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REGULARIZATION BY FREE ADDITIVE CONVOLUTION, SQUARE AND

RECTANGULAR CASES

SERBAN BELINSCHI, FLORENT BENAYCH-GEORGES AND ALICE GUIONNET

Abstract. The free convolution ⊞ is the binary operation on the set of probability measures
on the real line which allows to deduce, from the individual spectral distributions, the spectral
distribution of a sum of independent unitarily invariant square random matrices or of a sum
of free operators in a non commutative probability space. In the same way, the rectangular
free convolution ⊞

λ
allows to deduce, from the individual singular distributions, the singular

distribution of a sum of independent unitarily invariant rectangular random matrices. In this
paper, we consider the regularization properties of these free convolutions on the whole real line.
More specifically, we try to find continuous semigroups (µt) of probability measures such that
µ0 = δ0 and such that for all t > 0 and all probability measure ν, µt⊞ν (or, in the rectangular
context, µt⊞

λ
ν) is absolutely continuous with respect to the Lebesgue measure, with a positive

analytic density on the whole real line. In the square case, for ⊞, we prove that in semigroups
satisfying this property, no measure can have a finite second moment, and we give a sufficient
condition on semigroups to satisfy this property, with examples. In the rectangular case, we
prove that in most cases, for µ in a ⊞

λ
-continuous semigroup, µ⊞

λ
ν either has an atom at the

origin or doesn’t put any mass in a neighborhood of the origin, and thus the expected property
does not hold. However, we give sufficient conditions for analyticity of the density of µ⊞

λ
ν

except on a negligible set of points, as well as existence and continuity of a density everywhere.
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1. Introduction

It is a very natural question to study the spectrum of the sum of two matrices, being given
the spectrum of each of them. Such a question can of course have many different answers
depending on the relations between the eigenspaces of the two matrices. If they are the same,
but for instance the eigenvalues are independent and say equidistributed inside each matrix, the
spectrum will simply be given by the classical convolution. If, on the contrary the eigenspaces
are chosen as arbitrarily as possible with respect to each other, which corresponds to conjugating
one of the matrices with an independent unitary matrix following the Haar measure, Voiculescu
[V91] proved that in the limit where the size of the matrices goes to infinity while the spectral
measure of each of the two matrices converges weakly, the outcome only depends on these limiting
measures and is given by their free convolution. More precisely, if we let AN , BN be two sequences
of N × N Hermitian matrices with eigenvalues (aN

i )1≤i≤N and (bNi )1≤i≤N respectively, such

that the spectral measures LN
A := 1

N

∑N
i=1 δaN

i
and LN

B := 1
N

∑N
i=1 δbN

i
converge to probability

measures µA and µB as N goes to infinity, and if UN follows the Haar measure on the unitary
group and is independent of AN and BN , then the spectral measure of AN +UNBNU

∗
N converges

towards the free convolution µA⊞µB of µA and µB .

One of the authors, F. Benaych-Georges [BG1], generalized this convergence to the case of
rectangular matrices. In this case, AN,M and BN,M are N ×M matrices and we assume that
their singular values (for N ≤M , the singular values of an N ×M matrix C are the eigenvalues

of
√
CC∗) converge towards νA and νB . We let, for C = A or B, µC be the symmetrization of

νC : µC(A) = 1
2(νC(A) + νC(−A)). We consider UN and VM following the Haar measure on the

N ×N and the M ×M unitary matrices respectively. Then, F. Benaych-Georges proved that,
if N/M converges to some λ ∈ [0, 1], then the symmetrization of the empirical measure of the
singular values of AN,M + UNBN,MVM converges towards a probability measure µA⊞λµB.

Free convolution naturally shows up in random matrix theory since important matrices such as
the Gaussian ensembles are invariant under conjuguation under the unitary group and therefore
can always be written as UNBNU

∗
N for some Haar distributed matrix UN , independent of BN , or

have asymptotically the same behaviour (for instance matrices with independent equidistributed
entries, see [D]).

Convolution is a standard tool in classical analysis for regularizing functions or measures.
In this article, we study the regularizing properties of free (square and rectangular) additive
convolution. Because we wish to be able to regularize measures by perturbations as small as
desired, it is natural to regularize them by processes µt, t ≥ 0 such that µt tends to δ0 as t goes to
zero. To simplify, we shall consider more precisely processes corresponding to infinitely divisible
laws µ⊞t, as constructed by Bercovici and Voiculescu [BV93] (see also Nica and Speicher [NS96]).
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Such issues are naturally related with the possibility that the density vanishes, since the
density is then likely [B1] to have some infinite derivative at the boundary of the support.

Hence, we shall more precisely ask the following question: can we find µ (likely a free infinitely
divisible law) such that

(H) For any probability measure ν, µ⊞ν (or in the rectangular case µ⊞λν) is absolutely con-
tinuous with respect to the Lebesgue measure, with a density which is analytic and which does
not vanish on R.

Such questions already showed up in several papers. In [V93], D. Voiculescu used the regular-
izing properties of free convolution by semi-circular laws to study free entropy for one variable.
In [GZ, BiV01], regularization by Cauchy laws is used to smooth free diffusions in one case, and
to study Wasserstein metric and derive large deviations principles in the other. In fact, it was
shown in [CDG] that free convolution is the natural concept to regularize a free diffusion since
the result will still be a free diffusion, but with a different (and hopefully more regular) drift.
Free convolution by Cauchy laws is well understood since it coincides with standard convolution
with Cauchy laws. In particular, Cauchy laws satisfy (H). The drawback is that Cauchy laws
do not possess any moments, and thus do not allow a combinatorial approach by moments. In
section 3.2, we show that it is in fact impossible to find a ⊞-infinitely divisible probability mea-
sure µ satisfying (H) and with finite variance. In fact, we can then construct another probability
measure ν such that the density of µ⊞ν vanishes at a point where its derivative is infinite. As
a positive answer, we provide in section 3.1 sufficient conditions for a probability measure µ to
satisfy (H). They require that µ has either none or infinite first moment.

In the rectangular case, we exhibit in section 4.3 a sharp transition concerning the behaviour
of the free rectangular convolution of two measures at the origin. If µ({0}) + ν({0}) > 1, we
prove that µ⊞λν({0}) is positive. This generalizes a similar result of Bercovici and Voiculescu in
the square case ([BV98]). More surprisingly, when µ({0}) + ν({0}) < 1, we show the existence
of a nonempty open neighbourhood of the origin which does not intersect the support of the
density of µ⊞λν, for any infinitely divisible law µ and any probability measure ν.

This phenomenon is related to the repulsion at the origin of the spectrum. Such a repulsion
was also shown to hold at the finite matrices level in the square case by Haagerup [Ha01] (by
adding a form of Cauchy matrices) and by Sniady [Sni02] (by adding Gaussian matrices). Our
result is less strong since it is clear that the rectangular case carries naturally a repulsion of the
origin (as can be seen on the Pastur-Marchenko laws) and it holds only asymptotically. However,
we find rather amazing that it holds for any infinitely divisible law µ and any probability measure
ν.

This interesting phenomenon shows that (H) cannot hold in the rectangular case. We thus
show a weaker result in Corollary 4.6 and Proposition 4.10 by giving sufficient conditions for
analyticity of the density of µ⊞λν except on a discrete set of points, as well as existence and
continuity of a density everywhere.

Acknowledgments. The authors would like to thank Professor Hari Bercovici for useful
discussions and suggestions, and his encouragements during the work on this paper.

2. Prerequisites in complex analysis and free probability background

2.1. Complex analysis. Let D := {z ∈ C : |z| < 1}. We denote by ∢ limz→w f(z), ∢f(w), or

lim
z−→w

∢

f(z)
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the limit of f at w ∈ ∂D along points inside any angle with vertex at w and included in D, and
name it the nontangential limit of f at w. Unconditionnal limit at w corresponds to limit taken
over any path in the domain D which ends at w.

We will denote C
+ = {z ∈ C : ℑ(z) > 0}, C

− = {z ∈ C : ℑ(z) < 0} and R
+ = [0,+∞).

The notion of nontangential limit extends naturally to maps defined on a half-plane. Moreover,
since the rational transformation z 7→ z−i

z+i of the extended complex plane C ∪ {∞} carries the
upper half-plane onto the unit disc, most properties of analytic functions defined in the unit disc
transfer naturally to functions defined on C

+.

We shall use in our paper several results describing the boundary behaviour of analytic func-
tions defined in the unit disc or the upper half-plane. Let us first cite a theorem due to Lindelöf,
(theorem 2.20(i) in [CL66]).

Theorem 2.1. [Lindelöf ] Let f be a meromorphic function on the upper half plane such that
there are at least three points of C ∪ {∞} which are not attained by f on the upper half plane.
Consider a ∈ R ∪ {∞} such that there is a path γ : [0, 1) → C

+ with limit a at 1 such that

l := lim
t→1

f(γ(t))

exists in C ∪ {∞}. Then the nontangential limit of f at a exists and equals l.

Recall that if f is a function from a subset D of C ∪ {∞} into C ∪ {∞}, for all z in the
boundary of D, the cluster set C(f, z) of f at z is the set of limits in C∪{∞} of images, by f , of
sequences of points in D which tend to z. For any subset D′ of D, CD′(f, z) denotes the cluster
set of the restriction of f to D′. For the particular case when D = D or D = C

+, we define the
nontangential cluster set C∆(f, x0) of f at x0 ∈ ∂D in the following way: let Γ(α) be the angle
with vertex at x0 bisected by the perpendicular on ∂D at x0, with opening α ∈ (0, π). Then

C∆(f, x0) = ∪α∈(0,π)CΓ(α)(f, x0).

Thus, the existence of nontangential limit of f at x0 means that C∆(f, x0) contains only one
point.

The following result (see e.g. Theorem 1.1 in [CL66]) concerns the connectivity of a cluster
set.

Lemma 2.2. Let D be a domain in C (i.e. an open connected set) and assume that D is simply
connected at the point x ∈ D (i.e. x has a basis of neighbourhoods in C whose intersections with
D are simply connected). If f : D → C ∪ {∞} is continuous, then C(f, x) is connected.

It is known from Fatou’s Theorem (see [CL66]) that bounded analytic functions on D have
good boundary properties, namely the nontangential limit of such a function exists at almost all
points (in the sense of linear measure) of the boundary of D. However, the set of points where
the nontangential limit does not exist can be also quite rich in some situations, as the following
theorem shows (see e.g Theorem 4.8 in [CL66])

Recall that a subset of a metric space X is said to be residual, or of second Baire category if
it isn’t contained in the union of any sequence of closed subsets of X with empty interior.

Theorem 2.3. If the real or complex function f(z) is continuous in |z| < 1, and if for θ ∈ [0, 2π[,
{Gθ} is a rotation by the angle θ of a continuum G0 such that G0 ∩ {|z| = 1} = {1}, then
CGθ

(f, eiθ) = C(f, eiθ) on a residual set of points eiθ on {|z| = 1}.



REGULARIZATION BY FREE ADDITIVE CONVOLUTION, SQUARE AND RECTANGULAR CASES 5

This theorem says for us that for a function that has no unconditional limits at the boundary,
the nontangential limit must fail to exist sometimes.

We will use this result in connection with the following theorem of Seidel (Theorem 5.4 in
[CL66]).

Theorem 2.4. Assume that f : D → D is analytic, and has nontangential limits with modulus
one at almost all points θ in some given interval (θ1, θ2) ⊆ ∂D. Then for any θ0 ∈ (θ1, θ2) either
f extends analytically through θ0, or C(f, θ0) = D.

Another useful auxiliary result is Theorem 5.2.1 from the same [CL66]:

Theorem 2.5. Let f be meromorphic in the domain D bounded by a smooth curve γ. Consider
z0 ∈ γ and suppose also that f extends in a meromorphic function in an open set containing
γ\{z0}. Then we have ∂CD(f, z0) ⊆ Cγ(f, z0), where ∂A denotes the boundary (in C∪ {∞}) of
A ⊆ C ∪ {∞}.

We shall also use the following theorem, which can be seen as a ”nontangential limit” version
of the analytic continuation principle (see [CL66]).

Theorem 2.6 (Riesz-Privalov). Let f be an analytic function on D. Assume that there exists a
set A of nonzero linear measure in ∂D such that the nontangential limit of f exists at each point
of A, and equals zero. Then f(z) = 0 for all z ∈ D.

Consider now an analytic function f : D −→ D. The Denjoy-Wolff point of f is characterized
by the fact that it is the uniform limit on compact subsets of the iterates f◦n = f ◦ f ◦ · · · ◦ f

︸ ︷︷ ︸

n times

of f . We state the following theorem of Denjoy and Wolff as it appears in Milnor’s book [M99],
as Theorem 4.2. Recall that an hyperbolic rotation around some point z0 ∈ D is a function of
the form z 7→ eiθ z−z0

1−z0z , θ ∈ R.

Theorem 2.7. Let f : D → D be an analytic function. Then either f is a hyperbolic rotation
around some point z0 ∈ D, or the sequence of functions f◦n converges uniformly on compact
subsets of D to a unique point w ∈ D, called the Denjoy-Wolff point of f .

Note that if the analytic function f : D → D is not a hyperbolic rotation and has a fixed point
c ∈ D, then c has to be the Denjoy-Wolff point of f . In fact, the Denjoy-Wolff point w ∈ D can
be equivalently characterized (see Chapter 5 of [Sha]) by being the unique point that satisfies
exactly one of the following two conditions:

(1) |w| < 1, f(w) = w and |f ′(w)| < 1;
(2) |w| = 1, ∢ limz→w f(z) = w, and

lim
z−→w

∢

f(z) − w

z − w
≤ 1.

Since the unit disc is conformally equivalent to the upper half-plane via the conformal au-
tomorphism of the extended complex plane z 7→ z−i

z+i , the above theorem and equivalent char-

acterization of the Denjoy-Wolff point applies to self-maps of the upper half-plane C
+ := {z ∈

C : ℑz > 0}, with the difference that when infinity is the Denjoy-Wolff of f , we have

∢ lim
z→∞

f(z)/z ≥ 1.

2.2. Free convolution, related transforms.
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2.2.1. Cauchy transform and Voiculescu transform. We now recall some basic notions about
free convolution. Let us remind the reader that for a probability µ on R, we denote Gµ its
Cauchy-Stieljes transform

Gµ(z) =

∫
1

z − x
dµ(x), z ∈ C\R

and Fµ(z) = 1/Gµ(z). Note that Fµ : C
+→C

+.

The following theorem characterizes functions which appear as reciprocals (in the sense of
multiplication) of Cauchy-Stieltjes transforms of probabilities on the real line. For the proof and
an in-depth analysis of the subject, we refer to [A65], Chapter 3.

Theorem 2.8. Let F : C
+ → C

+ be an analytic function. Then there exist a ∈ R, b ≥ 0 and a
positive finite measure ρ on R so that

F (z) = a+ bz +

∫

R

1 + tz

t− z
dρ(t), z ∈ C

+.

Moreover, F is the reciprocal of a Cauchy-Stieltjes transform of a probability measure on the
real line if and only if b = 1. The triple (a, b, ρ) satisfies a = ℜF (i), b = limy→+∞ F (iy)/iy, and
b+ ρ(R) = ℑF (i).

Remark 2.9. An immediate consequence of Theorem 2.8 is that for any probability measure σ
on R, we have ℑFσ(z) ≥ ℑz for all z ∈ C

+, with equality for any value of z if and only if σ is a
point mass. In this case, the measure ρ in the statement of Theorem 2.8 is zero.

The function Fµ can be seen to be invertible in a set of the form

Γα,M = {z ∈ C : |z| ≥M, |ℑz| ≥ α|ℜz|}
for some M,α > 0.

The Voiculescu transform of µ (see paragraph 5 of [BV93]) is then given on Fµ(Γα,M ) by
φµ(z) = F−1

µ (z) − z.

The free convolution of two probability measures µ and ν on the real line is then characterized
by the fact that

φµ⊞ν(z) = φµ(z) + φν(z) (2.1)

on the common component of their domain that contains i[s,+∞) for some large enough s > 0
(for details, we refer again to [BV93].) Note here that Voiculescu’s transform φµ and the so-called
R-transform are related by Rµ(z) = φµ(1/z).

Another useful property of Cauchy-Stieltjes transforms of free convolutions of probability
measures is subordination: for any µ, ν, there exist unique analytic functions ω1, ω2 : C

+ → C
+

so that Gν(ω1(z)) = Gµ(ω2(z)) = Gµ⊞ν(z) for all z ∈ C
+ and limy→+∞ ωj(iy)/iy = 1, j = 1, 2.

This has been proved by Biane in [Bi].

In the following, we shall also need the following lemmas.

Lemma 2.10. [Fatou’s theorem] Let f : C
+ → C be an analytic function. If C \ f(C+) contains

a half-line, then f admits finite nontangential limits at Lebesgue-almost all points of the real
line.

This lemma follows from Theorem 2.1 of [CL66], and conformal transformations.

Lemma 2.11. Let ν be a probability measure on the real line.
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(i) For almost all (with respect to the Lebesgue measure) real numbers x, the nontangential
limit, at x, of − 1

πℑGν exists and is equal to the density, at x, of the absolutely continuous
part of ν (with respect to the Lebesgue measure).

(ii) Let I be an open interval of the real line. Then we have equivalence between:
(a) The restriction of Gν to C

+ extends analyticaly to an open set of C containing
C

+ ∪ I.
(b) The restriction of ν to I admits an analytic density.
Moreover, in this case, the density of the restriction of ν to I is x ∈ I 7→ − 1

πℑGν(x),
where Gν(x) is the value, at x, of the extension mentioned in (a) of the restriction of
Gν to C

+.

Proof. Part (i) is Theorem 3.16 from Chapter II of [SW].

(ii) Suppose (a) to be true. Let us define, for t > 0, Ct = tdx
π(t2+x2)

.It is the law of tX when

X is a C1-distributed random variable (hence a standard Cauchy variable), and thus converges
weakly to δ0 when t tends to zero. Let us also define, for t ≥ 0,

ρt : x ∈ R 7→
{

− 1
πℑGν(x+ it) if t > 0 or x ∈ I,

0 in the other case.

Then for all t > 0, ρt is the density of ν ∗ Ct, and converges weakly (i.e. against any continuous
bounded function) to ν as t tends to zero. So it suffices to prove that for all f compactly
supported continuous function on I,

∫
f(x)ρt(x)dx tends to

∫
f(x)ρ0(x)dx when t goes to zero,

which is an easy application of dominated convergence theorem.

