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THE OSCILLATION STABILITY PROBLEM FOR THE

URYSOHN SPHERE: A COMBINATORIAL APPROACH.

J. LOPEZ-ABAD AND L. NGUYEN VAN THÉ

Abstract. We study the oscillation stability problem for the Urysohn sphere,
an analog of the distortion problem for ℓ2 in the context of the Urysohn space
U. In particular, we show that this problem reduces to a purely combinatorial
problem involving a family of countable ultrahomogeneous metric spaces with
finitely many distances.

1. Introduction.

The purpose of this note is to present several partial results related to the oscil-
lation stability problem for the Urysohn sphere, a problem about to the geometry
of the Urysohn space U which can, in some sense, be seen as an analog for U of
the well-known distortion problem for ℓ2. This latter problem appeared after the
following central result in geometric functional analysis established by Milman: For
N ∈ ω strictly positive, let SN denote the unit sphere of the (N + 1)-dimensional
Euclidean space and let S∞ denote the unit sphere of the Hilbert space ℓ2. If
X = (X, dX) is a metric space, Y ⊂ X and ε > 0, let also

(Y )ε = {x ∈ X : ∃y ∈ Y dX(x, y) 6 ε}.

Then:

Theorem (Milman [10]). Let γ be a finite partition of S∞. Then for every ε > 0

and every N ∈ ω, there is A ∈ γ and an isometric copy S̃N of SN in S∞ such that

S̃N ⊂ (A)ε.

Whether Milman’s theorem still holds when N is replaced by ∞ is the content
of the distortion problem for ℓ2. Equivalently, if ε > 0 and f : S∞ −→ R is
bounded and uniformly continuous, is there a closed infinite-dimensional subspace
V of ℓ2 such that sup{|f(x)− f(y)| : x, y ∈ V ∩ S∞} < ε? This question remained
unanswered for about 30 years, until the solution of Odell and Schlumprecht in [12]:

Theorem (Odell-Schlumprecht [12]). There is a finite partition γ of S∞ and ε > 0
such that no (A)ε for A ∈ γ includes an isometric copy of S∞.

This result is traditionally stated in terms of oscillation stability, a concept com-
ing from Banach space theory. However, it turns out that it can also be stated
thanks to a new concept of oscillation stability due to Kechris, Pestov and Todor-
cevic introduced in [8] and more fully developed in [13]. The global formulation of
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this notion takes place at a very general level and allows to capture various phe-
nomena coming from combinatorics and functional analysis. Nevertheless, it can be
presented quite simply in the realm of complete separable ultrahomogeneous metric
spaces, where it coincides with the Ramsey-theoretic concept of approximate indi-
visibility. Recall that a metric space X is ultrahomogeneous when every isometry
between finite metric subspaces of X can be extended to an isometry of X onto
itself. Now, for ε > 0, call a metric space X ε-indivisible when for every strictly

positive k ∈ ω and every χ : X −→ k, there is i < k and X̃ ⊂ X isometric to X

such that

X̃ ⊂ (←−χ {i})ε.

Then X is approximately indivisible when X is ε-indivisible for every ε > 0, and X

is indivisible when X is 0-indivisible. For example, in this terminology, the afore-
mentioned theorem of Odell and Schlumprecht asserts that S∞ is not approximately
indivisible. However, in spite of this solution, it is sometimes felt that something
essential is still to be discovered about the metric structure of S∞. Indeed, quite
surprisingly, the proof leading to the solution is not based on an analysis of the
intrinsic geometry of ℓ2. This fact is one of the motivations for the present note:
In this article, hoping that a better understanding of S∞ might be hidden behind a
general approach of approximate indivisibility, we study the approximate indivisi-
bility problem for another complete, separable ultrahomogeneous metric space, the
Urysohn sphere S, defined as follows: Up to isometry, it is the unique metric space
to which every sphere of radius 1/2 in the Urysohn space U is isometric. Equiva-
lently, it is, up to isometry, the unique complete separable ultrahomogeneous metric
space with diameter 1 into which every separable metric space with diameter less
or equal to 1 embeds isometrically. In this note, we try to answer the following
question implicitly present in [8] and explicitly stated in [7] and [13]:

Question. Is the Urysohn sphere S oscillation stable? That is, given a finite
partition γ of S and ε > 0, is there A ∈ γ such that (A)ε includes an isometric copy
of S?

Our approach here is combinatorial and follows the general intuition according
to which the structure of complete separable ultrahomogeneous metric spaces can
be approached via combinatorial means. This intuition is based on two ideas. The
first one is that the combinatorial point of view is relevant for the study of count-
able ultrahomogeneous metric spaces in general. This idea is already central in the
work of Fräıssé completed in the fifties, even though Fräıssé theory takes place at
the level of relational structures and includes much more than metric spaces (for
a reference on Fräıssé theory, see [5]). More recently, it was also rediscovered by
Bogatyi in a purely metric context, see [1] and [2]. The second idea is that the
complete separable ultrahomogeneous metric spaces are closely linked to the count-
able ultrahomogeneous metric spaces. This connection also appears in Bogatyi’s
work but is on the other hand supported by the following result (which answers a
question posed in [2]):

Theorem 1. Every complete separable ultrahomogeneous metric space Y includes
a countable ultrahomogeneous dense metric subspace.

For example, consider the rational Urysohn space UQ which can be defined up
to isometry as the unique countable ultrahomogeneous metric space with rational
distances for which every countable metric space with rational distances embeds
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isometrically. The Urysohn space U arises then as the completion of UQ, a fact
which is actually essential as it is at the heart of several important contributions
about U. In particular, in the original article [15] of Urysohn, the space U is
precisely constructed as the completion of UQ which is in turn constructed by
hand.

Similarly, the Urysohn sphere S arises as the completion of the so-called rational
Urysohn sphere SQ, defined up to isometry as the unique countable ultrahomoge-
neous metric space with distances in Q ∩ [0, 1] into which every at most countable
metric space with distances in Q ∩ [0, 1] embeds isometrically.

At first glance, such a representation is relevant with respect to the oscillation
stability problem for complete separable ultrahomogeneous metric spaces because it
provides a direct way to transfer an approximate indivisibility problem to an exact
indivisibility problem. For example, in the present case, it naturally leads to the
question (explicitly stated in [11] and in [13]) of knowing whether SQ is indivisible,
a question which was answered recently by to Delhommé, Laflamme, Pouzet and
Sauer in [3], where a detailed analysis of metric indivisibility is provided and several
obstructions to indivisibility are isolated. Cardinality is such an obstruction: A
classical result in topology asserts that as soon as a metric space X is uncountable,
there is a partition of X into two pieces such that none of the pieces includes a
copy of the space via a continuous 1− 1 map. Unboundedness is another example:
If a metric space X is indivisible, then its distance set is bounded. Now, it turns
out that SQ avoids these obstacles but encounters a third one: For a metric space
X, x ∈ X, and ε > 0, let λε(x) be the supremum of all reals l 6 1 such that there
is an ε-chain (xi)i6n containing x and such that dX(x0, xn) > l. Then, define

λ(x) = inf{λε(x) : ε > 0}.

