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Catherine Recanati (catherine.recanati@lipn.univ-paris13.fr)
L.IP.N, UMR 7030 of the CNRS, Paris 13 University,
av. J.B. Clément, 93430, Villetaneuse, FRANCE

Abstract

Diagrammatic, analogical or iconic representations are often
contrasted with linguistic or logical representations, in which
the shape of the symbols is arbitrary. Although commonly
used, diagrams have long suffered from their reputation as
mere tools, as mere support for intuition. We list here the
main characteristics of diagrammatic inferential systems, and
defend the idea that heterogeneous representation systems,
including both linguistic and diagrammatic representations,
offer real computational perspectives in knowledge modeling
and reasoning.

Introduction

With the advent of printing, textual transmission became
dominant in communication. Today, partly because of the
development of technologies to create, reproduce and
transmit images, figures are again in the spotlight. But their
increased use in communication is also due to the relatively
recent discovery that graphical representations also can
convey abstract meanings, by means of visual metaphors.
Indeed the use of space makes it possible to capitalize on the
considerable human abilities to make spatial inferences.
Although commonly used in Science (as in Physics,
Mathematics and Logic) diagrammatic representations have
long suffered from their reputation as mere tools in the
search for solutions, as mere support for intuition. This
general prejudice against diagrams has been strongly
denounced in the 90's by Barwise and Etchemendy, who
defended the idea that a general theory of valid inferences
can be developed independently of the modes of
representations (as implicit in Peirce). In fact, diagrams can
also be considered as structured syntactic objects, which can
be used for correct reasoning in a formal perspective. Their
work yields to the rigorous demonstration, done by Sun-Joo
Shin in her PhD thesis, that diagrammatic systems can be
formally proved as being sound and complete’ (Shin, 1994).
Historically, the use of circles to illustrate relations
between classes has often been attributed to Euler (1768),
but he was in fact preceded by others (as by Leibniz), one
century earlier. But these circles were unable to express all
the relations between two classes on the same diagram, and
this reduced considerably their expressive and deductive
power. In the nineteenth century, Venn found a way of
correcting this lack. Twenty years later, Peirce added to his
system the possibility to express existential assertions

! The only preceding attempt in this direction is due to J. Sowa in
1984 (Sowa, 1984).

(marked by a cross) and disjunctions (by means of lines
joining crosses and small circles) — small circles being used
to indicate the negation of existence in empty areas, instead
of hatching as in Venn diagrams (Peirce, 1933)

A B

Figure 1: All A are B and some A are B (Peirce)

The idea of transformation rules on diagrams is also due
to Peirce. But the question of the validity of these rules
required a supplementary proof, which S. Shin provided. To
do so, Shin provided graphical systems with a syntax
(defining the primitive graphical objects and the well-
formed diagrams) and a semantics (here representing sets of
objects with areas) as in modern logic systems. Her two
systems, based on Venn-Peirce diagrams, allow the
resolution of syllogisms constituted by assertions on sets by
means of transformation rules on diagrams (using the notion
of equivalence between diagrams, and allowing the
derivation of one diagram from others, with deletion and
unification graphic rules).

Diagrammatic systems properties

We list here the main characteristics of diagrammatic
systems discussed in the literature. Note that these are
neither necessary nor sufficient. For details, see (Recanati,
2005).

A structural homomorphism

Diagrammatic and linguistic representation systems may
have several degrees of homomorphism between their
representations and the situation they represent. Barwise and
Etchemendy have emphasized that the main properties of
diagrammatic systems are derived from the existence of a
syntactical homomorphism such that, usually:

1. Objects are typically represented by icon tokens. It is
often the case that each object is represented by a
unique icon token and distinct tokens represent
distinct objects.

2. There is a mapping @from icon types to properties of
objects.

3. The mapping @preserves structure. For example, one
would expect that:



a) If one icon type is a subtype of another (as in the
case of shaded squares and squares, for example),
then there is a corresponding subproperty relation
among properties they represent.

b) If two icon types are incompatible (say squares and
circles), then the properties they represent should be
incompatible.

¢) The converses of (a) and (b) frequently hold as well.

