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Abstract. LFEW is a low frequency electromagnetic wave 1 Introduction
detector mounted on TC-2, which can measure the magnetic

fluctuation of low frequency Electromagnetlc waves. The fre-gjnce the plasma in the magnetosphere is collisionless, the
quency range is 8 Hz to 10kHz. LFEW comprises a boom-piasma wave, as a media of collective interaction, is very

mounted, three-axis search coil magnetometer, apreamplifieIFnportant in the magnetospheric plasma dynamic process.

and an electronics bpx that houses a Digital S_pectrum ANayaves can transform the energy from one region to another
lyzer. LFEW was calibrated at Chambon-la-&bin France. region in space. From a theoretical point of view, there are

The ground calibration results show that the performance ofy, yinds of waves in a collisionless plasma: electrostatic

LFEW is similar to that of STAFF on TC-1. The first re- 2 es and electromagnetic waves. However, absolutely pure

sults of LFEW show that it works normally on board, and g e rostatic waves are hardly observed in space. The elec-
that the AC magnetic interference of the satellite platform 'Stromagnetic waves have both oscillating electric and mag-

very small. In the plasmasphere, LFEW observed the ion cyqgic figlq components. Various electromagnetic waves in the

clotron waves. During the geomagnetic storm on 8 Novem-p, 5 netnsphere are observed, whose frequencies can range
ber 2004, LFEW observed a wave burst associated with thg;, 1, 15-3 147 to 10 Hz. Since the satellite itself generates

oxygen ion cyclotron waves. This observation shows thaty,gnetic fields, field sensors are always mounted on booms
during geomagnetic storms, the oxygen ions are Very aCiat extend outside the satellite.

tive in the inner magnetosphere. Outside the plasmasphere, ) _ )

LFEW observed the chorus on 3 November 2004. LFEw -FEW s the firstlow frequency electromagnetic wave de-
also observed the plasmaspheric hiss and mid-latitude hisctor manufactured in China, which is designed to measure
both in the Southern Hemisphere and Northern Hemispherd®W frequency electromagnetic waves in the frequency range

on 8 November 2004. The hiss in the Southern Hemispheré’f 8Hz-10kHz. The Center ff?r Space Science and.AppIieq
Research (CSSAR) of the Chinese Academy of Sciences is

may be the reflected waves of the hiss in the Northern Hemi- ! X
sphere. responsible fpr the design and manufacture qf LFEW. Th_e
Center d’Environnement Terrestre et Planetaire (CETP) in
Keywords. Magnetospheric physics (Plasma waves and in-France helped CSSAR to calibrate LFEW.
stabilities; Instruments and techniques) — Space plasma TC-2 is the polar satellite of DSP, with an apogee &4
physics (Instruments and techniques) and a perigee of 500 km. During the mission, TC-2 crosses
many important space regions, such as the plasmasphere, ra-
diation belt, auroral zone, cusp and polar cap. In these re-
Correspondence tal. B. Cao gions, there exists an abundance of wave activities, which
(jbcao@center.cssar.ac.cn) provide the only effective coupling between particles. These
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a) Mass: 3.6kg

b) Power.5W

¢) Measurementrange: 8Hz — 10 kHz

d) Scientific telemetry rate: 3 kbit/s

e) Size: Sensap25x240x 300 mn¥,
Electronic unit 156 180x 200 mnf¥.

Figure 1 shows the search coil and the electronic box of
LFEW. The search coil consists of three mutually orthogo-
nal sensors that are mounted on the end of a rigid boom that
is 4.0 m away from the spacecraft center. Two sensBys (
and B, of LFEW) lie in the spin plane and the thir®{) is
parallel to the spin axis. The angles betwdgn(B;) and
the boom is 45 with an accuracy oft2°. The frequency
response of the sensor is flattened in the frequency range 8-

Fig. 1. The picture of the search coil and the electronic box of 10000 Hz by a secondary wind used to introduce flux feed-
LFEW/TC-2. back.

There are three preamplifiers located in the electronic unit

inside the satellite. The dynamic range of the preamplifiers

waves have a close relation with solar wind conditions, geo4s 100 dB. The output signals of the preamplifiers are sent
magnetic storms and substorms. to the spectrum analyzer, which then calculates the power

The primary scientific objectives are the following: spectra density of the three components. The phase c_zliffer-
nces between the three components are also downlinked.