Theorem (Delhommé-Laflamme-Pouzet-Sauer [3]). Let X be a countable metric
space. Assume that there is x0 ∈ X such that λ(x0) > 0. Then X is not indivisible.

Now, for SQ, it is easy to see that ultrahomogeneity together with the fact that
the distance set contains 0 as an accumulation point imply that every point x in
SQ is such that λ(x) = 1. It follows that:

Corollary (Delhommé-Laflamme-Pouzet-Sauer [3]). SQ is divisible.

This result put an end to the first attempt to solve the oscillation stability
problem for S. Indeed, had SQ been indivisible, S would have been oscillation
stable. But in the present case, the coloring which is used to divide SQ does not
lead to any conclusion and the oscillation stability problem for S has to be attacked
from another direction.

Here, following with the intuition that approximate indivisibility for S can be
attacked via the study of the exact indivisibility of simpler spaces, we can show:

Theorem 2. S is 1/3-indivisible.

This result is obtained after having shown that the problem of approximate
indivisibility for S can be reduced to a purely combinatorial problem involving a
family (Sm)m>1 of countable metric spaces which in some sense approximate the
space S. For m ∈ ω strictly positive, set

[0, 1]m := {
k

m
: k ∈ {0, . . . , m}}.
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Then Sm is defined as follows: Up to isometry it is the unique countable ultraho-
mogeneous metric space with distances in [0, 1]m into which every countable metric
space with distances in [0, 1]m embeds isometrically. Then:

Theorem 3. The following are equivalent:

(i) S is oscillation stable (equivalently, approximately indivisible).
(ii) For every strictly positive m ∈ ω, Sm is 1/m-indivisible.
(iii) For every strictly positive m ∈ ω, Sm is indivisible.

The paper is organized as follows: In section 2, we introduce the spaces Sm and
study their relationship with S. In particular, this leads us to a stronger version of
Theorem 3. In section 3, we follow the different directions suggested by Theorem 3
and study the indivisibility as well as the 1/m-indivisibility properties of the spaces
Sm. We then show how these results can be used to derive Theorem 2. Finally,
we close with a short section including some remarks about possible further studies
while an Appendix provides a proof of Theorem 1.

Note: Item (iii) of Theorem 3 was recently proved by the N. W. Sauer and the
second author. The Urysohn sphere is therefore oscillation stable.

2. Discretization.

The purpose of this section is to prove Theorem 3 and therefore to show that
despite the unsuccessful attempt realized with SQ, the oscillation stability problem
for S can indeed be understood via the study of the exact indivisibility of simpler
spaces. The starting point of our construction consists in the observation that SQ

is the first natural candidate because it is a very good countable approximation
of S, but this good approximation is paradoxically responsible for the divisibility
of SQ. In particular, the distance set of SQ is too rich and allows to create a
dividing coloring. A natural attempt at that point is consequently to replace SQ

by another space with a simpler distance set but still allowing to approximate S

in a reasonable sense. In this perspective, general Fräıssé theory provides a whole
family of candidates. Indeed, recall that for a strictly positive m ∈ ω, [0, 1]m
denotes the set {k/m : k ∈ {0, . . . , m}}. Then one can prove that there is a
countable ultrahomogeneous metric space Sm with distances in [0, 1]m into which
every countable metric space with distances in [0, 1]m embeds isometrically and
that those properties actually characterize Sm up to isometry. In other words, the
spaces Sm are really the analogs of SQ after having discretized the distance set
Q ∩ [0, 1] with [0, 1]m. The intuition is then that in some sense, this should allow
them to approximate S. This intuition turns out to be right, as shown by the
following proposition whose proof is postponed to subsection 2.1:

Proposition 1. For every strictly positive m ∈ ω, there is an isometric copy S̃m

of Sm inside S such that (S̃m)1/m = S.

The spaces Sm consequently appear as good candidates towards a discretization
of the oscillation stability problem for S. However, it turns out that Proposition 1
is not of any help towards a proof of Theorem 3. For example, Proposition 1 does
not imply alone that if for some strictly positive m ∈ ω, Sm is indivisible, then
S is 1/m-indivisible: Assume that χ : S −→ k. χ induces a coloring of Sm so by

indivisibility of Sm there is S̃m ⊂ Sm isometric to Sm on which χ is constant. But
4



how does that allow to obtain a copy of S? For example, are we sure that (S̃m)1/m

includes a copy of S? We are not able to answer this question, but recent results

of J. Melleray in [9] strongly suggest that (S̃m)1/m really depends on the copy S̃m

and can be extremely small. In particular, it may not include a copy of S. Thus, to
our knowledge, Proposition 1 does not say anything about the oscillation stability
of S, except maybe that the spaces Sm’s are not totally irrelevant for our purposes.

Fortunately, the spaces Sm do allow to go much further than Proposition 1
and are indeed relevant objects. In particular, they allow to reach the following
equivalence, extending Theorem 3:

Theorem 4. The following are equivalent:

(i) S is oscillation stable.
(ii) SQ is approximately indivisible.
(iii) For every strictly positive m ∈ ω, Sm is 1/m-indivisible.
(iv) For every strictly positive m ∈ ω, Sm is indivisible.

Subsections 2.2 to 2.5 are devoted to the proof of this result. But before going
deeper into the technical details, let us mention here that part of our hope towards
the discretization strategy comes from the proof of a famous result in Banach
space theory, namely Gowers’ stabilization theorem for c0 [6], where combinatorial
Ramsey-type theorems for the spaces FIN±

k and FINk imply that the unit sphere
Sc0 of c0 and its positive part S+

c0
are approximately indivisible.

2.1. Proof of proposition 1. We start with a definition: Given a metric space
X = (X, dX), a map f : X −→]0, +∞[ is Katĕtov over X when:

∀x, y ∈ X, |f(x)− f(y)| 6 dX(x, y) 6 f(x) + f(y).

Equivalently, one can extend the metric dX on X
.
∪ {f} by defining, for every x, y

in X, d̂X(x, f) = f(x) and d̂X(x, y) = dX(x, y). The corresponding metric space is

then written X
.
∪ {f}. Here, the concept of Katĕtov map is relevant because of the

following standard reformulation of the notion of ultrahomogeneity:

Lemma 1. Let X be a countable metric space. Then X is ultrahomogeneous iff for
every finite subspace F ⊂ X and every Katĕtov map f over F, if F

.
∪ {f} embeds

into X, then there is y ∈ X such that for every x ∈ F, dX(x, y) = f(x).