Suppose (b) to be true. It suffices to prove that for all x ∈ I, there is εx > 0 such that
the restriction of Gν to C

+ admits an analytic extension gx to C
+ ∪ B(x, εx). (We denote by

B(x, εx) the open ball of center x and radius εx.) Indeed, in this case, since for all x, x′ ∈ I,
gx, gx′ coincide on B(x, εx) ∩B(x′, εx′) ∩ C

+, one can define an analytic function on

C
+ ∪ (∪x∈IB(x, εx))

which coincides with Gν on C
+ and with gx on every B(x, εx). So let us fix x ∈ I.

Without loss of generality, we may assume that (1) x = 0, (2) the analytic density function f
of ν is defined analytic on [−c, c] for some c > 0, (3) this function has radius of convergence > c
with power series f(t) =

∑∞
n=0 ant

n, and (4) the support of ν is contained in [−c, c] (since for
all finite measures ν1, ν2, Gν1+ν2 = Gν1 +Gν2 and Gν1 is analytic outside of the support of ν1).
It will be enough to show that Gν extends analytically through (−c, c). Let log be the analytic
function on C\{−it ; t ∈ [0,+∞)} whose derivative is 1

z . For any |z| ≤ c, z ∈ C
+, we have the

integral

Gν(z) =

∫

R

f(t)

z − t
dt =

∫

[−c,c]

∞∑

n=0

an
tn

z − t
dt =

∫

[−c,c]

∞∑

n=0

an
tn − zn + zn

z − t
dt

= −
∞∑

n=0

an





n−1∑

j=0

zn−j c
j+1 − (−c)j+1

j + 1
+ zn[log(z − c) − log(z + c)]





=

( ∞∑

n=0

anz
n

)

[log(z + c) − log(z − c)] −
∞∑

n=0

an





n−1∑

j=0

zn−j c
j+1 − (−c)j+1

j + 1



 .

(We can commute integral with sum because the function of t → |f(t)/(z − t)| is obviously
bounded uniformly on (a neighbourhood of, even) [−c, c], for any z in a compact subset of
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C
+ ∩ B(0, c) and the sum is absolutely convergent because of the power series condition.) We

claim that in fact this formula defines an extension of Gν on B(0, c). Indeed, the first sum is

obviously convergent, while for the second we have |zn−j cj+1−(−c)j+1

j+1 | ≤ cn−j ·2|cj+1| 1
j+1 = 2 cn+1

j+1 ,
so, since

∞∑

n=0

anc
n+1

n∑

j=0

1

j + 1
<∞,

(recall the radius of convergence), so must be the second term in the sum above, for all |z| ≤ c.
Thus, the function Gν admits an analytic extension on an open set containing C

+ ∪ (−c, c), and
the formula is given above. �

Lemma 2.12. Let ν be a probability measure on the real line with support equal to R and which
is concentrated on a set of null Lebesgue measure. Then the cluster set of the restriction of its
Cauchy transform to the upper half plane at any real point is the closure, in C ∪ {∞}, of the
lower half plane.

Proof. Let us apply the upper half-plane version of theorem 2.4 to the opposite of ν’s Cauchy
transform. Since by (ii) of lemma 2.11, for all real number x, −Gν does not extend analytically
to x, the theorem will imply what we want to prove. Indeed, part (i) of lemma 2.11 implies that
the imaginary part of Gν has a null nontangential limit at Lebesgue-almost all points x of the
real line. Since by Lemma 2.10 Gν admits a finite nontangential limit at Lebesgue-almost all
x ∈ R, it follows that −Gν satisfies the upper half-plane version of Theorem 2.4. This completes
the proof.

�

Lemma 2.13. The set of symmetric probability measures on the real line with support R and
which are concentrated on a set of null Lebesgue measure is dense in the set of symmetric
probability measures for the topology of weak convergence.

Proof. Let D be the set of symmetric probability measures on the real line with support
R and which are concentrated on a set of null Lebesgue measure. Since the set of symmetric
probability measures which are finite convex combination of Dirac masses is dense in the set of
symmetric probability measures, it suffices to prove that for all real numbers a, 1

2(δ−a + δa) is

in the closure of D. This is clear, since if ν ∈ D, then for all ε ∈ (0, 1), 1−ε
2 (δ−a + δa) + εν ∈ D.

�

2.2.2. Free infinite divisibility. One can extend the notion of infinitely divisible law from classical
convolution to free convolution: a probability measure µ is said to be ⊞-infinitely divisible if
for any n ∈ N there exists a probability µn so that µ = µn⊞µn⊞ · · · ⊞µn

︸ ︷︷ ︸

n times

. It can be shown that

any such measure embeds naturally in a semigroup of measures {µ⊞t : t ≥ 0} so that t 7→ µ⊞t

is continuous in the weak topology, µ⊞1/n = µn for all n ∈ N, µ0 = δ0, and µ⊞s+t = µ⊞s
⊞µ⊞t

for all s, t ≥ 0. It follows easily from (2.1) that for any t ≥ 0, we have φµ⊞t(z) = tφµ(z) for all
points z in the common domain of the two functions.

In [BV93], Bercovici and Voiculescu have completely described infinitely divisible probability
measures with respect to free additive convolution in terms of their Voiculescu transforms.

Theorem 2.14.

(i) A probability measure µ on R is ⊞-infinitely divisible if and only if φµ has an analytic exten-
sion defined on C

+ with values in C
− ∪ R.
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(ii) Let φ : C
+ → C

− ∪ R be an analytic function. Then φ is a continuation of φµ for some
⊞-infinitely divisible measure µ if and only if

lim
z−→∞

∢

φ(z)

z
= 0.

In the following lemma, we describe some properties of free convolutions with ⊞-infinitely
divisible measures.

Lemma 2.15. Let µ be a probability which is not purely atomic, and ν an arbitrary probability
measure. We know that there exist two subordination functions ω1 and ω2 from C

+ into C
+ so

that Fν ◦ ω1 = Fµ ◦ ω2 = Fµ⊞ν . Moreover:

(1) ω1(z) + ω2(z) = Fµ⊞ν(z) + z, z ∈ C
+;

Assume in addition that µ is ⊞-infinitely divisible. Then

(2) ω1 is the inverse function of H(w) = w + φµ(Fν(w)), w ∈ C
+, so in particular it has

a continuous extension to R ∪ {∞} and ω1(x) is finite for all x ∈ R. Moreover, ω1(z)
is the Denjoy-Wolff point of the function gz : C

+ → C
+, gz(w) = w + z −H(w), for all

z ∈ C
+ ∪ R;

(3) Fµ has a continuous extension to R ∪ {∞}, analytic outside a discrete set in R, and
Fµ(x) is finite for all x ∈ R;

(4) ω2 and Fµ⊞ν extend continuously to R. Moreover, if Fµ⊞ν(x) ∈ R, then so are ω1(x) and
ω2(x);

(5) If all existing nontangential limits of φµ at points of R belong to C
−, then Fµ(x) ∈ C

+

for all x ∈ R.

Remark 2.16. (4) already shows that at x ∈ R such that Fµ⊞ν(x) 6= 0, µ⊞ν is absolutely

continuous with respect to Lebesgue measure, with density
ℑ(Fµ⊞ν)

π|Fµ⊞ν |2
(x). Note also that at a point

x such that Fµ⊞ν(x) = 0, Lemma 2.15 (4) implies that ω2(x) ∈ R, and by the definition of ω2,
together with Lindelöf ’s Theorem 2.1,

0 = Fµ⊞ν(x) = lim
z−→x

∢

Fµ(ω2(z)) = lim
z−→∢ω2(0)
∢

Fµ(z).

Since µ is infinitely divisible, Proposition 5.1 (1) of [BB05] then guarantees that tω2(0) is an
atom of µ⊞t for all t < 1.

Proof. Item (1) has been proved in [BV98], and can be easily checked from (2.1) and analytic
continuation.

Item (2) is a direct consequence of the fact that H satisfies the conditions imposed on the
function denoted also H in Theorem 4.6 [BB05] (namely it is analytic in C

+, it decreases the
imaginary part, and its derivative has strictly positive limit at infinity - in this case equal to
one). Hence, by Theorem 4.6 [BB05] (2), H is invertible from ω1(C

+) onto C
+ and, since by

(2.1), Fν = Fν⊞µ ◦H, its inverse is exactly ω1. Moreover, by Theorem 4.6, part (2) of [BB05], ω1

extends continuously to R with image in C
+ ∪R, while part (3) of the same theorem guarantees

that ω1(z) is the Denjoy-Wolff point of gz for all z ∈ C
+ ∪ R.

Item (3) follows from Proposition 2.8 (a) in [B2].

We prove now (4). Assume that there exists x0 ∈ R so that C(Fµ⊞ν , x0) contains more than
one point (and hence, by Lemma 2.2, is a continuum). Since by (2) ω1(x0) is finite, Theorem 4.1
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of [B1] allows us to conclude that if C(Fµ⊞ν , x0) ∩ C
+ 6= ∅, then Fµ⊞ν extends analytically to

x0, providing a contradiction. Thus, C(Fµ⊞ν , x0) contains either an interval, or the complement
of an interval, in R. By (2) ω1(x0) exists and then, by (1), ω1(x0) ∈ R. By definition, for any
c ∈ C(Fµ⊞ν , x0) in such an interval there exists a sequence {zc

n}n ⊂ C
+ converging to x0 so that

limn→∞ Fµ⊞ν(zc
n) = c. Using (1) we obtain

lim
n→∞

ω2(z
c
n) = lim

n→∞
Fµ⊞ν(z

c
n) − ω1(z

c
n) + zc

n = c− ω1(x0) + x0.

Now part (3) of the lemma allows us to conclude that

c = lim
n→∞

Fµ⊞ν(z
c
n) = lim

n→∞
Fµ(ω2(z

c
n)) = Fµ(c− ω1(x0) + x0),

for all c in an interval. The analyticity of Fµ outside a discrete subset of R implies (by analytic
continuation) that Fµ(z) = z− (x0 −ω1(x0)) for all z ∈ C

+, so µ = δx0−ω1(x0), contradicting our
hypothesis. The continuity of ω2 on the real line follows now immediately from (1) and (2).

To prove item (5) assume that Fµ(x) ∈ R. We know that equality z = Fµ(z) + φµ(Fµ(z))
extends to R. If φµ has no nontangential limit at the point Fµ(x), then, since the continuity
of Fµ guarantees the existence of limz→x φµ(Fµ(z)), Lindelöf’s Theorem 2.1 provides a con-
tradiction (φµ has limit along the path Fµ(x + iR+) but not nontangential, at Fµ(x)). If
φµ has nontangential limit at Fµ(x), then, by hypothesis, it must be complex, so obviously
ℑFµ(x) = −ℑ∢φµ(Fµ(x)) > 0. Contradiction again. �

2.3. Rectangular free convolution, related transforms.

2.3.1. Introduction to the rectangular free convolution and to the related transforms. We recall
[BG1] the construction of the rectangular R-transform with ratio λ, and of the rectangular
free convolution ⊞λ with ratio λ, for λ ∈ [0, 1]: one can summarize the different steps of the
construction of the rectangular R-transform with ratio λ in the following chain

µ
sym. prob.
measure

−→ Gµ
Cauchy
transf.

−→ Hµ(z) = λGµ

(
1√
z

)2

+ (1 − λ)
√
zGµ

(
1√
z

)

−→

Cµ(z) = U

(
z

H−1
µ (z)

− 1

)

,

rect. R-transf. with ratio λ

where for all z = ρeiθ, with ρ ∈ (0,+∞), θ ∈ [0, 2π),
√
z = ρ1/2eiθ/2 (note that

√· is analytic on
C\R+), and U is the inverse of T − 1, where

T (z) = (λz + 1)(z + 1), i.e. U(z) =
−λ− 1 +

[
(λ+ 1)2 + 4λz

]1/2

2λ
(when λ = 0, U(z) = z),

where z 7→ z1/2 is the analytic version of the square root on the complement of the real non
positive half line such that 11/2 = 1 (i.e. for all z = ρeiθ, with ρ > 0, θ ∈ (−π, π), z1/2 =

ρ1/2eiθ/2).

Note that the rectangular R-transform with ratio 1 (resp. 0), for symmetric distributions, is
linked to the Voiculescu transform by the relation Cµ(z) =

√
zϕµ(1/

√
z) (resp. Cµ(z) = zϕρ(z),

where ρ is the push-forward of µ by the function t→ t2).

The rectangular free convolution of two symmetric probability measures µ, ν on the real line
is the unique symmetric probability measure whose rectangular R-transform is the sum of the
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rectangular R-transforms of µ and ν, and it is denoted by µ⊞λν. Then, we have

Cµ⊞λν = Cµ + Cν . (2.2)

If λ = 0, µ⊞λν is the symmetric law which push-forward by t→ t2 is the free convolution of the
push-forwards by t→ t2 of µ and ν, and if λ = 1, it is µ⊞ν.

Remark 2.17. [How to compute µ when we know Cµ ?] First, we have z/H−1
µ (z) = T (Cµ(z)),

for z ∈ C\R+ small enough. From this, we can compute Hµ(z) for z ∈ C\R+ small enough.
Then we can use the equation, for z ∈ C\R+,

1

z
Hµ(z) = λ

(
1√
z
Gµ(

1√
z
)

)2

+ (1 − λ)
1√
z
Gµ(

1√
z
). (2.3)

Moreover, when z ∈ C\R+ is small enough, 1/
√
z is large and in C

−, so 1√
z
Gµ( 1√

z
) is close to

1. 1
zHµ(z) is also close to 1, and for h, g complex numbers close to 1,

h = λg2 + (1 − λ)g ⇔ g = V (h), with V (z) =
λ− 1 + ((λ− 1)2 + 4λz)

1
2

2λ
= U(z − 1) + 1.

So one has, for z ∈ C\R+ small enough,

1√
z
Gµ(

1√
z
) = V (

Hµ(z)

z
). (2.4)

2.3.2. A few remarks about Hµ. (a) One has, for z ∈ C\R+ small enough,

1√
z
Gµ(

1√
z
) = V (

Hµ(z)

z
).

Note that the function 1√
z
Gµ( 1√

z
) is analytic on C\R+, hence

U

(
Hµ(z)

z
− 1

)

= V

(
Hµ(z)

z

)

− 1 =
1√
z
Gµ

(
1√
z

)

− 1

admits an analytic extension to C\R+. Note that one cannot assert that this extension is given
by the same formula on the whole C\R+, but we know, by analytic continuation, that if one
denotes this extension by Mµ, one has, for all z ∈ C\R+,

[2λMµ(z) + 1 + λ]2 = (λ− 1)2 + 4λ
Hµ(z)

z
, or, equivalently, Hµ(z) = zT (Mµ(z)).

Let us observe that Mµ(z) = ψµ(
√
z) = ψµ2(z), where ψµ(z) =

∫
zt

1−ztdµ(t) is the so-called

moment generating function of µ, and µ2 is the probability on [0,+∞) given by
∫
f(t) dµ2(t) =

∫
f(t2) dµ(t) for all Borel bounded functions f . Hence, as noticed in Proposition 6.2 of [BV93],

Mµ maps the upper half-plane into itself and the left half-plane iC+ into the disc with diameter
the interval (µ({0}) − 1, 0).

(b) Hµ maps C \ R
+ into itself and maps iC+ ∩ C

+ into iC+. Indeed, for z ∈ C
+,

Hµ(z) = Gµ

(
1√
z

)

︸ ︷︷ ︸

∈C+







λGµ

(
1√
z

)

+ (1 − λ)
√
z

︸ ︷︷ ︸

∈C+







,

and the product of two elements of C
+ cannot belong to R

+. (As a consequence, Lemma 2.10
guarantees that the restriction of H to the upper half-plane has nontangential limits at almost
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all points of the positive half-line.) The second statement follows from part (a) above and the
definition of T : let z = x+ iy be so that x < 0 and y > 0. Then

z(Mµ(z) + 1) = z

(
∫

[0,+∞)

tz

1 − tz
dµ2(t) + 1

)

=

∫

[0,+∞)

z

1 − tz
dµ2(t)

=

∫

[0,+∞)

x(1 − tx) − ty2

(1 − tx)2 + (ty)2
dµ2(t) + iy

∫

[0,+∞)

1

(1 − tx)2 + (ty)2
dµ2(t).

Since x < 0, the real part of the above expression is negative, as, since y > 0, its imaginary part
is positive. From (a) above,

Hµ(z) = zT (Mµ(z)) = z(Mµ(z) + 1)(λMµ(z) + 1).

Since Mµ(z) belongs to the upper half of the disc of diameter (µ({0})−1, 0), λMµ(z)+1 belongs
to C

+ ∩ (−iC+), so that the product of λMµ(z) + 1 and z(Mµ(z) + 1) must belong to iC+.

(c) Using the two previous remarks, we observe that if there exist r, c ∈ (0,+∞) and a sequence
{zn}n ⊂ C

+ so that limn→∞ zn = r and limn→∞Hµ(zn) = c, then the set {Mµ(zn) : n ∈ N} has
at most two limit points, either both negative (if r > c) or one negative and one non-negative
(if r ≤ c). Indeed, the formula above guarantees that

lim
n→∞

Mµ(zn) ∈
{

−(1 + λ)
√
r ±

√

r(1 − λ)2 + 4λc

2λ
√
r

}

.

(d) Let us define two properties, for functions defined on C \ R
+.

(P1) ∀z ∈ C \ R
+, f(z) = −f(z).

(P2) ∀z ∈ C \ R
+, f(z) = f(z).

It is easy to see that
√· has the property (P1) and that for µ symmetric probability measure

Gµ(1/
√
z) has also property (P1), hence Hµ has property (P2). As a consequence, in view of

(b), Hµ(R−) ⊂ R
− and Hµ(iC+) ⊆ iC+. Similarly, H−1

µ also satisfies property (P2) and hence
also Cµ satisfies property (P2), so, in particular, Cµ((−a, 0)) ⊆ R for any a > 0 so that (−a, 0)
is included in the domain of Cµ.

(e) Let us denote by x0 the largest number in (−∞, 0) so that H ′
µ(x0) = 0 (we do not exclude

the case x0 = −∞). Since Hµ(0) = 0 and H ′
µ(0) = 1, H−1

µ and Cµ are defined, and analytic, on

the interval (Hµ(x0), 0), and moreover, Cµ((Hµ(x0), 0)) ⊆ R
−. Indeed, H−1

µ is obviously defined

and analytic on (Hµ(x0), 0), and as Hµ(R−) ⊆ R
− (by (b) and (d) above), we have x

H−1
µ (x)

> 0

for all x ∈ (Hµ(x0), 0). Thus, Cµ(x) = U
(

x
H−1

µ (x)
− 1
)

is defined and analytic on (Hµ(x0), 0).

