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Inverse Conductivity Problem for a Parabolic Equation using a Carleman Estimate with One Observation

For the heat equation in a bounded domain we give a stability result for a smooth diffusion coefficient. The key ingredients are a global Carleman-type estimate, a Poincaré-type estimate and an energy estimate with a single observation acting on a part of the boundary.

Introduction

This paper is devoted to the identification of the diffusion coefficient in the heat equation using the least number of observations as possible.

Let Ω ⊂ R n be a bounded domain of R n with n ≤ 3, (the assumption n ≤ 3 is necessary in order to obtain the appropriate regularity for the solution using classical Sobolev embedding, see Brezis [START_REF] Brezis | Analyse fonctionnelle[END_REF]). We denote Γ = ∂Ω assumed to be of class C 1 . We denote by ν the outward unit normal to Ω on Γ = ∂Ω. Let T > 0 and t 0 ∈ (0, T ). We shall use the following notations Q 0 = Ω × (0, T ), Q = Ω × (t 0 , T ), Σ = Γ × (t 0 , T ) and Σ 0 = Γ × (0, T ). We consider the following heat equation:

(1.1)    ∂ t q = ∇ • (c(x)∇q) in Q 0 , q(t, x) = g(t, x)
on Σ 0 , q(0, x) = q 0 in Ω.

Our problem can be stated as follows:

Inverse Problem Is it possible to determine the coefficient c(x) from the following measurements:

∂ ν (∂ t q) |(t0,T )×Γ0 and ∇(∆q(T ′ , •)), ∆q(T ′ , •), q(T ′ , •) in Ω for T ′ = t 0 + T 2 ,
where Γ 0 is a part of the boundary Γ of Ω ?

Let q (resp. q) be solution of (1.1) associated to (c, g, q 0 ) (resp. ( c,g, q 0 )), we assume Assumption 1.1.

• q 0 belongs to H 4 (Ω))and g is sufficiently regular (e.g. ∃ ǫ > 0 such that g ∈ H 1 (0, T, H 3/2+ε (∂Ω)) ∩ H 2 (0, T, H 5/2+ε (∂Ω)))

1 • c, c ∈ C 3 (Ω),
• There exist a constant r > 0, such that q 0 ≥ r and g ≥ r.

Note that the first item of the previous assumptions implies that (1.1) admits a solution in H 1 (t 0 , T, H 2 (Ω)) (see Lions [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF]). We will later use this regularity result. The two last items allows us to state that the function u satisfies |∆q(x, T ′ )| ≥ r > 0 and |∇q(x, T ′ )| ≥ r > 0 in Ω (see Pazy [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], Benabdallah, Gaitan and Le Rousseau [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF]). We assume that we can measure both the normal flux ∂ ν (∂ t q) on Γ 0 ⊂ ∂Ω in the time interval (t 0 , T ) for some t 0 ∈ (0, T ) and ∇(∆q), ∆q and ∇q at time T ′ ∈ (t 0 , T ). Our main result is a stability result for the coefficient c(x):

For q 0 in H 2 (Ω) there exists a constant C = C(Ω, Γ, t 0 , T, r) > 0 such that |c -c| 2 H 1 0 (Ω) ≤ C|∂ ν (∂ t q) -∂ ν (∂ t q)| 2 L 2 ((t0,T )×Γ0) + C|∇(∆q(T ′ , •)) -∇(∆ q(T ′ , •))| 2 L 2 (Ω) + C|∆q(T ′ , •) -∆ q(T ′ , •)| 2 L 2 (Ω) + C|∇q(T ′ , •) -∇ q(T ′ , •)| 2 L 2 (Ω) .
The key ingredients to this stability result are a global Carleman-type estimate, a Poincaré-type estimate and an energy estimate. We use the classical Carleman estimate with one observation on the boundary for the heat equation obtained in Fernandez-Cara and Guerrero [START_REF] Fernández-Cara | Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability[END_REF], Fursikov and Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF]. Following the method developed by Imanuvilov, Isakov and Yamamoto for the Lamé system in Imanuvilov, Isakov and Yamamoto [START_REF] Yu | An Inverse Problem for the Dynamical Lamé system with two set of boundary data[END_REF], we give a Poincaré-type estimate. Then, we prove an energy estimate. Such energy estimate has been proved in Lasiecka, Triggiani ang Zhang [START_REF] Lasiecka | Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates[END_REF] for the Schrödinger operator in a bounded domain in order to obtain a controllability result and in Cristofol, Cardoulis and Gaitan [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded strip using a Carleman estimate[END_REF] for the Schrödinger operator in a unbounded domain in order to obtain a stability result. Then using these estimates, we give a stability and uniqueness result for the diffusion coefficient c(x). In the perspective of numerical reconstruction, such problems are ill-posed and stability results are thus of importance.