This result will be used constantly throughout the proof. Now, some notation:
For m ∈ ω strictly positive, recall that [0, 1]m = {k/m : k ∈ {0, . . . , m}}. For
α ∈ [0, 1], set also

⌈α⌉m = min([α, 1] ∩ [0, 1]m) =
⌈mα⌉

m
,

where ⌈x⌉ = min([x,∞[∩Z) is the ceiling function. Since S is the metric completion
of SQ, it is enough to show that for every strictly positive m ∈ ω, there is an

isometric copy S̃m of Sm inside SQ such that (S̃m)1/m = SQ. This is achieved
thanks to a back and forth argument. The following is the main idea.

Claim. Suppose that X ⊂ SQ is finite and embeddable in Sm, and let y ∈ SQ r X.
Then the mapping f = fX,y,m : X ∪ {y} →]0,∞[ defined by f(x) = ⌈dSQ(x, y)⌉m if
x ∈ X and f(y) = max{⌈dSQ(x, y)⌉m − dSQ(x, y) : x ∈ X} is Katĕtov.
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Assume this claim is true. Fix (xn)n∈ω an enumeration of Sm and (yn)n∈ω an
enumeration of SQ. We are going to construct σ : ω → ω together with a set

S̃m = {x̃σ(n) : n ∈ ω} ⊂ SQ so that:

(i) σ is a bijection.
(ii) x̃σ(n) 7→ xσ(n) defines an isometry.
(iii) For every n ∈ ω, {yi : i 6 n} ⊂ ({x̃i : i 6 2n + 1})1/m.

Observe that, since σ is a permutation, (i) and (ii) guarantee that x̃n 7→ xn defines

a surjective isometry between S̃m and Sm. On the other hand, (iii) guarantees that

(S̃m)1/m = SQ.
Let σ(0) = 0, x̃0 = y0. Suppose now all data up to 2n already defined in the

appropriate way, i.e. fulfilling the obvious partial versions of (i), (ii) and (iii). Let

σ(2n + 1) = min(ω r {σ(i) : 0 6 i 6 2n}).

Set also x̃σ(2n+1) ∈ SQ such that:

∀i ∈ {0, . . . , 2n}, dSQ(x̃σ(i), x̃σ(2n+1)) = dSm(xσ(i), xσ(2n+1)).

Next, if yn ∈
(
{x̃σ(i) : i 6 2n + 1}

)
1/m

, then we define σ(2n + 2) and x̃σ(2n+2) as

we did for 2n+1. Otherwise, let f be the Katĕtov map given by the previous claim
when applied to X = {x̃σ(i) : 0 6 i 6 2n + 1} and yn. Let x̃ ∈ SQ realizing f . Now
observe that the map g defined on {xσ(i) : 0 6 i 6 2n + 1} by g(xσ(i)) = f(x̃σ(i)) is
Katĕtov with values in [0, 1]m, so

σ(2n + 2) = min{k ∈ ω : ∀i ∈ {0, . . . , 2n + 1}, dSm(xσ(i), xk) = g(xσ(i))}

is well defined and we set x̃σ(2n+2) = x̃.
We now turn to the proof of the claim. Fix x, x′ ∈ X . We have to prove:

|f(x)− f(x′)| 6 dSQ(x, x′) 6 f(x) + f(x′) (1)

|f(x)− f(y)| 6 dSQ(x, y) 6 f(x) + f(y) (2)

For (1): The right inequality is not a problem:

dSQ(x, x′) 6 dSQ(x, y) + dSQ(y, x′) 6 f(x) + f(x′).

For the left inequality, we use the following simple fact:

∀α, β ∈ R, ∀p ∈ ω, |β − α| 6
p

m
−→ |⌈β⌉m − ⌈α⌉m| 6

p

m
.

Indeed, assume that |β − α| 6 p/m. We want |⌈mβ⌉ − ⌈mα⌉| 6 p. Without loss
of generality, α 6 β. Then 0 6 ⌈mβ⌉ − ⌈mα⌉ < mβ + 1 − mα 6 p + 1, so
|⌈mβ⌉ − ⌈mα⌉| 6 p and we are done. In our case, that property is useful because
then the left inequality directly follows from

∣∣dSQ(x, y)− dSQ(y, x′)
∣∣ 6 dSQ(x, x′) ∈ [0, 1]m,

because X is embeddable in Sm. For (2):

|f(x)− f(y)| = f(x)− f(y).

This is because f(x) > 1/m and 0 6 f(y) < 1/m. Furthermore, by definition of f ,

f(y) > f(x)− dSQ(x, y).

So the left inequality is satisfied. For the right inequality, simply observe that

dSQ(x, y) 6 f(x). �
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2.2. From oscillation stability of S to approximate indivisibility of SQ.

The purpose of what follows is to prove the implication (i) → (ii) of Theorem 4
stating that if S is oscillation stable, then SQ is approximately indivisible. This is
done thanks to the following result:

Proposition 2. Suppose that S
0
Q and S

1
Q are two copies of SQ in S such that S

0
Q

is dense in S. Then for every ε > 0 the subspace S
0
Q ∩ (S1

Q)ε includes a copy of SQ.

Proof. We construct the required copy of SQ inductively. Let {yn : n ∈ ω} enumer-

ate S1
Q. For k ∈ ω, set

δk =
ε

2

k∑

i=0

1

2i
.

Set also

ηk =
ε

3

1

2k+1
.

S0
Q being dense in S, choose z0 ∈ S0

Q such that dS(y0, z0) < δ0. Assume now that

z0, . . . , zn ∈ S0
Q were constructed such that for every k, l 6 n

{
dS(zk, zl) = dS(yk, yl)
dS(zk, yk) < δk.

Again by denseness of S0
Q in S, fix z ∈ S0

Q such that

dS(z, yn+1) < ηn+1.

Then for every k 6 n,
∣∣dS(z, zk)− dS(yn+1, yk)

∣∣ =
∣∣dS(z, zk)− dS(zk, yn+1) + dS(zk, yn+1)− dS(yn+1, yk)

∣∣

6 dS(z, yn+1) + dS(zk, yk)

< ηn+1 + δk

< ηn+1 + δn.

It follows that there is zn+1 ∈ S0
Q such that

{
∀k 6 n dS(zn+1, zk) = dS(yn+1, yk)
dS(zn+1, z) < ηn+1 + δn.

Indeed, consider the map f defined on {zk : k 6 n} ∪ {z} by:
{
∀k 6 n f(zk) = dS(yn+1, yk)
f(z) =

∣∣dS(z, zk)− dS(yn+1, yk)
∣∣ .