. . . €
» To study the generation mechanism and propagatiofrhe frequency range of 8 Hz—10kHz is divided into three
characteristics of low frequency electromagnetic waves at the‘subbands:

plasmapause, and the acceleration, diffusion and precipita-

tion processes of the particles. (1) Low frequency band: 10-100 Hz
o To study the instabilities and generation processes oflow  (2) Middle frequency band: 100-1000 Hz
frequency electromagnetic waves (e.g. ion cyclotronwave)in ~ (3) High frequency band: 1000-10 000 Hz.
the auroral and cusp regions, and their accelerating effects on There are 96 spectrum lines that are distributed over the
the upflowing ions (H, Ot and He"). three frequency bands (32 spectrum lines for each frequency

e To study the generation mechanism of low frequencyband’ some lines overlapped). The three frequency bands

electromagnetic waves (including magnetic pulsations andach have their own sampling rates:
Alfvén waves) in the plasma sheet and the plasma sheet )
boundary layer during magnetospheric substorms and mag- (;) kﬂog dflre?uency b aEd. 302 :j'i

netic storms and their relationship with magnetospheric sub- ) adle frequency band. z

storms, the heating, acceleration and diffusion processes of (3) I—::gr; fLeqlLency band: 4:]) KHz. H
ionospheric upflowing ions and plasma sheet thermal ions O €ach of the three bands, there are three separate auto-
that interact with these waves. matic gain controlled (AGC) amplifiers (faB,, By, B; re-

spectively) and the gain of these AGC amplifiers has the role

e To study the plasma instabilities at the dayside mag-of 4 multiplying factor in the determination of the absolute
netopause boundary layer, the generation mechanism, frgneasurement.

quency spectrum and propagation characteristics of low fre- The digital processing of the output signals is in three
quency electromagnetic waves and magnetic pulsations, an&istinct steps:
their effects on the transfer of solar wind energy into the mag- '

netosphere. (1) De-spin of the spin-plane sensor outputs;

(2) Determination of the complex Fourier coefficients;
(3) Determination of the phase difference between the
three components.
2 Instrument description and commissioning results The de-spinning opgration is_ necessary since the inst_rument
measurement time interval is not short compared with the
satellite spin period (4s). Then the treatment of data on the

The LFEW instrument comprises a boom-mounted threeground will be able to transform the data from the satellite
axis search coil magnetometer, a preamplifier and an elecegordinate in to the GSE coordinates.

tronics box that houses a digital Spectrum Analyzer. Since LFEW is the first Chinese low frequency electro-

The instrument characteristics and measured parametersagnetic wave detector, we made the design as simple as
are as follows: possible. Therefore, LFEW has only one operation mode
and no in-flight calibration.



J. B. Cao et al.: First results of low frequency electromagnetic wave detector 2805

LFEW- ANT/FM + PA/B - Chambon - 2003.10.21 * :j
-10 ‘ (. SRNEN| I LH BY
~ 1l T
4
o
-20 (— e
f/ T g
) €
< y
S -30 A /
3 /| BZ
/
-40 ﬁz
-50 T T
1 10 100 1000 10000 100000
frequency Hz

Fig. 2. The transfer functions of three axis search coils of LFEW/TC-2.
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Fig. 3. The sensitivity measured in Chambon de&af LFEW/TC-2.

From ground measurements, the sensitivity of the three3 First results of LFEW of TC-2

mutually orthogonal sensors is %00 3nT Hz Y2 at
10Hz, 2.5¢10°4nTHZz Y2 at 100Hz, 5.6105nTHZz /2  We analyzed the data of LFEW and found many interesting

at 1kHz and 5.86104nTHz /2 at 10kHz The similarities Wwave activities. Some preliminary results are discussed be-
of the search coils for the three axes are good. The dynamiw. More detailed studies of the physical process need to be
range of the associated preamplifiers is about 100 dB. done in the near future.

In October 2003, LFEW was calibrated at Chambon-la-
Forét, the same site used to calibrate the STAFF instrumeng-1 lon cyclotron waves

of Cluster. Figures 2 and 3 show the transfer function and . )
sensitivity of the search coils. Almost every time when TC-2 crossed the cusp in the South-

It can be seen that the performances of the three axes afn Hemisphere, waves with frequencies below the proton

almost the same. Generally, there will be less noise in th&yclotron frequency, were observed by LFEW.
space than on the ground. Thus, the in-flight sensitivity is _Figure 4 shows the ion cyclotron waves observed by
better than on the ground. LFEW on 16 September 2004, which lasted from 21:17 to

21:39 UT. The blue line in Fig. 4 indicates the local proton
cyclotron frequency on the satellite path. The satellite posi-
tion at 21:31 is:R=(0.38, 0.14, 1.043¢ in SM coordinates,
MLT=13.37, MLAT=—68.6 and IL=72.2. The waves ex-
isted both in the plasmasphere and in the cusp. At the entry
of the cusp, the waves are relatively weak. Deep in the cusp,
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TC2 LFEW 16 Sep. 2004 21:11:38-21:44:57
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Fig. 4. lon cyclotron waves observed by LFEW on 16 September 2004.