To show that Cµ((Hµ(x0), 0)) ⊆ R
− it is enough to prove that U

(
Hµ(x)

x − 1
)

< 0 for any x ∈
(x0, 0). (As observed in Remark 2.17, the derivative of Hµ in zero is one, so that Hµ is increasing

on (x0, 0).) This statement is due to the inequality
Hµ(x)

x < 1, x ∈ (x0, 0). Now, 1/
√
x ∈ iR−

and µ is symmetric, so Gµ(1/
√
x) ∈ iR+, which implies that |Gµ(1/

√
x)| = ℑGµ(1/

√
x) for all

x < 0. Remark 2.9 implies that

∣
∣
∣
∣

1√
x

∣
∣
∣
∣
= −ℑ 1√

x
< −ℑFµ

(
1√
x

)

=
1

ℑGµ

(
1√
x

) ,
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so
∣
∣
∣

1√
x
Gµ

(
1√
x

)∣
∣
∣ < 1, for any µ 6= δ0, x < 0. Thus, 0 < 1√

x
Gµ

(
1√
x

)

< 1, x < 0. The definition

of Hµ and the fact that 0 < λ < 1 imply now the desired result.

(f) We have

lim
x→−∞

Hµ(x) = −(1 − λ)

∫

t−2 dµ(t) (= −∞ if µ({0}) > 0),

lim
x→−∞

Hµ(x)

x
= λµ({0})2 + (1 − λ)µ({0}). (2.5)

This follows from the definition of Hµ together with the monotone convergence theorem: recall
that

Hµ(x) = λGµ(1/
√
x)2 + (1 − λ)

√
xGµ(1/

√
x)

= λ





∫
1

−i√
|x|

− t
dµ(t)





2

+ (1 − λ)i
√

|x|
∫

1
−i√
|x|

− t
dµ(t)

= −λ
(
∫ √

|x|
1 + t2|x| dµ(t)

)2

− (1 − λ)

∫ |x|
1 + t2|x| dµ(t).

(We have used the fact that µ is symmetric in the last equality.) Since limx→−∞
1

1+t2|x| = χ{0}(t)

and the convergence is dominated by 1, (2.5) follows.

Now observe that the functions fx(t) = |x|
1+t2|x| , x < −1, t ∈ R, satisfy fx1(t) > fx2(t) iff

|x1| > |x2|, fx(t) < t−2 and limx→−∞ fx(t) = t−2, t ∈ R, with the convention 1/0 = +∞. So by
the monotone convergence theorem,

lim
x→−∞

∫ |x|
1 + t2|x| dµ(t) =

∫

t−2 dµ(t) ∈ (0,+∞].

If
∫
t−2 dµ(t) < +∞, we deduce that

lim
x→−∞

∫ √

|x|
1 + t2|x| dµ(t) = lim

x→−∞
|x|− 1

2 lim
x→−∞

∫ |x|
1 + t2|x| dµ(t) = 0

so that indeed limx→−∞Hµ(x) = −(1−λ)
∫
t−2 dµ(t). This is also true when

∫
t−2 dµ(t) = +∞.

2.3.3. Free rectangular infinite divisibility. As for the free convolution, for any λ ∈ [0, 1], one
can extend the notion of infinitely divisible law to rectangular free convolution with ratio λ:
a symmetric probability measure µ is said to be ⊞λ-infinitely divisible if for any n ∈ N there
exists a symmetric probability µn so that µ = µn⊞λµn⊞λ · · · ⊞λµn

︸ ︷︷ ︸

n times

. It can be shown that any

such measure embeds naturally in a semigroup of measures {µ⊞λt : t ≥ 0} so that t 7→ µ⊞λt is

continuous in the weak topology, µ⊞λ1/n = µn for all n ∈ N, µ0 = δ0, and µ⊞λ(s+t) = µ⊞λs
⊞λµ

⊞λt

for all s, t ≥ 0. It follows easily from (2.2) that for any t ≥ 0, we have Cµ⊞λt(z) = tCµ(z) for all

points z in the common domain of the two functions.

In [BG2], the infinitely divisible probability measures with respect to ⊞λ are completely de-
scribed in terms of their rectangular R−transforms.
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Theorem 2.18. A symmetric probability measure on the real line is ⊞λ-infinitely divisible if and
only if there is a symmetric positive finite measure G on the real line such that Cµ extends to
C\R+ and is given by the following formula:

∀z ∈ C\R+, Cµ(z) = z

∫

R

1 + t2

1 − zt2
dG(t). (2.6)

In this case, G is unique and is called the Lévy measure of µ.

Remark 2.19. It would be useful, in order to know if the measures to which Lemma 4.1 can
be applied are all ⊞λ-infinitely divisible, to know if, as for the Voiculescu transform and ⊞-
infinite divisibility, any symmetric probability measure whose rectangular R-transform extends
analytically to C\R+ is actually ⊞λ-infinitely divisible. Unfortunately, the proof of the analogous
result in the square case involves the fact that the Voiculescu transform of any probability measure
takes its values in the closure of the lower half-plane, and we still did not find the analogue of
that fact in the rectangular context.

In the following we shall describe some more or less obvious consequences of Theorem 2.18.
First we record for future reference the geometry of the preimage of the complex plane via
T (z) = (λz + 1)(z + 1):

Remark 2.20. (i) T−1({0}) = {−1/λ,−1} and T ′(−(λ+ 1)/2λ) = 0;
(ii) T ((−∞,−1/λ]) = T ([−1,+∞)) = R

+, and T is injective on each of these two intervals;
(iii) T ((−1/λ,−(1 + λ)/2λ]) = T ([−(1 + λ)/2λ,−1)) = [−(1 − λ)2/4λ, 0) and T is injective

on each of these two intervals;
(iv) T (−(1+λ)/2λ+ iR+) = T (−(1+λ)/2λ− iR+) = (−∞,−(1−λ)2/4λ] and T is injective

on each of these two sets;
(v) ℜT (x+iy) = 0 iff λy2 = (λx+1)(x+1). In particular, the pre-image of the imaginary axis

is an equilateral hyperbola whose branches go through −1 and −1/λ and the tangents at
these points to the hyperbola are vertical. More general, ℜT (x+ iy)/ℑT (x+ iy) = c ≥ 0
if and only if x2 − y2 − 2cxy +

(
1 + 1

λ

)
(x − cy) + 1

λ = 0. That is, the pre-image via
T of any non-horizontal line going through the origin is an equilateral hyperbola going
through −1 and −1/λ and whose tangents at these two points are parallel to the line
cy = x.

Let us denote K1 = {z ∈ C
+ : ℜz > −(1 + λ)/2λ}, K2 = {z ∈ C

+ : ℜz < −(1 + λ)/2λ},
K3 = {z ∈ C

− : ℜz > −(1 + λ)/2λ}, K4 = {z ∈ C
− : ℜz < −(1 + λ)/2λ}.

Note that using the formula T (z) = λ
[(
z + λ+1

2λ

)2 − (1−λ)2

4λ2

]

, one easily sees that K1 =

T−1(C+) ∩ C
+,K2 = T−1(C−) ∩ C

+,K3 = T−1(C−) ∩ C
−,K4 = T−1(C+) ∩ C

−.

Lemma 2.21. Let µ be a ⊞λ-infinitely divisible probability measure. Then

(1) Hµ is the right inverse of the analytic function C \ R
+ ∋ w 7→ w

T (Cµ(w)) , hence injective;

(2) µ({0}) > 0 if and only if limw→−∞Cµ(w) ∈ (−1, 0]. In that case,

µ({0}) =

−(1 − λ) +

√

(1 − λ)2 + 4λT

(

lim
w→−∞

Cµ(w)

)

2λ
= 1 + lim

w→−∞
Cµ(w), (2.7)

or, equivalently, lim
w→−∞

Cµ(w) = µ({0}) − 1.

(3) π > argHµ(z) ≥ arg z for all z ∈ C
+, with equality if and only if µ = δ0. In particular,

Cµ(Hµ(C+)) ⊂ K1;



REGULARIZATION BY FREE ADDITIVE CONVOLUTION, SQUARE AND RECTANGULAR CASES 15

(4) Hµ is analytic around infinity whenever limx→−∞Cµ(x) < −1.

Proof. By the definition of Cµ, Theorem 2.18, parts (d) and (e) of subsection 2.3.2, and Remark
2.17 we obtain that T (Cµ(Hµ(z))) = Hµ(z)/z for all z ∈ (−∞, 0), and, by part (b) of subsection
2.3.2 and analytic continuation, for all z ∈ C \ R

+. This proves item 1.

We prove now item 2. Since the case µ = δ0 is trivial, we exclude it from our analysis.
This allows us to assert that the Lévy measure of µ has a positive mass, hence, by (2.6), that
Cµ((−∞, 0)) ⊂ (−∞, 0). Note that (2.6) implies also that limw→−∞Cµ(w) exists in [−∞, 0).
As Hµ((−∞, 0)) ⊆ (−∞, 0), (by (b), (d) of subsection 2.3.2) we have Hµ(x)/x > 0 for all x ∈
(−∞, 0), and hence the relation T (Cµ(Hµ(z))) = Hµ(z)/z implies that T (Cµ(Hµ((−∞, 0)))) ⊂
R

+∗ and therefore Cµ(Hµ((−∞, 0)) ⊂ (−∞,− 1
λ ] ∪ [−1, 0]. Since limx↑0Cµ(Hµ(x)) = 0, the

continuity of x→Cµ(Hµ(x)) on R
− implies that Cµ(Hµ((−∞, 0))) ⊆ (−1, 0).

Using part (f) of subsection 2.3.2 and part (1) of this lemma,

λµ({0})2 + (1 − λ)µ({0}) = lim
x→−∞

Hµ(x)/x = lim
x→−∞

T (Cµ(Hµ(x))).

If µ({0}) > 0, then by (f) of subsection 2.3.2, limx→−∞Hµ(x) = −∞, hence

T ( lim
w→−∞

Cµ(w)) = lim
w→−∞

T (Cµ(w)) = lim
x→−∞

T (Cµ(Hµ(x))) = λµ({0})2 +(1−λ)µ({0}) ∈ (0, 1),

so, since Cµ(Hµ((−∞, 0))) ⊆ (−1, 0), we have limw→−∞Cµ(w) = µ({0}) − 1 ∈ (−1, 0).

Conversely, assume that limw→−∞Cµ(w) ∈ (−1, 0). We claim that limx→−∞Hµ(x) = −∞.
Indeed, assume to the contrary that this limit is finite, and denote it by c ∈ (−∞, 0). Then
we have 0 = limx→−∞Hµ(x)/x = limx→−∞ T (Cµ(Hµ(x))) = T (Cµ(c)), so that Cµ(c) = −1 or
−1/λ. But Cµ is increasing on (−∞, 0) (it follows easily from the differentiation of (2.6)), and
we have assumed that limx→−∞Cµ(x) > −1. This is a contradiction. The statement concerning
the mass at the origin follows since by (2.5)

0 < λµ({0})2 + (1 − λ)µ({0}) = lim
x→−∞

Hµ(x)

x
= lim

x→−∞
T (Cµ(Hµ(z))) = lim

w→−∞
T (Cµ(w)).

To conclude, one can easily deduce (2.7) from the previous equation.

To prove item 3, we claim first that Hµ(C+) ⊆ C
+. Assume this is not the case: there exists

a point z1 in the upper half-plane so that Hµ(z1) ∈ C
− ∪ R. Observe that by the relations

∀α ∈ (0, π), lim
z→0

| arg z−π|<α

Hµ(z)/z = 1, (2.8)

there is a point z0 ∈ C
+ so thatHµ(z0) ∈ C

+. Consider a segment γ uniting z0 and z1. Then there
must be a point zr ∈ γ so that Hµ(zr) ∈ R and Hµ([z0, zr)) ⊂ C

+. Since Hµ(C\R
+) ⊆ C\R

+, we
must have Hµ(zr) < 0. But then Cµ(Hµ(zr)) < 0, so T (Cµ(Hµ(zr))) ∈ R. Thus, we contradict
the relation Hµ(zr) = zrT (Cµ(Hµ(zr))). This assures us that Hµ(C+) ⊆ C

+.

To conclude the proof of item 3, we have to prove that Hµ(z)/z ∈ C
+ whenever z ∈ C

+.
This is equivalent to T (Cµ(Hµ(z))) ∈ C

+ whenever z ∈ C
+, i.e., since by (2.6), Cµ(C+) ⊆ C

+,
to Cµ(Hµ(C+)) ⊆ K1. Note first that by (2.8), there are some points z ∈ C

+ for which
Hµ(z)/z ∈ C

+, i.e. Cµ(Hµ(z)) ∈ K1. Hence the inclusion Cµ(Hµ(C+)) ⊆ K1 can fail only if
Cµ(Hµ(C+)) intersects the line −(1+λ)/2λ+ iR+, so that there exists a point w0 ∈ C

+ with the
property that T (Cµ(Hµ(w0))) < 0. But then we obtain that Hµ(w0) = w0T (Cµ(Hµ(w0))) ∈ C

−,
a contradiction. This proves item 3.
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We proceed now with proving item 4. As observed in the beginning of the proof of item 2, we
must have Cµ(Hµ((−∞, 0))) ⊆ (−1, 0), so that limx→−∞Cµ(Hµ(x)) ≥ −1, hence the hypothesis

lim
x→−∞

Cµ(x) < −1

implies limx→−∞Hµ(x) = c ∈ (−∞, 0) (note here that the limit exists by (2.5)). Thus, Hµ(z)
is analytic around infinity if and only if

Wµ : z ∈ C\(0,+∞) 7→
{

Hµ(1/z) if z 6= 0,

c if z = 0,

extends analytically around zero. The relation Hµ(z) = zT (Cµ(Hµ(z))) allows us to write

Wµ(z) =
1

z
(λCµ(Wµ(z)) + 1)(Cµ(Wµ(z)) + 1),

hence for z ∈ C\R+ small enough so that (1 − λ)2 + 4λzWµ(z) /∈ R
−,

Cµ(Wµ(z)) − −λ− 1 + [(1 − λ)2 + 4λzWµ(z)]1/2

2λ
= 0.

This relation holds for z in I ∩ (−∞, 0), where I ⊂ R is a small enough interval centered at zero,
as µ 6= δ0. Thus, let us define f : I × (I + c) → R, by

f(z,w) = Cµ(w) − −λ− 1 + [(1 − λ)2 + 4λzw]1/2

2λ

(recall that c = limx→−∞Hµ(x) < 0, hence if I is small enough, f is well defined). This function
satisfies f(z,Wµ(z)) = 0 for all z ∈ I ∩ (−∞, 0). Hence f(0, c) = limz↑0 f(z,Wµ(z)) = 0. We
observe that

∂wf(z,w) = C ′
µ(w) − z

[(1 − λ)2 + 4λzw]1/2
,

so that ∂wf(0, w) = C ′
µ(w) > 0 for all w ∈ (I+c)∩ (−∞, 0). Thus, the conditions of the implicit

function theorem are satisfied, so we conclude that there exists a unique real map g, analytic on
some subinterval J of I, centered at zero, so that g(0) = c and f(x, g(x)) = 0 for all x ∈ J . The
uniqueness guarantees that g(x) = Wµ(x) on their common domain, and hence it is an analytic
extension to the interval J of Wµ(z) = Hµ(1/z). This concludes the proof. �

3. The square case

Below, we prove that free convolution is regularizing, namely that we can find a set of prob-
ability measures (roughly ⊞-infinitely divisible distribution whose Voiculescu transform is suffi-
ciently nice) such that any probability measure, once convoluted by one of these measures, has
a density with respect to Lebesgue measure which is analytic and positive everywhere. The fact
that we require the density to be analytic everywhere or positive everywhere will be seen in
Proposition 3.4 to impose that these regularizing measures have no finite second moment. We
shall give also some examples of such measures after the proof of the Theorem.

3.1. A result of analyticity.

Theorem 3.1. Let µ be a ⊞-infinitely divisible distribution. Assume that the Voiculescu trans-
form φµ satisfies the following conditions:

(1) For any x ∈ R, either ∢ limz→x φµ(z) ∈ C
−, or φµ has no nontangential limit at x;

(2) Either (i) ∢ limz→∞ φµ(z) = ∞, or (ii) ∢ limz→∞ φµ(z) ∈ C
−, or (iii) C∆(φµ,∞) con-

tains more than one point.
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Then µ⊞ν has a positive, everywhere analytic density for all probability measure ν.

Proof. We have, on a neighbourhood of infinity,

F−1
ν (z) + φµ(z) = z + φν(z) + φµ(z) = z + φµ⊞ν(z) = F−1

µ⊞ν(z).

We replace z by Fµ⊞ν(z), for z in an appropriate truncated cone Γα,M - see 2.2.1 above (possible
since Fµ⊞ν(z) is defined on the whole upper half plane and is equivalent to z as z goes to infinity
in a nontangential way), and get

z − φµ(Fµ⊞ν(z)) = F−1
ν (Fµ⊞ν(z)).

Applying Fν in both sides and using analytic continuation (recall that φµ extends to C
+ by

Theorem 2.11), we obtain

Fµ⊞ν(z) = Fν(z − φµ(Fµ⊞ν(z))), z ∈ C
+. (3.1)

We will show that Fµ⊞ν extends analytically to R, and Fµ⊞ν(x) ∈ C
+ for all x ∈ R. This will

imply the theorem according to Lemma 2.11. Let us fix a real number x. Observe first that the
existence of a continuous extension with values in C

+ ∪ R ∪ {∞} of Fµ⊞ν at x is guaranteed by
Lemma 2.15, (4).

We are first going to prove that we do not have limz→x Fµ⊞ν(z) = ∞ (i.e limz→x |Fµ⊞ν(z)| =
∞). Suppose that this happens. Then we have

x− ω1(x) = lim
z→x

z − ω1(z) = lim
z→x

ω2(z) − Fµ(ω2(z))

= lim
z→x

φµ(Fµ(ω2(z))) = lim
z→x

φµ(Fµ⊞ν(z))

= lim
w−→∞

∢

φµ(w) (3.2)

We have used part (2) of Lemma 2.15 in the first equality, (1) of Lemma 2.15 in the second
equality, definition of φµ and Theorem 2.14 in the third, and Lindelöf’s Theorem 2.1 in the laste-
quality. We next show that any of the three hypotheses of Theorem 3.1.(2) are in contradiction
with (3.2).