Then f is Katĕtov over the subspace of S0
Q supported by {zk : k 6 n} ∪ {z}, so

simply take zn+1 ∈ S0
Q realizing it. Observe then that

dS(zn+1, yn+1) 6 dS(zn+1, z) + dS(z, yn+1)

< ηn+1 + δn + ηn+1

< δn+1.

After ω steps, we are left with {zn : n ∈ ω} ⊂ S0
Q ∩ (S1

Q)ε isometric to SQ. �
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We now show how to deduce (i) → (ii) of Theorem 4 from Proposition 2: Let
ε > 0, k ∈ ω strictly positive and χ : SQ −→ k. Then in S, seeing SQ as a dense
subspace:

S =
⋃

i<k

(←−χ {i})ε/2.

By oscillation stability of S, there is i < k and a copy S̃ of S included in S such
that

S̃ ⊂ ((←−χ {i})ε/2)ε/4.

Since S̃ includes copies of SQ, and since SQ is dense in S, it follows by Proposition

2 that there is a copy S̃Q of SQ in SQ ∩ (S̃)ε/4. Then in SQ

S̃Q ⊂ (←−χ {i})ε. �

2.3. From approximate indivisibility of SQ to 1/m-indivisibility of Sm.

Here, we provide a proof for the implication (ii)→ (iii) of Theorem 4 according to
which if SQ is approximately indivisible, then Sm is 1/m-indivisible for every strictly
positive m ∈ ω. This is obtained as the consequence of the following proposition:

Proposition 3. Let ε > 0 and assume that SQ is ε-indivisible. Then Sm is 1/m-
indivisible whenever m 6 1/ε.

Proof. Let ε > 0, assume that SQ is ε-indivisible and fix m ∈ ω strictly positive
such that ε 6 1/m. Define

⌈
dSQ

⌉
m

by

∀x, y ∈ X
⌈
dSQ

⌉
m

(x, y) =
⌈
dSQ(x, y)

⌉
m

.

Claim.
⌈
dSQ

⌉
m

is a metric on SQ.

Proof. Since the function ⌈·⌉m is subadditive and increasing, it easily follows that
the composition ⌈dSQ⌉m = ⌈·⌉m ◦ dSQ is a metric. �

Let Xm be the metric space

Xm = (SQ,
⌈
dSQ

⌉
m

),

and let πm denote the identity map from SQ to Xm. Observe that Xm and Sm

embed into each other, and that consequently, 1/m-indivisibility of Sm is equivalent
to 1/m-indivisibility of Xm. So let k ∈ ω be strictly positive and χ : Xm −→ k.
Then χ induces a coloring χ ◦ πm : SQ −→ k. Since SQ is ε-indivisible, there is

i < k and a copy S̃Q of SQ inside SQ such that

S̃Q ⊂ (←−−−−χ ◦ πm{i})ε.

Now, observe that π′′
mS̃Q is a copy of Xm inside Xm. Furthermore, note that

∀x 6= y ∈ SQ if dSQ(x, y) 6
1

m
then dXm(πm(x), πm(y)) =

1

m
.

Since ε 6 1/m, it follows that

π′′
m(←−−−−χ ◦ πm{i})ε ⊂ (←−χ {i})1/m.

And so

π′′
mS̃Q ⊂ (←−χ {i})1/m. �
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2.4. From 1/2(m2 +m)-indivisibility of S2(m2+m) to indivisibility of Sm. We
now turn to the proof of the implication (iii) → (iv) of Theorem 4 stating that
if for every strictly positive m ∈ ω, Sm is 1/m-indivisible, then for every strictly
positive m ∈ ω, Sm is indivisible. This is done via the following proposition:

Proposition 4. Suppose that for some strictly positive integer m, S2(m2+m) is

1/2(m2 + m)-indivisible. Then Sm is indivisible.

Proof. Let m ∈ ω be strictly positive and such that S2(m2+m) is 1/2(m2 + m)-
indivisible. We are going to create a metric space W with distances in [0, 1]m and
a bijection π : S2(m2+m) −→ W such that for every subspace Y of S2(m2+m), if
(Y)1/2(m2+m) includes a copy of Sm, then so does π′′Y.

Assuming that such a space W is constructed, the result is proved as follows: Ob-
serve first that W and Sm embed into each other. Indivisibility of W is consequently
equivalent to indivisibility of Sm and it is enough to show that W is indivisible.
Let k ∈ ω be strictly positive and χ : W −→ k. Then χ◦π : S2(m2+m) −→ k and by

1/2(m2 + m)-indivisibility of S2(m2+m), there is i < k such that (←−−−χ ◦ π{i})1/2(m2+m)

includes a copy of S2(m2+m). Since Sm embeds into S2(m2+m), (←−−−χ ◦ π{i})1/2(m2+m)

also includes a copy of Sm. Thus, ←−χ {i} = π′′←−−−χ ◦ π{i} includes a copy of Sm, and
therefore a copy of W.

We now turn to the construction of W. This space is obtained by modifying the
metric on S2(m2+m) to a metric d, so that W = (S2(m2+m), d) and π is simply the
identity map from S2(m2+m) to W. The metric d is defined as follows: consider the

map f : [0, 1]2(m2+m) −→ [0, 1]m defined by f(x) = l
m where l is the least integer

such that

x 6 l

(
1

m
+

1

m2 + m

)
.

Observe that f is increasing, that f(0) = 0, and that

∀α ∈ [0, 1]m ∀ε ∈ {−2,−1, 0, 1, 2} f

(
α +

ε

2(m2 + m)

)
= α.

Note also that f is subadditive: Let x, y,∈ [0, 1]2(m2+m). Assume that f(x) = l/m.
Then there is n ∈ {1, . . . , 2m + 4} such that

x =
l − 1

m
+

l − 1

m2 + m
+

n

2(m2 + m)
.

Similarly, there are l′ ∈ {0, . . . , m} and n′ ∈ {1, . . . , 2m + 4} such that

y =
l′ − 1

m
+

l′ − 1

m2 + m
+

n′

2(m2 + m)
.

So

x + y = (l + l′)

(
1

m
+

1

m2 + m

)
− 2

(
1

m
+

1

m2 + m

)
+

n + n′

2(m2 + m)

= (l + l′)

(
1

m
+

1

m2 + m

)
+

n− (2m + 4) + n′ − (2m + 4)

2(m2 + m)

6 (l + l′)

(
1

m
+

1

m2 + m

)
.

Therefore,

f(x + y) 6
l + l′

m
=

l

m
+

l′

m
= f(x) + f(y).