4. Certain relations among objects are represented by
relations among icon tokens, with the same kinds of
conditions as in (3a)-(3¢).

5. Higher-order properties of relations among objects
(like transitivity, reflexivity and the like) are
reflected by the same properties of relations among
icon tokens.

6. Every possibility (involving represented objects,
properties, and relations) is representable. That is,
there are no possible situations that are represented
as impossible.

7. Every representation indicates a genuine possibility.
(Barwise & Etchemendy, 1995)

But in many cases, diagrammatic system properties seem to
be derived from the property of closure under constraints.

Closure under constraints

This is the most paradigmatic property of diagrammatic
systems (first isolated by B&E). In such systems, the
representations exhibit most of the previously cited
characteristics. We reformulate this property as follows:

A diagrammatic system of representation is closed under
constraints 1f, and only if, there exists a syntactical
homomorphism requiring that all logical consequences of
the represented situation be explicit in the representation.

Suppose you have to seat three people, Loana, Thierry
and Claire, on aligned chairs. Knowing that Thierry is on
the left of Loana, and Loana on the left of Claire, you can
represent this situation diagrammatically by using three
symbolic letters that you will place in accordance with these
two hypotheses as in:

T L C

Conversely, in a linguistic representation system, you will
write:

T on-the-left-of L
L on the-left-of C

The consequence of these two hypotheses, namely, that T
is on the left of C, is explicit in the diagrammatic case,
while it requires an inference mechanism (and a rule of
transitivity) to be derived in the linguistic one.

Duality of linguistic and diagrammatic reasoning The
preceding example illustrates the deep duality between
linguistic and diagrammatic modes of reasoning. Linguistic
(or ftraditional logical) reasoning requires (1) the
representation of initial facts, (2) an explicit representation
of abstract properties (or relations between dimensions) of
the objects, and (3) a computational mechanism linking the
two sources of information to establish the validity of a non-

explicit consequence. To the opposite, diagrammatic
reasoning (in closed under constraints systems) do not
require the explicit representation of abstract properties,
because these properties arve automatically taken into
account by syntactic constraints on the representation itself.
They merely need the representation of facts, and to
establish the validity of a consequence, the representations
have only to be inspected to check whether the new fact is
or not represented there. This makes these systems
computationally very efficient?.

Easy treatment of conjunction As just mentioned, the
facts are then simply added within a (global) representation
and their consequences automatically follow.

Difficulties with disjunction Diagrammatic representations
lead frequently to consideration of alternatives, because
self-contradictory situations cannot be represented on the
same diagram’.

Contradictions cannot be represented and each
representation corresponds to a genuine situation To
illustrate the last points let's take an example from B&E:
« You are to seat four people, A, B, C and D in a row of five
chairs. A and C are to flank the empty chair. C must be
closer to the center than D, who is to sit next to B. From this
information, show that the empty chair is not in the middle
or on either end. Can you tell who is to be seated on the two
ends? » (Barwise et Etchemendy, 1990).

A diagrammatic representation of a situation may consist
in aligned letters (as in our first example), a cross to indicate
the empty chair, and dashes for non-attributed chairs. Then,
the first hypothesis requires distinguishing between three
disjunctive cases:

ILAxC-- 2 -AxC- 3 --AxC
The second hypothesis eliminates case 3, and the third (D
next to B) case 2. (These cases are suppressed because B or
D cannot be added to the representation). Then, case 1 yields
to the two final possibilities :

1.1.AxCBD 12.AxCDB

Specificity and limited abstraction

Keith Stenning and Jon Oberlander (1995) have introduced
three classes of representational systems: the MARS
(Minimal Abstraction Representational Systems), the LARS
(Limited Abstraction Representational Systems) and the
UARS (Unlimited Abstraction Representational Systems).

2 Insofar as the inspection procedures are not too costly.

? We have seen that Peirce diagrams enabled the representation of
disjunctive cases on the same diagram. Nevertheless, the efficiency
may be partly lost with disjunction or second order relation (as
with implication). This is the case with the Venn-II diagrams
system developed by Shin, which supports disjunctions but
requires more complex diagrams. In this system, the simple
inspection of a representation to check a property is not always
possible, and it may require extra (graphical) computation, as in
the linguistic case.



