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Abstract— Multiple ground targets tracking with a GMTI
(Ground Moving Target Indicator) sensoris considerd a chal-
lenging problem in order to establish battlefield assessmentAn
IMM algorithm with a variable structure is adapted to the road
network and usedto track multiple manoeuvring ground targets.
However, the caseof undetectedtargetsdueto terrain elevation or
Doppler obscuration was not taken into accountin our tracking
processln this paper, we presentour approachto track ground
targets with the possibility for the target to be undetected. The
perceivability probability is computed to update the estimated
state and a “sentinel” conceptis usedto palliate the association
ambiguities when several targetsenter and exit the sameterrain
mask.

Keywords: tracking, GMTI, multiple targets,VS IMM
under constraint, negative information.

I. INTRODUCTION

Tracking ground tarmgets with a GMTI (Ground Moving
TargetIndicator) sensotis a particularproblembecausef the
high traffic densityandthe large numberof falsealarms,that
bring about a significant quantity of data.If we add strong
and fast target manoeuvrestarget tracking is compromised
due to the associationproblem and manoeuvreproblems.
In a GMTI surwillance contet, we have proposedto fuse
the road network information with the MTI reportsin order
to improve the track quality. Basedon the road segments
positions,dynamicmodelsunderroad constraintare built and
an optimized projection techniqueof the estimatedstatesis
proposedo keepeachtargetpositionandheadingon theroad.
A VS-IMM (Variable StructureInteracting Multiple Model)
filter is built using this projection approach[1]. The set of
modelsusedin the filter is adjustedsequentiallyaccording
to the target positionsand to the road network configuration.
In a multiple target scenario,we have adaptedthe SB-MHT
(Structured Branching - Multiple HypothesesTracking) to
take into accountthe target manoeuvresand the detection
probability of eachgroundtarget. This algorithm called VS
IMMC SB-MHT wasefficientif only the tamgetswerealways
detectableby the sensor An illustration hasbeengiven with
20 targetswhich manoeuvreon the road network and/orleave
theroadnetwork [2]. However, the detectionprobability varies
with the network configuration,the terrain elevation and the
halt of thetarget. The performancesf thealgorithmhave been
degradedwhen, for example,the targetswere masled by the
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terrainand moved in the maskresponsibldor the loss of the
tracks.

According to the geographicinformation and the sensor
location, it is possibleto know the target capacity to be
detectedby the sensor So, this paperfocuseson the mul-
tiple targets tracking which take into accountboth positve
information (MTI reportsare presentin the validation gate)
aswell as negative information (no MTI reportis validated).
The negative informationis the undetectionwhich results,for
instance of the groundtarget deliberatelystopping.

In theliterature Kirubarajanet al. considerthis information
in [3], and proposeto palliate the stop manoeuvreby intro-
ducing a stop motion modelin a usuallIMM. This technique
was extendedand introducedin the VS IMMC SB-MHT by
taking into accountthe road network in the ground target
tracking process.In addition, due to the terrain elevation
and the road network configuration,the ground targets can
be undetectedand moving on the road network. In fact, the
terrainelevationor vegetationgeneratgerrainmasksby which
the targets are hidden. Connareand Blaschin [4] deal with
the undetectionin a specialcasewhere a tank formation is
under trees. The authors proposeto measurethe distance
and bearinginformation of all the targets within the group
as they are relatedto each other Then, when one of the
tanks is obscuredby the vegetation,the tracking algorithm
will recall from pastmeasurementthe distanceand bearing
information of the missingtarget and assumethat the same
positionalrelationshipsare valid at the currenttime. Despite
the track maintenancef the undetectedargetsthis approach
cannotbe usedfor only onetargetor severaltargetswho move
on the sameroad. Finally, the GMTI sensordoesnot detect
the ground targets when their radial velocity falls underthe
Minimum DetectableVelocity (MDV) fixed by the sensor
Nevertheless,in their recentarticle [5], Lin et al. propose
to combine the sensordetection probability P, with the
probability that the target radial velocity is inferior to the
MDV. The radial velocity is estimatedaccordingto the target
estimatedvelocity headingand the sensorocation.