TC2 LFEW 08 Now. 2004 00:43:18-00:48:19

Sg N2 Hz)

: |
LT = 0:43:30 Oe44:30 004530 00:46:20  CO4A30

R(Re} : 1.096 1.080 1.087 1.088 1.093
MLT(R) 8.08 8.08 B.08 8.08 8.08
Miat{deq) : 4740  -B2.30  -57.25  —B220  —BT.I2
iL{deq) : 48.6 63.1 B8.0 63.3 68.4

L 2.3 2.8 36 5.0 7.4

Fig. 5. The time-frequency spectrum observed by LFEW at 00:43:15-00:48:15 UT on 8 November 2004.

the waves become stronger than at the entry. The profile of Electromagnetic ion cyclotron waves were detected by
the wave frequency spectrum seems to have a close relatiomany satellites in the plasmasphere (Kintner and Gurnett,
with the proton cyclotron frequency. 1977; Sonwalker, 1995). Their frequencies generally lie
near the ion cyclotron frequencies. Generally, these ion cy-
clotron waves are excited by precipitating ring current ions
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(Sonwalker, 1995). Thus, the ion cyclotron waves betweeninan, 1988). For example, an event of ion cyclotron waves

21:17 and 21:30 UT may be generated by ring current ions. that was associated with oxygen ion cyclotron frequency was
Pfaff et al. (1998) have identified similar ULF-VLk(few detected inside the plasmasphere by the DE 1 satellite (Gur-

Hz) waves in the cusp using measurements from the Polanett and Inan, 1988). Therefore, it is likely that the wave

electric and magnetic field experiments, and have tentativelyurst at 00:45:13 is related to the ring current oxygen ion of

identified them as Alfv’en waves. D’Angelo et al. (1974) the storm time.

reported observations from OGO-5 in which ULF magnetic

fluctuations were detected at the polar cusp boundaries and.3 Whistler-mode chorus observations

were probably due to the Kevin-Helmholtz instability. Gur-

nett and Frank (1978) reported the presence of a band o#Vhistler-mode chorus is an electromagnetic wave emission

ULF-ELF magnetic noise extending from a few Hertz to sev- occurring in the Earth’'s magnetosphere. The generation of

eral hundred Hertz at almost every cusp pass, using Hawkthese wave packets is not yet well understood. It is most

eye | data. They stated that this noise could be used as aften accepted that chorus is generated by a nonlinear pro-

reliable indicator of the polar cusp region. cess based on the electron cyclotron resonance of whistler-
Since the part of the waves in the cusp (from 21:32 tomode waves with energetic electrons (Nunn et al., 1997;

21:36) is just below the proton cyclotron frequency, it is Trakhtengerts, 1999; Kennel and Petschek, 1966), taking

likely that they are the proton cyclotron waves. However, place close to the geomagnetic equatorial plane (Burton and

a more certain conclusion can only be drawn when we knowHolzer, 1974; LeDocq et al., 1998; Parrot et al., 2003; San-

the wave polarization. tolik et al., 2004, 2005). The chorus frequency is closely
related to the equatorial electron gyrofrequency.
3.2 Wave bursts during geomagnetic storms LFEW often observed whistler mode chorus outside the

plasmasphere, which lasted from several hundred Hz to

During geomagnetic storms (particularly strong geomagneticseveral kHz. For example, from 08:37.30 to 08:42:30 on
storms), LFEW often observed low frequency wave bursts3 November 2004, LFEW observed chorus outside the plas-
whose duration was only around 10s. The data analysisnasphere (see Fig. 7). This wave activity approximately has
shows that the stronger the geomagnetic storm, the largemwo frequency bands:>~200 Hz—600 Hz and 800 Hz—-1 kHz.
the wave burst amplitude. For example, from 00:45:13 toThe two bands are separated, since there is almost no wave
00:45:24 on 8 November, LFEW observed a wave burst wheractivity between them. Like the chorus in Fig. 2 of Mered-
the satellite was at the position MLT=8.08, MLAT=-56. and ith et al. (2004), the waves of lower frequency band lasted
L=3.4 (see Fig. 5). The proton cyclotron frequency and oxy-longer than the waves of the higher frequency band.
gen cyclotron frequency are indicated by white a line and a
red line. 3.4 Plasmaspheric hiss and mid-latitude hiss

