
HAL Id: hal-00153326
https://hal.science/hal-00153326

Submitted on 16 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indonesian throughflow control of the eastern equatorial
Pacific biogeochemistry

Thomas Gorgues, Christophe E. Menkès, Olivier Aumont, Yves Dandonneau,
Gurvan Madec, Keith B. Rodgers

To cite this version:
Thomas Gorgues, Christophe E. Menkès, Olivier Aumont, Yves Dandonneau, Gurvan Madec, et al..
Indonesian throughflow control of the eastern equatorial Pacific biogeochemistry. Geophysical Re-
search Letters, 2007, 34, pp.L05609. �10.1029/2006GL028210�. �hal-00153326�

https://hal.science/hal-00153326
https://hal.archives-ouvertes.fr


Indonesian Throughflow control of the 
eastern equatorial Pacific biogeochemistry. 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

 
 
T. Gorgues (1), C. Menkes (2), O. Aumont (3), Y. Dandonneau (4), G. Madec (5), K. Rodgers 
(6) 
 

(1) LOCEAN, UPMC, Case 100, 4 place Jussieu, 75252 Paris, France. 
(2) LOCEAN, IRD, BP A5 Nouméa, 98848 Cedex, New Caledonia 
(3) LOCEAN, IRD, Centre IRD de Bretagne, BP 70, 29280 Plouzané, France. 
(4) LOCEAN, IRD, Case 100, 4 place Jussieu, 75252 Paris, France. 
(5) LOCEAN, CNRS, Case 100, 4 place Jussieu, 75252 Paris, France. 
(6) AOS Program, Princeton University, Princeton, New Jersey 08544-0710, USA. 

 
 



16 

17 
18 
19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

 

Abstract 
 
Two model simulations were performed to address the influence of the Indonesian 

Throughflow (ITF) on the biogeochemical state of the equatorial Pacific. A simulation 

where the ITF is open is compared with an experiment where it is closed, and it is first 

shown that the impacts on the physical circulation are consistent with what has been 

found in previous modelling studies. In terms of biochemistry, closing the ITF results in 

increased iron concentration at the origin of the Equatorial Undercurrent (EUC). But the 

11Sv of water otherwise transferred to the Indian Ocean remain in the equatorial Pacific, 

which result in a 30m deepening of the thermocline/ferricline in the eastern Pacific. This 

deepening decreases the iron concentration of the equatorial wind driven upwelled water 

and cancels the iron increase advected by the EUC. The iron decrease of the equatorial 

upwelled water leads to decrease primary production by 15% along the equator. 
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There is a growing consensus that low iron concentration in surface waters, in 

conjunction with grazer control of phytoplankton, imposes a first order control on the rate 

of biological production [Martin et al., 1991; Coale et al., 1995, Behrenfeld et al., 1996] 

in the eastern equatorial Pacific, with limitation by silicate concentration only imposing a 

second-order limitation [Blain et al., 1997; Nelson D., personal communication]. These 

conditions help to explain why the Equatorial Pacific is known to be a High Nutrient Low 

Chlorophyll (HNLC) region. It is known that the upwelled water from the EUC is the 

primary source of nitrate [Toggweiler and Carson, 1995] and iron [Gordon et al., 1997] 

in the eastern equatorial Pacific. 

Using data from the Western Equatorial Pacific Ocean Circulation Study (WEPOCS II) 

survey, Tsuchiya et al., [1989] showed that the majority (1/2 to 2/3) of the water feeding 

the EUC in the western Pacific is Southern Hemisphere Water (SHW). Hirst and 

Godfrey, [1993] and Rodgers et al., [1999] used model experiments to argue  that if the 

Indonesian Throughflow (ITF) transport is blocked, the Northern Hemisphere Water 

(NHW) component of the EUC will become dominant. For isopycnal density horizons 

corresponding to the EUC, NHW tends to be cooler and fresher than SHW for the mean 

circulation [Rodgers et al., 1999]. Dugdale et al., [2002] have used data from WEC88 

[Carr et al., 1992] and US JGOFS EqPac [Murray et al., 1995] to show that a similar 

asymmetry exists for nitrate and silicate concentrations, with higher concentrations for 

the NHW. Iron also exhibits an asymmetry, with higher iron concentration in the SHW 

component [Mackey et al., 2002]. Thus the treatment of the ITF boundary condition 
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could have at least for the mean state a potential impact on the biogeochemical 

concentrations within the EUC and in particular iron concentration. 

