence of
configurations) satisfies the acceptance condition. The set of all trees accepted
by A is denoted by T (A).

Similar to the case of finite automata on infinite trees (cf. [21]), the emptiness
test for a Vpta is polynomial time equivalent to the problem of determining
the winner in a visibly pushdown game ([15]) with a winning condition corre-

8

sponding to the acceptance condition of the Vpta. Since solving such games is
complete for exponential time (for all the winning conditions considered here),
we obtain the following theorem (and also corresponding lower bounds).

Theorem 4 For a given Vpta A one can decide in exponential time whether
T (A) is empty.

For later use, we need to relate Vpas on words and on trees. For this purpose,
we code paths through k-ary Σ-labelled trees by words that can be processed
by a Vpa.

An infinite path can be uniquely identified with an infinite sequence d0d1d2 · · ·
with di ∈ [k]. Given such a path π and a tree t : [k]∗ → Σ, we define the infinite
word wt

π ∈ (Σ × [k])ω as wt
π = (t(ε), d0)(t(d0), d1)(t(d0d1), d2) · · ·

The partition of the alphabet Σ × [k] into calls, returns, and internal actions
is inherited from the partition of [k].

For a language L ⊆ (Σ × [k])ω we define the corresponding language of trees
that contains exactly those trees for which all codings of paths are in L:

Trees(L) = {t ∈ Tk,Σ | wt
π ∈ L for all paths π}.

If L is accepted by some deterministic ω-Vpa A, then one can easily define a
Vpta accepting Trees(L) by simulating A on each path.

Remark 5 For each deterministic ω-Vpa A over Σ× [k] there exists a Vpta

with an acceptance condition of the same type accepting Trees(L(A)).

A class of automata (nested tree automata) similar to our VPTAs has been
defined in [4]. These automata are not equipped with a stack but the input
tree is enriched by edges connecting a call to its matching return, and the
automaton can look backwards along these edges to determine in which state
it was when being at the call matching with the current return. Nevertheless,
the two models are equivalent in the sense that a set of trees can be accepted
by a VPTA iff the corresponding set of trees enriched with the matching edges
can be accepted by a nested tree automaton.

2.3 Recursive PDL

The formalism of recursive PDL is obtained by replacing regular expres-
sions (as the formalism to define programs) by Vpas. For this purpose we
assume that the set of atomic programs is given as a pushdown alphabet
Π̃ = 〈Πc,Πint,Πr〉 of calls Πc, internal actions Πint, and returns Πr as required

9

s s′ s1

p1

s′1

p0
a0 a0 b0 b0

a1b1
a1

b1

Fig. 1. A model (with s as initial state) for the formula from Example 6

for Vpas. The set of formulas of recursive PDL is defined in the same way
as for PDL. To define the set of programs we replace (6) from the syntax
definition of PDL by

(6′) A Vpa A over 〈Πc,Πint ∪ Test,Πr〉 is a program.

So we replace regular expressions or finite automata by Vpas, where tests
are treated as internal actions. Note that an atomic program a may be seen
as a singleton {a} and thus as a visibly pushdown language. Therefore, we
will always assume that all diamond formulas are of the form 〈A〉ϕ for some
Vpa A.

The definition of the semantics does not change. The only difference is that
in the extension of the relation R to programs we now refer to the language
defined by Vpas instead of regular expressions.

Example 6 Consider the set of atomic programs Π̃ = 〈{a0, a1}, ∅, {b0, b1}〉
and the set P = {p0, p1} of atomic propositions. Let

• ψ = 〈B〉p0 where B accepts the language {ak
1b

k
1 | k > 0}, and

• ϕ = 〈A〉p1 where A accepts the language {((ψ?)a0)
kbk0 | k > 0}.

For the structure M , as depicted in Figure 1 with p1 ∈ ν(s1) and p0 ∈ ν(s′1), we
have (s, s′1) ∈ R(B) and (s′, s′1) ∈ R(B). Since p0 ∈ ν(s′1), we obtain M, s |= ψ
and M, s′ |= ψ. Thus, (s, s), (s′, s′) ∈ R(ψ?) and therefore (s, s1) ∈ R(A).
Since p1 ∈ ν(s1) we finally obtain that M, s |= ϕ.

3 Expressiveness

In this section we compare recursive PDL to other formalisms and give some
more examples. We discuss what properties can be expressed in our logic and
where the differences to other formalisms are.

10

3.1 Comparison to previous extensions of PDL

Since Vpas can accept all regular languages, recursive PDL contains standard
PDL as a fragment. In [8], there is a simple proof of the fact that the ex-
tension of PDL with any single non-regular program is more expressive than
standard PDL. Hence, recursive PDL is more expressive than standard PDL.

The introduction already gave a brief discussion of the relationship between
recursive PDL, PDL with simple minded pushdown automata (SM-PDL) [12],
and PDL with semi-simple minded pushdown automata (SSM-PDL) [10]. In
the following, we add some details. The main observation about simple minded
automata is that they are very weak. For example, the language a2#b2# cannot
be accepted by such an automaton because the next state is determined by
the input, and thus states cannot be used to count modulo 2. In fact, for a
fixed input alphabet there are only finitely many such automata because the
number of (useful) states is bounded by the size of the alphabet.

Semi-simple minded automata are less restricted. In fact, they can be seen as
Vpas where the stack can only be used to store the input call symbols. We
have already mentioned that the language {anambm1 a

ℓbℓ2b
n
1 | n,m, ℓ ≥ 0} can

be accepted by a Vpa, but not by a semi-simple minded automaton. A proof
of the latter is straightforward using the facts that the symbol a needs to be
associated with stack pushes, b1 and b2 need to be associated with pops from
the stack, and a semi-simple minded automaton with only one push symbol
can only use a single stack symbol (which does not suffice for this language).
Unfortunately, the simple proof of [8] that any extension of PDL with a non-
regular language is more expressive than PDL cannot easily be adapted to
show that PDL with Vpas is more expressive than SSM-PDL. Still, it seems
that there is no formula in SSM-PDL that is equivalent to 〈A〉p, where A is a
Vpa accepting the above language. We do not, however, have a formal proof
of this statement.

Another notable difference between recursive PDL and both SM-PDL and
SSM-PDL as defined in [12,10] is that we allow to incorporate tests into the
visibly pushdown programs. If we view a Vpa as the descriptions of a recursive
procedure, then this nesting allows, for example, to formulate pre- and post-
conditions for these procedures that relate to events happening during the
procedure’s execution. A simple example is the formula 〈a#; p0?; b

#〉p1, which
states that it is possible to execute a#b# such that p0 was true after the a#

part and p1 holds after the whole execution finished. It is not clear how to
express such a property without using tests inside a context-free language.
In the next subsection, we show how to use tests inside programs to express
multiple return conditions.

11

3.2 Comparison to VP-µ

In [1], the authors define a new modal fixpoint logic, the visibly pushdown µ-
calculus (VP-µ), as an extension of the modal µ-calculus to reason about the
behaviour of recursive programs. The models for this logic are trees where the
procedure calls and returns are made visible as edge labels. With every state
s in a VP-µ model, one associates the set of its matching returns, i.e., the
states reached when leaving the context of s (where the context of s consists
of all states belonging to the same procedure execution as s). Then a state
together with its matching return states is a summary. Roughly, the main
difference between VP-µ and the standard µ-calculus is that, in VP-µ, the
fixpoints are interpreted over sets of summaries instead of sets of states as in
standard µ-calculus.