They argue that this hierarchy of representational systems is
analogous to that of languages isolated by Chomsky, and
they claim that most diagrammatic representation systems
are LARS.

MARS, LARS and UARS A MARS is a system in which a
representation corresponds to a unique model of the world
under the considered interpretation. For instance, a table of
0 and 1, representing the values of unary predicates of
objects in a world W, will be a minimal abstraction
representation, if each cell of the table is occupied by O or 1,
and nothing else. MARS have no abstraction capacity and
each new dimension brings as much alternative worlds as
the number of possible values in this dimension.

But you can augment the number of models captured by a
MARS by introducing new symbols that allow abstracting
on a certain dimension of the representation. For instance, in
the preceding table, you can allow empty cells. Such
systems can quantify massively on possible models, but
cannot specify arbitrarily complex dependences between the
specified dimensions. This is why S&O called them LARS.
The abstraction is performed over models that differ on the
values of objects among their dimensions, but not on the
nature of relations or constraints that may exist between
these dimensions. Only linguistic symbols, added to a
representation, could allow the description of arbitrarily fine
dependences between dimensions. Thus, for S&O, a system
is a UARS, if it expresses dependences, inside a
representation, with equations or others, or outside a
representation, with linguistic assertions on the «keys»
defining the representation itself.  Diagrammatic
representations thus differ from linguistic ones by a limited
abstraction power, which augment their computational
efficiency.

Determined character and specificity S&O identify the
restricted capacity of diagrammatic systems with a property
called specificity, which requires information of a certain
kind to be specified in all interpretable representation. Perry
and Macken have opposed to this too strong notion (= the
mandatory specification of values of properties other than
the one you try to represent) the notion of determined
character (in the sense of Berkeley) — only what is really
necessary for diagrammatic representations (Perry &
Macken, 1996).

Berkeley's notion of a determined character is derived
from the fact that it is not possible to represent an object as
having a certain property, without representing at the same
time a specified value for this property. Thus, I cannot
represent a triangle on a mathematical figure, without
ending with a particular triangle. As well, it is not possible
to represent a colored object on a drawing without
specifying its color, but I can perfectly say, « this object has
an interesting color », without specifying which one®. But

* The analogical/digital distinction is also based for Dretske on a
notion of specificity (Dretske, 1981, p.137). For him, every signal
transmitting information necessarily carries this information under
two aspects: an analogical form and a digital form. The analogical

for P&M, the closure under constraints of B&E does not
require the specificity of S&O, but another property, which
they call localization.

Localization and perceptual inferences

J. Larkin and H. Simon have identified three advantages of
diagrams on verbal descriptions for solving problems:

» Diagrams can group together all information that is
used together, thus avoiding large amounts of search for
the elements needed to make a problem-solving
inference.

» Diagrams typically use location to group information
about a single element, avoiding the need to match
symbolic labels.

» Diagrams automatically support a large number of
perceptual inferences, which are extremely easy for
humans. (Larkin & Simon, 1987)

The first two properties are not clearly distinguished in the
second point of L&S. The first is about what we call logical
localization, and (2) refers both to logical localization and to
what seems more distinctive of diagrammatic systems, and
that we prefer to call spatial localization.

(Logical) localization (or unique token constraint) is the
property of using only one token of a symbol to represent an
object. This property disappears generally when you use a
typed system. The omnipresence of representation of the
same type designating the same object is thus observed in
human language, where references to an object can be
spread out everywhere in a document, so that information is
not « localized » (Perry et Macken, 1996). For P&M, this
additional character is the one required to give
diagrammatic systems the closure under constraints
property, when combined with iconicity and a constraint and
systematic homomorphism.

Spatial localization consists in using « places » or « loci»
of a geometrically structured space (usually of dimension 2),
to encode several features (as color, texture, forms, etc, are
in images). The abundance of visual interferences of these
encoded dimensions allows defining relations between
crossing dimensions, which can be detected for free by our
perceptual abilities’.

Reducing the number of dimensions The encoding evoked
here may lead to a reduction in the number of dimensions,
and similar techniques (using maps or charts) are exploited
today for this purpose in data mining.