The NHW source of ITF water is comparatively fresher and colder than the SHW source 

[Ffield and Gordon, 1992]. Then, with a closed ITF, more cold NHW are supplied into 

the EUC [Rodgers et al., 1999], so that one expects the equatorial thermocline to cool. 

However, simulations with a variety of models [e.g. Hirst and Godfrey, 1993; 

Murtugudde et al., 1998; Rodgers et al., 1999; Lee et al., 2002] indicate that closing the 

ITF warms the Pacific Ocean, despite the increased proportion of colder NHW within the 

EUC.  Thus the cooling of EUC isopycnals is more than compensated by a deepening of 

the thermocline/pycnocline associated with closing the ITF [Hirst and Godfrey, 1993; 

Rodgers et al., 1999; Lee et al., 2002]. 

In this study we are interested in identifying the extent to which such compensation does 

or does not occur with biogeochemistry. It is our intention to address the sensitivity of 

equatorial biogeochemistry to the boundary condition posed by the ITF. This is relevant 

to our more general interest in the dynamical controls on the supply of nutrients to the 

upwelling region in the eastern equatorial Pacific. An additional goal is to provide an 

estimate of the bias associated with the use of a Pacific-only domain in modelling studies 

of equatorial Pacific biogeochemistry [i.e. the studies of Chai et al., 1996; Radenac et al., 

2001; Christian et al., 2002]. 

Model Description 

We use the Ocean General Circulation Model, OPA [Madec et al, 1998], in its ORCA2 

global configuration. Zonal resolution is 2°, and meridional resolution is 2×cos(latitude), 

increasing to 0.5° at the equator, and there are 31 vertical levels with a spacing of 10 
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meters in the upper 150 meters, increasing to 500 meters in the deep ocean. We have 

performed two model runs: the reference simulation with the default geometry of the 

ORCA2 grid (hereafter, REF), and a simulation where we have blocked the ITF by 

closing the Timor Strait (Fig. 1A-B), which in the model bathymetry connects the Indian 

and Pacific Oceans (this run is referred to as ITC). For both simulations the initial state is 

taken from the World Ocean Atlas 1998 (WOA98) [Antonov et al., 1998; Boyer et al., 

1998] temperature and salinity climatologies, and spun up for 100 years using 

climatological forcing fields derived from a combination of ERS1-2 and TAO (Tropical 

Atmosphere Ocean project) stresses. Heat and freshwater fluxes are calculated using bulk 

formulas, which use the climatology from the National Centers for Environmental 

Prediction reanalysis (NCEP-1) [Kalnay et al., 1996].  

The OPA output files (the 3-D velocities and vertical diffusion coefficients) are then used 

in offline mode by the food-web/biogeochemistry model, the Pelagic Interaction Scheme 

for Carbon and Ecosystem Studies (PISCES) [Aumont and Bopp, 2006]. PISCES 

describes the biogeochemical cycles of carbon and of the main nutrients (N, P, Si and Fe) 

which limit phytoplankton growth. The model has twenty-four compartments, with two 

phytoplankton size classes (nanophytoplankton and diatoms), zooplankton 

(microzooplankton and mesozooplankton) and 2 sinking particles classes (large and 

small). Phytoplankton growth is limited by external concentrations of iron, nitrate, 

silicate, ammonium, and phosphate. For all living compartments, a constant Redfield 

ratio is used for C, N and P, but the internal content in Fe and Si of phytoplankton are 

prognostically simulated as a function of the external concentrations in nutrients. Details 

on iron modelling in PISCES can be found in Aumont and Bopp, [2006]. PISCES is 

initialized by the Conkright et al., [1998] climatology and by climatologically varying 
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model fields for some of the biogeochemical components, in particular iron. The offline 

biogeochemical model is run for fifty years in order to reach an approximate 

biogeochemical steady state. 