In the stationnary case, the inverse conductivity problem has been studied by several authors. There are different approaches. For the two dimensional case, Nachman [START_REF] Nachman | A global uniqueness for a two dimensional inverse boundary problem[END_REF] proved an uniqueness result for the diffusion coefficient c ∈ C 2 (Ω) and Astala and Päivärinta [START_REF] Astala | Calderon's inverse conductivity problem in the plane[END_REF] for c ∈ L ∞ (Ω) with many measurements from the whole boundary. In the three dimensional case, with the use of complex exponentially solutions, Faddeev [START_REF] Faddeev | Griwing solutions of the Schrödinger equation[END_REF], Calderon [START_REF] Calderon | On an inverse boundary value problem[END_REF], Sylvester and Uhlmann [START_REF] Sylvester | Global uniqueness theorem for an inverse boundary problem[END_REF] showed uniqueness for the diffusion coefficient.

There are few results on Lipschitz stability for parabolic equations, we can cite Imanuvilov and Yamamoto [START_REF] Yu | Lipschitz stability in inverse problems by Carleman estimates[END_REF], Benabdallah, Gaitan and Le Rousseau [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF]. In [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF], the authors prove a Lipschitz stability result for the determination of a piecewise-constant diffusion coefficient. For smooth coefficients in the principal part of a parabolic equation, Yuan and Yamamoto [START_REF] Yuan | Lipshitz stability in the determination of the principal parts of a parabolic equation by boundary measurements[END_REF] give a Lipschitz stability result with multiple observations. This paper is an improvement of the simple case in [START_REF] Yuan | Lipshitz stability in the determination of the principal parts of a parabolic equation by boundary measurements[END_REF] where we consider that the diffusion coefficient is a real valued function and not a n × n-matrix. Indeed, in this case, with the method developped by [START_REF] Yuan | Lipshitz stability in the determination of the principal parts of a parabolic equation by boundary measurements[END_REF], they need two observations in order to obtain an estimation of the H 1 -norm of the diffusion coefficient. In this case, we need only one observation. Our paper is organized as follows. In Section 2, we recall the global Carleman estimate for (1.1) with one observation on the boundary. Then we prove a Poincaré-type estimate for the coefficient c(x) and an energy estimate. In Section 3, using the previous results, we establish a stability estimate for the coefficient c(x) when one of the solutions q is in a particular class of solutions with some regularity and "positivity" properties.

2 Some Usefull Estimates

Global Carleman Estimate

We recall here a Carleman-type estimate with a single observation acting on a part Γ 0 of the boundary Γ of Ω in the right-hand side of the estimate (see [START_REF] Fernández-Cara | Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability[END_REF]), [START_REF] Fursikov | Controllability of evolution equations[END_REF]. Let us introduce the following notations: let β be a C 4 (Ω) positive function such that there exists a positive constant C 0 which satisfies

Assumption 2.1. |∇ β| ≥ C 0 > 0 in Ω, ∂ ν β ≤ 0 on Γ \ Γ 0 ,
Then, we define β = β + K with K = m β ∞ and m > 1. For λ > 0 and t ∈ (t 0 , T ), we define the weight functions

ϕ(x, t) = e λβ(x) (t -t 0 )(T -t) , η(x, t) = e 2λK -e λβ(x) (t -t 0 )(T -t) .
If we set ψ = e -sη q, we also introduce the following operators

M 1 ψ = ∇ • (c∇ψ) + s 2 λ 2 c|∇β| 2 ϕ 2 ψ + s(∂ t η)ψ, M 2 ψ = ∂ t ψ -+2sλϕc∇β.∇ψ -2sλ 2 ϕc|∇β| 2 ψ.
Then the following result holds (see [START_REF] Fernández-Cara | Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability[END_REF], [START_REF] Fursikov | Controllability of evolution equations[END_REF])