Symmetrical avguments The frequency of symmetrical
arguments in diagrammatic reasoning, which has been noted
in the literature, may obviously come from spatial
localization (for instance, there was an implicit symmetrical
argument in our chairs problem). But we believe this is not a

form always contains an additional specificity relative to the
information properly conveyed by the digital form.

’ The logician Jean Nicod, who developed cognitive models of
euclidian spaces based on similarity relations, has analyzed these
cognitive mechanisms with great subtlety.



specific feature of diagrammatic reasoning, since these
arguments also appear in linguistic cases.

Iconicity

For Macken, Perry, and Cathy Hass (Macken et alii, 1993),
this fundamental property allows representations with
Richly Grounded Meaning (RGM). A RGM is a meaning
whose relation to form is not arbitrary. This may come from
several factors binding the form of the symbol to its
meaning. An iconic sign may have a Readily Inferable
Meaning RIM), an Easily Remembered Meaning (ERM), or
an Internally Modifiable Meaning (IMM). Road signs
provide numerous examples of ERM and RIM (for instance,
signposting bends). There also are in musical scores many
examples of symbols having a RIM coming from their
analogical character (as a crescendo situated under the
stave).

Iconicity has been only very partially analyzed until now.
We are convinced that it must be related to syntactical
homomorphism because we believe that the main distinction
between linguistic (or symbolic) representation systems and
analogical representation systems (as diagrammatic
systems) must be characterized in terms of the power of the
meta-language required to provide the semantics of the
system. In the analogical case, the meta-language requires
reference to syntactical properties of the object language,
while in the symbolic case, this is not obligatory. Let's take
the example of Thierry, Claire and Loana, who are
represented as « ordered » in the diagrammatic case. A
minimal difference, but an essential one, between the two
types of representations is the following:

@ left-of (a, b) & left-of (b, ¢)
and D ordered ([ a, b, c]) (orjust[a, b,c])

There is an additional syntactical complexity for (II)
which prevents its meaning, contrary to that of (I), from
being described as a function of one argument of its
predicate’s meaning. Indeed, you can easily assign a
meaning to the semantic equation:

[left-of (O, D J=Mleft-of f (IO T, IO 1)
while you cannot write anything else but:

[ordered ([a, b, c]) ]| = [Jordered ] ([ [a,b,<c] T ).
which implies giving meaning, at the meta-language level,
to a configuration of terms (the list figuring between simple
square brackets). Therefore, the semantic descriptive meta-
language must offer possibilities of syntactical structuring
of data similar to the ones figuring in the representation
language, because it will sometimes be necessary to assign
them a meaning. This is not to say that all syntactical
nuances of the representational system must be reflected in
the interpretation system, because not all iconic
representation features are interpreted in a diagrammatic
representation. As well, syntactical structuring is not always
necessary for an iconic feature of a symbol to be exploited
(as with the use of bold to indicate the focus on one
element).

Nevertheless, this shows that semantic compositionality
relies on syntactic considerations, which leads to this

interesting question: which syntax do we need (at the meta-
language level) to describe human language?

Heterogeneous systems

The preceding section underlined the very interesting
properties of diagrammatic inferential systems, but the
request of a unique syntactical homomorphism is obviously
restricting. Nevertheless, this shortcoming is eliminated
from heterogeneous representation systems (HRS), which
have the attractive feature of being able to benefit of
opposite properties of logical and analogical systems.

Computational perspectives

Against all expectations, HRS may lead to amazing results
in the domain of computational complexity. Diagrammatic
systems have the fantastic property of bypassing
computation, and the possibility of switching from one
system to another opens up new research perspectives. The
paradox is that a given demonstration may be limited by a
minimal cost in any two systems, and still be less costly in a
hybrid system binding the two. There is nothing sophistic
here, because a heterogeneous system doesn't need a global
language to bind its subsystems.