Model Validation 

In REF, the transport through the ITF from the Pacific Ocean to the Indian Ocean is 11 

Sv. This value falls within the range of previous estimates based on field measurements 

[e.g. Godfrey, 1996; MacDonald et al., 1998] and is close to what is found with other 

physical models [e.g. Hirst and Godfrey, 1993; Lee et al., 2002]. In terms of its structure 

and amplitude, the sea surface temperature for the REF simulation is in good agreement 

with the Advanced Very High Resolution Radiometer data, although surface waters in the 

warm pool have a warm bias of approximately 0.5°C (not shown). The zonal current 

profile at the equator (not shown) resembles the TAO mooring data except near 170°W 

where the EUC is slightly underestimated.  

The range of density in figure 2C-D (σθ=23.5kg.m-3 to σθ=25.5kg.m-3) brackets the 

density of the EUC core for both simulations. The location of the vertical profiles are 

(5°S-9°S;150°E-155°E) for the SHW, (3°N-6°N;150°E-155°E) for the NHW and (1°S-

1°N;162°E-168°E) for the EUC. Modelled and observed salinity in the SHW and in the 

NHW (figure 2C and 2D) are very close arguing for a realistic representation of the water 

properties. In the model as well as in the WOA98 data, the NHW are colder and fresher 

than the SHW. The salinity profile for the EUC shows good agreement with the one from 

WOA98 data demonstrating that the ratio in the transport of water from the SHW and the 

NHW into the EUC is consistent. Indeed, with an open ITF the EUC is principally fed by 
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Meridional sections (Fig. 2E-F) at 155°E (black line in Fig. 2A) show that despite a 

weaker than observed nitrate concentration, the NHW has a stronger nitrate concentration 

than the SHW in REF simulation (Fig. 2E), which is in agreement with previously 

published result [e.g. Dugdale et al., 2002]. Figure 2F shows that contrary to nitrate, the 

SHW has a stronger iron concentration than the NHW. These results are coherent with in 

situ data from Mackey et al., [2002].  

When compared to the SeaWiFS chlorophyll data (Fig. 2A), and despite the poor 

representation of the coastal concentration due to the coarse resolution of the model, the 

REF simulation shows reasonable chlorophyll patterns over the equatorial Pacific (Fig. 

2B). A validation of the vertical profile of iron can be found in Gorgues et al., [2005]. 

Results 

The 20°C isotherm is 30m deeper along the equator for the ITC simulation than for the 

REF simulation in the eastern Pacific (Fig. 3D), and this result is consistent with the 

results of the study of Lee et al., [2002]. The watermass characteristics of the SHW and 

the NHW do not change between the two experiments. Thus the salinity decrease in the 

EUC (Fig. 2D) is due to the increased presence of NHW. Hence, the watermass 

characteristics of the EUC shift towards the characteristics of the NHW component when 

ITF is closed. Closing the ITF also reduce the strength of the New Guinea UnderCurrent 

(NGUC) by almost 50% while the Mindanao current increases slightly (10%) (Fig. 1A-

B). That result is also consistent with the findings of Lee et al., [2002]. 
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In the EUC range of density (σ=23.5 to 25.5), the most striking result is an iron (Fig. 1A) 

and nitrate (Fig. 1B) concentration increase north of New Guinea in the SHW, while in 

the NHW the concentrations increase only in a narrow band near the coastline of the ITF. 

Moreover, closing the ITF increases the iron and nitrate concentrations by 30% in the 

EUC downstream to 155W (Fig. 1A-B). 

We have focused on the euphotic layer (defined here as the depth to which 0.1% light is 

available), which is the relevant depth for marine production. Figure 3A shows the effect 

of closing the ITF on the mean chlorophyll concentration over the euphotic zone. The 

decrease reaches 0.07 mg.m-3 (up to 15% of the maximum chlorophyll) at the equator 

(1°N-1°S; 110°W-90°W) and an equal decrease is observed on the southern border of the 

chlorophyll-rich region of the REF simulation (Fig. 2B), but not on the northern border. 

Despite the iron increase in the western Pacific (Fig. 1A), closing the ITF entails a 

marked decrease in iron at the equator (Fig. 3B), up to 0.015 nM (20%), over the 

euphotic zone. Iron concentration also increases in the North Equatorial Counter Current 

(NECC), near the Peru/Chile coast and near the Californian coast (Fig. 3B). Unlike iron, 

nitrate (Fig. 3C) shows a broader equatorial decrease which matches the relatively 

chlorophyll rich region and there is no significant increase elsewhere.  