Consequentlyif the terrain obscurationcondition is not
taken into account,the VS IMMC losesthe trackswhenthe
targetsare masled or undetecteddue to their radial velocity,
becausehe stop motion model of the VS IMMC is activated



despite the target movement. We proposeto introduce in

the VS IMMC the event on the percevability target. Dezert
et al. proposedthis ideain [6]. However, the percevability

probability doesnot take into accounthe sensoMDV andthe
terrainobscurationTherefore we introducedin this paperthe
prior informationon thetargetpercevability to keepthetracks
and not activate the stop motion model when the targetsare
masled. Thatimplies the track maintenancevhenthe targets
aremasled. However if severaltargetsarein the sameterrain
mask and leave it through several exits, the used SB-MHT

take an arbitrarydecisionto associate trackto a MTI report.
In factwe do not have, in our sensorthe HRRR (High Range
ResolutionRadar)usedin [7] in orderto distinguishthetargets
from each other Thus, the sametrack representddifferent

target trajectoriesand deterioratesthe situation assessment.

Thatis why we proposeto usea conceptof “sentinel” which
is appliedto evaluatethe track associationambiguity at the
exits of the mask.

This paperis organizedas follows : in sectionll, we give
a brief descriptionof the measuremenmmodel and of the
target constrainedmotion model. In sectionlll, we present
the percevability probability andits introductionin the target
tracking process.The sentinelconceptis presentedn section
IV. Finally, in sectionV, we illustrate our approachon a
comple scenariowith 6 targets.

Il. TARGET MOTION AND MEASUREMENT MODEL
A. Introduction

Usual target tracking algorithmsare basedon the Kalman
filter. Sinceseveralyears,in thegroundtargettrackingdomain,
the kalman filter is evolved by consideringthe contectual
informationin the tracking processFor instance Kirubarajan
et al. proposedto usein [8] the road segmentlocation in
orderto modelizedthe dynamicof a target on the road. The
road network is consideredhere as a priori information to
be integrated in the tracker system.The map information
is containedin a GIS (Geographicinformation System). It
containsthe information aboutthe road network locationand
the DTED (Digital Terrain Elevation Data). In the following,
the stochastictarget constrainedand the Kalman filter under
constraintsare describedn additionto the GIS description.

B. GIS description

The GIS usedin this work containsthe following infor-
mation: the segmentedroad network and DTED. Eachroad
segmentis expressedn the WGS84system.Theroadnetwork
is conn andeachroadsegmentis indexedby theroadsection
they belongto. A road sectionis defined by a connected
road segments set delimited by a road end or a junction.
Startingfrom the DTED a Delaunaytriangulationis applied.
Then, knowing the sensorlocation a Z_Buffer techniqueis
computedo definethetrianglesseenor not seenby thesensar
Consequentlyat the currenttime it is possibleto obtain a
picture I which describeghe pixels seenor not by the sensor
You canseeon the figure 1, the terrain elevation datain blue
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Fig. 1. Terrainmasksvisualisation

with thetrianglesin grey who representhe terrainmasks(i.e.
the areaswithout any detection).

At the beginning of a sunwillance battlefield operation,a
Topographic Coordinate Frame (noted TCF) and its origin
O are chosenin the mannerthat the axes X, Y and Z are
respectrely orientedin the east,north and up local direction.
Now, the target tracking processs carriedout in the TCF.

C. Target stateunder constaint

The target stateat the currenttime k is definedin the local
coordinateframe by :

a(k)=[x(k) x(k) yk&) y(k) ] @)

where the couples (x (k),y (k)) and (x(k),y (k)) define
respectiely the target location and velocity in the cartesian
coordinatedrame. The altitude componentis not considered
becausethe effect of this one is supposedhegligible on the
estimatestate. The dynamicsof the target evolving on the
roadnetwork aremodelizedby afirst ordersystem.Thetarget
stateunderthe road sggments is definedby z. (k) wherethe
target position (x; (k) , yvs (k)) belongsto the road segment
and the correspondingvelocity vector (x4 (k) ,ys (k)) is in

the road segments direction. Therefore,the target constraint
statezx, (k) is definedby the following constraint:

a-xXs(k)+b-ys(k)+c=0
([%®) 30) ][ ) =0

wherethe indexes a, b and ¢ are the coeficients of the line
associatdo the road sggments and 7', is the normal vector
to the road sggments . The constraintcan be expressedas
follows:

!