P1 (cost) Pl (cost)
1 8
P2 | P2
2 1 / 2
P3 |// P3
7 1
(total cost 10) (total cost 11)

Figure 2: Minimal cost (fotal 7) of a diagonal proof

No doubt the supporters of traditional logic are ready to
concede that deductive properties can be extended to non-
linguistic representations in an HRS, but they may still be
convinced that the final articulation of these subsystems
requires a traditional intermediate language, in which any
operation would have a cost, to be correctly based. But the
articulation of different subsystems of representation in a
complex representational system may be based simply on
the fact that they denote the same objects in the world.
Thus, two subsystems may denote different properties of
objects, and what can be expressed in one subsystem need
not be expressed in another, some information may
nevertheless be transferred from one system to another, on
the basis of safe correspondences, thus endowing the global
system with superior inferential capacities. To underline this
attractive fact, B&E gave a theoretical justification of two
main algorithms implemented in Hyperproof based on

6 Hyperproof is an interactive software, designed to teach logic; a
world of simple geometrical forms of various sizes, represented on
the square of a checkerboard, is depicted using two formats: a logic
language, and some visual representations on the checkerboard.
The user can check the validity of new sentences, given these
descriptions in both formats, by making « hybrid » proofs.



purely mathematical grounds, without using any
intermediate language, lacking from their hybrid system.

Cognitive modeling

Logical formalisms are in many respects unsuited for the
description of human inferential capacities. On top of their
computational properties, HRS seem better suited for this
task. This is the case for temporal and causal relationships,
and no doubt in general, with respect to the main categories
and relations we used to combine our mental representations
and to situate ourselves in the surrounding world. This
thesis is reinforced for time and space by the abundance of
schemas found in most contemporary semantic works. Even
though this fact is not a proof of the existence of diagrams
in our mind, if they can explain the successes and failures of
human inferences, they are of great significance.

Hybrid reasoning at MasterMind

We would like to conclude this talk by an illustrative
example. The game of MasterMind’ is well suited to the
study of human reasoning, because it constrains the player
to logical reasoning, not such a frequent occasion in
everyday life. In (Recanati, 2004) we highlighted the hybrid
character of the reasoning carried out in this game, the
geometry of the grid supporting the pawns encouraging the
players to develop diagrammatic representations. We have
insufficient room here to report our observations, but we
will give the flavor of them.

For most beginners, the reasoning is fragmented and
opportunistic, and consists in partial deductions using
several types of representations. In fact, most of the
deductions are performed graphically while the model under
construction is frequently described linguistically. Each
attempt played on a row generates new interpretation
schemas and new information, but these cannot always be
combined with the preceding. Nevertheless, mental
projections of new assumptions are regulary propagated
from one row to another, to check whether or not the
considered hypotheses are contradictory.

Experienced players develop properly graphical strategies
of resolution, and project on the grid several types of
geometrical representations. The use of graphic
representations mitigates limitations in the cognitive
capacities of the player, anchoring reasoning on inexpensive
visual capacities, thus relieving verbal memory. But in
return, the visual capacities being also restricted, the form of
the diagrams used and the ordering of hypotheses are
biased. For instance, the left-to-right order of pins and
pawns, and the ease of visual translations, influence the

7 The game consists in discovering a hidden row of five colored
pawns. One player (the leader) hides a configuration of pawns. The
second player can then dispose on a grid a tentative configuration
of pawns, and the leader confirms by posting pins (on the right)
indicating how many pawn have been discovered. A white pin
means a good position and color, and a black one a misplaced
color. The rows remain visible during the game, and the player has
to find out the solution in a limited number of attempts.

choice of hypotheses to be considered first (as shown on
Figure 3).

The grid ensures the memorizing of precedmg attempts,
but is also used as geometrical support for organizing proofs
and backtracking. The reasoning begins with partial facts
discovered on some attempt, but ends up being based on an
interpretation of the first row. One frequently notes an
ordering of global reasoning based on the vertical order of
the rows, which helps the player in backtracking.