Indeed, if (i) holds, then (3.2) implies that x − ω1(x) = ∞ which contradicts part (2) of
Lemma 2.15. (iii) clearly can not hold since (3.2) implies that C∆(φµ,∞) contains only one
point. Finally, assume that (ii) of item 2 of our theorem holds. Then, (3.2) implies that
ω1(x) ∈ C

+. Thus, we get the contradiction

∞ = lim
z→x

Fµ⊞ν(z) = lim
z→x

Fµ(ω1(z)) = Fµ(ω1(x)) ∈ C
+

We next prove that c = limz→x Fµ⊞ν(z) cannot be real. So, we assume c ∈ R and obtain a
contradiction based on the fact that we then have

c = lim
z→x

Fµ⊞ν(z) = lim
z→x

Fν(z − φµ(Fµ⊞ν(z))) ∈ R. (3.3)

We observe first that limz→x φµ(Fµ⊞ν(z)) exists. Indeed, we see as in (3.2),

lim
z→x

φµ(Fµ⊞ν(z)) = lim
z→x

ω2(z) − Fµ(ω2(z)) = lim
z→x

z − ω1(z) = x− ω1(x)

If φµ has nontangential limit at c, then by our assumption from item 1, it must belong to
the lower half-plane. Lindelöf’s Theorem 2.1 guarantees that limz→x φµ(Fµ⊞ν(z)) equals the



18 SERBAN BELINSCHI, FLORENT BENAYCH-GEORGES AND ALICE GUIONNET

nontangential limit of φµ at c, so

lim
z→x

Fν(z − φµ(Fµ⊞ν(z))) = Fν(x− lim
w−→c

∢

φµ(w)) ∈ C
+,

contradicting equation (3.3).

If φµ has no nontangential limit at c, then it is obvious from the existence of limz→x φµ(Fµ⊞ν(z)),
of c = limz→x Fµ⊞ν(z), finiteness of c, and from Lindelöf’s Theorem 2.1 that c must belong to
the upper half-plane.

Hence, we have proved that, for any x ∈ R, c = Fµ⊞ν(x) = limz→x Fµ⊞ν(z) ∈ C
+. We

finally prove that Fµ⊞ν extends analytically in the neighbourhood of x ∈ R by using the implicit
function theorem. Note that the hypothesis that ∢ limz→t φµ(z) ∈ C

− for all t ∈ R for which this
limit exists implies that µ is not a Dirac measure, hence that φµ(C+) ⊂ C

−. Let us introduce
the function f(v,w) = Fν(v − φµ(w)), defined on

{(v,w) ∈ C × C
+ ; ℑv > ℑφµ(w)},

which contains (C+ ∪ R) × C
+. One has

f(x, c) = Fν(x− φµ(c)) = lim
z→x

Fν(z − φµ(Fµ⊞ν(z))) = lim
z→x

Fµ⊞ν(z) = c.

In other words, c is the Denjoy-Wolff point of the function f(x, ·). Since f(x, ·) is not a conformal
automorphism of C

+, we have
∣
∣
∣
∣

∂

∂w
f(x, c)

∣
∣
∣
∣
< 1

(and in particular 6= 1). So with g(v,w) = w − f(v,w), we have

∂

∂w
g(x, c) 6= 0,

hence, by the implicit function theorem, there exists an analytic function L, defined in a con-
nected neighborhood V of x and a neighborhood W of c such that for all (v,w) ∈ V ×W ,

g(v,w) = 0 ⇔ w = L(v).

By (3.1) the function L coincides with the function Fµ⊞ν on V ∩C
+, so the function Fµ⊞ν admits

an analytic extension to V , with value c ∈ C
+ at x. Lemma 2.11 allows us to conclude. �

Examples. In this series of examples, we provide explicit examples of measures satisfying the
hypotheses of Theorem 3.1.

(1) We give here an example of a Voiculescu transform that satisfies condition (i). Let

φµ(z) =
1

z + i
−

√
z, z ∈ C+,

where
√· is the natural continuous extension of the square root defined on C\ [0,+∞) so

that
√
−1 = i to R∪{∞}. Theorem 2.14 guarantees that φµ is the Voiculescu transform

of a ⊞-infinitely divisible probability. Clearly ℑφµ(z) < 0 for all z ∈ C
+∪R, φµ(∞) = ∞,

and φµ is obviously continuous on C+, so φµ satisfies the condition (i) in the previous
theorem. Moreover, we have

inf
x∈R

|ℑφµ(x)| = lim
x→+∞

1

x2 + 1
= 0.

This also shows that µ is not a convolution with a Cauchy law. It is an easy exercise to
observe, based on (2.1), that µ = λ1⊞λ2, where λj are both infinitely divisible, λ2 is a
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⊞-stable distribution (see [BV93]) whose density is given by x 7→
√

4x−1
2πx , x ∈ [1/4,∞),

and Fλ1(z) = (z − i+
√

(z + i)2 − 4)/2, z ∈ C
+.

(2) We observe that, if φµ extends continuously to R ∪ {∞}, condition (ii) in the above
theorem can be reduced to requiring that µ is the free convolution of some probability
measure by a Cauchy law. Indeed, since φµ is continuous on R∪ {∞}, if ℑφµ(x) < 0 for
all x ∈ R and φµ(∞) ∈ −C

+, then ℑφµ(x) must actually be bounded away from zero
(by continuity). By Theorem 2.14, there exists c > 0 so that φµ(z) + ci = φµ(z)− (−ci)
is still a Voiculescu transform of an infinitely divisible distribution, say η. Then φµ(z) =
φη(z) + (−ci), and C(z) := −ci is the Voiculescu transform of a Cauchy distribution.

(3) The example of probability measure that satisfies condition (iii) will be constructed in
terms of the Voiculescu transform, as an explicit limit of compactly supported proba-
bilities, each whose density is an algebraic function. Specifically, we will construct two
sequences {an}n and {tn}n of real numbers and functions fn(z) = an

1+tnz
tn−z , z ∈ C \ {tn},

so that gn =
∑n

j=1 fj converges on the upper half-plane to the nonconstant analytic

function g and CiR+(g,∞) = iCiR+(ℑg,∞) ⊃ i[7,+∞].
Let us recall that the R-transform of the free Poisson law with parameter k is Rp(z) =

k
1−z , so that its dilation by t has an R-transform given by 1

tRp(
z
t ) = k

t−z . Since φµ(z) =

Rµ(1/z), we can write

a
1 + t

z
1
z − t

=
a

t
· z + t

1
t − z

=
a

t

[
1
t + t
1
t − z

− 1

]

=
a
t2 + a
1
t − z

− a

t
,

so we conclude that fn is just minus the Voiculescu transform of the translation with
an/tn of the dilation with 1/tn of the free Poisson law of parameter an

t2n
+ an.

First let us enumerate some properties of the functions fn.

(j) y 7→ ℑfn(iy) is a smooth function from [0,+∞) into itself and ℑfn(iy) = an
y(1+t2n)
t2n+y2 ;

(jj) maxy∈[0,+∞) ℑfn(iy) = ℑfn(itn) = an(1 + t2n)/2tn. Moreover, the function y 7→
ℑfn(iy) increases from zero to an(1 + t2n)/2tn on the interval [0, tn], after which it de-
creases back to zero;
(jjj) There are exactly two points y+

n and y−n , right and left, respectively, from tn, so
that ℑfn(iy+

n ) = ℑfn(iy−n ) = 1. We have

y−n =
an(1 + t2n) −

√

a2
n(1 + t2n)2 − 4t2n

2
,

so that lim|tn|→∞ y−n = 1/an. Moreover, for any an > 0, y−n < 2/an, and if 0 < an < 1,

then we also have 1/an < y−n .

Let us observe also that if we replace fn by the sum

fn(z) =
an

2

1 + ztn
tn − z

+
an

2

1 − ztn
−tn − z

,

then we do not change the imaginary part of fn(iy), while we insure that ℜfn(iy) = 0
for all y ≥ 0, so from now on we will replace fn with this new function. (This will
correspond to the free additive convolution of two free Poisson laws as above.)

Let a1 = 1, t1 = 2. Choose 0 < a2 < a1/2 so that ℑf1

(

i 1
2a2

)

< 1/10 and 1
2a2

> t1.

Item (jj) guarantees that we can make such a choice. Choose t2 > t1 so that ℑf2(it2) =
a2(1+ t22)/2t2 > 2. This condition can be fulfilled because of item (jj). Observe that the

monotonicity of ℑfn(i·) on [tn + ∞) implies that ℑf1(iy
−
2 ) < ℑf1

(

i 1
2a2

)

< 1/10.
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Assume now that we have constructed aj , tj, 1 ≤ j ≤ n− 1 so that 0 < aj < aj−1/2,

fj−1

(

i 1
2aj

)

< 1/10j−1, 1
2aj

> tj−1, tj > tj−1, ℑfj(itj) = aj(1 + t2j)/2tj > j, and

y−j > 1
2aj
, for all j between 1 and n − 1. We choose 0 < an < an−1/2 small enough so

that ℑfn−1

(

i 1
2an

)

< 1/10n−1, 1
2an

> tn−1, (using item (jj) above), and tn > tn−1 large

enough so that ℑfn(itn) = an(1 + t2n)/2tn > n. As before, construction is permitted by
using item (jj).

Observe now that the sequence {an}n constructed this way is positive, decreasing, and
satisfies 1 <

∑∞
n=1 an < 2. Moreover, {y−n }n is, by item (jjj), in its own turn an increasing

sequence, and y−n > tj for all j < n so that ℑfj(iy
−
n ) ≤ ℑfj(iy

−
j+1) < ℑfj

(

i 1
2aj+1

)

<

1/10j , by monotonicity of ℑfj on [tn,+∞). Thus,

ℑ(f1 + f2 + · · · + fn−1 + fn)(iy−n ) <
1

10
+

1

102
+ · · · 1

10n−1
+ 1 <

10

9
.

On the other hand, for any m > n, we have

ℑfm(iy−n ) = am
y−n (1 + t2m)

t2m + (y−n )2
= an

y−n (1 + t2n)

t2n + (y−n )2
︸ ︷︷ ︸

ℑfn(iy−

n )=1

·am

an
· (1 + t2m)(t2n + (y−n )2)

(1 + t2n)(t2m + (y−n )2)

≤ am

an
·
(1 + t2m)(t2n +

(
2
an

)2
)

(1 + t2n)t2m

< 2
am

an

(

1 +
4

a2
nt

2
n

)

<
1

2m−n−1
+

1

2m−n−3n2
,

so that ℑ(fn+1 + fn+2 + · · · + fm)(iy−n ) < 4 for all m > n, when n > 1 is large enough.
(We have used in the last inequality the fact that the choice of tn so that ℑfn(itn) > n
implies that an > (2ntn)/(1 + t2n) > n/tn, so that 1/n > 1/(antn), and our choice that
an < an−1/2, n ≥ 1). Also, ℑ(f1 + f2 + · · · + fn−1 + fn)(tn) > ℑfn(itn) > n, for all
n ∈ N. As seen before, ℜfn(iy) = 0 for all y ≥ 0.

Now, it is easy to verify that (1 + tnz)/(tn − z) are uniformly bounded on, say, i[0, 1],
so that

∑∞
n=1 fn is convergent and the limit g is an analytic self-map of the upper half-

plane. We observe that ℑg(iy−n ) ≤ 4 + 10/9 < 7, ℑg(itn) ≥ n, and ℜg(i[0,+∞)) = {0}
for all n ∈ N, while limn→∞ tn = limn→∞ y−n = ∞. Thus, g has no radial, hence no
nontangential, limit at infinity.

At the same time, since all −fns are Voiculecu transforms, so is −g.

We next consider the case where we do not restrict ourselves to regularizing measures which
are infinitely divisible.

Theorem 3.2. Let µ be a Borel probability measure on R so that the function hµ(z) = Fµ(z)−z
satisfies the following property:

(H) For any x ∈ R ∪ {∞}, either ∢hµ(x) does not exist, or ∢hµ(x) ∈ C
+;

Then for any Borel probability measure ν on R which is not a point mass, µ⊞ν is absolutely
continuous with respect to the Lebesgue measure and has a positive analytic density with respect
to the Lebesgue measure.
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Remark 3.3. For x = ∞, (H) is in fact equivalent to the fact that either ∢φµ(∞) does not exist
or ∢φµ(∞) belongs to C

+. Indeed, as observed in [BV93], z + φµ(z) belongs to a neighbourhood
of infinity for sufficiently large z in some truncated cone Γα,M . Thus, by the definition of φ
and h, hµ(z + φµ(z)) = −φµ(z) for sufficiently large z in such a cone. Since z + φµ(z) tends
nontangentially to infinity when z tends nontangentially to infinity, ∢φµ(∞) exists iff ∢hµ(∞)
exists, and they are equal. The significance of this fact for our problem will be seen in the next
subsection.

Proof. We claim first that ∢Fµ⊞ν(x) exists and belongs to the upper half-plane for all x ∈ R.
Indeed, with the notations from Lemma 2.15, by Theorem 3.3 of [B1], the nontangential limits
of ω1 and ω2 at x exist. As observed in part (1) of Theorem 3.3 in [B1], if ∢ω2(x) ∈ C

+, then
the result is true. Assume first that ∢ω2(x) ∈ R. Theorem 2.1 guarantees that if ∢Fµ⊞ν(x) =
∢(Fµ ◦ω2)(x) exists, it must equal the nontangential limit of Fµ in ∢ω2(x), so the nontangential
limit of hµ in ∢ω2(x) exists, and hence, by (H), belongs to the upper half-plane.

Suppose the nontangential limit of Fµ, and hence of hµ, in ∢ω2(x) does not exist. Then
by Theorem 2.1, hµ ◦ ω2 has no nontangential limit at x. But by part (1) of Lemma 2.15 and
definition of hµ, we have

∢ω1(x) = x+ lim
z−→x

∢

hµ(ω2(z)),

which implies that ∢ω1(x) does not exist, contradicting Theorem 3.3 of [B1].

The last possible case is when ∢ω2(x) = ∞. As before, if ∢(hµ ◦ ω2)(x) exists, then by
Theorem 2.1 it must coincide with ∢hµ(∢ω2(x)) = ∢hµ(∞), so, by our hypothesis (H), it
must belong to the upper half-plane. Thus, ∢ω1(x) ∈ C+, so that, by Theorem 3.3 in [B1],
∢Fµ⊞ν(x) ∈ C

+. Assume now that ∢(hµ ◦ ω2)(x) does not exist, so that there exists an infinite
set W of points c ∈ C

+ ∪R for which there is a sequence {zc
n}n converging to x nontangentially

so that limn→∞(hµ ◦ ω2)(z
c
n) = c. But then

∢ω1(x) = lim
z−→x

∢

ω1(z) = lim
n→∞

ω1(z
c
n) = lim

n→∞
zc
n + hµ(ω2(z

c
n)) = x+ c

for any c ∈W. This contradicts the existence of the nontangential limit of ω1 at x.

This establishes the existence of nontangential limits of Fµ⊞ν at all points x ∈ R and the fact
that ∢Fµ⊞ν(x) ∈ C

+ for all x ∈ R. We claim that ∢ω2(x) ∈ C
+. Indeed, it is easy to see that

∢ω2(x) is finite, since otherwise we would have, by Lemma 2.15, Theorem 2.1 and Theorem
2.8, that ∢Fµ⊞ν(x) = ∢(Fµ ◦ ω2)(x) = ∢Fµ(∢ω2(x)) = ∢Fµ(∞) = ∞, which is a contradiction.
Thus, by Lemma 2.15, part (1), we have that ∢ω1(x) is also finite. Moreover, at least one of
∢ω1(x), ∢ω2(x) must then belong to the upper half-plane. Remark 2.9 guarantees that in fact
both must be in the upper half-plane. Theorem 3.3 of [B1] and Lemma 2.11 concludes the proof.
�

3.2. A result of non existence of analytic densities.

Proposition 3.4. Assume that µ, a ⊞-infinitely divisible probability so that µ⊞t has no atoms
for some t < 1 (the existence of µ⊞t for t < 1 is guaranteed by the infinite divisibility of µ), has
finite second moment. Then there exists a probability measure ν on R so that the density of µ⊞ν
is not analytic everywhere. Moreover, the density of µ⊞ν vanishes at a point.

Remark 3.5. • Note that the fact that the density of µ⊞ν may easily vanish inside the
support of the measure was already foreseen by P. Biane in [Bi], Proposition 6, where
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he proved that if ν is a probability measure with continuous strictly positive density on
] − ǫ, 0[∪]0, ǫ[ for some ǫ > 0 such that

∫

x−2dν(x) <∞

and µ = σt is the semicircular variable with covariance t, then dµ⊞σt

dx (0) = 0 for t > 0
small enough. Our proof extends this phenomenon to any ⊞-infinitely divisible probability
measure µ with finite second moment, under the (technical) hypothesis that µ⊞t has no
atoms for some t < 1.

• In the case where the probability measure µ has a finite second moment, by theorem 1.3
and remark 1.1 of [BG06], if m, v denote respectively the mean and the variance of µ,
one has, as z goes to infinity non tangentially, φµ(z) = m + v/z + o(1/z), hence the
second hypothesis of theorem 3.1 cannot be satisfied. However, the existence of a finite
second moment for µ has no incidence on the first hypothesis of theorem 3.1. Indeed,
as it will be explained in the proof of proposition 3.4, up to a translation, φµ can be
expressed as the Cauchy transform of the finite positive measure dσ(t) = (1 + t2)dG(t),
where G is the Lévy measure of µ. Hence up to the addition of a real number, the non
tangential limit of φµ at any real number x only depends on the restriction of G to a
neighborhood of x, which, by proposition 2.3 of [BG06], is independent of the existence
of a finite second moment for µ.

Proof. First note that by theorem 3.1 of [BB04], the hypothesis that µ⊞t has no atoms for
some t < 1 implies that µ has no atoms. Hence by Remark 2.16 or Theorem 7.4 of [BV98], for
any ν which is not a point mass, µ⊞ν has a density.

Observe that if the density of µ⊞ν has a hole in the support (meaning a nontrivial interval on
which it is zero), it cannot be analytic on R by the identity principle. Similarly, the set of zeros
of the density must be discrete in R. Thus, we may assume that µ satisfies these two conditions,
since otherwise we would readily obtain the probability measure ν of the proposition by taking
ν = δa for some a ∈ R.

The strategy of the proof is as follows; we first show that g : z ∈ C
+→Fν(−φµ(z)) has infinity

as Denjoy-Wolff point under a certain condition. Regarding Fµ⊞ν(0) as a fixed point of this map
will guarantee that either Fµ⊞ν(0) is infinite or belongs to R. We will show that under some

hypothesis on ν, it has to be infinite, which will prove that dµ⊞ν
dx (0) = 0 and also that dµ⊞ν

dx is
not analytic at the origin.

To study the Denjoy-Wolff point of g, we first shall write both φµ and Fν as (roughly speaking)
Cauchy-Stieljes transforms of some measures σ and ρ on R.

Recall ([BV93]) that there exists a real number γ and a positive finite measure G on the real
line, called the Lévy measure of µ such that for all z ∈ C

+,

φµ(z) = γ +

∫

R

1 + tz

z − t
dG(t).