Discussion 

Several studies have assessed the modification of the circulation of the Pacific Ocean 

caused by closing the ITF. These studies concur on the main dynamical impacts of this 

closure. The deepening of the thermocline is due to the accumulation over the Pacific of 

warm water which would otherwise have been siphoned into the Indian Ocean. 

Additionally, our simulations highlight a modification of the hemispheric origin of the 
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water feeding the EUC. In the REF simulation, the water in the EUC comes largely from 

the Southern Hemisphere, whereas in the ITC simulation, the EUC water is mainly 

supplied from the north. This is evident in the shift of the EUC towards NHW watermass 

characteristics when the ITF is closed (Fig. 2D), and consistent with the results of 

previous modelling studies [Rodgers et al., 1999]. 

Interestingly, the iron and nitrate increase which occur north of New Guinea (Fig. 1A-B), 

within the EUC range of density, is concomitant with a local deepening (10 meters) of the 

thermocline/pycnocline in ITC. This is the result of sedimental and rivers nutrient sources 

being injected which prevent the decrease of iron and nitrate on z-levels that would 

normally be associated with the deepening of the thermocline/pycnocline. Then, in ITC 

and along given isopycnals corresponding to the EUC, the water comes from greater 

depth and has higher concentrations of iron and nitrate. Despite a weaker NGUC, that 

increase in iron and nitrate concentrations in the SHW is finally advected on isopycnal 

surfaces to the EUC downstream to 155W, where the iron and nitrate concentrations 

increase.  

In contrast, iron and nitrate concentrations in the eastern equatorial Pacific decrease in the 

euphotic zone when the ITF is closed (Fig. 3B). Indeed, in the central and eastern Pacific, 

the 30 meter deepening of the thermocline/pycnocline causes a deepening of the 

ferricline/nitracline because, unlike the New Guinea region, there are no nutrient sources 

such as coastal sources which could prevent the iron or nitrate decrease by nutricline 

deepening. In this region, the nutricline deepening is directly linked to the additional 

amount of water from the closed ITC, as for the thermocline/pycnocline deepening. 

Finally, the wind driven dynamics upwells waters with lower iron and nitrate 

concentrations to the euphotic layer. EUC concentration increase in iron and nitrate in the 
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western Pacific does not compensate for the deepening of the thermocline/ferricline (Fig. 

3D) that reduces the nutrient sources in the east. Because iron is the limiting nutrient (Fig. 

3C), its equatorial decrease is confined to a narrow band (Fig. 3B) near its source region 

(where the phytoplankton uptake has not yet depleted the water in iron) since the nitrate 

which has a longer residence time displays a broader negative pattern (Fig. 3C). When 

closing the ITF, the iron decrease in the euphotic zone of the eastern equatorial Pacific 

explains the decrease in chlorophyll (Fig. 3A). In the southern hemisphere, the decrease 

in nitrate concentration increases the width of the nitrate-limited area (contour in Fig. 

3A), which in turn drives the chlorophyll decrease in the southern hemisphere (Fig. 3A).  

North of the equator, for both simulations, high nitrate concentrations from the equatorial 

upwelling are bounded by the strong convergence that occurs near 5°N between the 

South Equatorial Current (SEC) and the nitrate-poor waters of the NECC. In REF and 

ITC, south of the equator, the convergence region only occurs near 20°S [Toggweiler and 

Carson, 1995]. Then, south of the equator, nitrate-rich waters from the equator are 

depleted by phytoplankton uptake before reaching the convergence zone which is not the 

case north of the equator. Hence it is the meridional asymmetry in the zonal circulation 

that explains the asymmetrical nitrate decrease and the related decrease in chlorophyll 

more strongly visible in the southern hemisphere (Fig. 3A-C). The weak iron increase 

(Fig. 3B) in ITC in these regions has thus no impact on phytoplankton concentration (Fig. 

3A) because it occurs in a region where nitrate is the limiting element (Fig. 3C) in ITC 

simulation. 