Theorem 2.2. There exist λ 0 = λ 0 (Ω, Γ 0 ) ≥ 1, s 0 = s 0 (λ 0 , T ) > 1 and a positive constant C = C(Ω, Γ 0 , T )
such that, for any λ ≥ λ 0 and any s ≥ s 0 , the following inequality holds:

M 1 (e -sη q) 2 L 2 (Q) + M 2 (e -sη q) 2 L 2 (Q) (2.2) +sλ 2 Q e -2sη ϕ|∇q| 2 dx dt + s 3 λ 4 Q e -2sη ϕ 3 |q| 2 dx dt ≤ C sλ T t0 Γ0 e -2sη ϕ|∂ ν q| 2 dx dt + Q e -2sη |∂ t q -∇ • (c∇q)| 2 dx dt ,
for all q ∈ H 1 (t 0 , T, H 2 (Ω)) with q = 0 on Σ.

Poincaré-type estimate

We consider the solutions q and q to the following systems

(2.3)    ∂ t q = ∇ • (c(x)∇q) in Q 0 , q(t, x) = g(t, x) on Σ 0 , q(0, x) = q 0 in Ω,

and

(2.4)

   ∂ t q = ∇ • ( c(x)∇ q) in Q 0 , q(t, x) = g(t, x) on Σ 0 , q(0, x) = q 0 in Ω.
We set u = qq, y = ∂ t u and γ = cc. Then y is solution to the following problem

(2.5)    ∂ t y = ∇ • (c(x)∇y) + ∇ • (γ(x)∇(∂ t q)) in Q 0 , y(t, x) = 0 on Σ 0 , y(0, x) = ∇ • (γ(x)∇(q 0 (x))),
in Ω.

Note that with (2.3) and (2.4) we can determine y(T ′ , x) and we obtain

(2.6) y(T ′ , x) = ∇ • (γ(x)∇( q(T ′ , x))) + ∇ • (c(x)∇(u(T ′ , x))).
We use a lemma proved in [START_REF] Yu | An Inverse Problem for the Dynamical Lamé system with two set of boundary data[END_REF] for Lamé system in bounded domains:

Lemma 2.3. We consider the first order partial differential operator

P 0 g := ∇q 0 • ∇g where q 0 satisfies |∇β • ∇q 0 | = 0.
Then there exists positive constant, s 1 > 0 and C = C(λ, T ′ ) such that for all s ≥ s 1

s 2 λ 2 Ω e -2sη(T ′ ) ϕ(T ′ )|g| 2 dx dy ≤ C Ω e -2sη(T ′ ) ϕ -1 (T ′ ) |P 0 g| 2 dx dy with T ′ = t0+T 2 , η(T ′ ) := η(x, T ′ ), ϕ(T ′ ) := ϕ(x, T ′ ) and for g ∈ H 1 0 (Ω).
We assume Assumption 2.4. |∇β • ∇ q(T ′ )| = 0, Proposition 2.5. Let q be solution of (2.4). We assume that Assumption 2.4 are satisfied. Then there exists a positive constant C = C(T ′ , λ) such that for s large enough ( s ≥ s 1 ), the following estimate hold true

s 2 λ 2 Ω e -2sη(T ′ ) ϕ(T ′ )(|∇γ| 2 + |γ| 2 ) dx ≤ C Ω e -2sη(T ′ ) ϕ -1 (T ′ ) |∇y(T ′ )| 2 + |y(T ′ )| 2 dx +C Ω e -2sη(T ′ ) |∇(∆u(T ′ )| 2 + |∆u(T ′ )| 2 + ∇u(T ′ | 2 dx for γ ∈ H 2 0 (Ω).
Proof. We are dealing with the following first order partial differential operators given by the equation (2.6)

P 0 (γ) := n i=1 ∂ xi q(T ′ )∂ xi γ = y(T ′ ) -γ∆ q(T ′ ) -∇(c∇u)(T ′ ).
We apply the lemma 2.3 for this operator and we can write :

(2.7)

s 2 λ 2 Ω e -2sη(T ′ ) ϕ(T ′ )|γ| 2 dx ≤ C Ω e -2sη(T ′ ) ϕ -1 (T ′ ) |y(T ′ )| 2 + |γ| 2 dx +C Ω e -2sη(T ′ ) |∆u(T ′ )| 2 + |∇u(T ′ )| 2 dx
In the other hand, we use the x j -derivative of the previous equation (2.6). So, for each j we deal with the following first order partial differential operator :