VP-µ is a powerful logic that allows to express a number of natural properties
of recursive programs which cannot be captured by logics such as the modal
µ-calculus. In [1], the authors show that model-checking formulas of VP-µ
against pushdown models is decidable in ExpTime, but satisfiability is unde-
cidable. Interestingly, the example properties presented in [1] to illustrate the
expressive power of VP-µ can also be expressed in recursive PDL or its ex-
tension recursive ∆-PDL, which both have a decidable satisfiability problem.
Here we review some of these examples.

Reachability (resp. local reachability). There is a path to some state where a
property ϕ holds and this state is reached before exiting (resp. in) the current
context. This is easily expressed by the formula 〈L〉ϕ where L consists of
all words that do not contain unmatched returns (resp. of all well-matched
words).

Termination. Every call is eventually matched. As recursive PDL does not
allow to talk about infinite computations, termination cannot be expressed.
However, it can easily be expressed in recursive ∆-PDL, the extension to
infinite computations developed in Section 6. In fact, it suffices to require that
there is no infinite path containing an unmatched call. This can easily be
tested by a Vpa on infinite words. We return to this example in Section 6,
where a concrete such Vpa is given.

Multiple return conditions. Formulate a property that holds after the return of
a procedure and that is conditional w.r.t. events happening during the execu-
tion of the procedure. Obviously, this is similar to the example 〈a#; p0?; b

#〉p1

given in the previous subsection. We may use a Vpa to find the return point
of the procedure and a test to check for events that happen during the proce-
dure’s execution. We give more details in the following example.

Example 7 Assume that the atomic program a indicates a call to a procedure

12

q0

q1 q2 q3

q4 q5

(a, X)

(∗, Y)

p0?

¬p0?

(∗, Y)

(b, X) (b, X)

Fig. 2. Vpa for the example on multiple return conditions

P , and b indicates a return from P . We want to specify that for each call of
P , the following holds: if property p0 holds at some point before the call to P
returns, then p1 should hold when the call to P returns. Otherwise, p1 should
not hold on the return. We express this by the formula

[Π∗](([A1]p1) ∧ ([A2]¬p1)

where A1 and A2 both have the transition structure depicted in Figure 2, q5
is the final state of A1, and q4 is the final state of A2. A transition label (a,X)
means that on reading a the automaton pushes X onto the stack. Similarly,
(b,X) means that the automaton can read b and pop X from the stack. The
transition label (∗, Y) means that each input symbol can be read, and for calls
Y is put onto the stack, for returns Y is taken from the stack.

The automaton starts by reading a, standing for a call of procedure P , pushing
an X onto the stack. After that it will store Y on the stack for each call. As
long as p0 does not hold, the automaton will alternate between the states q1
to q2. If p0 holds, the automaton memorises this by moving to q3. If b is read
when X is the top stack symbol, then the automaton knows that the initial
call a returns now. Depending on whether p0 was true in the meantime, it
moves to state q4 or q5.

4 Satisfiability for Recursive PDL

In this section, we show that the satisfiability problem for recursive PDL is
decidable. The idea for the satisfiability test is the same as in [22] and [12].
One first shows that each recursive PDL formula ϕ has a tree model. In these
tree models one labels each node s with all subformulas of ϕ that are true in
s. Such trees are called Hintikka trees. Then one constructs a tree automaton
that accepts the Hintikka trees of ϕ and checks this automaton for emptiness.
When starting with a PDL formula one obtains a Büchi tree automaton. Since
we use Vpas for the definition of programs we will end up with a visibly
pushdown tree automaton.

13

4.1 Hintikka Trees

The following definitions and propositions concerning Hintikka trees are simple
adaptations from [12], we just recall them here for completeness.

From now on, we identify a formula ϕ with the formula ¬¬ϕ. For each formula
ϕ in recursive PDL, we define its closure cl(ϕ) as the minimal set satisfying
the following:

• ϕ ∈ cl(ϕ).
• If ϕ1 ∧ ϕ2 ∈ cl(ϕ), then ϕ1, ϕ2 ∈ cl(ϕ).
• If ψ ∈ cl(ϕ), then ¬ψ ∈ cl(ϕ).
• If 〈A〉ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ). Additionally, if ψ′? is an internal action in
A, then ψ′ ∈ cl(ϕ).

Note that the size of cl(ϕ) is linear in the size of ϕ. By cl⋄(ϕ) we denote the
set of all diamond formulas from cl(ϕ).

We now fix a formula ϕ of recursive PDL containing n atomic programs
a0, . . . , an−1. Furthermore, we assume w.l.o.g. that P contains only those
atomic propositions that are used in ϕ.

A tree structure M = (S,R, ν) is a tree model for ϕ if M, ε |= ϕ. As for PDL
formulas, one can show that if a recursive PDL formula has a model then it
has a tree model.

Proposition 8 A formula of recursive PDL is satisfiable if and only if it has
a tree model.

Proof. It is clear that if ϕ has a tree model, then ϕ has a model.

Suppose that M, s0 |= ϕ for some structure M = (S,R, ν). Define r := 2|cl(ϕ)|

and let C0, . . . , Cr−1 be an enumeration of the subsets of cl(ϕ). Recall that
n is the number of atomic programs used in ϕ. For k := n · r we define a
mapping Φ : [k]∗ → 2S by induction on the length of words in [k]∗. First, let
Φ(ε) = {s0}. Assume that Φ is already defined for x ∈ [k]∗ and let d = jn+ ℓ
with 0 ≤ j < r and 0 ≤ ℓ < n. If Φ(x) = ∅, then we let Φ(xd) = ∅. If
Φ(x) = Sx is not empty, then we set:

Φ(xd) = {s′ ∈ S | ∃s ∈ Sx, (s, s′) ∈ R(aℓ) and Cj = {ψ ∈ cl(ϕ) |M, s′ |= ψ}}.

Intuitively, Φ(xd) describes all states in M that are reachable from a state in
Φ(x) with program aℓ and that satisfy exactly the formulas in Cj.

Consider now the structure M ′ = (S ′, R′, ν ′) where S ′ = {x | Φ(x) 6= ∅},

14

R′(aℓ) = {(x, xd) ∈ S ′ × S ′ | ℓ = d mod n}, and ν ′(x) = ν(s) for some
s ∈ Φ(x) (which is well defined as all s ∈ Φ(x) satisfy the same formulas from
cl(ϕ), hence the same atomic propositions). It is easy to see that M ′ is a tree
structure for ϕ. Furthermore, for ψ ∈ cl(ϕ), one can show by induction on the
structure of ψ that M ′, x |= ψ iff M, s |= ψ for all s ∈ Φ(x). For diamond
formulas one can proceed by induction on the length of the witnessing path
without referring to the formalism used to define the programs. Applied to
x = ε and ψ = ϕ we obtain M ′, ε |= ϕ. 2

We now define the notion of Hintikka tree. For this purpose we define the
alphabet Σϕ = 2cl(ϕ) ∪ {⊥}, where ⊥ is some symbol used to label nodes that
do not have to be considered. Note that this use of ⊥ is not at all related to
the bottom-of-stack symbol used for Vpas.