BEYYR o

Figure 3: A favourite interpretation schema

The strategy of experienced players is based on the
progressive construction of a model (very similar to the
“mental models” of Johnson-Laird) by covering a tree of
self-inclusive ordered models. They usually separate the
play in two parts: determining first the colors, and then
determining their places. In both phases of the game, they
use representations (specific arrangement of pawns), which
can be qualified as mental models. The interesting fact is
that these models, which also correspond to the LARS of
S&O, are constructed both by increasing order of specificity
and decreasing order of probability of appearance. This
makes backtracking easier and allows to converge quickly
towards the solution. To illustrate this in a prototypical
example, let's analyse the first four rows of Figure 4:

4 RGRYG 000 @@
3. RRRGG 000®
2 OOBBB

1 BBYYR oe

Figure 4: The grid at the middle of a game

The player begins on row 1 with a configuration, which is
revealed to be statistically more informative than others.
Given the answer on the right side, he considers first the
interpretation of Figure 3, i.e. that one blue is correctly
placed, one yellow misplaced, and that there is no red. (He
might take in his hand a blue and a yellow pawn to help
memorize, and note mentally that the three colors are
exhausted). We will note this “mental model” by [1B] [1Y]
(and no red) — using square brackets for the notion of
exhaustivity defined by Johnson-Laird (1983). Then, he
plays the second row, trylng new places for blue (in
anticipation of a future reasoning on places) and introducing
a new color (orange). By luck he obtains that both orange
and blue are missing. He then switches to a new model
based on a new interpretation of the first row: namely [1 Y]
IR, (and neither blue, nor orange). The third row is played
both to try new places for red and to add a new color.
Getting 4 pins as a result, the player concludes that the
colors of the solution must be yellow, red and green; then,
given that there is only one yellow, he considers [1Y] [2R]



[2G] (which seems more likely than [1Y] [3R] [1G]). He
then begins to reason on places and supposes that on the
first row, the first yellow pawn on the left is well placed
(noted [- — Y — —]). Therefore, the red in the middle of the
third row must be misplaced and the two greens must be
correctly placed, with one of the two remaining reds as well
(see the diagrammatic reasoning in Figure 5). He then
concludes that the solution in this case necessarily is
[RRY GG]; but this is found to contradict the answer on
row 3, which would then have four white pins.

3, R R F§Q GG F000: ;|

1.

le |

Figure‘S: A diagrammatic reasoning

So the player is led to backtrack and reconsider the place
of the yellow pawn on row 1. [- — =Y —|. A graphic
reasoning very similar to the preceding reveals that the first
green pawn is misplaced but that the second one is correct
([- = =Y G], with two of the reds at the beginning). The
player then tries a fourth plausible configuration, but is
unlucky. Nevertheless, [1Y] [2R] [2G] is confirmed and he
knows by experience that getting 3 white pins and 2 black
ones means that two pawns have to be exchanged to get the
solution. Note that this automatic inference is directly
activated by the pattern of pins, and the conclusion directly
expressed on the representation. He then makes another
attempt [GRR Y G] but is unlucky again. However, a
graphic comparison of common parts of rows 3, 4, and 5,
leads him to the conclusion that the two framed pawns (R
and G) on the right have to be mapped onto either two white
pins, or onto a white and a black one (see Figure 6). This
strategy is anchored on operations of pattern matching
between lines. (The strategy carried out can thus again be
called graphic or visual).

5. 0000®
4. 00000
3. 000@®

A
Y

Figure 6: The mapping of common parts

The first hypothesis yields [- — R Y G], which is
excluded by the last rows. Since a red can't be in the last
position (due to the hypothesis on the first row), the green
occupying the last position must be correctly placed, and the
red in the middle misplaced, yielding [R R G Y G], which is
revealed to be the solution.

Conclusion

The distinction between iconic and linguistic representations
has been (partially) analyzed in the literature of the nineties.
It has been demonstrated that iconic representations may be

taken as syntactical objects in valid inferential systems,
sometimes graphically rule-based. Furthermore, in most
diagrammatic systems, the consequences of initials facts are
included de facto in the representation and do not require
extra computation. Diagrammatic representations seem to
differ mainly from linguistic ones by having a more limited
power of abstraction, thereby augmenting computational
efficiency. This study also reveals that diagrammatic and
logico-linguistic representations have distinct properties,
sometimes dual and complementary. This makes their
combining in hybrid representation systems (HRS)
particularly attractive and promising. The study of such
systems opens new research perspectives in the domains of
cognitive science and natural language semantics, as well as
in complex systems simulation and artificial intelligence in
general.
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