By proposition 2.3 of [BG06], the finiteness of the second moment of µ is equivalent to the
finiteness of the second moment of its Lévy measure G. Thus, we can represent the Voiculescu
transform of µ as

φµ(z) = γ +

∫

R

1 + tz

z − t
dG(t) = γ +

∫

R

(t+
1 + t2

z − t
)dG(t) = γ′ +

∫

R

dσ(t)

z − t
, z ∈ C

+,
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where γ′ ∈ R, dσ(t) = (1 + t2)× dG(t). Because G has finite second moment, σ has finite mass.
By a translation of µ, we may assume that γ′ = 0, so that φµ is simply the Cauchy transform
of the positive finite measure σ.

Let ν be a Borel probability on R. By Theorem 2.8, we can write the reciprocal of its Cauchy
transform as

Fν(z) = a+ z +

∫

R

1 + tz

t− z
dρ(t) = a+ z +

∫

R

dρ(t)

t− z
+

∫

R

zt

t− z
dρ(t),

for all z ∈ C
+, where a ∈ R, and ρ is a positive finite measure. We will show that if ν is so that

ρ({0}) ≥ σ(R), then the density of µ⊞ν vanishes at the origin. So let ν satisfy this condition.
We have by Theorem 2.14(ii)

lim
y→+∞

Fν(−φµ(iy))

iy
= lim

y→+∞

∫

R

dρ(t)

iy(t+ φµ(iy))
+ lim

y→+∞
−φµ(iy)

iy

∫

R

t dρ(t)

t+ φµ(iy)
. (3.4)

Observe that φµ(iy) approaches zero nontangentially when y tends to infinity. Indeed, since
limy→+∞ iyφ(iy) = σ(R) > 0, we have limy→+∞ yℜφµ(iy) = 0, limy→+∞ yℑφµ(iy) = −σ(R),
so, given 0 < ε < σ(R)/2, there exists yε > 1 so that for all y ≥ yε, we have |yℜφµ(iy)| < ε,
|σ(R) + yℑφµ(iy)| < ε. Thus,

|ℑφµ(iy)|
|ℜφµ(iy)| =

|yℑφµ(iy)|
|yℜφµ(iy)| >

σ(R) − ε

ε
> 1,

for all y ≥ yε. Now,

lim
y→+∞

∫

R

t dρ(t)

t+ φµ(iy)
= lim

y→+∞

∫

R

(

1 − φµ(iy)

t+ φµ(iy)

)

dρ(t) = ρ(R) − ρ({0}).

Since, by Theorem 2.14 above, limy→+∞ φµ(iy)/iy = 0, we conclude that the second limit in the
equation (3.4) vanishes.

On the other hand, if we denote fy(t) = 1
iy(t+φµ(iy)) , t ∈ R, y > 1, then limy→+∞ fy(t) =

1
σ(R)χ{0}(t) pointwise, where χA is the characteristic function of A. Also,

|fy(t)|2 =
1

y2(t+ ℜφµ(iy))2 + y2(ℑφµ(iy))2
≤ 1

y2(ℑφµ(iy))2
<

4

σ(R)2
,

for all y > yε. So by the dominated convergence theorem,

lim
y→+∞

∫

R

dρ(t)

iy(t+ φµ(iy))
=
ρ({0})
σ(R)

.

By (3.4), we conclude that

lim
y→+∞

Fν(−φµ(iy))/iy =
ρ({0})
σ(R)

≥ 1,

which insures that the analytic function g : C
+ → C

+ defined by g(z) = Fν(−φµ(z)), has infinity
as its Denjoy-Wolff point.

We next show that this implies that Fµ⊞ν(0) belongs to R ∪ {∞}. So, we suppose that
Fµ⊞ν(0) ∈ C

+ to get a contradiction (Fµ⊞ν extends continuously to R by Lemma 2.15 (4)).
Note that by (3.1), the relation Fν(z−φµ(Fµ⊞ν(z))) = Fµ⊞ν(z), gives, by letting z going to zero
nontangentially,

Fν(−φµ(Fµ⊞ν(0))) = Fµ⊞ν(0). (3.5)
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Thus, Fµ⊞ν(0) should be a fixed point of g in C
+, and thus its Denjoy-Wolff point; this is in

contradiction with the previous statment that the Denjoy-Wolff point of g is infinity. Hence one
has Fµ⊞ν(0) ∈ R ∪ {∞}.

Observe that Fµ⊞ν(0) 6= 0. Indeed, by Remark 2.16, this equality would imply that tω2(0) is

an atom of µ⊞t for all t < 1, contradicting the hypothesis.

Thus, ℑFµ⊞ν(0) = 0 and Fµ⊞ν(0) 6= 0, so that ℑGµ⊞ν(0) = 0. Part (4) of Lemma 2.15 tells
us that Fµ⊞ν is continuous on R. In particular, since Fµ⊞ν(0) 6= 0, Gµ⊞ν(x) will be continuous
and finite for x in some open interval I around zero. Lemma 2.11 (i) guarantees that µ⊞ν will
have a continuous density on I which vanishes at zero.

We show below a more precise statment to prove the breaking of analyticity at the origin
when ρ({0}) = σ(R), namely that Fµ⊞ν(0) = ∞.

So, assume now that ρ({0}) = σ(R). Then we claim that in fact Fµ⊞ν(0) = ∞. Indeed, by
Lemma 2.15 (2), ω1(0) is the Denjoy-Wolff point of the function g0(w) = −φµ(Fν(w)). We next
show that this point must be the origin.

Indeed, observe that Fν(iy)/iy goes to one as y ∈ R
+ goes to infinity. Hence, Fν(iy) ap-

proaches infinity nontangentially when y → +∞. Thus, since φµ approaches zero nontangen-
tially at infinity, g0(y) = −φµ(Fν(iy)) converges to zero as y goes to zero yielding g0(0) = 0.
Also,

lim
y→0

g0(y)

iy
= lim

y→0

−φµ(Fν(iy))

iy
=

limy→0 φµ(Fν(iy))Fν(iy)

limy→0 −iyFν(iy)
=

σ(R)

ρ({0}) = 1.

The Denjoy-Wolff theorem and the remarks following it imply that zero is the Denjoy-Wolff
point for g0, so by uniqueness of the Denjoy-Wolff point, ω1(0) = 0.

We know that Fν has infinite nontangential limit at zero (because we supposed that ρ has an
atom at zero), so this, coupled with the equation Fµ⊞ν(z) = Fν(ω1(z)), with the existence of the
limit of Fµ⊞ν at zero and Lindelöf’s Theorem 2.1, implies that Fµ⊞ν(0) = ∞.

Observe that ω1 is not analytic in zero. Indeed, if it were analytic, it would have a finite
derivative in zero. However, with H the function given in Lemma 2.15(2), the previous estimates
show that H(0) = 0 and

H ′(0) = lim
y→0

H(iy)

iy
= 1 − lim

y→0

−φµ(Fν(iy))

iy
= 0

implies, by Proposition 4.7 (5) in [BB05], that limy→0 ω1(iy)/iy = ω′
1(0) = 1/H ′(0) = ∞. As a

consequence, Gµ⊞ν is not differentiable at the origin, since if it were

lim
y→0

−Gµ⊞ν(iy) −Gµ⊞ν(0)

iy − 0
= − lim

y→0

1

iyFν(ω1(iy))

= lim
y→0

− 1

ω1(iy)Fν(ω1(iy))
· ω1(iy)

iy
.

The second factor above has just been shown to converge to infinity. For the first factor,
observe that ∢ limz→0 zFν(z) = ρ({0}). Since y 7→ ω1(iy) is a smooth path in the upper half-
plane ending at zero, Theorem 2.5 guarantees that there exists a subsequence yn → 0 so that
limn→∞ ω1(iyn)Fν(ω1(iyn)) = ρ({0}). So the limit above either does not exist, or is infinite. In
both cases, we conclude that Gµ⊞ν is not differentiable at zero. Thus by lemma 2.11, the density
of µ⊞ν is not analytic in zero. �

The above proposition provides a large class of examples of free convolutions whose densities
have cusps in their support (points where the density vanishes and is not analytic), and relates
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this phenomenon to the finiteness of second moments. We show below that it is possible that
the density of µ⊞ν vanishes at a point, but is still analytic.

Proposition 3.6. Let µ be the semicircular distribution. Then, there exists a probability measure
ν on R so that the density ρ(x) = dµ⊞ν

dx (x) vanishes at the origin, is strictly positive on ] −
ǫ, 0[∪]0, ǫ[ for some ǫ > 0 but is analytic at the origin.

Proof. Let µ be the semicircular distribution, so that φµ(z) = 1/2z, z ∈ C+. We claim that ν
given by its reciprocal Cauchy-Stieljes

Fν(z) = z + i− 1 +
z − i

z + i
− 1

z
, z ∈ C

+,

will satisfy the properties of the proposition.

Indeed, with the notations from the proof of the previous proposition,

g0(w) = −φµ(Fν(w)) = − 1

2
(

w + i− 1 + w−i
w+i − 1

w

) = − w(w + i)

2w3 + 4iw2 − 4(1 + i)w − 2i
,

for all w ∈ C
+, so in fact g0 extends analytically around zero, and moreover

g′0(0) = lim
w→0

g0(w)/w = 1/2 < 1 ⇒ |g′0(0)| < 1 and g0(0) = 0.

Thus, zero is the Denjoy-Wolff point of g0, and, by Lemma 2.15 (2), we conclude that ω1(0) = 0.

We next show that ω1 extends analytically around the origin. In fact, the function H(w) =
w + φµ(Fν(w)) has, by Lemma 2.15.(2), ω1 as right inverse. At the same time, H extends
analytically around zero, and H ′(0) = 1 − 1

2 = 1
2 6= 0, so H is locally invertible around zero.

The analyticity of ω1 around the origin follows from the implicit function theorem.

We now conclude that Gµ⊞ν vanishes at the origin, is analytic in a neighborhood of the origin
and has negative imaginary part in a neighborhood of the origin (except at the origin itself);
this will prove the lemma according to Lemma 2.11. Now, Fν is meromorphic around zero, with
a simple pole at zero, so Gν(0) = 0 and Gν is analytic around zero. By Lemma 2.15, we have
0 = Gν(0) = Gν(ω1(0)) = Gµ⊞ν(0), and Gµ⊞ν(z) = Gν(ω1(z)) is analytic on a neighbourhood of
zero in C. We finally show that Gν⊞µ has positive imaginary part in ]−ǫ, 0[∪]0, ǫ[ for some ǫ > 0.
For that, since Gν⊞µ(z) = Gν(ω1(z)), it is enough to show that Gν(z) has negative imaginary
part for z so that 0 < |z| < ǫ′ (since ω1 is analytic and null at the origin).

But, a straightforward computation gives

Gν(r) =
1

Fν(r)
=

r(r + i)

r3 + 2ir2 − 2(i+ 1)r − i
=

r(r + i)

(r3 − 2r) + i(2r2 − 2r − 1)
,

so

ℑGν(r) = − r2(r − 1)2

r2(r2 − 2)2 + (2r2 − 2r − 1)2
< 0,

for all r ∈ R \ {0, 1}.
We notice that in fact we have only used, with the notations from the previous proposition,

the facts that ρ({0}) > σ(R), that Gν is analytic around zero, and φµ around infinity. Thus, a
much larger class of such pairs of measures µ, ν provide an analytic density around zero which
is zero in zero. �
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Remark 3.7. Note that our construction of the example in the proposition above were based on
the fact that ρ({0}) > 0. In that case, Fν(z) ≈z→0 −1

zρ({0}). This is equivalent to the fact that
∫
t−1dν(t) = 0 and

∫
1

t2
dν(t) =

1

ρ({0}) .

Therefore, if µ is an infinitely divisible measure with finite second moment and positive density,
and if we denote again by σ the finite measure on R given by

φµ(z) = γ +

∫

R

1 + tz

z − t
dG(t) = γ +

∫

R

(t+
1 + t2

z − t
)dG(t) = γ′ +

∫

R

dσ(t)

z − t
, z ∈ C

+,

where γ′ ∈ R, dσ(t) = (1 + t2) × dG(t), we have shown that we have three possibilities, which
follow the intuition

(1) If
∫

1
t2
dν(t) < 1/σ(R), so ν does not put much mass in the neighborhhood of the origin,

µ⊞ν has a density which vanishes at the origin but has a finite derivative at the origin.
The proof was detailed above in a specific example in the last proposition but could be
generalized.

(2) If
∫

1
t2
dν(t) = 1/σ(R), which corresponds to a critical amount of mass around the origin,

the density has a cusp at the origin (at least under the asumptions that µ⊞t has no atoms
for t < 1).

(3) If ν({0}) > 0, we have an analytic strictly positive density in zero whenever µ⊞t lacks

atoms for all t > 0. Indeed, if one assumes ν({0}) > 0, then lim
z→0

∣
∣
∣
∣

Fν(z)

z

∣
∣
∣
∣

= ∞ would

imply lim
z→0

zGν(z) = 0, which is obviously false, by (2) of lemma 2.17 of [B1]. Thus if

Fµ⊞ν(0) ∈ R, then ω1(0) ∈ C
+ (by lemma 2.15), which is impossible, and if Fµ⊞ν(0) =

∞, then Fµ⊞ν(0) is the Denjoy-Wolff point of g (equation (3.3)), which is also impossible
because −φµ(∞) = 0 and Fν(0) = 0. Thus, Fµ⊞ν(0) must belong to C+.

4. The rectangular case

4.1. Main result. We shall fix λ ∈ (0, 1), and assume that all probability measures are sym-
metric. We prove here an analogue to Theorem 3.1 for the rectangular convolution, which says
that the restriction to the upper half-plane of the function H extends continuously to R

+, ana-
lytically outside a closed set of Lebesgue measure zero. We shall see that this implies that µ⊞λν
admits an analytic density on the complement of that set. Unlike for the square case, we did not
succeed to get rid of this closed negligible set where the density could stop being analytic. We
however can give sufficient conditions so that the density is continuous everywhere (Corollary
4.6). Examples which satisfy our conditions are provided in section 4.2. Moreover, as we shall
discuss later, the density often vanishes around the origin, which is, in the rectangular setting,
a very specific point. A consequence of this fact is that the full strength of Theorem 3.1 cannot
be achieved in the rectangular case: given a ⊞λ-infinitely divisible probability µ, there exists a
symmetric probability measure ν 6= δ0 so that the density of µ⊞λν is not everywhere analytic.
We shall study this phenomenon in the last paragraph.

Our main tool will be an ad-hoc subordination result for the functions H:

Lemma 4.1. Let µ, ν be two symmetric probability measures on R. Assume that the rectangular
R-transform Cµ of µ extends analytically to C\R

+ (this happens for example if µ is ⊞λ-infinitely
divisible - see Theorem 2.18). Then there exist two unique meromorphic functions ω1, ω2 on C \
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R
+ so that Hµ(ω1(z)) = Hν(ω2(z)) = Hµ⊞λν(z), ωj(z̄) = ωj(z), z ∈ C\R

+, and limx↑0 ωj(x) = 0,
j ∈ {1, 2}. Moreover,

(i) ω2 is injective and analytic on C\R
+; it is the right inverse of the meromorphic function

k(w) = Hν(w)
T [Cµ(Hν(w))+Mν(w)] , w ∈ C \ R

+;

(ii) arg z ≤ argω2(z) < π, z ∈ C
+.

Proof. There exists an ε > 0 so that for z ∈ (−ε, 0), by taking w = Hµ⊞λν(z) in relation
Cµ⊞λν(w) = Cµ(w) + Cν(w), we have

U

(
Hµ⊞λν(z)

z
− 1

)

− Cµ(Hµ⊞λν(z)) = U

(

Hµ⊞λν(z)

H−1
ν (Hµ⊞λν(z))

− 1

)

.

Applying T in both sides gives

T

[

U

(
Hµ⊞λν(z)

z
− 1

)

− Cµ(Hµ⊞λν(z))

]

=
Hµ⊞λν(z)

H−1
ν (Hµ⊞λν(z))

.

By part (b) of section 2.3.2, Hµ⊞λν(z) doesn’t vanish on C\R+, hence in the interval (−ε, 0)
where the previous equation is valid, its left hand term doesn’t vanish. So on (−ε, 0) we have

Hµ⊞λν(z) = Hν






Hν⊞λµ(z)

T
[

U
(

Hµ⊞λν(z)

z − 1
)

− Cµ(Hµ⊞λν(z))
]




 . (4.1)

This equation holds for z ∈ (−ε, 0), and, by analytic continuity, in all points of the connected
component of the domain of analyticity of the right hand term which contains (−ε, 0). Thus,
if we denote f(z,w) = w

T (U(w
z
−1)−Cµ(w)) , and let ω2(z) = f(z,Hµ⊞λν(z)), we have proved that

Hµ⊞λν(z) = Hν(ω2(z)) for z in some domain containing the interval (−ε, 0). We shall argue in
the following that this equation can be extended to all points of C \ R

+.

Note that since Cµ is analytic on C\R+, by (b) of the section 2.3.2, Cµ(Hµ⊞λν(z)) is defined

on C\R+. Moreover, by (a) of the section 2.3.2, z 7→ U
(

Hµ⊞λν(z)

z − 1
)

admits an analytic

extension to C\R+, denoted by Mµ⊞λν . So any point z of C\R+ which is in the boundary of the
domain of the right hand term of (4.1) satisfies either

ω2(z) :=
Hν⊞λµ(z)

T
[
Mµ⊞λν(z) − Cµ(Hµ⊞λν(z))

] ∈ R
+ or T

[
Mµ⊞λν(z) − Cµ(Hµ⊞λν(z))

]
= 0.

• We first discuss the case when ν has the property that for any x in R, the Cauchy transform
of ν does not extend continuously to x. This happens for example if ν is concentrated on a set
of Lebesgue measure zero and has support equal to R, according to Lemma 2.12.

Consider the connected component of the domain of the right hand side of (4.1) that con-
tains (−ε, 0). Assume first that z0 ∈ C \ R

+, and yet z0 is in the boundary of this compo-
nent, which implies that either ω2(z0) ∈ [0,+∞) (because of part (b) of section 2.3.2), or
T
[
Mµ⊞λν(z0) − Cµ(Hµ⊞λν(z0))

]
= 0. The functions Hµ⊞λν and ω2 are analytic and, respec-

tively, meromorphic, in z0 and Hµ⊞λν(z0) ∈ C \ R
+.

Observe that if the first situation occurs, there must exist a whole (1-dimensional) analytic
connected variety V given by the relation ω2(.) ∈ (0,+∞) to which z0 belongs because ω2 is
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open as a meromorphic function. But now for any point ζ ∈ V , we will have that

lim
z→ζ

Hµ⊞λν(z) = lim
z→ζ

Hν

(

Hν⊞λµ(z)

T
[
Mµ⊞λν(z) − Cµ(Hµ⊞λν(z))

]

)

= lim
z→ζ

Hν(ω2(z)).