)

D-zs(k)=1L 3
= a 0 b O —c
with D = 0 a 0 b andL = 0

The event that the state belongsto the road segments is
noted e; (k) = {z (k) € s}. Knowing the event e, (k) and
accordingto a motion model M; the dynamicsof the target
canbeimprovedby consideringheroadsegments. Dueto the
precisionof the GMTI sensorandthe long time scanperiod,
the chosenmotion modelsare basics.It is aboutr constant



velocity motion models different on the standarddeviation
values. However the proposedapproachis valid for much
more complicatedmotion modelslike constantacceleration
or coordinatedturn motion models.It follows that :

zs (k) =Fsi (Ag) 25 (k—1)+T(Ag) -vei (k) (4)

where Ay is the time of sampling, the matrix £, ; is the
state transition matrix associatedo the road segments and
describedin [11] and is adaptedto a motion model M;,
the variablev; (k) is a white noise gaussiarnprocessand its
associatecovarianceQ; ; (k) is built in the mannerthat the
standarddeviation along the road segmentis higherthan the
standarddeviation in the orthogonaldirection. Consequently
the covariancematrix @, ; is definedby :

0

2
On

2
04

Qs,i (k) - Rﬁs : |: 0

- R, (5)
wherethe matrix Ry, is the rotation matrix associateo the
s road segmentdirection ¢, definedin the plane (O, X,Y).
The matrix I" (&) is definedin [12]. We call Z (k) the setof
measurementsbtainedat the currenttime.

We define M? (k) = {M* (k) Nes (k)} the event that the
tamgetis following a dynamicaccordingto the motion model
M* andmoveson theroadsegments. So, the stateprobability
density function (i.e. pdf) consideringthe measurementset
Z* andthe event M (k) is denoted:

p{a (k) |25, ML (k) } (6)

The state z; (k) is a Gaussianrandom variable defined
by its estimatedmeanz; (k |k) andits estimatedcovariance
P; (k|k) (bothobtainedusinga modelbasedilter). Underthe
road constraintthe estimatedstatez, ; (k |k ) is thereforethe
stateobtainedby the maximizationof pdf (6) giventhe event
MZ¢. Finally, under the gaussianassumptionof the Kalman
filter the analytic expressionof the constraintestimatestate
associateo the motion model M? is obtainedby calculating
the Lagrangiarof (6) underthe constraini(3). The expressions
of constrainestimatedstateandit covariancearegivenin [13].

We have presentedthe taget motion model and the esti-
mated state on a road segment s accordingto the dynamic
M?. However the road network is composedof several road
segmentsand a groundtarget has several motion models.In
the paper[2] we have presentedour approachfor tracking
several targets which are manoeuvringon the road network.
Sowe have considerecan IMM (InteractingMultiple Model)
with a variablestructureto adaptthe constraintmotion models
set to the road network configuration. We have extended
this approachwith the targetsof interestwho can leave the
road network. The VS IMMC combinedwith a SB-MHT
has beenusedon real data. The obtainedresults are better
than the usual approachwithout constraint and/or without
several motion models under constraint,in order to palliate
thetargetsmanoeuvre®n the road.However, the weaknes®f
our algorithmis, it doesnot take in accountthe non-detection

of the targetsexpectedby arandomeventcharacterizedby the
sensordetectionprobability Pp. In the sectionlll, we enlage
the algorithm by tackingin accountthe non-detectionslueto
the stop of the tamets,the rangeradial velocity lessthanthe
MDYV andthe terrainmasks.