Definition 9 A Hintikka tree for a formula ϕ of recursive PDL with atomic
programs a0, . . . , an−1 is a k-ary tree t : [k]∗ → Σϕ with k ≥ n such that
ϕ ∈ t(ε), and for all elements x ∈ [k]∗:

(1) If t(x) = ⊥, then t(xd) = ⊥ for all d ∈ [k].
(2) If t(x) 6= ⊥, then ψ ∈ t(x) if and only if ¬ψ /∈ t(x) for all ψ ∈ cl(ϕ).
(3) If t(x) 6= ⊥ and ψ1 ∧ ψ2 ∈ cl(ϕ), then ψ1 ∧ ψ2 ∈ t(x) if and only if

ψ1, ψ2 ∈ t(x).
(4) (Diamond property) If t(x) 6= ⊥, then 〈A〉ψ ∈ t(x) if and only if there

exists an A-path (to be defined below) from x to y in t for some y ∈ [k]∗

such that t(y) 6= ⊥ and ψ ∈ t(y).
(5) (Box property) If t(x) 6= ⊥, then ¬〈A〉ψ ∈ t(x) if and only if ψ /∈ t(y) for

all y ∈ [k]∗ with t(y) 6= ⊥ for which there is an A-path from x to y.

An A-path from a node x to a node y is a sequence x0, . . . , xm of nodes with
x0 = x and xm = y such that there is a word w = w1 · · ·wm ∈ L(A) and the
following holds for all i = 1, . . . , m:

• If wi = ψ′? for some formula ψ′, then xi = xi−1 and ψ′ ∈ t(xi−1).
• If wi = aℓ for some atomic program aℓ, then xi = xi−1d for some d with
ℓ = d mod n.

The A-path required in 4 of the previous definition is also called a witnessing
path for 〈A〉ψ.

It is not difficult to see that Hintikka trees for ϕ are obtained from tree models
of ϕ by annotating each node with the set of formulas that are satisfied in this
node.

Proposition 10 Let ϕ be a formula of recursive PDL. There is a Hintikka
tree for ϕ if and only if ϕ has a tree model.

15

Proof. If M = (S,R, ν) is a tree model for ϕ, then we obtain a Hintikka tree
for ϕ as follows: for an element x ∈ [k]∗ \ S take t(x) = ⊥, and for an element
x ∈ S, take t(x) = {ψ ∈ cl(ϕ) | M,x |= ψ}. Noting that M, ε |= ϕ and using
the definition of the semantics of recursive PDL one shows by induction that
t is indeed a Hintikka tree for ϕ.

Starting from a Hintikka tree t for ϕ we construct a tree model M = (S,R, ν)
for ϕ as follows. The set of states is S = {x ∈ [k]∗ | t(x) 6= ⊥}, the transition
relation R is such that for all atomic programs aℓ, R(aℓ) = {(s, sd) | ℓ = d
mod n and sd ∈ S}, and for all s ∈ S, ν(s) = {p ∈ P | p ∈ t(s)}. In order to
show that M, ε |= ϕ, one shows by induction on the structure of the formula
that for all ψ ∈ cl(ϕ) and all states s ∈ S that ψ ∈ t(s) if and only if M, s |= ψ.
The base case where ψ ∈ P comes from the definition of ν while the inductive
step follows from the definition of Hintikka tree. 2

Our goal is to build a tree automaton that accepts Hintikka trees for ϕ. Such
an automaton has to verify for each node x with a diamond formula 〈A〉ψ
in t(x) that there is an A-path starting from x to some node y. Such paths
may overlap and the tree automaton would have to keep track of which Vpas
to simulate in order to check the diamond property for several nodes. To
simplify this task we show that it is always possible to find a Hintikka tree
where the paths witnessing the diamond properties are (edge) disjoint. Such
Hintikka trees are called unique diamond path Hintikka trees in [12]. In the
definition from [12] it is possible that for a diamond formula 〈A〉ψ that is in
t(x) the witnessing path contains a node y such that 〈A〉ψ is also in t(y). Then
the witnessing path for this second occurrence of the diamond formula might
overlap the witnessing path for the first occurrence. In our definition we also
avoid this problem.

Definition 11 A unique diamond path Hintikka tree for ϕ is a Hintikka tree
t for ϕ that satisfies the following additional condition: there exists a mapping
ρ : [k]∗ → (cl⋄(ϕ) × [k]∗) ∪ {⊥}, such that for all x ∈ [k]∗: If 〈A〉ψ ∈ t(x)
then, for some witnessing A-path x0, . . . , xm (starting in x), we have ρ(xi) =
(〈A〉ψ, x) for all 1 ≤ i ≤ m.

Any Hintikka tree can be transformed into a unique diamond path Hintikka
tree by increasing the number of descendants of each node such that there is a
separate branch for each formula when needed. The branching degree resulting
from this increase of descendants can be bounded as stated in the following
proposition, where r denotes the number of diamond formulas in cl(ϕ) and n
the number of atomic programs.

Proposition 12 Let ϕ be a formula of recursive PDL. There is a Hintikka
tree for ϕ if and only if there is a k-ary unique diamond path Hintikka tree
for ϕ with k = 2|cl(ϕ)| · n · 2r.

16

Proof. Consider a Hintikka tree t : [k]∗ → Σϕ for ϕ. Let k′ = 2rk, where
r = |cl⋄(ϕ)|, and fix an ordering ψ0, . . . , ψr−1 on the diamond formulas from
cl⋄(ϕ). We define a mapping η : [k′]∗ → [k]∗ that associates to each element
from [k′]∗ an element of [k]∗ by induction on the length of words in [k′]∗ as
follows: η(ε) = ε and η(xd′) = η(x)d where d = d′ mod k. We finally define
t′ : [k′]∗ → Σϕ by t′(x) = t(η(x)). It is not difficult to show that t′ is a Hintikka
tree.

In order to show that t′ is a unique diamond path Hintikka tree, we have
to define the mapping ρ : [k′]∗ → (cl⋄(ϕ) × [k′]∗) ∪ {⊥}. The idea for this
mapping is the following. Assume that ψj is in t(x) for some x ∈ [k]∗ and that
the last vertex in the witnessing path for ψj is obtained from x by appending
d0, d1, . . . , dm. In t′ we have ψj ∈ t′(x′) for all x′ with η(x′) = x. The witnessing
path in t′ is then obtained by appending d′0, d

′
1, . . . , d

′
m to x with d′0 = d0 +

(r + j)k and d′i = di + jk for i ∈ {1, . . . , m}.

Formally, we define ρ inductively on the length of the nodes. We set ρ(ε) = ⊥.
Assume that ρ(x′) is already defined for x′ ∈ [k′]∗. Let d ∈ {0, . . . , k − 1} and
j ∈ {0, . . . , r − 1}. Now we define for d′ = d+ jk

ρ(x′d′) =

ρ(x′) if ρ(x′) = (ψj, y) for some y ∈ [k′]∗,

⊥ otherwise,

and for d′ = d+ (r + j)k

ρ(x′d′) =

(ψj , x
′) if ψj ∈ t′(x′),

⊥ otherwise.

Using the idea sketched above on how to obtain the witnessing paths in t′

from those in t, one can show by induction on the length of A-paths that ρ
satisfies the conditions for t′ being a unique diamond path Hintikka tree.

The arity of t′ is 2rk where k can be chosen equal to 2|cl(ϕ)| · n as shown by
the proof of Proposition 10. 2

4.2 From Recursive PDL to Tree Automata

We now show how to build a Büchi Vpta accepting exactly the k-ary unique
diamond path Hintikka trees for ϕ. Together with Theorem 4 one obtains
decidability of the satisfiability problem for recursive PDL formulas.