P 0 (∂ xj γ) = ∂ xj (T ′ ) -∂ xj γ∆ q(T ′ ) -γ∆(∂ xj q)(T ′ ) -∂ xj (∇(c∇u))(T ′ ).
Then under assumption (2.4):

s 2 λ 2 Ω e -2sη(T ′ ) ϕ(T ′ )|∂ xj γ| 2 dx ≤ C Ω e -2sη(T ′ ) ϕ -1 (T ′ )|∂ xj y(T ′ )| 2 dx +C Ω e -2sη(T ′ ) ϕ -1 (T ′ ) |∂ xj γ| 2 + |γ| 2 + |∇γ| 2 + |∂ xj F | 2 dx
So, adding for all j, we can write

s 2 λ 2 Ω e -2sη(T ′ ) ϕ(T ′ )|∇γ| 2 dx ≤ C Ω e -2sη(T ′ ) ϕ -1 (T ′ )|∇y(T ′ )| 2 dx (2.8) +C Ω e -2sη(T ′ ) ϕ -1 (T ′ ) |∇γ| 2 + |γ| 2 + |∇(∆u(T ′ )| 2 + |∆u(T ′ )| 2 dx
Taking into account (2.7) and (2.8) and for s large enough, we can conclude.

Estimation of

Ω e -2sη(T ′ ) |y(T ′ )| 2 dx Let T ′ = 1
2 (T + t 0 ) the point for which Φ(t) = 1 (t-t0)(T -t) has its minimum value. We set ψ = e -sη y. With the operator (2.9)

M 2 ψ = ∂ t ψ -+2sλϕc∇β.∇ψ -2sλ 2 ϕc|∇β| 2 ψ,
we introduce, following [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF],

I = T ′ t0 Ω M 2 ψ ψ dxdt
We have the following estimates.

Lemma 2.6. Let λ ≥ λ 1 , s ≥ s 1 and let a, b, c, d ∈ L ∞ (Ω). Furthermore, we assume that u 0 , v 0 in H 2 (Ω) and the assumption (1.1) is satisfied. Then there exists a constant C = C(Ω, ω, T ) such that

(2.10) Ω e -2sη(T ′ ,x) |y(T ′ , x)| 2 dx ≤ C λ 1/2 T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt +s -1/2 λ -1/2 T t0 Ω e -2sη |γ| 2 + |∇γ| 2 dx dt .
Proof. If we compute I, we obtain :

Ω e -2sη(T ′ ,x) |y(T ′ , x)| 2 dx = -2I -4sλ T ′ t0 Ω ϕ c∇β • ∇ψ ψ dx dt -4sλ 2 T ′ t0 Ω ϕ c|∇β| 2 |ψ| 2 dx dt.
Then with the Carleman estimate (2.2), we can estimate all the terms in the right hand side of the previous equality and we have

Ω e -2sη(T ′ ,x) |y(T ′ , x)| 2 dx ≤ Cs -3/2 λ -2 M 2 ψ 2 + s 3 λ 4 Q e -2sη ϕ 3 |y| 2 dx dt +Cs -1 λ -1/2 sλ Q e -2sη ϕ |∇y| 2 dx dt + s 3 λ 4 Q e -2sη ϕ 3 |y| 2 dx dt +Cs -2 λ -2 s 3 λ 4 Q e -2sη ϕ 3 |y| 2 dx dt .
Finally, we obtain

Ω e -2sη(T ′ ,x) |y(T ′ , x)| 2 dx ≤ Cλ 1/2 T t0 Γ0 e -2sη ϕ |∂ ν y| 2 dσ dt + Cs -1 λ -1/2 Q e -2sη |f | 2 dx dt,
where f = ∇ • (γ∇∂ t q). We assume that q is sufficiently smooth in order to have ∇∂ t q and ∆∂ t q in L 2 (O, T, L ∞ (Ω)). Moreover taking into account that e -2sη(t) ≤ e -2sη(T ′ ) , the proof of Lemma 2.6 is complete.

Estimation of

Ω e -2sη(T ′ ) ϕ -1 (T ′ )|∇y(T ′ )| 2 dx
We introduce

(2.11)

E(t) = Ω c ϕ -1 (x, t)e -2sη(x,t) |∇y(x, t)| 2 dx.
In this section, we give an estimation for the energy E(t) at T ′ .