D. Measuementmodel

According to the NATO GMTI formats, the MTI reports
areexpressedn WGS84coordinatesystem.All MTI reports
are export for each tracking station in the TCF. A MTI
measurement at the currenttime k is givenin the TCF by:

[x(k) y(k) pm(k) ] (7)

The couplex (k),y (k)) is the MTI coordinatein the local
frame (0,X)Y) and p,, is the associatednodified range-rate
measuremengxpressedn the TCF;

x(k) -x(k) +y(k)-y (k)
X2 (k) +y? (F)

We don't considerthe range-ratep obtain directly in the
sensor frame becausethe range-rateis correlatedto the
MTI location componentsin the literature it exists several
techniquesto uncorrelatethe range-ratefrom the location
componentdik e the SEKF from Wanget al. in [9] which use
a Cholesly decompositiorin orderto do it. Neverthelesswe
preferto usethe AEKF (Alternative ExtendedKalman Filter)
presentedoy Bizup and Brown describedin the paper[10].
This last oneis very simple to computebecausehe authors
proposeonly to use an alternatve linearizationof the EKF
(ExtendedKalman Filter). For our problem, the alternatie
linearization of the obsenation function is verified only if
we considerthe range-raten the local frame TCFE Then,the
measuremengquationis given accordingto the AEKF, by:

z (k)

P, (K) = (8)

z (k)

= H (k) (k) +v (k) 9)
with v (k) a zero-mearwhite gaussiamoisevectorand H (k)
definedby:

1 0 0 0
HE=[0 0 1 0 (10)
0 9mB) ( 9m(k)
ox oy

The explicit expressionof (10)is givenin [10]. In the follow-
ing of the article, the event0*! is associatedo thel*” sequen-
tial measurement&*-! andrepresentshe setof measurement
generatedy the tamget (it exists a subsequenca anda mea-
surement in the mannerthat 5! = {Z¥=1m, 2 (k)}).

I1l. PERCEIVABILITY PROBABILITY

In this part,basedon thework of Dezertetal., we introduce
the event that the targetsof a track 6% is percevable or not
by the GMTI sensors.



A. Perceivability probability in the target tracking process

At time k, the target stateprobability is representedby the
following exhaustve and exclusive events:

Oy, = {target is perceivable}

Oy, = {target is unperceivable} (11)

here, O will denoteboth the target can be detectedby the
sensorand the randomevent. By introducethe both event in
the corventional IMM, we obtain a new formulation of the
likelihoodfunction. But the percevability eventdoesnot take
in accountthe non-detectiondue to the target stop. That is
why, we usedthe IMM proposedby Kirubarajanetal. in [3],
wherethe authorsintroducea stopmotion modelnotedM?. In
the VS IMMC, we have for eachmotion modelbeyondr + 1
motionsmodels(Vi € {0, ...,r}):

A (k) =p{z(k)|ZF 1" 0% ME(k)} (12)

where z (k) is the MTI report definein (7), Z¥~ 1" is a
particularsequencef previous measurementNow, according
to the total probability rules, we introducethe event that the
tamgetis detected(i.e. {m =1} ) or not (i.e. {m =0} ) and
the eventsO, and Oy, We obtainfrom (12):

A; (k)

k), m=1,0,|2* 1, 0% ML (k) }
+p{z(k),m=0,04 |ZF17 05 ML (k) |
+p{z(k),m=0,04 |Z* 1™ o0& ME (k) }

(13)
However, an unpercefabletarget can not be detectedso the
event {m = 1,0y} is equalto
oslash. Accordingto theKirubarajanapproachyve distinguish
the motion model STOP noted M° from the set of motion
models.The event { M2, m = 1} is equalto @, becausethe
STOP motion model must not be activatedif thereis at least
one detection. By using the Bayes rule, we find the new
expressionof the likelihood function (Vi € {0, ..., r}):

A (k) =(1—6m0) Pp
p{z (k)| ZF 1™ 05 ME(K), Oy }
P{Oy |ZF1m %L ML (K) )
+(1 = Pp) - bmo - P {Ok | ZF1m 00 ME(k)}
+0m,0 - (1 — P {0k |ZF1m, 051, M (k) })
(14)
and
Ao (k) = bmyo - P{Ok |ZF717, 084 M2 (k) } (15)

where 6., 0 is the Kronecler function equal to unity if
there is no detection (m 0). The probability to ob-
tain at least one measurementis equal to the detec-
tion probability (i.e. P {m = 1|Z*~1m okt Mi(k), 0} =
(1 —90m0) - Pp) in opposition to obtain no measurement
(ie. P{m=0|zF1m 0% MI(K),0r} = (1—0dmyo) -
(1 - Pp)).