Off the equator, the behaviour of iron is more complicated. Figure 3B shows a strong 

increase in iron concentration in the western Pacific warm pool and in the NECC. In the 

ITC simulation, the iron rich water usually exported to the Indian Ocean is constrained to 
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remain in the Pacific warm pool and is advected eastward by the NECC (Fig. 3B) without 

being depleted by phytoplankton because of nitrate limitation (Fig. 3C). Due to the nitrate 

limitation of these regions (Fig. 3C), the increased iron concentration has no effect on the 

ecosystem productivity (Fig. 3A). Finally, near the coasts of Peru and Costa-Rica, the 

deepening of the thermocline/nitracline associated with the closure of the ITF results in a 

depletion of the nitrate concentration of waters entering the euphotic zone and this region 

becomes nitrate limited (Fig. 3A). This limitation results in a decrease in chlorophyll 

concentration which in turn decreases the iron uptake by phytoplankton, which leads to 

an increase in iron concentration (Fig. 3B). 

All these results are robust to changes in the wind stress field used. We have repeated the 

two experiments using the NCEP reanalysis [Kalnay et al., 1996] wind stresses. These 

experiments reveal the same patterns of biogeochemical perturbations in the eastern 

equatorial Pacific when closing the ITF (not shown), with a 10% equatorial decrease of 

chlorophyll due to a slightly weaker response of the thermocline depth (up to -20 m 

instead of -30 m). We have also tested the sensitivity to different sets of bathymetric 

modifications to close the ITF, and found that the biogeochemical response is insensitive 

to such changes. Finally, a more realistic nitrate distribution in the western Pacific (Fig. 

2E), could, by the stronger nitrate increase from the NHW contribution to the EUC in the 

ITC simulation, offset partially the decline of nitrate and chlorophyll south of the equator 

(region limited by nitrate) but should not affect the equatorial biological production 

decrease due to the stronger iron equatorial limitation. 

Conclusions 
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A model has been used to show that closing the ITF can lead to a 15% decrease in 

primary productivity in the upwelling region of the eastern equatorial Pacific. This 

sensitivity to a nonlocal boundary condition is large, and is the result of two competing 

effects. First, closing the ITF results in increased iron concentration on isopycnal surfaces 

corresponding to the EUC. Additionally, closing the ITF results in a dynamical deepening 

of the thermocline/pycnocline, which reduces the supply of iron to the upwelling region 

and more than compensates the iron increase within the EUC. Thus, pacific only model 

domains [Chai et al., 1996; Christian et al., 2002; Radenac et al., 2001] would likely be 

biased by a decrease in primary productivity due to this nonlocal boundary condition if 

the ITF is not properly treated. Closing the ITF should have even broader implications for 

model biases. Indeed, in our model runoff and sedimental remineralization in the western 

Pacific lead to diminish the impact of closing the ITF by increasing the iron and nitrate 

concentrations on EUC isopycnals. Thereby, models which don’t account for river 

nutrient inputs or sedimental remineralization may exhibit a larger bias in iron and nitrate 

in the eastern Pacific. In our study we have reported the changes in the mean state due to 

the closing of the ITF. However, a closed ITF can also significantly impact the 

variability, as a deeper mean ferricline/nitracline can diminish the biogeochemical 

response to vertical displacements of the ferricline/nitracline in the eastern Pacific. 

More generally, the results presented here have potential implications for understanding 

the effects of variability in circulation on biogeochemistry and ecosystems in the 

upwelling region. This study could be seen as a unique way to test the biogeochemical 

consequences of any changes in the mean state of the Pacific thermocline depth. For 

example, recent studies have described significant variability in the depth of the 

thermocline in the eastern equatorial Pacific on interannual to decadal timescales [e.g. 
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McPhaden et al., 2002]. A deep thermocline in the eastern Equatorial Pacific will result 

in decreased production while a shallow thermocline will be associated with more 

productive ecosystems. However, a deepening of the thermocline in the east during a 

warm period is typically associated with a shallowing of the thermocline in the western 

Pacific, which is not the case when the ITF is closed. Due to this shoaling in the west, the 

EUC may advect waters with lower concentrations of iron and nitrate to the eastern 

equatorial Pacific, as the shoaling in the west can impact the concentration of 

biogeochemical tracers in that region. This could reinforce the biological production 

decrease caused mainly by the deepening of the thermocline/pycnocline in the eastern 

equatorial Pacific. Such an impact on the biogeochemical state of the Pacific has been 

shown in some observationally-based studies [e.g. Chavez et al. 2003]. 
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This work underscores the importance of a skilful representation of the thermocline 

/pycnocline in the equatorial Pacific. Our study implies that the concentration of nutrient 

in the source regions of the EUC, in the western Pacific, is a second order mechanism. 