The left hand-side exists always and equals Hν⊞λµ(ζ), while the right hand side cannot exist
at least for a set of second Baire category - Theorem 2.3. Specifically, ω2(V ) must be (by the
identity theorem for analytic functions) a nontrivial interval in (0,+∞); for any r ∈ ω2(V ), we
have a ζ ∈ V ⊂ C \ R+ so that ω2(ζ) = r, and so, by Lindelöf’s theorem 2.1, since Hµ⊞λν(ζ) =
limz→ζ Hν(ω2(z)), we have

Hµ⊞λν(ζ) = lim
z→ζ

Hν(ω2(z)) = lim
w−→r

∢

Hν(w).

Theorem 2.3, together with the equation above, implies that there is a point of ω2(V ) where the
cluster set of Hν is a single point. Hence by (2.4), we have a contradiction with the fact that
for any x in R, the Cauchy transform of ν does not extend continuously to x.

Assume now that z0 is so that T
[
Mµ⊞λν(z0) − Cµ(Hµ⊞λν(z0))

]
= 0. Observe that since

z0 is assumed to be in C \ R
+, Hµ⊞λν(z0) ∈ C \ R

+ by the section 2.3.2, (b). Hence the
function ω2 is meromorphic on a neighbourhood of z0, with a pole at z0. We conclude that

limz→z0

Hν⊞λµ(z)

T [Mµ⊞λν(z)−Cµ(Hµ⊞λν(z))]
= ∞. Consider now a small enough ball W ⊂ C\R

+ around z0

so that z0 is the only pole of ω2 in W , and consider a connected component of the intersection
of this ball with the domain of the function in the right hand side of (4.1). Clearly ω2(W ) is
a neighbourhood of infinity and W will contain p ≥ 1 analytic varieties that are mapped by
ω2 onto (−∞,−M) ∪ (N,+∞), for some large enough M,N > 0 (p is the order of the pole at
z0). The preimages of (N,+∞) divide W into p sectors. By (4.1), if a point in one of these
sectors belongs to the connected component of the domain of the right hand term of (4.1) which
contains (−ε, 0) then all that sector will belong to it, and the two (distinct or not! - it might be
a slit circle, if p = 1) boundaries of the sector are mapped inside R

+. Thus, we are reduced to
the previous case.

We conclude that ω2(z) = f(z,Hµ⊞λν(z)) maps C \ R
+ into itself.

• We now generalize the previous result to any probability measure ν. To this end, we
can approximate in the weak topology arbitrary symmetric probabilities ν with probabilities
concentrated on a set of zero Lebesgue measure and which have total support, according to
Lemma 2.13. Since ⊞λ is continuous, Hµ⊞λνn converges to Hµ⊞λν , and hence f(z,Hµ⊞λνn(z)) :
C\R+→C\R+ converges to f(z,Hµ⊞λν(z)). This implies that either f(z,Hµ⊞λν(z)) takes values
also in C \ R

+, or it is constant. But it cannot be constant, by equation (4.1) and by the fact
that Hµ⊞λν(z) is equivalent to z as z tends to zero in C\R+ (see [BG1], proposition 4.1). Hence
f(z,Hµ⊞λν(z)) takes values in C \R

+. This proves that ω2 maps C \R
+ into itself, and thus the

equation Hν ◦ ω2 = Hµ⊞λν holds on C \ R
+.

• We finally show that ω2 satisfies the announced properties.

First, it follows immediately from the definition of ω2 and part (d) of subsection 2.3.2 that

ω2(z̄) = ω2(z) for all z ∈ C \ R
+. The uniqueness of ω2 on (−ε, 0) and the analyticity of ω2 in

C \ R
+ proved above shows that ω2 is uniquely defined on all C \ R

+.

We prove next properties (i) and (ii). As shown above, Hν ◦ ω2 = Hµ⊞λν , so that for
ε > 0 small enough, by subsection 2.3.2 (a), Mν(ω2(x)) = Cν(Hν(ω2(x))) = Cν(Hµ⊞λν(x)),

x ∈ (−ε, 0). Thus, T [Cµ(Hν(ω2(x))) +Mν(ω2(x))] = T
[
Cµ(Hµ⊞λν(x)) + Cν(Hµ⊞λν(x))

]
=

T
[
Cµ⊞λν(Hµ⊞λν(x))

]
= T

[
Mµ⊞λν(x)

]
. Now it follows immediately from the definition of k
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in Lemma 4.1 and subsection 2.3.2 (a) that k(ω2(z)) = z for z ∈ (−ε, 0), ε > 0 small enough,
and by analytic continuation, for z ∈ C \ R

+. This proves (i).

Let us recall that lim
x↑0

ω2(x) = 0 and, by the definition of T and properties of the function H,

lim
x↑0

ω2(x)

x
= [T (0)]−1 lim

x↑0

Hµ⊞λν(x)

x
= 1. Also, for ε > 0 small enough, ω2((−ε, 0)) ⊆ (−∞, 0).

Thus, the derivative of the analytic function ω2 on the interval (−ε, 0) is positive for ε > 0 small
enough, and so there is a small enough cone K with vertex at zero and bisected by the negative
half-line so that ω2(K ∩ C

+) ⊆ C
+ and ω2(K ∩ C

−) ⊆ C
−. Clearly, since ω2(C \ R

+) ⊆ C \ R
+,

ω2(C
+) 6⊆ C

+ implies that there exists a point z0 ∈ C
+ with the property that ω2(z0) ∈ (−∞, 0).

Assume such a point exists. Then from the equation (4.1) and subsection 2.3.2 (d) we obtain
that Hµ⊞λν(z0) ∈ (−∞, 0), so that T (Mµ⊞λν(z0)−Cµ(Hµ⊞λν(z0))) > 0. As observed in Remark
2.20, this requires that Mµ⊞λν(z0)−Cµ(Hµ⊞λν(z0)) ∈ R. Since, by the same subsection 2.3.2 (d),
we have Cµ(R−) ⊆ R, it follows that Mµ⊞λν(z0) ∈ R. But then, according to subsection 2.3.2
(a), Hµ⊞λν(z0) = z0T (Mµ⊞λν(z0)) 6∈ R, a contradiction. We have now proved that ω2 preserves
half-planes, and thus argω2(z) < π for z ∈ C

+.

Next we show that ω2 increases the argument. It is known from Theorem 2.8 that

ω2(z) = a+ bz +

∫

R

1 + tz

t− z
dρ(t), z ∈ C

+

for some a ∈ R, b ≥ 0 and positive finite measure ρ on the real line. Since ω2((−∞, 0)) ⊆
(−∞, 0) and ω2 is analytic on the negative half-line, ρ must be supported on R

+. Moreover,
0 = limx↑0 ω2(x) = a+ limx↑0

∫

R

1+tx
t−x dρ(t) =

∫

R

1
t dρ(t) + a. Thus, a = −

∫

R

1
t dρ(t). We conclude

that

ω2(z) = a+ bz +

∫

R

1 + tz

t− z
dρ(t) = bz +

∫

R+

(
1 + tz

t− z
− 1

t

)

dρ(t)

= z

(

b+

∫

R+

t2 + 1

t(t− z)
dρ(t)

)

.

It is trivial to see that the factor in the parenthesis above maps C
+ into itself. Thus, argω2(z) ≥

arg z. This proves (ii). Let us define

ω1(z) =
Hµ⊞λν(z)

T [Mµ⊞λν(z) −Mν(ω2(z))]
, z ∈ C \ R

+.

This function is obviously defined and meromorphic on C \ R
+ and analytic continuation

shows immediately that for z ∈ (−ε, 0)

ω1(z) =
Hµ⊞λν(z)

T [Mµ⊞λν(z) − Cν(Hµ⊞λν(z))]
,

so that, as for ω2, Hµ(ω1(z)) = Hµ⊞λν(z). This equality obviously extends by analytic continua-
tion to C\R

+. However, we do not exclude the possibility that Hµ has an analytic continuation
through the positive half-line that does not coincide with the one provided by the formula in
the subsection 2.3.1.
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It follows easily from the definition of ω1 and subsection 2.3.2 that ω1(z) = ω1(z̄) for all
z ∈ C \ R

+ and limx↑0 ω1(x) = 0. The uniqueness of ω1 is determined by the same argument as
in the case of ω2. �

Next, we study the boundary behaviour of the restriction of the subordination function ω2 to
the upper half-plane.

Lemma 4.2. Let µ, ν and ω2 be as in the Lemma 4.1. Then ω2|C+ extends continuously to
(0,+∞).

Proof. Throughout the proof we will consider only ω2|C+ and we will denote it as ω2. Assume
that r ∈ (0,+∞) is so that the cluster set C(ω2, r) of ω2 at r is nontrivial, and hence, by
Lemma 2.2 an uncountably infinite closed connected subset of C

+ ∪ R ∪ {∞}. Consider first
the case when there exists at least one element c ∈ C(ω2, r) ∩ (C+ ∪ (−∞, 0)), and thus, by

connectivity of C(ω2, r), infinitely many. Fix such a point c, and let {z(c)
n }n∈N ⊆ C

+ be a

sequence with the property that limn→∞ z
(c)
n = r and limn→∞ ω2(z

(c)
n ) = c. Passing to the limit

in the equation k(ω2(z
(c)
n )) = z

(c)
n , where k is the function from Lemma 4.1, provides k(c) = r

for all c ∈ C(ω2, r) ∩ (C+ ∪ (−∞, 0)), and hence, by analytic continuation, for all c ∈ C \ R
+.

This implies that k is the constant function r, an obvious contradiction to Lemma 4.1.

If C(ω2, r) ⊆ R
+ ∪ {∞}, then C(ω2, r) ∩ R

+ must be a nontrivial closed interval, by Lemma
2.2. As ω2 maps C

+ into itself, for all c ∈ C(ω2, r), with the possible exception of two points,

there exists a sequence {z(c)
n }n∈N ⊆ C

+ so that limn→∞ z
(c)
n = r, limn→∞ ω2(z

(c)
n ) = c and

ℜω2(z
(c)
n ) = c. As shown in subsection 2.3.2 (b), Hν has nontangential limits at almost all

points of R
+, and by Lemma 2.10, so do Mν and Cµ. Thus, k must have nontangential limits

at almost all points of R
+. We have obtained that for Lebesgue-almost all points c ∈ C(ω2, r),

r = lim
n→∞

z(c)
n = lim

n→∞
k(ω2(z

(c)
n )) = lim

w−→c
∢

k(w),

so that k has constant nontangential limit r on a set of nonzero Lebesgue measure. This, accord-
ing to Theorem 2.6, implies that k is the constant function r, providing the same contradiction
as before.

Thus, ω2|C+ extends continuously to (0,+∞). �

Now we are ready to prove our first continuity result.

Proposition 4.3. Let µ, ν be two symmetric probability measures on R, µ 6= δ0. Assume that
µ is ⊞λ-infinitely divisible. Then for any x ∈ (0,+∞), the limits

lim
z→x,z∈C+

Mµ⊞λν(x) and lim
z→x,z∈C+

Hµ⊞λν(x)

exist in C ∪ {∞}. The first limit belongs to C
+ ∪ R ∪ {∞}.

Proof. We will follow idea from the proof of the theorem 3.1. Assume that r ∈ (0,+∞) is
so that C(Mµ⊞λν , r) is nontrivial. Consider first the case when C(Mµ⊞λν , r) ∩ C

+ 6= ∅, and

thus, by Lemma 2.2, is uncountably infinite. Let c ∈ C(Mµ⊞λν , r) ∩ C
+ and {z(c)

n }n∈N ⊂ C
+

be so that limn→∞ z
(c)
n = r and limn→∞Mµ⊞λν(z

(c)
n ) = c. We know from Lemma 4.2 that

ω2(r) := limz→r ω2|C+(z) exists in C+. Using the definition of ω2 and subsection 2.3.2 (a), we
have:
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ω2(r) = lim
n→∞

ω2(z
(c)
n ) = lim

n→∞
Hµ⊞λν(z

(c)
n )

T
[

Mµ⊞λν(z
(c)
n ) − Cµ(Hµ⊞λν(z

(c)
n ))

]

= lim
n→∞

z
(c)
n T (Mµ⊞λν(z

(c)
n ))

T
[

Mµ⊞λν(z
(c)
n ) − Cµ(z

(c)
n T (Mµ⊞λν(z

(c)
n )))

]

=
rT (c)

T [c− Cµ(rT (c))]
, c ∈ C(Mµ⊞λν , r) ∩ C

+.

Thus, the meromorphic function gr : C
+ ∪ (−1/λ,−1) ∪ C

− → C ∪ {∞}, given by gr(c) =
T (c)

T [c−Cµ(rT (c))] is, by analytic continuation, constant, equal to ω2(r)/r. It is trivial to observe that

this implies ω2(r) 6∈ {0,∞}.
We shall express Cµ as a function of s = T (c) to obtain a contradiction. Indeed, consider c ∈

(
− 1

2λ − 1
2 ,−1

)
. Then s = T (c) if and only if c =

−1−λ+[(1−λ)2+4λs]
1/2

2λ , s ∈
(

1
4(2 − λ− λ−1), 0

)

(recall the notations from section 2.3.1.) Thus,

rs

ω2(r)
= T

[

−1 − λ+
[
(1 − λ)2 + 4λs

]1/2

2λ
− Cµ(rs)

]

. (4.2)

As it is known that Cµ((−∞, 0)) ⊆ (−∞, 0) and limx↑0 Cµ(x) = 0, we conclude that for s ∈
(

− (1−λ)2

4λ , 0
)

close enough to zero,

T

[

−1 − λ+
[
(1 − λ)2 + 4λs

]1/2

2λ
− Cµ(rs)

]

∈ R,

so that ω2(r) ∈ R\{0}. Thus, since limx↑0Cµ(x) = 0, (4.2) is equivalent to

Cµ(rs) =
−1 − λ+

[
(1 − λ)2 + 4λs

]1/2

2λ
−

−1 − λ+
[

(1 − λ)2 + 4λ rs
ω2(r)

]1/2

2λ
.

But this implies either that ω2(r) = r, so that Cµ(s) = 0 and thus µ = δ0, or that Cµ is not

analytic in the point − r(1−λ)2

4λ ∈ (−∞, 0), an obvious contradiction.

Now consider the case when C(Mµ⊞λν , r) ⊆ R ∪ {∞}. By subsection 2.3.2 (a) and Remark

2.20, in this case C(Hµ⊞λν , r) ⊆
[

− r(1−λ)2

4λ ,+∞
]

is a nontrivial interval. As in the proof of

Lemma 4.2, for any d ∈ C(Hµ⊞λν , r) \ {− r(1−λ)2

4λ ,∞}, with the possible exception of two points,

there exists a sequence {z(d)
n }n∈N ⊂ C

+ so that limn→∞ z
(d)
n = r, limn→∞Hµ⊞λν(z

(d)
n ) = d and

ℜHµ⊞λν(z
(d)
n ) = d, n ∈ N.

Let us observe that, by subsection 2.3.2 (a) and (c), we have

lim
n→∞

Mµ⊞λν(z
(d)
n ) ∈

{

−1 − λ±
[
(1 − λ)2 + 4λd

r

]1/2

2λ

}

,

where we have the sign plus when Hµ⊞λν(z
(d)
n ) tends to d from C

+, and the sign minus when

Hµ⊞λν(z
(d)
n ) tends to d from C

−. By dropping if necessary to a subsequence, we may assume



32 SERBAN BELINSCHI, FLORENT BENAYCH-GEORGES AND ALICE GUIONNET

that limn→∞Mµ⊞λν(z
(d)
n ) exists. It is clear from the definition of the cluster set and the above

considerations that C(Hµ⊞λν , r) \ {− r(1−λ)2

4λ ,∞} ⊆ A+ ∪A−, where

A+ =







d ∈ R \ {r(1 − λ)2

−4λ
,∞} : ∃{z(d)

n }n∈N ⊆ C
+ so that lim

n→∞
z(d)
n = r,ℜHµ⊞λν(z

(d)
n ) = d,

lim
n→∞

Hµ⊞λν(z
(d)
n ) = d,Hµ⊞λν(z

(d)
n ) ∈ C

+







,

A− =







d ∈ R \ {r(1 − λ)2

−4λ
,∞} : ∃{z(d)

n }n∈N ⊆ C
+ so that lim

n→∞
z(d)
n = r,ℜHµ⊞λν(z

(d)
n ) = d,

lim
n→∞

Hµ⊞λν(z
(d)
n ) = d,Hµ⊞λν(z

(d)
n ) ∈ C

−







.

are two (not necessarily disjoint) sets. Thus, at least one of A+, A− has nonzero Lebesgue
measure. Denote C+

µ the restriction of Cµ to the upper half-plane and C−
µ the restriction of Cµ

to the lower half-plane.

Assume first that A+ has nonzero Lebesgue measure. Then again

ω2(r) = lim
n→∞

ω2(z
(d)
n ) = lim

n→∞
Hµ⊞λν(z

(d)
n )

T
[

Mµ⊞λν(z
(d)
n ) − Cµ(Hµ⊞λν(z

(d)
n ))

]

=
d

T

[

−1−λ+[(1−λ)2+4λ d
r ]

1/2

2λ − lim
w−→d

∢

C+
µ (w)

] , d ∈ A+.

By the Riesz-Privalov Theorem we obtain again that

ω2(r)T

[

−1 − λ+
[
(1 − λ)2 + 4λd

r

]1/2

2λ
− C+

µ (d)

]

= d, d ∈ C
+.

Recalling that Cµ extends analytically to the negative half-line and considering values of d ∈
(−∞, 0) close enough to zero, we observe as before that ω2(r) ∈ R\{0} and by analytic contin-
uation

Cµ(d) =

[

(1 − λ)2 + 4λ
d

r

]1/2

2λ
−

[

(1 − λ)2 + 4λ
d

ω2(r)

]1/2

2λ
,

providing the same contradiction as in the previous case.

Assume next that A− has nonzero Lebesgue measure, so that

ω2(r) = lim
n→∞

ω2(z
(d)
n ) = lim

n→∞
Hµ⊞λν(z

(d)
n )

T
[

Mµ⊞λν(z
(d)
n ) − Cµ(Hµ⊞λν(z

(d)
n ))

]

=
d

T

[

−1−λ−[(1−λ)2+4λ d
r ]

1/2

2λ − lim
w−→d

∢

C−
µ (w)

] , d ∈ A−.