B. Unperceivability probability calculation

In this part,we presenthedifferentreasonglueto thetarget
undetection.In order to know the percevability probability
we calculatethe unpercevability probability. We considerin
this paperthatthe targetis unpercevableby the GMTI sensor
becausehetarmetis eitherhiddenby theterrainelevation (this
masksis noted Ma,), or either the radial target velocity is
lessthan the MDV (this masksis noted Mas). So for each
motion model we calculatethe unperceiability probability
(Vi€ {0,..,1}):

P{Og|z*1m o0t M (k)} = 16
P{Ma, (k) U My, (k) |25 27,000 1 (k) (19
where Ma; and Mas are the events associatethe unper
ceivability due to the maskMa; and Masy respectiely. The
problemis the both eventsare not independentbecausehe
mask Ma; dependson the sensorlocation to computethe
binary picture| of terrain masksand the maskMas depends
on the sensolline of sight, thenthe sensotocation. However,
our goal is only to know the target percevability (the target
is undetecteckither by a maskMa,, either by a mask Mas
or the both), thatis why we usethe max operatorto compute
the probability (16). It follows :

POy |7ZE=1m okt ME ()} =
maz(P {Ma1 (k) |Zk71’n, okt M (k)} e

P { Mo, (k)| 245,000 0 (k)

(17)

The prior unpercevability probability of the mask due to
the terrain elevation is evaluatedthanksto the digital terrain
elevation data called DTED. Knowing the location of the
sensorand the DTED, it is possibleto computea binary
picture |, which indicate the non-detectionareas.We use a
Z-buffer algorithm in order to know if a pixel from | is
seenor not by the sensor Starting with the predictedstate
Z; s (k |k — 1) underconstraintfrom eachmotion model and
its associateovarianceP; ; (k |k — 1), we areableto obtain
the target location (¢, ¢y) and the location covarianceP,,,
in the picture I, accordingto the transformationfunction
Trcor—1 betweerthereallocationin the TCF andthe picture
I. Dueto the uncertaintyon the targetlocation, we proposeto
take in accounta neighbourhoo®f (cx, ¢y ) in orderto know if
the target is unpercerable. Finally, the prior unpercevability
probability M,, is equalto:

flrg

P{M,, (k)|Zz*1, 004 ME (k) }

]
]

Hﬁ:i,s(k\kfl)(iaj)x U (18)
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where Hz, xx—1)(4,7) is the pdf value of the Gaussian
distribution at the pixel (z, 5):
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The value I is the gate equal to the maximum standard
deviation of P;,. and |-] symbolizesthe integral part.

We calculate now the prior unpercevability probability
that the target can not be detecteddue to its radial velocity
inferior to the MDV. According to a Gaussiandistribution,
the predictedradial velocity, noted p; (k |k — 1), from each
track andeachmotion modelgivenin [5] is evaluatedandthe
probability that the radial velocity is underthe MDV canbe
calculated.

Cx Cx

[N

Cy Cy

1:){]\40"2 |Zk 1,n gkle(k)}i
P{0 < p; k|k—1) <MDV |ZF-1m gkl ME(E)}
(20)
C. Principle
If the percevability probability
P{Oy |zF-1m ot Mi(K)} (Vi€ {0,..,r}) is equal

to one, we find the likelihood function given in [3], i.e
the target is percevable and if there is no detection,the
stop motion model is activated. On the other hand, if this
percevability probability for each motion model is equal
to zero, the stop likelihood function (15) is equal to zero
(that brings about the non activation of the stop motion
model) and the others motion model likelihood functions
(14) are equi-probablethat brings about the keep of track
during its masking.Now, we mustcalculatethe percevability
probability from eachmotion model.

Consequenththe prior percevability probability (16) can
be calculatedfor eachmotion model. In the particular case,
wherethe systemtrack only onetargetin a terrain mask,the
proposalapproachis sufficient for the track maintenanceln
the terrain mask, the percevability probability (16) is equal
to zeroandthe predictedstatesare propagatecand eachroad
sectionduring the masking.