9



It follows that the map d := f ◦ dS2(m2+m) is a metric taking values in [0, 1]m.
Now to show that d is as required, it suffices to prove that for every subspace Y

of S2(m2+m), if (Y)1/2(m2+m) includes a copy of Sm, then π′′Y includes a copy
of Sm. So let Y be a subspace of S2(m2+m) such that (Y)1/2(m2+m) includes a

copy S̃m of Sm. Then for every x ∈ S̃m, there is an element ϕ(x) ∈ Y such that

dS2(m2+m)(x, ϕ(x)) 6 1/2(m2 + m). Thus,

∀x 6= y ∈ S̃m

∣∣∣dS2(m2+m)(ϕ(x), ϕ(y)) − dS2(m2+m)(x, y)
∣∣∣ 6

1

m2 + m
.

Since dS2(m2+m)(x, y) ∈ [0, 1]m,

f
(
dS2(m2+m)(ϕ(x), ϕ(y))

)
= dS2(m2+m)(x, y).

That is

d(π(ϕ(x)), π(ϕ(y))) = dS2(m2+m)(x, y).

Thus, π′′ran(ϕ) ⊂ π′′Y is isometric to Sm. �

2.5. From indivisibility of Sm to oscillation stability of S. We are now ready
to close the loop of implications of Theorem 4. In what follows, we show that if Sm

is indivisible for every strictly positive m ∈ ω, then S is oscillation stable. This is
achieved thanks to the following result:

Proposition 5. Assume that for some strictly positive m ∈ ω, Sm is indivisible.
Then S is 1/m-indivisible.

Proof. This is obtained by showing that for every strictly positive m ∈ ω, there

is an isometric copy S∗
m of Sm inside S such that for every S̃m ⊂ S∗

m isometric

to Sm, (S̃m)1/m includes an isometric copy of S. This property indeed suffices to
prove Proposition 5: Let χ : S −→ k for some strictly positive k ∈ ω. χ induces a

k-coloring of the copy S∗
m. By indivisibility of Sm, find i < k and S̃m ⊂ S∗

m such

that χ is constant on S̃m with value i. But then, in S, (S̃m)1/m includes a copy of

S. So (←−χ {i})1/m includes a copy of S.
We now turn to the construction of S∗

m. The core of the proof is contained in
Lemma 2 which we present now. Fix an enumeration {yn : n ∈ ω} of SQ. Also,
keeping the notation introduced in the proof of Proposition 3, let Xm be the metric
space (SQ,

⌈
dSQ

⌉
m

). The underlying set of Xm is really {yn : n ∈ ω} but to avoid
confusion, we write it {xn : n ∈ ω}, being understood that for every n ∈ ω, xn = yn.
On the other hand, remember that Sm and Xm embed isometrically into each other.

Lemma 2. There is a countable metric space Z with distances in [0, 1] and including
Xm such that for every strictly increasing σ : ω −→ ω such that xn 7→ xσ(n) is an
isometry, ({xσ(n) : n ∈ ω})1/m includes an isometric copy of SQ.

Assuming Lemma 2, we now show how we can construct S∗
m. Z is countable

with distances in [0, 1] so we may assume that it is a subspace of S. Now, take S∗
m

a subspace of Xm and isometric to Sm. We claim that S∗
m works: Let S̃m ⊂ S∗

m

be isometric to Sm. We first show that (S̃m)1/m includes a copy of SQ. The

enumeration {xn : n ∈ ω} induces a linear ordering < of S̃m in type ω. According

to lemma 2, it suffices to show that (S̃m, <) includes a copy of {xn : n ∈ ω}< seen
as an ordered metric space. To do that, observe that since Xm embeds isometrically
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into Sm, there is a linear ordering <∗ of Sm in type ω such that {xn : n ∈ ω}<
embeds into (Sm, <∗) as ordered metric space. Therefore, it is enough to show:

Claim. (S̃m, <) includes a copy of (Sm, <∗).

Proof. Write

(Sm, <∗) = {sn : n ∈ ω}<∗

(S̃m, <) = {tn : n ∈ ω}<.

Let σ(0) = 0. If σ(0) < · · · < σ(n) are chosen such that sk 7→ tσ(k) is a finite
isometry, observe that the following set is infinite

{i ∈ ω : ∀k 6 n dSm(tσ(k), ti) = dSm(sk, sn+1)}.

Therefore, simply take σ(n + 1) in that set and larger than σ(n). �

Observe that since the metric completion of SQ is S, the closure of (S̃m)1/m in

S includes a copy of S. Hence we are done since (S̃m)1/m is closed in S. �

We now turn to the proof of lemma 2. The strategy is first to provide the set Z
where the required metric space Z is supposed to be based on, and then to argue
that the distance dZ can be obtained (lemmas 3 to 7). To construct Z, proceed as
follows: For t ⊂ ω, write t as the strictly increasing enumeration of its elements:

t = {ti : i ∈ |t|}<.

Now, let T be the set of all finite nonempty subsets t of ω such that xn 7→ xtn
is

an isometry between {xn : n ∈ |t|} and {xtn
: n ∈ |t|}. This set T is a tree when

ordered by end-extension. Let

Z = Xm

.
∪ T .

For z ∈ Z, define

π(z) =

{
z if z ∈ Xm.

xmax z if z ∈ T .

Now, consider an edge-labelled graph structure on Z by defining δ with domain
dom(δ) ⊂ Z × Z and range ran(δ) ⊂ [0, 1] as follows:

• If s, t ∈ T , then (s, t) ∈ dom(δ) iff s and t are <T comparable. In this
case,

δ(s, t) = dSQ(y|s|−1, y|t|−1).

• If x, y ∈ Xm, then (x, y) is always in dom(δ) and

δ(x, y) = dXm(x, y).

• If t ∈ T and x ∈ Xm, then (x, s) and (s, x) are in dom(δ) iff x = π(t). In
this case

δ(x, s) = δ(s, x) =
1

m
.

For a branch b of T and i ∈ ω, let b(i) be the unique element of b with height i
in T . Observe that b(i) is a i + 1-element subset of ω. Observe also that for every
i, j ∈ ω, b(i) is connected to π(b(i)) and b(j), and

(i) δ(b(i), π(b(i)) = 1/m,
(ii) δ(b(i), b(j)) = dSQ(yi, yj),
(iii) δ(π(b(i)), π(b(j))) is equal to any of the following quantities:

dXm(xmax b(i), xmax b(j)) = dXm(xi, xj) = ⌈dSQ(yi, yj)⌉m.
11



In particular, if b is a branch of T , then δ induces a metric on b and the map from
SQ to b mapping yi to b(i) is a surjective isometry. We claim that if we can show
that δ can be extended to a metric dZ on Z with distances in [0, 1], then lemma 2
will be proved. Indeed, let

X̃m = {xσ(n) : n ∈ ω} ⊂ Xm,

with σ : ω −→ ω strictly increasing and xn 7→ xσ(n) distance preserving. See ran(σ)

as a branch b of T . Then (b, dZ) = (b, δ) is isometric to SQ and

b ⊂ (π′′b)1/m = (X̃m)1/m.