So from now on we are interested in trees from Tk,Σϕ
. Further, note that each

d ∈ [k] is associated in a natural way to an atomic program in the definition

17

of A-path, namely to aℓ if ℓ = d mod n. This directly induces a partition of
[k] into calls, returns, and internal actions.

The construction of the Vpta follows the same lines as in [12]. We first build
three visibly pushdown tree automata. The first automaton is called the local
automaton and accepts all trees satisfying the first two items of Definition 9.
The second automaton called box automaton accepts all trees satisfying the
box property (see Definition 9). The third automaton called diamond automa-
ton accepts all trees satisfying the diamond property (see Definition 9) and
the condition of Definition 11.

The intersection of the languages accepted by these three automata defines
exactly the set of k-ary unique diamond path Hintikka trees for ϕ. As visibly
pushdown tree languages are closed under intersection, a nondeterministic
visibly pushdown tree automaton recognising the desired language can be
constructed.

Local automaton.

The local automaton is easily constructed as a two-state finite tree automaton
equipped with a safety condition. The automaton checks for all nodes x in
the tree whether t(x) satisfies the first two conditions of Definition 9. If in
some node one of these two conditions is violated, the automaton goes to its
rejecting state, otherwise it stays in the initial state.

Lemma 13 There is a finite tree automaton with a safety acceptance condi-
tion and two states that accepts the trees that satisfy the first two properties
of Definition 9.

Box automaton.

We now construct a Vpta accepting those trees from Tk,Σϕ
that satisfy the

box property from Definition 9. First note that the box property is a condition
on the paths through the tree. This means we can define a language Lbox ⊆
(Σϕ × [k])ω such that Tbox = Trees(Lbox), where Tbox denotes the set of all
trees satisfying the box property. We now define Lbox and then show that it
can be accepted by a deterministic safety Vpa.

For each word w ∈ (Σϕ × [k])ω there exists a tree t ∈ Tk,Σϕ
and a path π such

that w = wt
π. Then w is in Lbox if this t satisfies the box property on π: for

all x ∈ π, ¬〈A〉ψ ∈ t(x) if and only if ψ /∈ t(y) for all y ∈ π for which there is
an A-path from x to y.

It is not difficult to see that t ∈ Tk,Σϕ
indeed satisfies the box property if and

18

only if all its paths are in Lbox. Hence, by Remark 5, to construct a Vpta for
Tbox it is sufficient to construct a deterministic Vpa for Lbox.

Lemma 14 There is a deterministic safety Vpa of size exponential in the
size of ϕ that accepts Lbox.

Proof. Let ψ1, . . . , ψm be an enumeration of all box formulas ψi = ¬〈Ai〉ϕi ∈
cl(ϕ). We show how to construct a visibly pushdown automaton for the com-
plement Lbox of Lbox, and we conclude using closure of visibly pushdown lan-
guages under complementation.

First note that Lbox =
⋃m

i=1 Li, where Li is the set of all words describing a
path that violates the box condition for ψi. For every i, Li is accepted by a
Vpa Bi equipped with a reachability condition as follows.

For an input word w = (C0, d0)(C1, d1) · · · with Cj ∈ Σϕ and dj ∈ [k] the
Vpa Bi guesses a segment (Cj, dj) · · · (Cj′, dj′) with ψi ∈ Cj and ϕi ∈ Cj′, and
verifies that it corresponds to an Ai-path. This is realised as follows:

• Before guessing the initial position j of the segment, Bi stores a special
symbol ♯ on the stack. On guessing j it enters a state indicating that the
simulation of Ai starts.

• In the simulation phase, on reading a letter (C, d), Bi can simulate a se-
quence of transitions of Ai consisting of tests and ending with the atomic
program aℓ corresponding to d, i.e., with ℓ = d mod n. So, a change of
configuration in Ai on reading a word of the form χ1? · · ·χr?aℓ is performed
in Bi in a single transition on (C, d) if χ1, . . . , χr are in C 6= ⊥. This is pos-
sible since tests are handled as internal actions in Ai and thus only induce
a change of the control state.

In this simulation, whenever Bi sees ♯ as top stack symbol, it treats it as
the bottom-of-stack symbol ⊳ is handled in Ai.

• Finally, if Bi reads (C, d) with ϕi ∈ C, and there is a (possibly empty)
sequence χ1? · · ·χr? of tests leading to an accepting state in Ai where
χ1, . . . , χr are in C, then Bi can move to its accepting state on reading
(C, d). Once Bi has reached its accepting state it remains there forever.

Note that the size of Bi is linear in the size of Ai. Furthermore, Bi can be con-
structed such that it is complete because every run that reaches an accepting
state never stops.

Taking the union of these Vpas one obtains a reachability Vpa B for Lbox.
Determinising and then complementing B (see Corollary 3) yields a safety
Vpa for Lbox that is of size exponential in B and thus also exponential in the
size of ϕ. 2

19

Applying Remark 5 we directly get the following result.

Lemma 15 There is a safety Vpta of size exponential in the size of ϕ that
accepts Tbox.

Diamond automaton.

We give an informal description of the diamond automaton. This automaton
is designed to accept trees that satisfy both the diamond condition and the
one of Definition 11.

The control state of the diamond automaton stores the following informations:

• A diamond formula 〈A〉ψ currently checked or ⊥ if nothing is checked.
• If some diamond formula 〈A〉ψ is being checked, a control state of A is

stored (and stack information from A will be encoded in the stack of the
diamond automaton).

At the beginning no formula is checked. The diamond automaton reads the
labelling t(x) of the current node x. If it contains some diamond formula, it
will go for each of these formulas in a different branch of the tree where it
checks this formula. If the automaton was already checking for a diamond
formula, it keeps looking for its validation by choosing yet another branch. As
the tree should satisfy the unique diamond path property, a validation of the
diamond formulas can be found in this way.

When checking for a diamond formula 〈A〉ψ, the automaton performs a sim-
ulation of A on the path it guesses. A sequence of tests read by A followed by
some atomic program is simulated in a single transition of the Vpta. For this
it stores in its control state the current state q of A in the simulation and uses
its stack to mimic the one of A. Assume that in A a sequence of the following

form is possible: (q, γ)
χ1?−−→ (q1, γ)

χ2?−−→ · · ·
χm?
−−→ (qm, γ)

aℓ−→ (q′, σ), where γ
denotes the top stack symbol and σ is the new top of the stack, depending
on the type of aℓ, i.e., σ = ε for a return, σ = γ for an internal action, and
σ = γ′γ for a call and some γ′ from the stack alphabet of A. Then the Vpta

on reading a node label t(x) that contains χ1, . . . , χm can update the state q
of A to q′ when proceeding to a d-successor with ℓ = d mod k.

To keep track of the level of the stack where the simulation of A started,
the first symbol pushed onto the stack after starting the simulation of A is
marked by ♯. If this symbol is popped later, then it is recorded in the state of
the Vpta that the simulation is at the bottom of the stack, i.e., A-transitions
are simulated as if ⊳ would be the top stack symbol. If a symbol is pushed, it
is again marked by ♯.