IV. SENTINEL SOLUTION FOR MULTIPLE TARGET
TRACKING

However, when several targets are in the samemask, the
kinematicsinformation is not sufficient to discriminate the
targetsin the mask.In fact, if several predictedstatesasso-
ciatedto differenttracksare locatedon the sameexit of the
mask,the SB-MHT will take an arbitrary decision(the most
probableassociation}to attachthe new MTI reportto only
onetack. Whentwo tracks,noted7*! and7%-2, exit from a
sameterrain masktheir percevability probability from each
motion modeltendsto one. Thatbringsaboutthe stopmotion
modelactivationfor the bothtracks.If a MTI reportsappears,
the VS IMMC SB-MHT extendsonly one track, for instance
T*1. Howeverthetargetsassociatéo thetracksT** and7%-2
can manoeuvren the terrainmaskandthereis no guarantee
thatthe new MTI reportis originatedfrom the targetassociate

thetrack 7%:1. In orderto modelizethe associatiorambiguity
we proposeto build a new track 7%, startingfrom the new
MTI report,in which it is possibleto find the informationthat
this new track 7%3 is originated either from 7% or T*:2.
For this, it is necessaryo placethe tracks7T*' and7*2 in a
“sentinel” configuration.Then, like a sentinel the tracks 7%
and T2 arefixed (thereis no maintenancejnd waiting for
all MTI reportsin their neighbourhood.

A. SentinelActivation

To declarea track as “sentinel”, we computethe combined
percevability probability of a target as following:

P{O (k) |zF-tm oR } =
> P{O(k) |25 0ot i} g (kb —1) D)
=0
where the percevability probability
P{O(k)|z*¥tm, 081 ME}  is  complementary the

unperceibaility probability (16) for each motion model
and y; (k |k — 1) is the predictedmode probability given in
[14].

Stepl: Sentinelconfiguration

If the probability (21) is lessthan a given thresholdy, the
associatedrack is placedin a inactive sentinelconfiguration.
Note that the track is always in the terrain mask and the
predictedstatesare always propagatedThen, whenthe track
in the inactive sentinelconfigurationleaves the terrain mask,
the combinedpercevability probabilityincreasesin thefigure
IV-A, we canseea track approaching terrainmask.At time
k, the combinedpercevability probability functionis high and
the predictedstateis updated But at time k+1 the combined
percevability probability low and the track is placedin a
sentinelconfiguration.

Step2: Sentinelactivation

If the probability (21) is higher than the threshold~ the
sentinelbecomesactive. This is the caseat eachmask exit.
This special state, called sentinel, is waiting for the MTI
report, like a cat who is waiting for a mouseto come out
of cover. In the figure IV-A, accordingto the road network
configurationthe track in sentinelconfigurationis duplicated
in the intersectionat time k+2. the right track leave the terrain
mask and the combinedpercevability increasesand exceeds
the threshold~. Then the sentinelbecomesactive, whereas
the down track is always in the terrain mask, its combined
percevability is always inferior than the given threshold~
andthe track staysin a inactive sentinelconfiguration.

Step3: Sentinelassociation

If the activatedsentinelvalidatesa nev MTI report,a new
trackis build startingfrom this MTI reportwith the informa-
tion thatthis new track comesfrom the track associatedo the
sentinel.

B. Decision

Finally, it is possibleto associatén a new track 7%~ the
informationthatit is originatedfrom the track 7% according
to the sentinelvalidation.For eachhypothesisye evaluatethe
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probability that the new track comesfrom the sentinelwhich
canbe written:

P {Tk’N N Tk’l |Zk } _

Pla(k)| 2% 08} P {Sent (TH) > 1 |74} ()

the first term of the expression(22) is the global probability
track given directly by the SB-MHT. The secondterm repre-
sentsthe probability that the sentinelis still activated at the
currenttime ¢x. This probability hasnota physicalsenseThen
we cansaidthis probability decreaseBnearly. In our casewe
comparethe activated sentinelto a radioactve elementwho
marksthe new trackswith the associateald tracks.Thenthe
probabilitythatthe sentinelis alwaysin life atthe currenttime
is:

P{Sent (T) > 1, | 2%} = exp <_tAk o ) (23)
wheret, is thefirst activationtime and ASent is the average
sentinelactivationtime. If in anew track 7%~ the probability
(23) of anold track 7% is important,we decidethatthe track
TH*+1.N is the track continuity of the track T%*. Otherwiseno
decisionis taken becauseof several old tracks continuation

ambiguities.