Exactly as for A+, we obtain that ω2(r) ∈ R\{0}, and, from the Riesz-Privalov Theorem, the

formula Cµ(d) =
−[(1−λ)2+4λ

r ]
1/2

+
[

(1−λ)2+4 λ
ω2(r)

]1/2

2λ , which provides again the same contradiction.
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Thus, we have established that the limit

Mµ⊞λν(x) = lim
z→x,z∈C+

Mµ⊞λν(z)

exists for any x ∈ (0,+∞). The existence of the similar limit for Hµ⊞λν follows immediately from
subsection 2.3.2 (a), and since Mµ⊞λν(C

+) ⊆ C
+∪{0}, it follows that Mµ⊞λν(x) ∈ C

+∪R∪{∞}.
�

Corollary 4.4. Under the assumptions of Proposition 4.3, the absolutely continuous part (with
respect to the Lebesgue measure) of µ⊞λν is continuous outside a closed set of zero Lebesgue
measure, and its singular part, if it exists, is supported on a closed subset of R of zero Lebesgue
measure.

Proof. Recall that, by part (1) of Lemma 2.17 in [B1], the nontangential limit of the Cauchy
transform of µ⊞λν is infinite for almost all points in the support of the singular part of µ⊞λν.

Thus, using Proposition 4.3 and the equality Mµ⊞λν(z) = 1√
z
Gµ⊞λν

(
1√
z

)

− 1 from subsection

2.3.2 (a), we can state that the support of the singular part of µ⊞λν is concentrated on S =
S+ ∪ S− ∪ {0}, where S+ = {x ∈ (0,+∞) : Mµ⊞λν(1/x

2) = ∞} and S− = −S+.

By the Riesz-Privalov Theorem (Theorem 2.6) it follows that the set S+ must be of zero
Lebesgue measure, and by Proposition 4.3, it follows that S+, being the preimage of a point via
a continuous map, must be closed in (0,+∞). This proves the second statement of the corollary.

The first statement follows from Lemma 2.11 (i): the Cauchy transform Gµ⊞λν extends con-
tinuously and with finite values to R\S, so that the density of µ⊞λν with respect to the Lebesgue
measure is continuous on this set. �

Next, we show that, under some stricter conditions imposed on the rectangular R-transform
of µ, we can guarantee that µ⊞λν has much better regularity properties. This will follow as a
corollary of the proposition below.

Proposition 4.5. We assume, in addition to the hypotheses of Proposition 4.3, that

lim
x→−∞

[Cµ(x)]2/x 6= 0.

Then for any x ∈ (0,+∞),

Mµ⊞λν(x) = lim
z→x,z∈C+

Mµ⊞λν(x) and Hµ⊞λν(x) = lim
z→x,z∈C+

Hµ⊞λν(z)

are finite.

Proof. Fix x ∈ (0,+∞). The existence of the limits has been established in Proposition 4.3.
We shall prove the statement for Hµ⊞λν , and the statement for Mµ⊞λν will follow from subsection
2.3.2, (a). We shall prove that this limit is finite by exploiting the asymptotic behaviour of
Cµ ◦Hµ⊞λν and Mµ⊞λν as Hµ⊞λν tends to infinity in order to obtain a contradiction.

Let c = Hµ⊞λν(x). Assume towards contradiction that c = ∞. Let ℓ = limz→x ω2(z), where
the limit is considered from the upper half-plane (the limit exists by Lemma 4.2). By Theorem
2.1, together with the above, this implies that

lim
z−→ℓ

∢

Hν(z) = ∞.

Subsection 2.3.2 (a) guarantees that if Hµ⊞λν(z) tends to infinity as z tends to x, then so does

Mµ⊞λν(z) and moreover Hµ⊞λν(z)/Mµ⊞λν(z)
2 tends to λx as z → x. Also, since T (Mµ⊞λν(z))
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and Hµ⊞λν(z) = zT (Mµ⊞λν(z)) belong to C \R
+ for z ∈ C

+, we have limz→x

√
Hµ⊞λν(z)

Mµ⊞λν(z) =
√
λx.

We will use this fact to determine the possible values of ℓ.

Let us observe that the existence of ℓ guarantees the existence of k := limt→−∞Cµ(t)/
√
t.

Indeed, as the limit of Hµ⊞λν at t is infinite, and

ℓ = lim
z→x,z∈C+

Hµ⊞λν(z)

λ(Mµ⊞λν(z) − Cµ(Hµ⊞λν(z)))2 + (1 + λ)(Mµ⊞λν(z) − Cµ(Hµ⊞λν(z))) + 1

=
1

λ

(

1√
λx

− lim
z→x,z∈C+

Cµ(Hµ⊞λν(z))
√
Hµ⊞λν(z)

)−2

. (4.3)

On the other hand, as Cµ satisfies argCµ(z) ∈ (arg z, π), (by (2.6)) Cµ(z̄) = Cµ(z) for z ∈ C
+,

and Cµ(R−) ⊆ R
−, it follows that Theorem 2.1 applies to the map w 7→ Cµ(w)√

w
. Thus, k :=

limx→−∞
Cµ(x)√

x
exists and is purely imaginary (k = i|k|) since Cµ(x) is negative for x negative.

Thus, (4.3) gives

λℓ =
1

((λx)−
1
2 − i|k|)2

.

It follows immediately from equation (4.1) and analyticity of Hν on C
+ that when |k| ∈

(0,+∞), ℓ ∈ C
+ and we obtain the contradiction with the fact that ∞ = Hν(ℓ).

Assume that k is infinite. Then ℓ = 0. But this contradicts Theorem 2.1 and Remark 2.17:

indeed, we obtain that the limit at zero of Hν along ω2(z) =
Hµ⊞λν(z)

T [Mµ⊞λν(z)−Cµ(Hµ⊞λν(z))] (as z → x

from the upper half-plane) is infinite (by (4.1)), while the limit at zero of Hν along the negative
half-line is zero.

This completes the proof of the proposition since k is not zero if and only if we have
limx→−∞[Cµ(x)]2/x 6= 0. �

Corollary 4.6. Under the assumptions of Proposition 4.5, µ⊞λν is absolutely continuous with
respect to the Lebesgue measure and its density is continuous.

Proof. Since by Proposition 4.5 Mµ⊞λν(x) exists and is finite for all x ∈ (0,+∞), the corollary
is a consequence of a variant of Lemma 2.11 (which states the existence of a continuous density of
a measure with Cauchy transform which extends continuously to the real line) and the following
propositions 4.12 and 4.13 (which, with lemma 2.21 (b), allow us to claim that µ⊞λν has no
atom at the origin). �

In the following we discuss the issue of analyticity for the density of µ⊞λν.

Lemma 4.7. Under the hypotheses of Proposition 4.3, if ω2(x) ∈ C
+, then there exists an ε > 0

so that Mµ⊞λν extends analytically to (x− ε, x) ∪ (x, x+ ε).

Proof. By continuity of ω2, guaranteed in Lemma 4.2, there exists η > 0 so that ω2([x−η, x+
η]) ⊆ C

+ is a nontrivial curve in the upper half-plane. We claim that in fact ω2 is injective on
[x − η, x + η]. Indeed, if we assume that v1, v2 ∈ [x − η, x + η] satisfy ω2(v1) = ω2(v2), then,
since k is meromorphic on C \ R

+, we obtain v1 = k(ω2(v1)) = k(ω2(v2)) = v2.

Let us observe that again since k(ω2(z)) = z and k is meromorphic on C \ R
+, the set

{w ∈ ω2([x − η, x + η]) : k(w) = ∞ or k′(w) = 0} is discrete in ω2([x − η, x + η]). If ω2(x)
belongs to this set, then there exists an 0 < ε ≤ η so that ω2((x − ε, x)) ∪ ω2((x, x + ε)) does
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not intersect this set. Thus by the inverse function theorem ω2 extends analytically through
(x− ε, x) ∪ (x, x+ ε). Otherwise, we apply the inverse function theorem to a neighbourhood of
ω2(x) to obtain the same result.

Since Hµ⊞λν = Hν ◦ ω2 and Hν is analytic on C \ R
+, the statement of the Lemma follows

directly from subsection 2.3.2 (a).

�

Lemma 4.8. Under the hypotheses of Proposition 4.3, assume that

Hµ⊞λν(x) = lim
z→x,z∈C+

Hµ⊞λν(z) ∈ C \ R

for some x ∈ (0,+∞). Then ω2(x) := limz→x ω2|C+(z) ∈ C
+.

Proof. The equality ω2(x) =
Hµ⊞λν(x)

T [Mµ⊞λν(x)−Cµ(Hµ⊞λν(x))]
assures us that ω2(x) cannot be infinite.

Indeed, assume to the contrary that ω2(x) = ∞. Then, by Theorem 2.1 and subsection 2.3.2 (f)

Hµ⊞λν(x) = lim
z→x

Hµ⊞λν(z) = lim
z→x

Hν(ω2(z)) = lim
x→−∞

Hν(x) ∈ [−∞, 0),

a contradiction to our assumption on Hµ⊞λν(x).

Assume first that Hµ⊞λν(x) ∈ C
+. We show next that ω2(x) 6∈ R. Clearly by subsection 2.3.2

(d), ω2(x) 6∈ (−∞, 0]. Assume again towards contradiction that ω2(x) ∈ R
+.

Then
Hµ⊞λν(x)

x = T (Mµ⊞λν(x)) and T
[
Mµ⊞λν(x) − Cµ(Hµ⊞λν(x))

]
belong to the same half-

line χ originating at zero and passing through the point Hµ⊞λν(x) ∈ C
+. Thus both points

Mµ⊞λν(x) andMν(ω2(x)) = Mµ⊞λν(x)−Cµ(Hµ⊞λν(x)) belong to the same hyperbolaH described
in Remark 2.20 (v) whose tangents at the intersection with −1/λ and −1 are parallel to χ. Call
these tangents T1/λ and T1. In particular, sinceHµ⊞λν(x) ∈ C

+, we have thatMµ⊞λν(x) ∈ H∩K1

(recall the notations from Remark 2.20), and since ω2(C
+) ⊆ C

+, we have Mν(ω2(x)) ∈ C
+∪R,

and so Mν(ω2(x)) = Mµ⊞λν(x) − Cµ(Hµ⊞λν(x)) ∈ H ∩K1.

Now let us recall that π > argCµ(Hµ⊞λν(x)) ≥ argHµ⊞λν(x) > 0, so that Mµ⊞λν(x) −
Cµ(Hµ⊞λν(x)) has imaginary part strictly less that the imaginary part of Mµ⊞λν(x), so on
H ∩ K1 it must be below Mµ⊞λν(x). But at the same time −Cµ(Hµ⊞λν(x)) is in C

− and to
the right of the line χ ∪ −χ. Since the tangent T1 is parallel to χ ∪ −χ, adding this number
to Mµ⊞λν(x) will give a point in the upper half-plane that is necessarily at a greater distance
from T1 than Mµ⊞λν(x), and thus it cannot be on H∩K1 in between −1 and Mµ⊞λν(x) (as this
part of the hyperbola is closer to T1 than Mµ⊞λν(x) is), which provides a contradiction. Thus,
if Hµ⊞λν(x) ∈ C

+, then ω2(x) ∈ C
+.

The case when Hµ⊞λν(x) ∈ C
− is similar, and we will only sketch the proof. Indeed, then it is

clear that, since Mµ⊞λν(x) ∈ C
+ (it cannot be in R because of section 2.3.2 (a)), we must have,

with the notations from the previous case, Mµ⊞λν(x) ∈ H∩K2. Now, −π < argCµ(Hµ⊞λν(x)) ≤
argHµ⊞λν(x) < 0, and so, as above, ℑMµ⊞λν(x) < ℑ[Mµ⊞λν(x) − Cµ(Hµ⊞λν(x))]. This time,
however, we obtain that −Cµ(Hµ⊞λν(x)) ∈ C

+, and to the right of χ ∪ −χ. Thus, since T1/λ is
parallel to χ ∪ −χ, the point Mµ⊞λν(x) − Cµ(Hµ⊞λν(x)) will either be closer to T1/λ and on its
left side, or it will be on its right side. But the part of H ∩ K2 which has an imaginary part
greater than the imaginary part of Mµ⊞λν(x) is on the left side of T1/λ and farther away from

T1/λ than Mµ⊞λν(x) is. Contradiction again. Thus, if Hµ⊞λν(x) ∈ C
−, then ω2(x) ∈ C

+. �
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Lemma 4.9. Under the hypotheses of Proposition 4.3, assume that x ∈ (0,+∞) is so that

Mµ⊞λν(x) := lim
z→x,z∈C+

Mµ⊞λν(z) ∈ i(R+ \ {0}) − 1 + λ

2λ
.

Then ω2(x) ∈ C
+.

Proof. The proof of this lemma is immediate. Indeed, by Remark 2.20 and subsection 2.3.2
(a), we have Hµ⊞λν(x) ∈ (−∞,−(1 − λ)2/4λ], so that Cµ(Hµ⊞λν(x)) < 0. But

ω2(x) =
Hµ⊞λν(x)

T
[
Mµ⊞λν(x) − Cµ(Hµ⊞λν(x))

] ,

so by Remark 2.20, ω2(x) ∈ C
+. �

We can now prove the analogue of Theorem 3.1 for the rectangular case.

Proposition 4.10. Let µ and ν be as in Proposition 4.5. Assume in addition that the restriction
of Cµ to the upper half-plane extends continuously to (0,+∞) and Cµ|C+(x) ∈ C

+ for all x ∈
(0,+∞). Then µ⊞λν is absolutely continuous with respect to the Lebesgue measure, and there

exists an open set U ⊂ R so that (µ⊞λν)(U) = 1 and the density h(x) = d(µ⊞λν)(x)
dx is analytic on

U .

Proof. We shall use the notations from Proposition 4.5. We know from Proposition 4.5 that
Hµ⊞λν(x) is finite for any x ∈ (0,+∞). Fix such an x. We show first that Hµ⊞λν(x) 6∈ (0,+∞).
Assume towards contradiction that Hµ⊞λν(x) > 0. By Proposition 4.5 m := Mµ⊞λν(x) exists
and by subsection 2.3.2 (a), is real. We know that Cµ(Hµ⊞λν(x)) ∈ C

+ by hypothesis. Thus,
using (4.1), we get that

Hµ⊞λν(x) = lim
z→x

Hν(ω2(z)) = lim
z→x

Hν

(

Hν⊞λµ(z)

T
[
Mµ⊞λν(z) − Cµ(Hµ⊞λν(z))

]

)

= Hν

(

Hµ⊞λν(x)

T
[
m− Cµ(Hµ⊞λν(x))

]

)

.

Now, by our hypothesis on Cµ, we have m− Cµ(Hµ⊞λν(x)) ∈ C
−. Thus, from the definition of

T , T (m − Cµ(Hµ⊞λν(x))) 6∈ [−(1 − λ)2/4λ,+∞) ⊃ [0,+∞). We have reached a contradiction
since Hν(C\R+) ⊂ C\R+ by section 2.3.2, (b).

Thus, Hµ⊞λν((0,+∞)) ⊂ C \ (0,+∞). In particular, Mµ⊞λν(x) ∈ C
+ ∪ [−1/λ,−1].

Since [−1/λ,−1] is a closed set and Mµ⊞λν is continuous on (0,+∞), the set S = {x ∈
(0,+∞) : Mµ⊞λν(1/x2) ∈ [−1/λ,−1]} is closed in (0,+∞). We claim that the set S satisfies

(µ⊞λν)(S) = 0. Indeed, the equality Mµ⊞λν(1/x
2) = xGµ⊞λν(x) − 1, Lemma 2.11 (i) and the

closeness of S make the claim obvious.

We claim next that for any x 6∈ S, ω2(1/x
2) ∈ C

+. Indeed, x 6∈ S implies that ei-
ther Mµ⊞λν(1/x

2) ∈ i(R+ \ {0}) − 1+λ
2λ , and then the statement follows from Lemma 4.9, or

Mµ⊞λν(1/x2) ∈ K1 ∪K2 and then the statement follows from Remark 2.20 and Lemma 4.8.

Now by Lemma 2.11 (ii), Proposition 4.5 and Lemma 4.7 the statement of the proposition
follows. The possibility of the existence of an atom at zero will be discarded in the next section.

�
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4.2. Examples. We have a whole family of measures satisfying the previous proposition and
corollary. In particular, we are going to see that all ⊞λ-stable distributions with index strictly
smaller than 2 work. Recall that ⊞λ-infinitely divisible measures and their Lévy measures where
introduced in section 2.3.3.

Proposition 4.11. Let G 6= δ0 be a symmetric positive finite measure on the real line, whose
restriction to (0,+∞) admits an analytic positive density. Let µ be the ⊞λ-infinitely divisible
measure µ with Lévy measure G.

Then the restriction of Cµ to the upper half-plane extends analytically at any point x of
(0,+∞) and satisfies ℑ(Cµ(x)) > 0.

Proof. Let ρ be the density of the restriction of the positive measure G to (0,+∞). By theorem
2.18, Cµ extends analytically to C\R+ by the formula

Cµ(z) = z

(

G({0}) + 2

∫ +∞

0

(1 + t2)ρ(t)

1 − zt2
dt

)

= Gτ (1/z),

where τ is push-forward of the measure (1 + t2)dG(t) by the function t → t2, and Gτ denotes
the Cauchy transform of τ . Note that τ is a positive Radon measure, and that its restriction to

(0,+∞) admits the density u → (1+u)ρ(u
1
2 )

u
1
2

on (0,+∞). This density is analytic, hence by (ii)

of lemma 2.11 (which extends easily to positive measures on the real line which integrate 1
1+|u| ,

as τ does) and by the fact that the behavior of Gτ on the lower half-plane can be deduced from

its behaviour on the upper half-plane by the formula Gτ (·) = Gτ (·), the restriction of Cµ to the
upper half-plane extends analytically at any point x of (0,+∞) and satisfies, by (i) of lemma
2.11,

ℑ(Cµ(x)) = π
(1 + x)ρ(x

1
2 )

x
1
2

> 0.

�

It is proved in [BG2] that there is a bijection between the set of symmetric ∗-infinitely divisible
distributions and the set of ⊞λ-infinitely divisible distributions, which preserves many properties,
as limit theorems and the fact of being stable. Hence, for all α ∈ (0, 2), the set of ⊞λ-stable
laws µα with index α is the set of ⊞λ-infinitely divisible laws which Lévy measure is of the type

t |x|
1−α

1+x2 dx, where t can be any positive constant, so proposition 4.11 can be applied to them. In
fact, an application of the residue formula gives the rectangular R-transform with ratio λ of the

⊞λ-infinitely divisible law µα with Lévy measure |x|1−α

1+x2 dx: for all z ∈ C\R+,

Cµα(z) = − π

2 sin(πα/2)
(−z)α/2,

where the power is defined on C\R− in relation with the argument with value 0 on the positive
half line. For α ∈ [1, 2), µα satisfies the hypothesis of Proposition 4.10. As a consequence, for
any positive number t, the same holds for the t-th power, with respect to ⊞λ, of µα. In deed, if

one denotes this measure by µt
α (it should be denoted by µ

⊞λt
α , but this notation is a bit hard

to swallow), one has Cµt
α
(z) = tCµα(z).

