
HAL Id: hal-00153313
https://hal.science/hal-00153313

Submitted on 8 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Terrain obscuration managment for multiple ground
target tracking

Benjamin Pannetier, Michèle Rombaut

To cite this version:
Benjamin Pannetier, Michèle Rombaut. Terrain obscuration managment for multiple ground target
tracking. FUSION 2007 - 10th International Conference on Information Fusion, Jul 2007, Québec,
QC, Canada. s.p. �hal-00153313�

https://hal.science/hal-00153313
https://hal.archives-ouvertes.fr


Terrain� obscurationmanagmentfor multiple ground
target tracking

BenjaminPannetier
InformationProcessingandModeling Department

ONERA
29 avenuede la Div. Leclerc,92322Châtillon, France

Email: benjamin.pannetier@onera.fr

Michele Rombaut
GIPSA

Universit́e de Grenoble
46 avenueFelix Viallet, 38031Grenoble,France
Email: michele.rombaut@lis.inpg.fr

Abstract— Multiple ground targets tracking with a GMTI
(Ground Moving Target Indicator) sensor is considered a chal-
lenging problem in order to establish battlefield assessment.An
IMM algorithm with a variable structur e is adapted to the road
network and usedto track multiple manoeuvring ground targets.
However, the caseof undetectedtargetsdue to terrain elevation or
Doppler obscuration was not taken into account in our tracking
process.In this paper, we presentour approach to track ground
targets with the possibility for the target to be undetected.The
perceivability probability is computed to update the estimated
state and a “sentinel” concept is used to palliate the association
ambiguities when several targetsenter and exit the sameterrain
mask.

Keywords: tracking, GMTI, multiple targets,VS IMM
under constraint, negative information.

I . INTRODUCTION

Tracking ground targets with a GMTI (Ground Moving
Target Indicator)sensoris a particularproblembecauseof the
high traffic densityandthe large numberof falsealarms,that
bring about a significant quantity of data. If we add strong
and fast target manoeuvres,target tracking is compromised
due to the associationproblem and manoeuvreproblems.
In a GMTI surveillance context, we have proposedto fuse
the road network information with the MTI reportsin order
to improve the track quality. Based on the road segments
positions,dynamicmodelsunderroadconstraintarebuilt and
an optimized projection techniqueof the estimatedstatesis
proposedto keepeachtargetpositionandheadingon theroad.
A VS-IMM (Variable StructureInteractingMultiple Model)
filter is built using this projection approach[1]. The set of
modelsused in the filter is adjustedsequentiallyaccording
to the target positionsand to the roadnetwork configuration.
In a multiple target scenario,we have adaptedthe SB-MHT
(StructuredBranching - Multiple HypothesesTracking) to
take into account the target manoeuvresand the detection
probability of eachground target. This algorithm called VS
IMMC SB-MHT wasefficient if only the targetswerealways
detectableby the sensor. An illustration hasbeengiven with
20 targetswhich manoeuvreon the roadnetwork and/orleave
theroadnetwork [2]. However, thedetectionprobabilityvaries
with the network configuration,the terrain elevation and the
halt of thetarget.Theperformancesof thealgorithmhavebeen
degradedwhen, for example,the targetswere masked by the

terrainandmoved in the maskresponsiblefor the lossof the
tracks.

According to the geographicinformation and the sensor
location, it is possible to know the target capacity to be
detectedby the sensor. So, this paper focuseson the mul-
tiple targets tracking which take into accountboth positive
information (MTI reportsare presentin the validation gate)
as well as negative information (no MTI report is validated).
Thenegative informationis theundetection,which results,for
instance,of the groundtarget deliberatelystopping.

In theliterature,Kirubarajanet al. considerthis information
in [3], and proposeto palliate the stop manoeuvreby intro-
ducinga stop motion model in a usualIMM. This technique
was extendedand introducedin the VS IMMC SB-MHT by
taking into account the road network in the ground target
tracking process.In addition, due to the terrain elevation
and the road network configuration,the ground targets can
be undetectedand moving on the road network. In fact, the
terrainelevationor vegetationgenerateterrainmasksby which
the targetsare hidden.Connareand Blasch in [4] deal with
the undetectionin a specialcasewhere a tank formation is
under trees. The authors proposeto measurethe distance
and bearing information of all the targets within the group
as they are related to each other. Then, when one of the
tanks is obscuredby the vegetation,the tracking algorithm
will recall from pastmeasurementsthe distanceand bearing
information of the missing target and assumethat the same
positionalrelationshipsare valid at the current time. Despite
the track maintenanceof the undetectedtargetsthis approach
cannotbeusedfor only onetargetor severaltargetswho move
on the sameroad. Finally, the GMTI sensordoesnot detect
the ground targetswhen their radial velocity falls under the
Minimum DetectableVelocity (MDV) fixed by the sensor.
Nevertheless,in their recent article [5], Lin et al. propose
to combine the sensor detection probability ��� with the
probability that the target radial velocity is inferior to the
MDV. The radial velocity is estimatedaccordingto the target
estimatedvelocity headingand the sensorlocation.

Consequently, if the terrain obscurationcondition is not
taken into account,the VS IMMC losesthe trackswhen the
targetsare masked or undetecteddue to their radial velocity,
becausethe stopmotion modelof the VS IMMC is activated



despite the target movement. We propose to introduce in
the VS� IMMC the event on the perceivability target. Dezert
et al. proposedthis idea in [6]. However, the perceivability
probabilitydoesnot take into accountthesensorMDV andthe
terrainobscuration.Therefore,we introducedin this paperthe
prior informationon thetargetperceivability to keepthetracks
and not activate the stop motion model when the targetsare
masked. That implies the track maintenancewhen the targets
aremasked.However if several targetsarein the sameterrain
mask and leave it through several exits, the usedSB-MHT
take an arbitrarydecisionto associatea track to a MTI report.
In factwe do not have, in our sensor, theHRRR(High Range
ResolutionRadar)usedin [7] in orderto distinguishthetargets
from each other. Thus, the sametrack representsdifferent
target trajectoriesand deterioratesthe situation assessment.
That is why we proposeto usea conceptof “sentinel” which
is applied to evaluatethe track associationambiguity at the
exits of the mask.