C. Modification of the motion modelin a terrain mask

If the tracks are masled by a short terrain mask, the
combined percevability probability (21) is higher than the
giventhresholdy andthe tracksdoesnot becomea sentinel.
On the contrary for the large terrain masks,the combined
percevability probability becomedessthan~ andthe tracks
becomeinactivated sentinels.If there is no modification of
the motion models, the covariance matrix grow up until
the sentinelis activated. Consequentlythe activated sentinel
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East (inm) ° Eastinm)

Target:3 Target:4

: ) East (in m)

Target:s

East (in m)

Fig. 3. The sixth groundtamgetstrajectories

can validatedfar MTI reports becauseof the big estimated
covariance.That is why the motion model (4) is replacedby
(Vi€ {0,..,1}):

zs (k) = Fs i (Ag)-@s (k — 1)+05ent,0 T (Ar)-vs i (k) (24)

wheredgens,0 is the Kroneclker symbol equalto one or zero
if the track becomesgespectiely an active/inactve sentinelor
not.

V. SIMULATION AND RESULTS
A. Scenariodescription

We considel6 targetsmoving in the TopographidCoordinate
Frame.The targets1, 3 and4 move on the sameroad with a
constantvelocity (3). The tagets2 and 5 move on the road
network in orderto take anotherroadin anintersection.The
tagets 1, 2 and 4 startin a close formation and crossthe
targets2 and5. The target 6 doesnot crossthe otherstarget
but deceleratedn orderto stop during 30 seconds.

B. Sensordescription

The 6 targetsaretracked by a GMTI sensorat 0.1 Hz with
20 m, 0.0008rad and1 m/s range,cross-rangendrange-rate
measuremenstandarddeviation respectiely. The detection
probability Pp is equalto 0.9 andthe MDV fixed at 1 m/s.
The sensoris locatedat 60 km from the TCF origine at 4000
m in elevation and movesin the west direction. The terrain
masksarecomputedat eachtime accordingthe Digital Terrain
ElevationData(theyellow trianglesin thefigure4). In addition
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Fig. 4. Terrain masksat the currenttime ¢, = 1.

of the undetectedhreas,we have addeda fixed terrain mask
(the red trianglesin the figure 4) in orderto have the targets
1 to 5 in the sameterrain mask.

C. Filter Parametes

In orderto evaluatethe algorithmperformancesve compare
theVS IMM SB-MHT with anusuallMM SB-MHT presented
in [15]. The parameterof the IMM are the following: three
motion modelsare consideredone constantvelocity motion
modelwith a small standarddeviation (fixed at 0.05m - s~2),
anotherconstantmotion modelwith a high standarddeviation
(fixedat 0.8 m-s~2) in orderto palliatethe target manoeuvre
and a stop motion model (where the standarddeviation is
equalto zero).The VS IMMC is composedvith threegenerics
motion models: one constraintconstantvelocity model (the
standarddeviation along and orthogonalto the road segment
areequalto 0.05m - s—?), anotherconstraintconstantvelocity
model with a high standarddeviation to adaptthe dynamic
to the taget manoeuvre(the standarddeviation along and
orthogonalto the road segmentare respectiely equalto 0.8
m - s 2 and 0.4 m - s—2) and a stop motion model. Those
genericconstraintanotion modelsmustbe adaptedollowing
theroadnetwork topology The SB-MHT parameteraretaken
in [15].

D. Results

The target tracking goal is to track for a long time the
target with olny one track. Then, in order to evaluate the
tack maintenancewe usethe track length ratio criterion for
atamget n betweenthe truth targettrajectorylengthl,, andthe
associatedrack length L,, obtainedin a run. According to
100 Monte-Carloruns, we obtain for eachtrack the average
track lengthratio (vn € {1, ...,6}):

100 1
R, = _m
Z 100 - L,,
k=1
In addition for eachalgorithm (VS IMMC or IMM) we
have two length ratios. The ratio length noted 1 is the track
length ratio obtainedwithout ambiguity association(i.e. the

(25)
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Fig. 5. IMM ratio track lengthfor the 6 tagetsandfor the 2 typesof ratio.
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Fig. 6. VS IMMC ratio track lengthfor the 6 targetsandfor the 2 typesof
ratio.

trackis obtainedafterthe decisiondescribedn the subsection
IV-B). The secondatio lengthnoted? is thetracklengthratio

obtainedwith ambiguity association(i.e. the track has been
generatedby several sentinelsand no decisioncan be taken

on the track continuity).