20

The simulation ends if the current node label t(x) contains ψ and from the
current state q of the A-simulation a final state of A is reachable by a (possibly
empty) sequence of tests such that the corresponding formulas are included
in t(x). In this case the Vpta signals this successful simulation in the next
transition by setting a special flag in all successor states. This flag also defines
the acceptance condition. If the flag is set infinitely often on each path, then
the input is accepted. For this to work we also set the flag if no simulation is
performed. This acceptance condition is of Büchi type and hence we have the
following result.

Lemma 16 There is a Büchi Vpta of size O(|ϕ|) that accepts those trees
from Tk,Σϕ

that satisfy the diamond property and the condition of Definition
11.

Now, consider the automaton obtained by taking the product of the local au-
tomaton, the box automaton, and the diamond automaton. The combination
of two safety conditions and one Büchi condition can easily be transformed
into a single Büchi condition.

Lemma 17 There is a Büchi Vpta of size exponential in the size of ϕ that
accepts the k-ary unique diamond path Hintikka trees for ϕ.

Using Theorem 4 we deduce the decidability of the satisfiability problem for
recursive PDL formulas.

Theorem 18 Given a recursive PDL formula, one can decide in doubly ex-
ponential time whether it is satisfiable.

In the next section we establish a matching lower bound for this complexity.

5 Lower Bound

Our aim is to establish lower bounds for extensions of PDL with recursive
programs. We start with a 2-ExpTime lower bound for PDL+a#b#, i.e., PDL
extended with the single program a#b#, where the new program cannot even
be used to build up complex programs via regular expressions. The proof is by
a reduction of the word problem for exponentially space-bounded alternating
Turing machines. In a second step, we give a sketch of how to generalise this
lower bound to a whole class of context-free languages.

An Alternating Turing Machine (ATM) is of the form M = (Q,Σ,Γ, q0,∆).
The set of states Q = Q∃ ⊎ Q∀ ⊎ {qa} ⊎ {qr} consists of existential states in

21

Q∃, universal states in Q∀, an accepting state qa, and a rejecting state qr; Σ
is the input alphabet and Γ the work alphabet containing a blank symbol �

and satisfying Σ ⊆ Γ; q0 ∈ Q∃ ∪ Q∀ is the starting state; and the transition
relation ∆ is of the form

∆ ⊆ Q× Γ ×Q× Γ × {L,R}.

We write ∆(q, σ) to denote {(q′, σ′,M) | (q, σ, q′, σ′,M) ∈ ∆}.

A configuration of an ATM is a word wqw′ with w,w′ ∈ Γ∗ and q ∈ Q. The
intended meaning is that the one-side infinite tape contains the word ww′ with
only blanks behind it, the machine is in state q, and the head is on the symbol
just after w. The successor configurations of a configuration wqw′ are defined
in the usual way in terms of the transition relation ∆. A halting configuration
is of the form wqw′ with q ∈ {qa, qr}.

A computation of an ATM M on a word w is a (finite or infinite) sequence
of configurations K0, K1, . . . such that K0 = q0w and Ki+1 is a successor
configuration of Ki for all i ≥ 0. The ATMs considered in the following have
only finite computations on any input. Since this case is simpler than the
general one, we define acceptance for ATMs with finite computations, only.
Let M be such an ATM. A halting configuration is accepting iff it is of the
form wqaw

′. For other configurations K = wqw′, acceptance depends on q: if
q ∈ Q∃, thenK is accepting iff at least one successor configuration is accepting;
if q ∈ Q∀, then K is accepting iff all successor configurations are accepting.
Finally, the ATM M with starting state q0 accepts the input w iff the initial
configuration q0w is accepting. We use L(M) to denote the language accepted
by M.

There is an exponentially space bounded ATM M whose word problem is
2-ExpTime-hard and we may assume that the length of every computation
path of M on w ∈ Σn is bounded by 22n

, and all the configurations wqw′

in such computation paths satisfy |ww′| ≤ 2n, see [5]. We may also assume
w.l.o.g. that M never attempts to move left on the left-most tape cell. Let
w = σ0 · · ·σn−1 ∈ Σ∗ be an input to M. We construct a formula ϕM,w of
PDL+a#b# such that w ∈ L(M) iff ϕM,w is satisfiable.

In models of ϕM,w, each state represents a tape cell, and a path of 2n states
connected by the program a is used to represent a configuration. The program
a is also used to connect each configuration to its successor configurations.
Already in PDL, it is possible to formulate most properties of ATMs, e.g.
that each tape cell is labelled with exactly one symbol, and that the initial
configuration has the expected shape. What cannot be done using a PDL
formula of only polynomial length is to access the tape cell of the consecutive
configuration that has the same position as the current cell (since it is 2n steps
away). This is necessary to describe a step made by the ATM and also to state

22

that tape cells which are not underneath the head do not change. It is here
that we use the program a#b#. The idea is to attach to each element a path
of 2n states connected by the program b. The states on this path only serve
an auxiliary purpose and do not correspond to tape cells. Then the program
a#b# will bring us from a tape cell to the end of the auxiliary chain that is
attached to the corresponding tape cell in consecutive configurations. As we
shall see, this suffices to finish the reduction.

Summing up, in ϕM,w we use the atomic programs a and b and the set of
atomic propositions {t} ∪ Γ ∪ Q ∪ {c0, . . . , cn−1} ∪ X, where X := {mq,σ,M |
q ∈ Q, σ ∈ Γ,M ∈ {L,R}}. The propositions have the following meaning:

• t is used to identify the states that represent tape cells (as opposed to being
on the auxiliary chains);

• σ ∈ Γ is true at a state s if the tape cell represented by s is labelled with σ
in the current configuration;

• q ∈ Q is true at s if the head of M is on s in the current configuration and
the machine is in state q;

• mq,σ,M is true at s if the head was on s in the previous configuration and the
machine reached the current configuration by switching to state q, writing
σ, and moving in direction M ;

• cn−1, . . . , c0 describe a counter C in binary coding for counting the length
of configurations and of auxiliary b-paths.

We now assemble the reduction formula ϕM,w, starting with the auxiliary
paths and the behaviour of the counter C. On states satisfying t, it counts
modulo 2n along the program a. On states satisfying ¬t, it counts modulo 2n

along the program b. We first define the following abbreviation for increment-
ing the counter C when travelling along a program α ∈ {a, b}:

Inc(α) :=
n−1∧

k=0

(k−1∧

j=0

cj → (ck → [α]¬ck) ∧ (¬ck → [α]ck)
)
∧

n−1∧

k=0

(k−1∨

j=0

¬cj → (ck → [α]ck) ∧ (¬ck → [α]¬ck)
)

We will also use the abbreviation (C = 2n −1) for c0∧· · ·∧ cn−1, (C < 2n −1)
for ¬(C = 2n−1), and (C = 0) for ¬c0∧· · ·∧¬cn−1. Now we establish auxiliary
paths and the behaviour of the counter C:

ϕ1 := [U]
(
t→ (Inc(a) ∧ 〈b〉¬t ∧ [b](C = 0)) ∧

(¬t ∧ (C < 2n − 1)) → (〈b〉¬t ∧ Inc(b)) ∧

(¬t ∧ (C = 2n − 1)) → ([b]⊥)
)

23

where [U]ψ abbreviates [(a ∪ b)∗]ψ and ⊥ is logical falsity, both here and in
what follows.

We now formulate some general requirements on ATMs: every tape cell is
labelled with exactly one symbol from Γ and never with two different states,
and no configuration has more than one cell marked with the tape head.