A matricial model for the measures µt
α was given in [BG2], section 5.

Moreover, for any positive t, the density of µt
1 has been computed in section 4.2 of [BG2]:

dµt
1

dx
(x) =

t

π(λt2 + x2)

(

1 − t2(λ− 1)2

4x2

) 1
2
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on its support Supp(µt
1) = R\

(

− t(1−λ)
2 , t(1−λ)

2

)

.

Remark however that the ”rectangular Gaussian laws”, i.e. the ⊞λ-stable laws with index 2,
which are symmetric square roots of dilations of Pastur-Marchenko laws, which are the laws µt

2,
t > 0, satisfying Cµt

2
(z) = tz, do not satisfy the hypotheses of Proposition 4.3 since Cµt

2
((0,∞)) ⊂

(0,∞).

4.3. Study of the density around the origin. In this section, we study the existence of a
hole around the origin in the support of the free convolution µ⊞λν. Since in our approach the
origin itself is a very specific point, we shall study separately the existence of an atom at the
origin and then existence of a set [−ǫ, ǫ] which does not intersect the support of µ⊞λν.

Some of the considerations of this section do not require the assumptions of Proposition 4.3.

Proposition 4.12. (1) For all symmetric probability measures µ, ν, (µ⊞λν)({0}) ≥ µ({0})+
ν({0}) − 1.

(2) Assume that µ is ⊞λ-infinitely divisible (ν is still an arbitrary symmetric probability
measure). If (µ⊞λν)({0}) > 0, then µ({0}) + ν({0}) > 1 and (µ⊞λν)({0}) = µ({0}) +
ν({0}) − 1.

Proof. We prove item 1. Consider a sequence pn ≥ n of positive integers such that

n/pn −→
n→∞

λ

and, on a probability space Ω, an independent set of random variables

(Xi)i≥1, (Yi)i≥1, (Un)n≥1, (Vn)n≥1

such that

- each Xi is distributed according to µ,
- each Yi is distributed according to ν,
- for all n, Un is an n by n Haar-distributed unitary random matrix,
- for all n, Vn is a pn by pn Haar-distributed unitary random matrix.

Let us define, for all n,

a) Mn to be the n by pn random matrix with |X1|, . . . , |Xn| on the diagonal, and zeros
everywhere else,

b) Nn to be Un times the n by pn random matrix with |Y1|, . . . , |Yn| on the diagonal, and
zeros everywhere else times Vn.

Let, for all n, dn (resp. d′n, d
′′
n) be the random variable equal to the number of null singular

values of Mn (resp. Nn,Mn + Nn). Note that dn + (pn − n) = dim kerMn, d
′
n + (pn − n) =

dim kerNn, d
′′
n+(pn−n) = dimkerMn+Nn. Note also that since kerMn∩kerNn ⊂ ker(Mn+Nn),

one has

dimkerMn +Nn ≥ dimkerMn ∩ kerNn ≥ dim kerMn + dim kerNn − pn,

hence
d′′n + (pn − n) ≥ dn + (pn − n) + d′n + (pn − n) − pn,

i.e.
d′′n ≥ dn + d′n − n. (4.4)

Note that the singular values ofMn (resp. ofNn) are |X1|, . . . , |Xn| (resp. |Y1|, . . . , |Yn|), hence
by the law of large numbers, the symmetrization of the singular law ofMn (resp. ofNn) converges
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almost surely weakly to µ (resp.ν). Thus by theorem 4.8 of [BG1], the singular law SL(Mn +Nn)
of Mn+Nn converges in probability to µ⊞λν in the metric space of the set of probability measures
on the real line endowed with a distance which defines the weak convergence. So for almost all
ω ∈ Ω, there is a subsequence ϕ(n) of the sequence SL(Mn +Nn)(ω) which converges weakly to
µ⊞λν. For such an ω, one has

(µ⊞λν)({0}) ≥ lim sup
n→∞

SL(Mϕ(n) +Nϕ(n))(ω)({0}) = lim sup
n→∞

d′′ϕ(n)

ϕ(n)
. (4.5)

Note moreover that for all n, dn (resp. d′n) is the number of i’s in {1, . . . , n} such that Xi = 0
(resp. Yi = 0), hence the law of large numbers implies also that for almost all ω ∈ Ω

dn(ω)

n
−→
n→∞

µ({0}), d′n(ω)

n
−→
n→∞

ν({0}). (4.6)

Putting together (4.4), (4.5), (4.6), one gets (µ⊞λν)({0}) ≥ µ({0}) + ν({0}) − 1.

Let us now prove item 2. First of all, we exclude the case ν = δ0, which is trivial. The strat-
egy will be to use Lemma 2.21 and the description of atoms given in 2.3.2 (f) together with the
formula (4.1) to prove the equality (µ⊞λν)({0}) = µ({0}) + ν({0})− 1. We shall first prove that
limx→−∞Cµ(x) > −1. Note that by 2.3.2 (f), our hypothesis implies that limx→−∞Hµ⊞λν(x) =
−∞. So we will prove that if limx→−∞Hµ⊞λν(x) = −∞, then limx→−∞Cµ(x) > −1. For future
use, we prefer to prove now that limx→−∞Cµ(x) > −1 under the hypothesis limx→−∞Hµ⊞λν(x) =
−∞ than under the stronger one of the proposition.

Assume thus that limx→−∞Hµ⊞λν(x) = −∞. Recall first equality (4.1) :

∀z ∈ (−∞, 0), Hµ⊞λν(z) = Hν

(

Hν⊞λµ(z)

T
[
Mµ⊞λν(z) −Cµ(Hµ⊞λν(z))

]

)

, (4.7)

whereMµ⊞λν(z) is the analytic extension of U
(

Hµ⊞λν(z)

z − 1
)

which can be found in 2.3.2 (a)(and

which allows us to claim that limx→−∞Mµ⊞λν(x) exists and is equal to µ⊞λν({0}) − 1).

Equality (4.7) together with the continuity ofHν on (−∞, 0] and the hypothesis lim
x→−∞

Hµ⊞λν(x) =

−∞ imply that

lim
x→−∞

Hµ⊞λν(x)

T
[
Mµ⊞λν(x) − Cµ(Hµ⊞λν(x))

] = −∞

(indeed, for any sequence xn of negative numbers which tends to −∞, since by 2.3.2, for all

n, yn :=
Hµ⊞λν(xn)

T [Mµ⊞λν(xn)−Cµ(Hµ⊞λν(xn))]
∈ (−∞, 0), if yn doesn’t tend to −∞, a subsequence of

Hµ⊞λν(xn) will have a finite limit, which is impossible). So by 2.3.2 (f) we obtain

T (ν({0}) − 1) = λν({0})2 + (1 − λ)ν({0})

= lim
x→−∞

Hν(x)

x

= lim
x→−∞

T (Mµ⊞λν(x) − Cµ(Hµ⊞λν(x)))

Hµ⊞λν(x)
Hν

(
Hµ⊞λν(x)

T (Mµ⊞λν(x) − Cµ(Hµ⊞λν(x)))

)

= lim
x→−∞

T (Mµ⊞λν(x) − Cµ(Hµ⊞λν(x)))

Hµ⊞λν(x)
Hµ⊞λν(x)

= lim
x→−∞

T (Mµ⊞λν(x) − Cµ(Hµ⊞λν(x))).
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Thus, limx→−∞ T (Mµ⊞λν(x) − Cµ(Hµ⊞λν(x))) ∈ [0, 1]. Note that (2.6) allows us to claim that
limx→−∞Cµ(x) exists in [−∞, 0], hence by above, Mµ⊞λν(x) − Cµ(Hµ⊞λν(x)) has also a limit

l = (µ⊞λν)({0})−1− limw→−∞Cµ(w) ≥ −1 as x goes to −∞. Since T−1([0, 1]) = [− 1
λ −1,− 1

λ ]∪
[−1, 0], one has l ∈ [−1, 0], hence l = ν({0}) − 1. We conclude that

lim
w→−∞

Cµ(w) = lim
x→−∞

Cµ(Hµ⊞λν(x)) = (µ⊞λν)({0}) − 1 − (ν({0}) − 1) ∈ (−1, 0],

as claimed. Moreover, this equality together with Lemma 2.21 implies that µ({0}) − 1 =
(µ⊞λν)({0}) − ν({0}), which is equivalent to item 2. �

Proposition 4.13. Let µ be ⊞λ-infinitely divisible and ν be arbitrary. Assume that ν({0}) +
µ({0}) < 1. Then supp(µ⊞λν) has a hole around the origin.

Proof. Let us denote r := limx→−∞Hµ⊞λν(x) (which exists and belongs to [−∞, 0) by 2.3.2
(f)). The first step in our proof will be to show that under our hypothesis, r > −∞. Then we
will view r as the Denjoy-Wolff point of a certain self-map of the left half-plane iC+, and use this
fact to see Wµ⊞λν(x) = Hµ⊞λν(1/x) as an implicit function which is defined on a neighbourhood
of zero and extends Hµ⊞λν(1/x) from the left half-line. Finally, we will argue that on a small

enough interval, Hµ⊞λν(1/x) ∈ [−(1−λ)2/4λx, 0] for all x > 0 small enough, which is equivalent
to the existence of an open neighborhood of the origin which does not intersect the support of
µ⊞λν (as can be checked by using lemma 2.11 and remark 2.17).

We shall prove that r is the Denjoy-Wolff point of f1 if

ft(z) = Hν

(
z

T [−t− Cµ(z)]

)

, t ∈ [0, 1].

First, we claim that ft is defined on the left half-plane iC+, and moreover that ft(iC
+) ⊆ iC+ for

all t ∈ [0, 1]. Indeed, from Theorem 2.18 it follows that Cµ(C+) ⊆ C
+ and argCµ(z) > arg z for

any z ∈ C
+. Thus, since 0 < λ < 1, and 0 ≤ t ≤ 1, π > arg (Cµ(z) + t− 1) ≥ argCµ(z) > arg z

and π > arg
(
Cµ(z) + t− 1

λ

)
> argCµ(z) > arg z, so that arg T [−t − Cµ(z)] ∈ (2 arg z, 2π) for

all z ∈ C
+ ∩ iC+. We conclude that arg

(
T [−t−Cµ(z)]

z

)

∈ (arg z, 2π− arg z) ⊂ (π/2, 3π/2) for any

z ∈ C
+∩ iC+, so that

T [−t−Cµ(z)]
z maps C

+∩ iC+ in iC+. Since iC+ is invariant under the maps

z 7→ 1/z and z 7→ z̄, and
(

T [−t−Cµ(z)]
z

)

=
T [−t−Cµ(z̄)]

z̄ , we conclude that z 7→ z
T [−t−Cµ(z)] maps

iC+ into itself. Since, by subsection 2.3.2 (d), Hν(iC
+) ⊆ iC+, our claim is proved.

By the last remark, we also have that ft(z̄) = ft(z), for all t ∈ [0, 1], and hence in particular
ft((−∞, 0]) ⊂ (−∞, 0].

We next show the existence and uniqueness of the Denjoy Wolff point of f1 as a consequence
of Theorem 2.7. In fact, f1 is not a conformal automorphism of iC+. Indeed, there are only
two conformal automorphisms of iC+ which fix (−∞, 0] up to multiplication by positive scalar;

the identity and z → 1/z. The case az = Hν

(
z

T [−1−Cµ(z)]

)

can be discarded since as z goes to

zero along the negative half-line, Cµ(z)/z converges to
∫
(1+ t2)dG(t) by monotone convergence

theorem (with G the Lévy measure of µ) and so y(z) := z
T [−1−Cµ(z)] ∈ (−∞, 0] goes to the

constant

lim
x↑0

x

T [−1 − Cµ(x)]
= lim

x↑0
1

λ
Cµ(x)2

x + (λ− 1)
Cµ(x)

x

=

(

(λ− 1)

∫

(t2 + 1) dG(t)

)−1

, (4.8)

which is null only if
∫
(1 + t2)dG(t) is infinite. If this constant does not vanish, we obtain a

contradiction since Hν does not vanish on (−∞, 0). If it vanishes, we write aT [−1 − Cµ(z)] =
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Hν(y(z))/y(z) with y(z) negative going to zero as z goes to zero. This is in contradition with

the fact that Hν(z)/z goes to one (see Remark 2.17). The case a/z = Hν

(
z

T [−1−Cµ(z)]

)

leads

also to a contradiction by letting z going to zero.

The uniqueness of the Denjoy-Wolff point given by Theorem 2.7 implies that this point can
only belong to [−∞, 0] since ft(z̄) = f̄t(z). We shall first show that zero cannot be the Denjoy-
Wolff point of f1, and secondly we show that infinity can be the Denjoy-Wolff point of f1 only
when µ({0}) + ν({0}) ≥ 1.

For zero to be the Denjoy-Wolff point of f1, we would first need to have limx↑0 f1(x) = 0.
Since Hν vanishes on (−∞, 0] only at the origin, we must have by (4.8) that the Lévy measure
of µ has infinite second moment. The second requirement for zero to be the Denjoy-Wolff point
of f1 is that limx↑0 f1(x)/x ∈ (0, 1]. But

lim
x↑0

f1(x)

x
= lim

x↑0

Hν

(
x

T [−1−Cµ(x)]

)

x
T [−1−Cµ(x)]

· 1

T [−1 − Cµ(x)]

= lim
x↑0

Hν(x)

x
· lim

x↑0
1

T [−1 − Cµ(x)]
= ∞,

since limx↑0
Hν(x)

x = 1 and limx↑0 Cµ(x) = 0. We conclude that zero cannot be the Denjoy-Wolff
point of f1.

Now we show under that under our condition ν({0}) +µ({0}) < 1, f1 cannot have infinity as
Denjoy-Wolff point (recall that (µ⊞λν)({0}) = 0 by Proposition 4.12 under this assumption.) The
two requirements that f1 must verify to have infinity as Denjoy-Wolff point are limx→−∞ f1(x) =
−∞ and limx→−∞ f1(x)/x ∈ [1,+∞). The continuity of Hν on (−∞, 0] translates the first
requirement into limx→−∞ x

T [−1−Cµ(x)] = −∞ and limx→−∞Hν(x) = −∞. Applying 2.3.2 (f)

and the above, we obtain:

lim
x→−∞

f1(x)

x
= lim

x→−∞

Hν

(
x

T [−1−Cµ(x)]

)

x
T [−1−Cµ(x)]

· 1

T [−1 −Cµ(x)]

= lim
x→−∞

Hν(x)

x
· lim

x→−∞
1

T [−1 − Cµ(x)]

= (λν({0})2 + (1 − λ)ν({0})) · 1

λc2 + (λ− 1)c

=
T (ν({0}) − 1)

T (−c− 1)
,

where c := limx→−∞Cµ(x) ∈ [−∞, 0). To have limx→−∞ f1(x)/x ≥ 1, we must have ν({0}) > 0
and c > −∞. Thus, we may write

T (ν({0}) − 1) ≥ T (−c− 1),

which implies, since T is increasing on [−1,+∞), that 1 ≥ ν({0}) ≥ −c. Using Lemma 2.21 (2)
we conclude that ν({0}) + µ({0}) ≥ 1.

Thus, ν({0}) + µ({0}) < 1 implies that f1 has a Denjoy-Wolff point s ∈ (−∞, 0). We claim
that s = r. Indeed, by taking limit when z → −∞ in equation (4.1), using Proposition 4.12 and
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the fact that limx→−∞Mµ⊞λν(x) = (µ⊞λν)({0}) − 1 = −1, we obtain that

r = Hν

(
r

T [−1 − Cµ(r)]

)

= f1(r), (4.9)

where, if r = −∞, the second term must be also understood as a limit.

We finally show that r cannot be infinite, which will imply with (4.9) that r = s. By Theorem
2.7, f ′1(s) ∈ (−1, 1). By continuity of f ′1, there exists δ > 0 so that if D = {y : |x − s| < δ},
ρ := supD̄ |f ′1(x)| < 1 and therefore f1(D̄) ⊂ {y : |y − s| ≤ ρδ} ⊂ D. Since ft converges to f1 as
t→ 1 uniformly on compact subsets of iC+, there exists ε > 0 so that ft(D̄) ⊆ D and moreover
ft is not an hyperbolic rotation for all 1 − ε ≤ t ≤ 1. Thus, by Theorem 2.7, ft has a unique
Denjoy-Wolff point and it must be in D̄ (has can be seen by iterating f from a point in D̄).
Thus, the Denjoy-Wolff points of ft converge to s as t→ 1.

Now, since limx→−∞Mµ⊞λν(x) = −1 as µ⊞λν({0}) = 0, for x large enough we haveMµ⊞λν(x) ∈
(−1, ε − 1). From equation (4.1) it follows that

Hµ⊞λν(x) = f−Mµ⊞λν(x)(Hµ⊞λν(x))

and therefore Hµ⊞λν(x) is the Denjoy-Wolff point of f−Mµ⊞λν(x). Thus we conclude that r =

limx→−∞Hµ⊞λν(x) = s, which proves our claim.

Let us define Wµ⊞λν(z) = Hµ⊞λν(1/z) and

g(x,w) = Hν

(
w

T [U(xw − 1) − Cµ(w)]

)

− w.

It is easy to observe that for x < 0 close to zero, we have g(x,Wµ⊞λν(x)) = 0, as the formula
Mµ⊞λν(z) = U(Hµ⊞λν(z)/z − 1) must hold for all z ∈ R

−. Moreover, there obviously exists a
small enough interval I centered at zero so that g is actually defined on I × (I + r), and of
course, by equation (4.9), g(0, r) = 0. Let us differentiate g with respect to w:

∂wg(x,w) = H ′
ν

(
w

T [U(xw − 1) −Cµ(w)]

)

×
T [U(xw − 1) − Cµ(w)] − wT ′[U(xw − 1) − Cµ(w)][xU ′(xw − 1) − C ′

µ(w)]

T [U(xw − 1) − Cµ(w)]2
− 1.

Since U is differentiable in −1, and T [−1 − Cµ(r)] 6= 0, we have

∂wg(0, r) = H ′
ν

(
r

T [−1 −Cµ(r)]

)
T [−1 − Cµ(r)] − rT ′[−1 − Cµ(r)][−C ′

µ(r)]

T [−1 − Cµ(r)]2
− 1 = f ′1(r) − 1.

Since we have shown that |f ′1(r)| < 1, we conclude that ∂wg(0, r) 6= 0, so we can apply the implicit
function theorem to it in the point (0, r) to extend Wµ⊞λν to a small neighborhood of the origin.
Then, Wµ⊞λν(x) = Hµ⊞λν(1/x) takes its values in a finite neighborhood of r ∈ (−∞, 0) which is

included into [−(1 − λ)2/4λx, 0] for sufficiently small x, and hence µ⊞λν put no mass in a open
neighborhood of the origin. �
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