Theorem 2.7. We assume that Assumptions 1.1 are checked, then there exist

λ 1 = λ 1 (Ω, ω) ≥ 1, s 1 = s 1 (λ 1 , T ) > 1 and a positive constant C = C(Ω, Γ 0 , C 0 , r, T
) such that, for any λ ≥ λ 1 and any s ≥ s 1 , the following inequality holds:

(2.12)

E(T ′ ) ≤ C sλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + s Q e -2sη (|γ| 2 + |∇γ| 2 ) dx dt , Proof. We note f = ∇ • (γ(x)∇∂ t q).
We multiply the first equation of (2.5) by e -2sη ∇ • (c∇y)ϕ -1 and integrate over (t 0 , T ) × Ω, we have :

(2.13)

T ′ t0 Ω ϕ -1 e -2sη ∇ • (c∇y)∂ t y dx dt = T ′ t0 Ω ϕ -1 e -2sη |∇ • (c∇y)| 2 dx dt 6 + T ′ t0 Ω e -2sη ϕ -1 ∇ • (c∇y)f dx dt.
we denote A :=

T ′ t0 Ω e -2sη ϕ -1 ∇ • (c∇y)∂ t y dx dt.
Integrating by parts A with respect to the space variable, we obtain

A = T ′ t0 Ω c e -2sη ϕ -1 ∇y∂ t (∇y) dx dt + 2sλ T ′ t0 Ω c e -2sη ∇y∂ t y∇β dx dt (2.14) -λ T ′ t0 Ω c e -2sη ϕ -1 ∇y∂ t y∇β dx dt.
Observe that

e -sη ϕ -1 2 ∂ t (∇y) = ∂ t (e -sη ϕ -1 2 ∇y) + se -sη ϕ -1 2 ∂ t η∇y + + 1 2 e -sη ∂ t ϕϕ -3 2 ∇y.
Hence, the first integral of the right-hand side of (2.14) can be written as

T ′ t0 Ω c e -2sη ϕ -1 ∇y∂ t (∇y) dx dt = T ′ t0 Ω c e -sη ϕ -1 2 ∇y∂ t (∇y)e -sη ϕ -1 2 dx dt = T ′ t0 Ω c e -sη ϕ -1 2 ∇y∂ t (e -sη ϕ 1 2 ∇y) dx dt + s T ′ t0 Ω c e -2sη ϕ -1 |∇y| 2 ∂ t η dx dt (2.15) + 1 2 T ′ t0 Ω c e -2sη ϕ -2 |∇y| 2 ∂ t ϕ dx dt.
Using an integration by parts with respect the time variable, the first term of (2.15) is exactly equal to 1 2 E(T ′ ), since E(t 0 ) = 0. Therfore, the equations (2.13), (2.14) and (2.15) yield

E(T ′ ) = -2s T ′ t0 Ω c e -2sη ϕ -1 |∇y| 2 ∂ t η dx dt - T ′ t0 Ω c e -2sη ϕ -2 |∇y| 2 ∂ t ϕ dx dt -4sλ T ′
t0 Ω c e -2sη ∇y∂ t y∇β dx dt + 2λ

T ′ t0 Ω c e -2sη ϕ -1 ∇y∂ t y∇β dx dt +2 T ′ t0 Ω ϕ -1 e -2sη |∇ • (c∇y)| 2 dx dt + 2 T ′ t0 Ω e -2sη ϕ -1 ∇ • (c∇y)f dx dt (2.16) = I 1 + I 2 + I 3 + I 4 + I 5 + I 6 .
Now, in order to obtain an estimation to E(T ′ ), we must estimate all the integrals I i , 1 ≤ i ≤ 6.

Using the fact that |∂ t η| ≤ C(Ω, ω)T ϕ 2 , we obtain, in first step, for the integral I 1 , the following estimation

|I 1 | ≤ Cs T ′ t0 Ω c e -2sη ϕ|∇y| 2 dx dt ≤ Cλ -2 sλ 2 Q e -2sη ϕ|∇y| 2 dx dt .
In a second step, the Carleman estimate yields

|I 1 | ≤ Cλ -2 sλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + Q e -2sη |f | 2 | dx dt ,
where C is a generic constant which depends on Ω, Γ 0 , c max and T .