ϕ2 := [U]
(∨

σ∈Γ

σ ∧
∧

σ,σ′∈Γ,σ 6=σ′

¬(σ ∧ σ′) ∧
∧

q,q′∈Q,q 6=q′

¬(q ∧ q′) ∧

∨

q∈Q

q → [((C < 2n − 1)?; a)∗]
∧

q∈Q

¬q
)

Next, we set up the initial configuration. Recall that w = σ0 · · ·σn−1 is the
input and 2 the blank symbol.

ϕ3 := (C = 0) ∧ q0 ∧
∧

i<n

[ai]σi ∧ [an; ((C < 2n − 1)?; a)∗] 2

As explained above, we can use the program a#b# to travel from a tape
cell to the end of the auxiliary path that starts at the corresponding tape
cell in consecutive configurations. To propagate information between the cell
and the auxiliary path, it is useful to state that they interpret the relevant
propositional letters in the same way.

ϕ4 := [U]
∧

p∈Q∪Γ∪X

(
(p→ [b]p) ∧ (〈b〉p→ p)

)

Given ϕ4, we can easily state that tape cells that are not underneath the tape
head do not change when M makes a transition:

ϕ5 :=
∧

σ∈Γ

(
(

∧

q∈Q

¬q ∧ σ) → [a#b#]([b]⊥ → σ)
)

Observe that we indeed reach the auxiliary path of the corresponding cell in
the successor configuration because (i) using a#b#, we travel as many a’s as
b’s; (ii) the auxiliary paths have exactly length 2n due to ϕ1; and (iii) we use
[b]⊥ to ensure that we reach the end of the auxiliary path.

We now encode M’s transition function δ. This is done using the proposi-
tional letters from X (which are of the form mq,σ,M). First, we propagate the
transition of M to the successor configurations.

ϕ6 := [U]
(∧

q∈Q∃,σ∈Γ

(
q ∧ σ →

∨

(p,σ′,M)∈δ(q,σ)

〈a#b#〉([b]⊥ ∧mp,σ′,M)
)
∧

∧

q∈Q∀,σ∈Γ

(
q ∧ σ →

∧

(p,σ′,M)∈δ(q,σ)

〈a#b#〉([b]⊥ ∧mp,σ′,M)
)

24

The following formula then actually implements the transition, relying on ϕ4.

ϕ7 := [U]
(∧

q∈Q,σ∈Γ,M∈{L,R}

(mq,σ,M → σ) ∧

∧

q∈Q,σ∈Γ

(〈a〉mq,σ,L) → q ∧

∧

q∈Q,σ∈Γ

(mq,σ,R → [a]q)
)

It remains to describe acceptance of the machine. Since all computation paths
of M are finite, it suffices to require that the state qr never appears:

ϕ8 := [U]¬qr

Altogether, we obtain the formula ϕM,w :=
∧

1≤i≤8 ϕi. It is not difficult to
verify that w ∈ L(M) iff ϕM,w is satisfiable. Since |ϕM,w| is polynomial in n,
together with Theorem 18, we get the following result.

Theorem 19 Satisfiability in PDL+a#b# is 2-ExpTime-complete.

The lower bound presented above is easily adapted to other non-regular lan-
guages. Take, for example, a#b#c#: we can simply use auxiliary chains con-
sisting of 2n b’s followed by 2n c’s. In the following, we generalise our lower
bound to a whole class of (context-free) languages.

A context-free grammar G = (N, T, S0, P) consists of a set of nonterminal
symbols N , terminal symbols T , a start symbol S0 ∈ N , and a set P of pro-
ductions of the form A → w, where A ∈ N and w ∈ (N ∪ T)∗. We deviate
slightly from this usual presentation and allow w to be from (N ∪ T ∪ R)∗,
where R denotes the set of all regular languages over T in some unspecified
(but fixed) representation.

A parenthesis grammar is a context-free grammar G such that

(1) there are two (distinct) parenthesis symbols a, b ∈ T , and
(2) all productions are of the form A → awb, where w does not contain a

and b, and all regular languages occurring in w are over T \ {a, b}.

In this definition, a and b function only as placeholders rather than as concrete
symbols: any symbols satisfying the required conditions can serve as parenthe-
sis symbols. A parenthesis language is a language generated by a parenthesis
grammar.

Parenthesis languages where introduced by McNaughton in [16] as a class

25

of context-free grammars for which the equivalence problem is decidable. 1

It is not hard to see that all parenthesis languages can be accepted by a
Vpa, and are thus captured by Theorem 18. For the lower bound, we only
consider parenthesis grammars that generate a non-empty language and in
which the start symbol can reach itself, i.e., we have S0 ⊢∗ wS0w

′ for some
w,w′ ∈ (N ∪ T)∗. We call such a parenthesis grammar (and the language
generated by it) simple. Clearly, every simple parenthesis language is infinite.

Theorem 20 Let L be a simple parenthesis language. Then satisfiability in
PDL+L is 2-ExpTime-complete.

Proof. (sketch) The upper bound follows from Theorem 18 and the lower
bound is obtained by adapting the lower bound for PDL+a#b# given above.
We only give a sketch of the latter. It is not difficult to see that for every
simple parenthesis language L with parenthesis symbols a and b, there are
v, w, x ∈ T ∗ (which may contain a and b) such that

(av)iawb (xb)i ∈ L for all i ≥ 0.

We may thus adapt the above reduction as follows. We make each element
of T \ {a, b} an additional atomic program. Between every two consecutive
tape cells (i.e. states satisfying t in the original reduction), we insert a v-path.
Auxiliary paths are modified in two ways. First, we insert a w-path at the
beginning; and second, we insert an x-path between every two consecutive
states.

If a and b occur in v, w, x, then some additional care has to be taken. In
particular, we have to make sure that occurrences of a in v and w are not
misinterpreted as a step to the next tape cell and occurrences of b in w and
x are not counted by the counter C when determining the length of auxiliary
paths. This can be easily done using some additional atomic propositions as
markers.

Then, the program a#b# is replaced with L. It should we obvious that in this
way, we reach the end of the auxiliary chains emerging from the correspond-
ing tape cell in consecutive configurations as desired. We have to argue that
we do not reach any undesired states. Since (already in the original reduc-
tion) we use [b]⊥ to make sure that we indeed have reached the end of an
auxiliary chain, it actually suffices to ensure that we do not reach the end of
any other auxiliary chain. Suppose that we do reach such an undesired chain
ending. This means that (av)iawb (xb)j ∈ L for some i, j ≥ 0 with i 6= j. But
that’s impossible because every word contained in a parenthesis language has

1 However, McNaughton does not allow regular languages on the right-hand-side
of production rules.

26

(i) balanced parentheses and (ii) an opening bracket as first symbol and the
corresponding closing bracket as last symbol. 2

It is not clear how to generalise the proof of Theorem 20 from simple paren-
thesis languages to infinite parenthesis languages. For the latter, we can only
infer the existence of u, v, w, x, y ∈ T ∗ such that

au(av)iawb (xb)iyb ∈ L for all i ≥ 0,

and the au prefix seems difficult to handle unless we enrich our language with
a converse constructor on atomic programs.

We note that Theorem 20 implies Theorem 19 and additionally captures a lot
of other languages such as a2nb2n and anc∗bn.