Our goal now is consequently to show that δ can be extended to a metric on Z with
values in [0, 1]. Recall that for x, y ∈ Z, and n ∈ ω strictly positive, a path from x
to y of size n as is a finite sequence γ = (zi)i<n such that z0 = x, zn−1 = y and for
every i < n− 1,

(zi, zi+1) ∈ dom(δ).

For x, y in Z, P (x, y) is the set of all paths from x to y. If γ = (zi)i<n is in P (x, y),
‖γ‖ is defined as:

‖γ‖ =

n−1∑

i=0

δ(zi, zi+1).

On the other hand, ‖γ‖61 is defined as:

‖γ‖61 = min(‖γ‖, 1).

We are going to see that the required metric can be obtained with dZ defined by

dZ(x, y) = inf{‖γ‖61 : γ ∈ P (x, y)}.

Equivalently, we are going to show that for every (x, y) ∈ dom(δ), every path γ
from x to y is metric, that is:

δ(x, y) 6 ‖γ‖61 (3)

Let x, y ∈ Z. Call a path γ from x to y trivial when γ = (x, y) and irreducible when
no proper subsequence of γ is a non-trivial path from x to y. Finally, say that γ is
a cycle when (x, y) ∈ dom(δ). It should be clear that to prove that dZ works, it is
enough to show that the previous inequality (3) is true for every irreducible cycle.
Note that even though δ takes only rational values, it might not be the case for dZ.
We now turn to the study of the irreducible cycles in Z.

Lemma 3. Let x, y ∈ T . Assume that x and y are not <T -comparable. Let γ be
an irreducible path from x to y in T . Then there is z ∈ T such that z <T x, z <T y
and γ = (x, z, y).

Proof. Write γ = (zi)i<n+1. z1 is connected to x so z1 is <T -comparable with
x. We claim that z1 <T x : Otherwise, x <T z1 and every element of T which
is <T -comparable with z1 is also <T -comparable with x. In particular, z2 is <T -
comparable with x, a contradiction since z2 and x are not connected. We now claim
that z1 <T y. Indeed, observe that z1 <T z2 : Otherwise, z2 <T z1 <T x so z2 <T x
contradicting irreducibility. Now, every element of T which is <T -comparable with
z2 is also <T -comparable with z1, so no further element can be added to the path.
Hence z2 = y and we can take z1 = z. �

Lemma 4. Every non-trivial irreducible cycle in Xm has size 3.

12



Proof. Obvious since δ induces the metric dXm on Xm. �

Lemma 5. Every non-trivial irreducible cycle in T has size 3 and is included in a
branch.

Proof. Let c = (zi)i<n be a non-trivial irreducible cycle in T . We may assume
that z0 <T zn−1. Now, observe that every element of T comparable with z0 is also
comparable with zn−1. In particular, z1 is such an element. It follows that n = 3
and that z0, z1, z2 are in a same branch. �

Lemma 6. Every irreducible cycle in Z intersecting both Xm and T is supported
by a set whose form is one of the following ones.

Figure 1. Irreducible cycles

Proof. Let C be a set supporting an irreducible cycle c intersecting both Xm and
T . It should be clear that |C ∩Xm| 6 2: Otherwise since any two points in Xm are
connected, c would admit a strict subcycle, contradicting irreducibility.

If C ∩Xm has size 1, let z0 be its unique element. In c, z0 is connected to two
elements which we denote z1 and z3. Note that z1, z3 ∈ T so π(z1) = π(z3) = z0.
Since elements in T which are connected never project on a same point, it follows
that z1, z3 are <T -incomparable. Now, c induces an irreducible path from z1 to z3

in T so from lemma 3, there is z2 ∈ C such that z2 <T z1, z2 <T z3, and we are in
case 2.

Assume now that C ∩ Xm = {z0, z4}. Then there are z1, z3 ∈ C ∩ T such that
π(z1) = z0 and π(z3) = z4. Note that since z0 6= z4, we must have z1 6= z3. Now,
C ∩T induces an irreducible path from z1 to z3 in T . By lemma 3, either z1 and z3

are compatible and in this case, we are in case 1, or z1 and z3 are <T -incomparable
and there is z2 in C ∩ T such that z2 <T z1, z2 <T z3 and we are in case 3. �

Lemma 7. Every non-trivial irreducible cycle in Z is metric.

Proof. Let c be an irreducible cycle in Z. If c is supported by Xm, then by lemma
4 c has size 3 and is metric since δ induces a metric on Xm. If c is supported by T ,
then by lemma 5 c also has size 3 and is included in a branch b of T . Since δ induces
a metric on b, c is metric. We consequently assume that c intersects both Xm and
T . According to lemma 6, c is supported by a set C whose form is covered by one
of the cases 1, 2 or 3. So to prove the present lemma, it is enough to show every
cycle obtained from a re-indexing of the cycles described in those cases is metric.
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Case 1: The required inequalities are obvious after having observed that

δ(z0, z3) = ⌈δ(z1, z2)⌉m and δ(z0, z1) = δ(z2, z3) =
1

m
.

Case 2: Notice that δ(z0, z1) = δ(z0, z3) = 1/m. So the inequalities we need to
prove are

δ(z1, z2) 6 δ(z2, z3) +
2

m
, (4)

δ(z2, z3) 6 δ(z1, z2) +
2

m
. (5)

By symmetry, it suffices to verify that (4) holds. Observe that since π(z1) =
π(z3) = z0, we must have ⌈δ(z1, z2)⌉m = ⌈δ(z2, z3)⌉m. So:

δ(z1, z2) 6 ⌈δ(z1, z2)⌉m = ⌈δ(z2, z3)⌉m 6 δ(z2, z3) +
2

m
.

Case 3: Observe that δ(z0, z1) = δ(z3, z4) = 1/m, so the inequalities we need to
prove are

δ(z1, z2) 6 δ(z2, z3) + δ(z0, z4) +
2

m
, (6)

δ(z0, z4) 6 δ(z1, z2) + δ(z2, z3) +
2

m
. (7)

For (6):

δ(z1, z2) 6 ⌈δ(z1, z2)⌉m

= δ(π(z1), π(z2))

= δ(z0, π(z2))

6 δ(z0, z4) + δ(z4, π(z2))

= δ(z0, z4) + ⌈δ(z3, z2)⌉m

6 δ(z0, z4) + δ(z2, z3) +
2

m
.