On the figure 5, we can see that for each targets the
associatedrack ratio is never equalto one. That implies the
systematidrackslost with theIMM. In factwhenthe tracksof
thetargetsl to 5 enterin the terrainmaskthe tracksbecomes
in a sentinelconfigurationandthe sentinelsare placedat the
exit of the mask. But the tracks are not constrainedon the
roadandevolve in the lastupdateddirection. Thenthe targets
follow the road network and the unconstraintsentinelsare
inevitably not placedat the road proximity. Whenthe targets



appearthroughtheir MTI reports,the sentinelsare far away
in order to be attachedto the new tracks generatedby the
MTI reports.Thatis why the track type lengthratio 2 is low:
there are few new tracksin which the sentinelinformation
exists. On the other hand, the track length ratio 2 of the
VS IMMC (seefigure 6) is nearto one for the target 1 to
4. Given that the tracks are constrainedo the road network
the sentinelsare placedat the proximity of the target MTI
report. So the new tracks contain the information that this
track could be the continuationof the old track associatedo
the sentinel.In addition, the track length ratio type 1 of the
tracks1 and4 is high that meansthat the algorithmhastaken
the decisionto declarethe new track like beingthe old track
continuationwithout ambiguity However, for the tamets 2
and 3 no decisioncan be taken becausen the corresponding
new track thereis an ambiguity in the mannerthat eachnew
track can be attachedto several sentinels(either the sentinel
associatedio thetarget2 or the sentinelassociatedo the tarmget
3). For thetarget5, we canseethatthetracklengthratio type 1
and?2 is low. This is the weaknes®f our approachThetamet
5 entersin the terrain maskjust whenthe target 1 leavesthe
mask.A new track is createdwith the taget 1 MTI reports
andthe sentinelis attachedo this track. Sometimesn a run,
the target 5 track is also associatedo this MTI report. After
few scanghe SB-MHT decideghatthe track associatedo the
sentinelis more probablethanthe track associategreviously
to the target 5 andthis last oneis lost. That explainsthis bad
result. The figure 7 representshe Root Mean Squarekrror of
the tagets1 and 4 obtainedwith the IMM SB-MHT andthe
VS IMMC SB-MHT. We canseethatthe RMSE is betterwith
theVS IMMC thanthelMM. Howeverwhenthetargetsmove
in the terrain mask between150 s and 230 s, the RMSE of
the VS IMMC increasesThis is dueto the last updatedstate
residualerror which is propagatedn the mask.Nevertheless,
the predictederror is compensatedby the sentinelactivation
becausehe sentinelis waiting for a nev MTI report. Another
weaknes®f ourapproachs thetargetmanoeuvrén theterrain
masks.If the target manoeuvresjuickly, the motion models
are not adaptedbecausen the terrain mask, eachpredicted
stateis propagatedndnot updated The manoeuvreanbe not
detectedThatis why thetrackscould belost is the associated
targetsmanoeuvrequickly in the terrain masks.

VI. CONCLUSION

In this paper we have presentech methodto track multiple
ground targets with terrain obscuration.We assumethat the
non-detectiorof targetis eitherdueto stopof thetargetor the
radial velocity underthe MDV or the terrain mask.We have
defineda percevability probability to detectthe obscuration
areas.However, the usualsalgorithmsare not adaptedto the
track maintenancef several targets enter and exit in same
terrain mask. So, a “sentinel” solution hasbeendevelopedto
modelizethe uncertaintyon the track continuationif several
tamgetsleave the sameterrain mask. This approachimproves
the track maintenanceexpected if the tamgets manoeuvre
quickly in the terrain mask. In this caseit is difficult to
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Fig. 7. Root Mean SquareError of the tagets1 and4

discriminatethe targets. That is why, in a future work, we
must reducethe terrain mask areasby using several GMTI
sensorsand usethe fusion with heterogeneoumformationin
orderto obtainthe “type” informationon a track.
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