6 Extension to Infinite Computations

In [20] an extension of PDL with a construct ∆α for building formulas from
programs α is considered. The meaning of such a formula is that the program
α can be repeated infinitely often. The resulting logic is called ∆-PDL. In this
section we extend recursive PDL by a similar construct ∆A for Büchi Vpas A
over atomic programs and tests. The meaning of such a formula is that there
exists a path that is accepted by A.

For the formal definition we introduce the notion of ω-program and add to
the syntax rules of recursive PDL the following clauses:

• A Büchi Vpa A over 〈Πc,Πint ∪ Test,Πr〉 is an ω-program.
• If A is an ω-program, then ∆A is a formula.

This extension is called recursive ∆-PDL. For the semantics we only give the
definitions for the new constructs. Each ω-program defines a unary relation
Rω and the corresponding ∆-formulas hold at those states of the structure
that are in Rω:

• s ∈ Rω(A) if and only if there is an infinite word w = w0w1w2 · · · ∈ L(A)
(with wi ∈ Π ∪ Test) and a sequence s0, s1, s2, . . . of states of the structure
such that s = s0 and (si, si+1) ∈ R(wi) for all i ≥ 0.

• M, s |= ∆A if and only if s ∈ Rω(A).

To give an example we come back to the property of termination described in
Section 3.

Example 21 For simplicity we consider only two atomic programs, a being

27

q0 q1
(a, X)

(a, Y), (b, Y)

Fig. 3. Vpa for Example 21.

a call and b being a return. We want to express that each call eventually
returns. For this, we use the automaton A from Figure 3 that accepts all
infinite sequences that start with a call that does not have a matching return.
The desired formula is then ϕter = [Π∗](¬∆A).

The definition of Hintikka tree extends in a straightforward way by adding the
natural properties for formulas ∆A and ¬∆A. In the following, we call these
properties ∆-property and ¬∆-property. The notion of unique diamond path
Hintikka tree has to be extended by also requiring unique ∆-paths.

Definition 22 A Hintikka tree for a formula ϕ of recursive ∆-PDL with
atomic programs a0, . . . , an−1 is a k-ary tree t : [k]∗ → Σϕ with k ≥ n such
that ϕ ∈ t(ε), and for all elements x ∈ [k]∗ properties (1)–(4) of Definition 9
are satisfied together with the two additional ones:

(5) (∆-property) ∆A ∈ t(x) if and only if there exists an A-path (to be
defined below) from x in t.

(6) (¬∆-property) ¬∆A ∈ t(x) if and only if there is no A-path from x in t.

For a Büchi Vpa A, an A-path from a node x is an infinite sequence x0, x1, x2, . . .
of nodes with x0 = x such that there is a word w = w1w2w3 · · · ∈ L(A) and
the following holds for all i ≥ 1:

• If wi = ψ′? for some formula ψ′, then xi = xi−1 and ψ′ ∈ t(xi−1).
• If wi = aℓ for some atomic program aℓ, then xi = xi−1d for some d with
ℓ = d mod n.

We define the closure cl(ϕ) of a ∆-formula as for recursive PDL formulas
and we denote by cl∆(ϕ) the set of all ∆-formulas from cl(ϕ). An Hintikka
tree satisfies the unique ∆-path property if it fulfils the following additional
condition: there exists a mapping ρ : [k]∗ → (cl∆(ϕ) × [k]∗) ∪ {⊥}, such that
for all x ∈ [k]∗: If ∆Aψ ∈ t(x) then, for some witnessing A-path x0, x1, x2, . . .
(starting in x), we have ρ(xi) = (〈A〉ψ, x) for all i ≥ 1.

The unique diamond path property for Hintikka trees for formulas in recursive
∆-PDL is the same as the one given for recursive PDL in Definition 11.

One easily shows that (adapted versions of) Propositions 8, 10, and 12 still
hold.

Proposition 23 Let ϕ be a formula of recursive ∆-PDL. Then the following

28

are equivalent.

(1) Formula ϕ is satisfiable.
(2) Formula ϕ has a tree model.
(3) There is a Hintikka tree for ϕ.
(4) There is a k-ary Hintikka tree for ϕ with both the unique diamond path

property and the unique ∆-path property, where k = 2|cl(ϕ)| · n · 2r with
r = max(|cl⋄(ϕ)|, |cl∆(ϕ)|) and n the number of atomic programs.

Proof. In the following, we only indicate the differences with the recursive
PDL case.

To show equivalence between (1) and (2) one constructs from a model of ϕ a
tree model exactly as for Proposition 8. The only additional step in the proof
is to deal with ∆ and ¬∆-formulas. This is easily done by noting that both
models have the “same” witnessing paths.

To show equivalence between (2) and (3) one reasons as in the proof of Propo-
sition 10. The only difference is that cl(ϕ) may now contain ∆/¬∆-formulas,
but the formal construction of the Hintikka tree is the same. To prove that it
is indeed a Hintikka tree, one follows the same proof and again argues that a
witnessing path for some ∆-formula can be found in the Hintikka tree if and
only if it exists in the original tree model.

Finally, to show the equivalence between (3) and (4) one considers the same
construction as the one in Proposition 12 except that now one sets r =
max(|cl⋄(ϕ)|, |cl∆(ϕ)|). From a Hintikka tree t one gets a new Hintikka tree t′

which has the unique diamond path property (as shown by Proposition 12).
To prove that it also enjoys the unique ∆-path property, one reasons exactly
as for the unique diamond path property except that cl⋄(ϕ) is now replaced
by cl∆(ϕ) in the construction. 2

Then one can construct a Vpta that accepts all trees that have the ∆-property
and unique ∆-paths. This construction is similar to the one of the diamond
automaton and results in a Büchi Vpta of size linear in the size of the given
formula ϕ.

For the ¬∆-property one can proceed in a similar way as for the box property.
One defines the word language L¬∆ corresponding to Lbox and shows that this
language can be accepted by a deterministic Vpa. The main difference here
is that instead of obtaining a reachability Vpa for the complement of L¬∆ we
obtain a nondeterministic Büchi Vpa. Hence, to get a deterministic Vpa for
L¬∆ we have to use a stair parity condition (Theorem 2). All this results in
the following lemma.

29

Lemma 24 For every recursive ∆-PDL formula ϕ there is a stair parity
Vpta of size exponential in the size of ϕ accepting the unique diamond path
and unique ∆-path Hintikka trees of ϕ.

Proof. In Section 4 we have already shown how to build a Vpta accepting
the unique diamond path Hintikka trees of a given recursive PDL formula ϕ.
Starting now with a recursive ∆-PDL formula, one additionally has to deal
with ∆ and ¬∆-formulas.

Let us first explain how to build a Büchi Vpta that accepts all trees that
have the ∆-property and unique ∆-path property. The construction is a slight
adaptation of the diamond automaton.

The control state of the ∆-automaton stores the following informations:

• A ∆-formula ∆A currently checked or ⊥ if nothing is checked.
• If some formula ∆A is being checked, a control state of A is stored (and

stack information from A will be encoded in the stack of the ∆-automaton).

Initially, no formula is checked. The ∆-automaton reads the labelling t(x)
of the current node x. If it contains some ∆-formula, it will go for each of
these formulas in a different branch of the tree where it checks this formula.
If the automaton was already checking for a ∆-formula, it keeps looking for
its validation by choosing yet another branch. As the tree should satisfy the
unique ∆-path property, a validation of the ∆-formulas can be found in this
way.