On 8 November 2004, there is a strong geomagnetic storm.
The main phase of geomagnetic storm begins at 21:30:00 oRlasmaspheric hiss is a broad-band, structureless, extremely
7 November. Figure 6 shows th®,, index on 8 Novem- low frequency (ELF) electromagnetic emission, which oc-
ber 2004. Shawhan (1979) mentioned that OGO-5 oftencurs in the frequency range from a few hundred hertz to sev-
observed wave bursts in the plasmasphere and cusp durirgral kHz. This natural whistler mode emission is characteris-
geomagnetic storms. The waves associated with cyclotronically confined to higher-density regions associated with the
frequencies of heavier Heand O"were detected by many Earth's plasmasphere (Dunckel and Helliwell, 1969; Russell
satellites (Mauk et al., 1981; Roux et al., 1982; Gurnett andet al., 1969; Thorne et al., 1973) or detached plasma regions
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Fig. 7. The time frequency spectrum observed by LFEW at 08:28:30-08:43:30 UT on 8 November 2004.
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Fig. 8. Plasmaspheric hiss and mid-latitude hiss in the Northern Hemisphere observed by LFEW on 8 November 2004.
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Fig. 9. Plasmaspheric hiss and mid-latitude hiss in the Southern Hemisphere observed by LFEW on 8 November 2004.

(Cornilleau-Wehrlin et al., 1978; Parrot and Lefeuvre, 1986).equatorial electron cyclotron frequency. These waves are
Plasmaspheric hiss can persist during relatively quiet condiobserved most often during magnetic quiet times and sub-
tions, but the emission intensifies during magnetic storms oistorms.

substorms (Smith et al., 1974; Thorne et al., 1974, 1977). Figure 8 gives an example of such waves on 8 November
Wave intensification has been associated with the injectiorbgos. The wave activity lasted from 11:47:28 to 11:50:18
of plasma sheet electrons into the inner magnetosphere dugng 11:50:29 to 11:53:40 UT. The solid line and the dashed
ing substorms (Thorne_ and Barfield, 1976; Solomon et al. jine in Fig. 8 indicated the equatorial gyrofrequengydnd
1988; Cornilleau-Wehrlin et al., 1993). half equatorial gyrofrequency 0.5f The frequencies of the

In addition, the mid-latitude hiss betweer2 to 10kHz is  waves at 11:47:28 to 11:50:18 range fren300 Hz to 2.5
often observed from the equator to subauroral latitudes. Th&Hz. The frequencies of the waves at 11:50:29 to 11:53:40
maximum of their occurrence corresponded to the middle lattange fron~2 kHz to 8 kHz. Both instances of hiss occurred
itudes (55—-6%) which are connected with the plasmapausein the day sector.

projection (Hayakawa et al., 1975a, b, 1977, 1986, 1988; pjasmaspheric hiss is stronger in the daytime sector com-
Dronov et al., 1985; Kleimenova, 1985). pared to the midnight-to-dawn sector, and generally peaks
The term “Plasmaspheric hiss” refers to hiss-type ELFat high &40°) latitudes; The mid-latitude hiss betwee2—
emissions observed mostly inside the plasmasphere. Th&0kHz is often observed from the equator to subauroral lat-
main energy of these emissions is concentrated in the freitudes, at all local times (Sonwalker, 1995). Thus, it is very
guency range 100 Hz—1 kHz, although their upper frequencyikely that the lower frequency waves are plasmaspheric hiss
limit could extend to a few kilohertz (Hayakawa and Sazhin, and the higher frequency waves are mid-latitude hiss.
1992), It seems possible that the high frequency part of the - \jg-|atitude hiss emissions are most likely to be gener-
plasmaspheric hiss spectrum could sometimes resultfrom thgieq in the equatorial magnetosphere where the energy of
influence of mid-latitude hiss (Hayakawa and Sazhin, 1992) gjectrons is transferred to wave energy via the electron cy-
When TC-2 crossed the plasmasphere, LFEW often ob<lotron instability. Some quantitative characteristics of these
served waves with frequencies fron800 Hz to several kHz, emissions are explained in terms of a quasilinear model of
which is between the local lower hybrid frequency and thethis instability. Plasmaspheric hiss is closely related to the
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same electron cyclotron instability, although the contribu- hope to add in-flight calibration, a burst mode and waveform
tion of other mechanisms cannot be excluded (Hayakawa andutput.
Sazhin, 1992; Masson et al., 2004). Thus, sometimes it is

very difficult to distinguish between plasmaspheric hiss andacknowledgementsThis work is supported by NSFC Grant
mid-latitude hiss. As mentioned in Sect. 3.2, a large ge0-40390151 and 40390153. We are very grateful to CETP and LPCE
magnetic storm comprising several substorms occurred ofn France, and University of Sheffield in UK for their kind help in
8 November 2004. Therefore, the plasmaspheric hiss anthe design and calibration of LFEW.
mid-latitude hiss on 8 November were likely generated by  Topical Editor T. Pulkkinen thanks a referee for his/her help in
substorm injected electrons. evaluating this paper.
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