For (7): Write z1 = b(j), z3 = b′(k), z2 = b(i) = b′(i). Then z0 = π(z1) = xmax b(j)

and z4 = π(z3) = xmax b′(k). Observe also that δ(z1, z2) = dSQ(yj , yi) and that

δ(z2, z3) = dSQ(yi, yk). So:

δ(z0, z4) = dXm(xmax b(j), xmax b′(k))

6 dXm(xmax b(j), xmax b(i)) + dXm(xmax b′(i), xmax b′(k))

= dXm(xj , xi) + dXm(xi, xk)

=
⌈
dSQ(yj , yi)

⌉
m

+
⌈
dSQ(yi, yk)

⌉
m

= ⌈δ(z1, z2)⌉m + ⌈δ(z2, z3)⌉m

6 δ(z1, z2) +
1

m
+ δ(z2, z3) +

1

m

= δ(z1, z2) + δ(z2, z3) +
2

m
. �
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3. Results and bounds.

Ideally, the title of this section would have been “The Urysohn sphere is oscil-
lation stable” and we would have ended this article with the proof of one of the
different formulations of oscillation stability for S presented in Theorem 4. Unfor-
tunately, so far, our numerous attempts to reach this goal did not succeed1. This
is why this part is entitled “bounds”. Instead, what we will be presenting now will
show how far we were able to push in the different directions suggested by Theorem
4. We start with a summary about the indivisibility properties of the spaces Sm.

3.1. Are the Sm’s indivisible? Of course, when m = 1, the space Sm is indivisi-
ble in virtue of the most elementary pigeonhole principle on ω. The first non-trivial
case is consequently for m = 2. However, this case is also easy to solve after having
noticed that S2 is really the Rado graph R where the distance is 1/2 between con-
nected points and 1 between non-connected distinct points. Therefore, indivisibility
for S2 is equivalent to indivisibility of R, a problem whose solution is well-known:

Proposition 6. The Rado graph R is indivisible.

The following case to consider is S3, which turns out to be another particular
case thanks to an observation made in [3]. Indeed, S3 can be encoded by the count-
able ultrahomogeneous edge-labelled graph with edges in {1/3, 1} and forbidding
the complete triangle with labels 1/3, 1/3, 1. The distance between two points con-
nected by an edge is the label of the edge while the distance between two points
which are not connected is 2/3. This fact allows to show:

Theorem (Delhommé-Laflamme-Pouzet-Sauer [3]). S3 is indivisible.

Indeed, the proof of this theorem can be deduced from the proof of the indivis-
ibility of the Kn-free ultrahomogeneous graph by El-Zahar and Sauer in [4]. We
do not write more here but the interested reader is referred to [3], section on the
indivisibility of Urysohn spaces, for more details.

The very first substantial case consequently shows up for m = 4. Unfortunately,
it appears to be so substantial that so far, we still do not know whether this space
is indivisible or not. Nevertheless, we are able to establish that if this space is not
indivisible, then S4 is quite exceptional, in a sense that we precise now. We already
mentioned that [3] contains an analysis of indivisibility in the realm of countable
metric spaces. It turns out that this study also led its authors to examine the
conditions under which a set of strictly positive reals can be interpreted as the
distance set of a countable universal and ultrahomogeneous metric space:

Definition (4-values condition). Let S ⊂]0, +∞[. S satisfies the 4-values condition
when for every s0, s1, s

′
0, s

′
1 ∈ S, if there is t ∈ S such that:

|s0 − s1| 6 t 6 s0 + s1 and |s′0 − s′1| 6 t 6 s′0 + s′1,

then there is u ∈ S such that:

|s0 − s′0| 6 u 6 s0 + s′0 and |s1 − s′1| 6 u 6 s1 + s′1.

Theorem (Delhommé-Laflamme-Pouzet-Sauer [3]). Let S ⊂]0, +∞[. TFAE:

1The goal has now been achieved by N. W. Sauer and the second author
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(i) There is a countable ultrahomogeneous metric space US with distances
in S into which every countable metric space with distances in S embeds
isometrically.

(ii) S satisfies the 4-values condition.

As detailed in [3], the 4-values condition covers a wide variety of examples. For
our purposes, the 4-values condition is relevant because it allows to establish a list
of spaces such that any space US with S finite is in some sense isomorphic to some
space in the list. In particular, it allows to set up a finite list of spaces exhausting
all the spaces US with S 6 4. More precisely, for finite subsets S = {s0, . . . , sm}<,
T = {t0, . . . , tn}< of ]0, +∞[, define S ∼ T when m = n and:

∀i, j, k < m, si 6 sj + sk ↔ ti 6 tj + tk.

Observe that when S ∼ T , S satisfies the 4-value condition iff T does and in this
case, S and T essentially provide the same metric spaces as it is possible to have
US and UT supported by ω with the metrics dUS and dUT being defined such that:

∀x, y ∈ ω, dUS (x, y) = si ↔ dUT (x, y) = ti.

Now, clearly, for a given cardinality m there are only finitely many ∼-classes, so we
can find a finite collection Sm of finite subsets of ]0,∞[ of size m such that for every
T of size m satisfying the 4-value condition, there is S ∈ Sm such that T ∼ S. For
m 6 3, examples of such lists can be easily provided. For instance, one may take:

S1 = {{1}}

S2 = {{1, 2}, {1, 3}}

S3 = {{2, 3, 4}, {1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 6}, {1, 3, 7}}.

Notice that in those lists, the set [0, 1]m is represented by the set {1, 2, . . . , m}. For
m = 4, a long and tedious checking procedure of the 4-values condition allows to
find Sm but it then contains more than 20 elements so there is no point writing
them all here. Still, it turns out that in most of the cases, we are able to solve the
indivisibility problem for the space US . Our result can be stated as follows:

Theorem 5. Let S be finite subset of ]0, +∞[ of size |S| 6 4 and satisfying the
4-values condition. Assume that S ≁ {1, 2, 3, 4}. Then US is indivisible.

Due to the number of cases to consider, we do not prove this theorem here but
simply mention that when the proofs are not elementary, three essential ingredients
come into play. The first one is the usual infinite Ramsey theorem, due to Ramsey.
The second one is due to El-Zahar and Sauer and was already mentioned when
dealing with S3. As for the last one, it is due to Milliken (For more on this theorem
and its applications, see [14]).

The case S = {1, 2, 3, 4} is consequently the only case with S = 4 for which
the indivisibility problem remains unsolved. In the present case, it is a bit ironical
as {1, 2, 3, 4} is precisely the distance set in which we were interested. So far, the
reason for which S4 stands apart is still unclear. However, it might be that it is
actually the very first case were metricity comes into play. Indeed, for all the other
sets S with |S| 6 4, the space US can be coded as an object where the metric
aspect does not appear and this is what makes Ramsey, Milliken and El-Zahar -
Sauer theorems helpful. Our feeling is consequently that solving the indivisibility
problem for S4 requires a new approach. Still, we have to admit that what we are
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hoping for is a positive answer and that Theorem 5 is undoubtedly responsible for
that.