The simulation of A on the path guessed by the ∆-automaton is handled
exactly as the simulation in the diamond automaton (Section 4.2). The only
difference is that this simulation never ends (we are now checking for a formula
involving an ω-program). The Büchi acceptance condition is defined as follows:
if no formula is checked, then the ∆-automaton is in a final state, and if some
formula ∆A is checked, the ∆-automaton goes into a final state if and only if
the currently simulated state of automaton A is final. Then it is easily seen
that the ∆-automaton accepts the desired set of trees.

Now, let us consider the case of the ¬∆-property. As the box property, it is
actually a condition on the paths through the tree: one can define a language
L¬∆ ⊆ (Σϕ × [k])ω such that T¬∆ = Trees(L¬∆), where T¬∆ denotes the set
of all trees satisfying the ¬∆-property. We now define L¬∆ and then show
that it can be accepted by a deterministic stair parity Vpa that we call ¬∆-
automaton.

For each word w ∈ (Σϕ × [k])ω there exists a tree t ∈ Tk,Σϕ
and a path π such

that w = wt
π. Then w is in L¬∆ if this t satisfies the ¬∆ property on π: for all

30

x ∈ π, ¬∆A ∈ t(x) if and only if the suffix of π starting at x is not an A-path.

It is not difficult to see that t ∈ Tk,Σϕ
indeed satisfies the ¬∆-property if and

only if all its paths are in L¬∆. Hence, by Remark 5, to construct a Vpta for
T¬∆ it is sufficient to construct a deterministic Vpa for L¬∆.

Now let ψ1, . . . , ψm be an enumeration of all ¬∆-formulas ψi = ¬∆Ai ∈ cl(ϕ).
We show how to construct a visibly pushdown automaton for the complement
L¬∆ of L¬∆, and we conclude using closure of visibly pushdown languages
under complementation.

First note that L¬∆ =
⋃m

i=1 Li, where Li is the set of all words describing a
path that violates the ¬∆-condition for ψi. For every i, Li is accepted by a
Vpa Bi equipped with a Büchi condition as follows.

For an input word w = (C0, d0)(C1, d1) · · · with Cj ∈ Σϕ and dj ∈ [k] the
Vpa Bi guesses a suffix (Cj, dj)(Cj+1, dj+1) · · · with ψi ∈ Cj, and verifies that
it corresponds to an Ai-path. The simulation is realised as explained in the
proof of Lemma 14, and the only difference is that the simulation never ends
as we are dealing now with an ω-program. The Büchi acceptance condition of
Bi is inherited from the one of Ai.

Note that the size of Bi is linear in the size of Ai. Taking the union of these
Vpas one obtains a Büchi Vpa B for L¬∆. Determinising and then comple-
menting B yields a stair parity Vpa for L¬∆ that is of size exponential in B
(note that only determinisation cost an exponential blow up) and thus also
exponential in the size of ϕ.

Now, to conclude the proof, one only needs to consider the automaton obtained
by taking the product of the local automaton, the box automaton, the diamond
automaton, the ∆-automaton and the ¬∆-automaton. 2

Finally, one has to check emptiness for a stair parity Vpta, which can be done
in exponential time (Theorem 4).

Theorem 25 Given a recursive ∆-PDL formula, one can decide in doubly
exponential time whether it is satisfiable.

As recursive ∆-PDL is an extension of recursive PDL we also have the lower
bound.

Corollary 26 The satisfiability problem for recursive ∆-PDL is 2-ExpTime-
complete.

31

7 Conclusion

Using visibly pushdown automata we have defined recursive PDL (and recur-
sive ∆-PDL to deal with infinite computations) as an extension of regular
PDL that allows to capture the behaviour of recursive programs. The result
on satisfiability for these logics subsumes all known decidable extensions of
PDL with context-free programs. Further, we have established a 2-ExpTime

lower bound for a large class of context-free extensions of PDL.

Our comparison to the logic VP-µ [1] (that combines µ-calculus and visibly
pushdown automata) shows that, even though recursive PDL is weaker in
expressive power, all specifications of programs presented in [1] can also be
captured in recursive PDL or recursive ∆-PDL.

For further research, a more detailed analysis of the expressive power of re-
cursive PDL would be interesting, for example a comparison with µ-calculus
using relational fixed points [18]. The latter allows to express the formula
〈a#; p0?; b

#〉p1 of recursive PDL as µR.((p?; a;R; b) ∪ (¬p)?) (for a binary re-
lation symbol R). Another possible direction for future research is to combine
visibly pushdown automata with the game logic of Parikh [17].

References

[1] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and
global program flows. In Proceedings of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2006), pages 153–
165. ACM, 2006.

[2] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls
and returns. In Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference (TACAS 2004), volume
2988 of Lecture Notes in Computer Science, pages 467–481. Springer, 2004.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing (STOC 2004), pages
202–211. ACM, 2004.

[4] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In
Proceedings of Computer Aided Verification, 18th International Conference
(CAV 2006), volume 4144 of Lecture Notes in Computer Science, pages 329–342.
Springer, 2006.

[5] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, January 1981.

32

[6] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194–211, 1979.

[7] D. Harel and M. Kaminsky. Strengthened results on nonregular PDL. Technical
Report MCS99-13, Weizmann Institute of Science, Faculty of Mathematics and
Computer Science, 1999.

[8] D. Harel and E. Singerman. More on nonregular PDL: Expressive power, finite
models, fibonacci programs. In Proceedings of the 3rd Israeli Symposium on the
Theory of Computing and Systems (ISTCS), 1995.

[9] D. Harel. Dynamic logic. In Dov M. Gabbay and Franz Guenthner,
editors, Handbook of Philosophical Logic, Volume II, pages 496–604. D. Reidel
Publishers, 1984.

[10] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, 2000.

[11] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular
programs. Journal of Computer and System Sciences, 26(2):222–243, 1983.

[12] D. Harel and D. Raz. Deciding properties of nonregular programs. SIAM
Journal on Computing, 22(4):857–874, 1993.

[13] T. Koren and A. Pnueli. There exit decidable context free propositional dynamic
logics. In Proceedings of Logics of Programs, Workshop, Carnegie Mellon
University, pages 290–312, 1983.

[14] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leewen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 14, pages 789–840. The MIT Press, 1990.

[15] C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In
Proceedings of the 24th Conference on Foundations of Software Technology and
Theoretical Computer Science (FST&TCS 2004), volume 3328 of Lecture Notes
in Computer Science, pages 408–420. Springer, 2004.

[16] R. McNaughton. Parenthesis grammars. Journal of the ACM, 14(3):490–500,
July 1967.

[17] R. Parikh. The logic of games an its applications. Annals of discrete
mathematics, 24:111–140, 1985.

[18] D. Park. Finiteness is µ-ineffable. Theoretical Computer Science, 3:173–181,
1976.

[19] L. Segoufin and V. Vianu. Validating streaming XML documents. In Proceedings
of the 21st Symposium on Principles of Database Systems (PODS’02), pages
53–64. ACM, 2002.

[20] R. S. Streett. Propositional dynamic logic of looping and converse is elementary
decidable. Information and Control, 54:121–141, 1982.

33

[21] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Language Theory, volume III, pages 389–455.
Springer, 1997.

[22] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of
programs. Journal of Computer and System Sciences, 32:183–221, 1986.

34