As the same way, we have, for I 2 , the following estimate

|I 2 | ≤ Cs -1 λ -2 sλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + Q e -2sη |f | 2 | dx dt .
The last inequality holds throught the Carleman estimate and the following inequality

|∂ t ϕ| ≤ C(Ω, Γ 0 )T 3 ϕ 3 4 .
Using Young inequality, we estimate I 3 .

We have

|I 3 | ≤ Cs sλ 2 Q e -2sη ϕ|∇y| 2 dx dt + s -1 Q e -2sη ϕ -1 |∂ t y| 2 dx dt ≤ Cs sλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + Q e -2sη |f | 2 | dx dt ,
For the integral I 4 , we have

|I 4 | ≤ C sλ 2 Q e -2sη ϕ -1 |∇y| 2 dx dt + s -1 Q e -2sη ϕ -1 |∂ t y| 2 dx dt ≤ C sλ T t0 Γ0 e -2sη ϕ|∂ ν | 2 dx dt + Q e -2sη |f | 2 | dx dt ,
where we have used, for the term containing |∇y| 2 , the following estimate

ϕ -1 ≤ C(Ω, ω)T 4 ϕ 16 .
we have immediatly the following estimate for I 5

|I 5 | ≤ Cs sλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + Q e -2sη |f | 2 | dx dt .
Finally, for the last term I 6 , we have

|I 6 | ≤ C s -1 Q e -2sη ϕ -2 |∇ • (c∇y)| 2 dx dt + s Q e -2sη |f | 2 dx dt ≤ C sλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + s Q e -2sη |f | 2 | dx dt .
The last inequality holds using the following estimate ϕ -2 ≤ C(Ω, ω)T 2 ϕ -1 4 If we come back to (2.16), using the estimations of I i , 1 ≤ i ≤ 6 and expanding the term f , this conlude the proof of Theorem 2.7.

Stability Result

Theorem 3.1. Let q and q be solutions of (2.3) and (2.4) such that cc ∈ H 2 0 (Ω). We assume that Assumptions 1.1 are satisfied. Then there exists a positive constant C = C(Ω, Γ 0 , T ) such that for s and λ large enough, 

Remark

• All the previous results are available for Ω ⊂ R n be a bounded domain of R n with n ≥ 3 if we adapt the regularity properties of the initial and boundary data.

• We give a stability result for two linked coefficient (c and ∇c) with one observation. Note that for two independent coefficients, there is no result in the litterature with only one observation.

ΩSo we get for s sufficiently large s 2 λ 2 Ωe

 2 ϕ(T ′ ) e -2sη(T ′ ) (|c -c| 2 + |∇(cc)| 2 ) dx dy ≤ C T 0 Γ0 ϕ e -2sη ∂ ν β |∂ ν (∂ t q -∂ t q)| 2 dσ dt +C Ω e -2sη(T ′ ) |∇(∆u(T ′ )| 2 + |∆u(T ′ )| 2 + ∇u(T ′ | 2 dxProof. Using the estimates (2.12), (2.10) and Proposition (2.5), we obtains 2 λ 2 Ω e -2sη(T ′ ) ϕ(T ′ )(|∇γ| 2 + |γ| 2 ) dx ≤ C Ω e -2sη(T ′ ) ϕ -1 (T ′ ) |∇y(T ′ )| 2 + |y(T ′ )| 2 dx +C Ω e -2sη(T ′ ) |∇(∆u(T ′ )| 2 + |∆u(T ′ )| 2 + ∇u(T ′ | 2 dx ≤ C sλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + s Q e -2sη (|γ| 2 + |∇γ| 2 ) dx dt +C λ 1/2 T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt + s -1/2 λ -1/2 T t0 Ω e -2sη |γ| 2 + |∇γ| 2 dx dt +C Ω e -2sη(T ′ ) |∇(∆u(T ′ )| 2 + |∆u(T ′ )| 2 + ∇u(T ′ | 2 dx. -2sη(T ′ ) ϕ(T ′ )(|∇γ| 2 + |γ| 2 ) dx ≤ Csλ T t0 Γ0 e -2sη ϕ|∂ ν y| 2 dx dt +C Ω e -2sη(T ′ ) |∇(∆u(T ′ )| 2 + |∆u(T ′ )| 2 + ∇u(T ′ | 2 dx,and the the theorem is proved.