Acknowledgement: The authors thank our reviewers for constructive comments which 

greatly improve this manuscript. 
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Fig 1: (A) Difference (ITC-REF) of the mean iron concentration (nM) between the 

isopycnal surfaces σθ=23.5kg.m-3 and σθ=25.5kg.m-3. Vectors represent the currents (m.s-

1) averaged between the previous isopycnal surfaces for REF. (B) As for A but with 

nitrate (μM) rather than iron and with ITC currents rather than REF currents. The black 

region is added in the Timor strait to close the ITF for the ITC simulation. 

Fig 2: (A) Mean SeaWiFS chlorophyll concentration (mg.m-3) over the 1999-2004 period 

compared to (B) the climatological concentration of our reference simulation with the 

depth of the 20°C isotherm plotted over. (C) Salinity versus density diagram for the SHW 

(cross), the NHW (stars) and the EUC waters (triangle) for the WOA98 data. (D) As for 

C, but for our two simulations (REF=blue; ITC=red). (E) Meridional section at 155°E of 

the nitrate concentration (μM) for the REF simulation (colors) and the data from the 

WOA98 (black lines). (F) Meridional section at 155°E of the iron concentration (nM) 

with isopycnal surfaces from REF (black lines) and from ITC (dashed lines). 

Fig 3: (A) Difference (ITC-REF) of chlorophyll concentration (mg.m-3) averaged over 

the depth of the euphotic zone. Contour indicates the change in areal extent (ITC-REF) of 

the region where nitrate is the limiting nutrient. (B) As for A, but for iron (nM) 

concentration. The contour of 0.03 mg.m-3 of chlorophyll difference is added. (C) As for 

B, but for nitrate (μM) rather than iron and with vertical (horizontal) hatch marks which 

indicate the iron (nitrate) limited region in the REF simulation. (D) Vertical section at the 

equator of the temperature difference (ITC-REF). Closed contours show the EUC zonal 

velocity (m.s-1), and contour intervals are 0.25m.s-1. The black (red) dashed lines show 

the 20°C isotherm depth from REF (ITC). 
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Fig 1: (A) Difference (ITC-REF) of the mean iron concentration (nM) between the 

isopycnal surfaces σθ=23.5kg.m-3 and σθ=25.5kg.m-3. Vectors represent the currents (m.s-

1) averaged between the previous isopycnal surfaces for REF. (B) As for A but with 

nitrate (μM) rather than iron and with ITC currents rather than REF currents. The black 

region is added in the Timor strait to close the ITF for the ITC simulation. 
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Fig 2: (A) Mean SeaWiFS chlorophyll concentration (mg.m-3) over the 1999-2004 period 

compared to (B) the climatological concentration of our reference simulation with the 

depth of the 20°C isotherm plotted over. (C) Salinity versus density diagram for the SHW 

(cross), the NHW (stars) and the EUC waters (triangle) for the WOA98 data. (D) As for 

C, but for our two simulations (REF=blue; ITC=red). (E) Meridional section at 155°E of 

the nitrate concentration (μM) for the REF simulation (colors) and the data from the 

WOA98 (black lines). (F) Meridional section at 155E of the iron concentration (nM) with 

isopycnal surfaces from REF (black lines) and from ITC (dashed lines). 
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Fig 3: (A) Difference (ITC-REF) of chlorophyll concentration (mg.m-3) averaged over 

the depth of the euphotic zone. Contour indicates the change in areal extent (ITC-REF) of 

the region where nitrate is the limiting nutrient. (B) As for A, but for iron (nM) 

concentration. The contour of 0.03 mg.m-3 of chlorophyll difference is added. (C) As for 

B, but for nitrate (μM) rather than iron and with vertical (horizontal) hatch marks which 

indicate the iron (nitrate) limited region in the REF simulation. (D) Vertical section at the 

equator of the temperature difference (ITC-REF). Closed contours show the EUC zonal 

velocity (m.s-1), and contour intervals are 0.25m.s-1. The black (red) dashed lines show 

the 20°C isotherm depth from REF (ITC).  
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