3.2. 1/m-indivisibility of the Sm’s. We now turn to 1/m-indivisibility of the
spaces Sm. In Theorem 5, we showed how an exact indivisibility result transfers to
an approximate one. It turns out that a slight modification of the proof allows to
show:

Proposition 7. Assume that for some strictly positive m ∈ ω, Sm is indivisible.
Then S3m is 2/3m-indivisible.

Proof. To prove this theorem, it suffices to show that there is an isometric copy

S∗∗
m of Sm inside S3m such that for every S̃m ⊂ S∗∗

m isometric to Sm, (S̃m)2/3m

includes an isometric copy of S3m. The proof is essentially the same as the proof of
Proposition 5 where S∗

m is constructed except that instead of the metric space Xm =
(SQ,

⌈
dSQ

⌉
m

), one works with (S3m,
⌈
dSQ

⌉
m

). The fact that the approximation can

be made up to 2/3m and not 1/m comes from the fact that for α ∈ [0, 1]3m, α 6

⌈α⌉m 6 α + 2/3m whereas if α ∈ [0, 1]∩Q, one only has α 6 ⌈α⌉m < α + 1/m. �

Thus:

Theorem 6. For every m 6 9, Sm is 2/m-indivisible.

3.3. Bounds. We now turn to the computation of values ε with respect to which
S is ε-indivisible.

Theorem (Theorem 2). S is 1/3-indivisible.

Note also that if at some point an approximate indivisibility result for Sm showed
up independently of an exact one, we would still be able to compute a bound for
S:

Proposition 8. Suppose that for some strictly positive integer m, Sm is 1/m-
indivisible. Then S is ε-indivisible for every ε > 3/2m.

Proof. Let ε > 3/2m. Consider S∗
m constructed in Proposition 5. Now, let k ∈ ω

be strictly positive and χ : S −→ k. χ induces a coloring of S∗
m and Sm being

1/m-indivisible, there are i < k and S̃m ⊂ S∗
m isometric to Sm such that S̃m ⊂

(←−χ {i})1/m. By construction, (S̃m)1/2m includes an isometric copy of S. Now,

((←−χ {i})1/m)1/2m ⊂ (←−χ {i})3/2m ⊂ (←−χ {i})ε.

It follows that (←−χ {i})ε includes an isometric copy of S. �

4. Concluding remarks and open problems.

The equivalence provided by Theorem 4 suggests several lines of future investi-
gation. Apparently, here is the first and most reasonable question to consider:

Question. Is S4 indivisible? More generally, is Sm indivisible for every strictly
positive integer m?

We finish with two results which might be useful for that purpose. The first one
makes a reference to the space SQ:
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Proposition 9. Let m ∈ ω be strictly positive. Assume that for every strictly

positive k ∈ ω and χ : SQ −→ k, there is a copy S̃m of Sm in SQ on which χ is
constant. Then Sm is indivisible.

Proof. Once again, we work with Xm = (SQ,
⌈
dSQ

⌉
m

) and the identity map πm :
SQ −→ Sm. Think of Xm as a subspace of Sm. Now, let k ∈ ω be strictly positive
and χ : Sm −→ k. Then χ induces a coloring of Xm, and therefore a coloring χ ◦ π

of SQ. By hypothesis, there is a copy S̃m of Sm in SQ on which χ ◦ π is constant

with value i < k. Then π′′S̃m ⊂
←−χ {i}. The result follows since π′′S̃m is isometric

to Sm. �

The second result provides a space whose indivisibility is equivalent to the in-
divisibility of Sm. Let P denote the Cantor space, that is the topological product
space 2ω. Let C(P ) denote the set of all continuous maps from P to R equipped
with the ‖.‖∞ norm. Since the work of Banach and Mazur, it is known that C(P ) is
a universal separable metric space. Actually, Sierpinski’s proof of that fact allows
to show the following result. For m ∈ ω strictly positive, let Cm denote the space
of all continuous maps from P to [0, 1]m equipped with the distance induced by
‖.‖∞.

Proposition 10. Cm is a countable metric space and is universal for the class of
all countable metric spaces with distances in [0, 1]m.

It follows that Sm is indivisible iff Cm is. Cm being a much more concrete object
than Sm, studying its indivisibility might be a alternative to solve the indivisibility
problem for Sm.

5. Appendix - Proof of Theorem 1.

Unlike the rest of this paper, this section does not specifically deal with the
oscillation stability for S and is simply included here for the sake of completeness.
Our purpose is to prove Theorem 1 by constructing the required subspace of Y.
Let X0 ⊂ Y be countable and dense. Then, assuming that Xn ⊂ Y countable has
been constructed, get Xn+1 as follows: Consider F the set of all finite subspaces
of Xn. For F ∈ F , consider the set En(F) of all Katĕtov maps f over F with
values in the set {dY(x, y) : x, y ∈ Xn} and such that F ∪ {f} embeds into Y.
Observe that Xn being countable, so are {dY(x, y) : x, y ∈ Xn} and En(F). Then,

for F ∈ F , f ∈ En(F), fix yf
F
∈ Y realizing f over F. Finally, let Xn+1 be

the subspace of Y with underlying set Xn ∪ {y
f
F : F ∈ F , f ∈ En(F)}. After

ω steps, set X =
⋃

n∈ω Xn. X is clearly a countable dense subspace of Y, and
it is ultrahomogeneous thanks to the equivalent formulation of ultrahomogeneity
provided in lemma 1.

A second proof involves logical methods. Fix a countable elementary submodel
M ≺ Hθ for some large enough θ and such that Y, dY ∈ M . Let X = M ∩ Y.
We claim that X has the required property. First, observe that X is dense inside
Y since by the elementarity of M , there is a countable D ∈ M (and therefore
D ⊂ M) which is a dense subset of Y. For ultrahomogeneity, let F ⊂ X be finite
and let f be a Katĕtov map over F such that F ∪ {f} embeds into X. Observe

that f ∈ M . Indeed, dom(f) ∈ M . On the other hand, let F̃ ∪ {y} ⊂ X be
isometric to F ∪ {f} via an isometry ϕ. Then for every x ∈ F, dY(ϕ(x), y) ∈ M .
But dY(ϕ(x), y) = f(x). Thus, ran(f) ∈ M . It follows that f is an element of
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M . Now, by ultrahomogeneity of Y, there is y in Y realizing f over F. So by
elementarity, there is x in X realizing f over F.
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