This paperis organizedas follows : in sectionII, we give
a brief description of the measurementmodel and of the
target constrainedmotion model. In section III, we present
the perceivability probability andits introductionin the target
trackingprocess.The sentinelconceptis presentedin section
IV. Finally, in section V, we illustrate our approachon a
complex scenariowith 6 targets.

I I . TARGET MOTION AND MEASUREMENT MODEL

A. Introduction

Usual target tracking algorithmsare basedon the Kalman
filter. Sinceseveralyears,in thegroundtargettrackingdomain,
the kalman filter is evolved by consideringthe contextual
informationin the trackingprocess.For instance,Kirubarajan
et al. proposedto use in [8] the road segment location in
order to modelizedthe dynamicof a target on the road.The
road network is consideredhere as a priori information to
be integrated in the tracker system. The map information
is containedin a GIS (GeographicInformation System).It
containsthe informationaboutthe roadnetwork locationand
the DTED (Digital TerrainElevation Data). In the following,
the stochastictarget constrainedand the Kalman filter under
constraintsaredescribedin addition to the GIS description.

B. GIS description

The GIS used in this work containsthe following infor-
mation: the segmentedroad network and DTED. Each road
segmentis expressedin theWGS84system.Theroadnetwork
is connex andeachroadsegmentis indexedby theroadsection
they belong to. A road section is defined by a connected
road segments set delimited by a road end or a junction.
Startingfrom the DTED a Delaunaytriangulationis applied.
Then, knowing the sensorlocation a Z Buffer techniqueis
computedto definethetrianglesseenor not seenby thesensor.
Consequently, at the current time it is possibleto obtain a
picture � which describesthepixelsseenor not by thesensor.
You canseeon the figure 1, the terrainelevation datain blue

Fig. 1. Terrainmasksvisualisation

with the trianglesin grey who representthe terrainmasks(i.e.
the areaswithout any detection).

At the beginning of a surveillancebattlefield operation,a
TopographicCoordinateFrame (noted TCF) and its origin
O are chosenin the mannerthat the axes X, Y and Z are
respectively orientedin the east,north andup local direction.
Now, the target trackingprocessis carriedout in the TCF.

C. Target stateunderconstraint

The target stateat the currenttime k is definedin the local
coordinateframeby :��� 	 
����� � 	 
��� � 	 
���� 	 
����� 	 
�� � (1)

where the couples � � � 	 
�� ��� 	 
 
 and � �� � 	 
������� 	 
 
 define
respectively the target location and velocity in the cartesian
coordinatesframe. The altitude componentis not considered
becausethe effect of this one is supposednegligible on the
estimatestate.The dynamicsof the target evolving on the
roadnetwork aremodelizedby a first ordersystem.Thetarget
stateunderthe roadsegments is definedby ����� 	 
 wherethe
target position � � ��� 	 
�� � ��� 	 
 
 belongsto the road segment
and the correspondingvelocity vector � �� ��� 	 
����� ��� 	 
 
 is in
the road segments direction.Therefore,the target constraint
state ����� 	 
 is definedby the following constraint:���! � ��� 	 
�"$#  � ��� 	 
�"&%'�)(*  �� � 	 
����� 	 
�� � +++ ,-�� ./�$( (2)

where the indexes a, b and c are the coefficients of the line
associateto the road segments and 01 -�� is the normal vector
to the road segment s . The constraintcan be expressedas
follows: 23  ����� 	 
��)4 (3)

with

23 �65 � (�#7(( � (�#98 and 4&�65 0 %(:8 .
The event that the statebelongsto the road segment s is

noted ; ��� 	 
<�:= ��� 	 
?><@ A . Knowing the event ; ��� 	 
 and
accordingto a motion model B<C the dynamicsof the target
canbeimprovedby consideringtheroadsegments. Dueto the
precisionof the GMTI sensorand the long time scanperiod,
the chosenmotion modelsare basics.It is about r constant



velocity motion models different on the standarddeviation
values. However the proposedapproachis valid for much
more complicatedmotion models like constantacceleration
or coordinatedturn motion models.It follows that :D�E�F G H�I)J�E K L�F MON H�P D�E�F G�Q&R H�S/TUF MON H�P V E K L�F G H (4)

where M�N is the time of sampling, the matrix J�E K L is the
statetransition matrix associatedto the road segment s and
describedin [11] and is adaptedto a motion model W L ,
the variable V E�F G H is a white noisegaussianprocessand its
associatedcovarianceX E K L�F G H is built in the mannerthat the
standarddeviation along the road segment is higher than the
standarddeviation in the orthogonaldirection. Consequently
the covariancematrix X E K L is definedby :X E K L�F G H�IZY'[ \?P�]9^�_`baa ^�_c&d P Yfe[ \ (5)

where the matrix Yf[ \ is the rotation matrix associateto the
s road segmentdirection g E definedin the plane F h!i j9i k�H .
The matrix TUF l N H is definedin [12]. We call m F G H the setof
measurementsobtainedat the currenttime.

We define n LE F G HfIZo n L F G H�pUq E�F G H r the event that the
target is following a dynamicaccordingto the motion modeln L andmoveson theroadsegments. So,thestateprobability
density function (i.e. pdf) consideringthe measurementssetm N andthe event n LE F G H is denoted:s o D�F G H tt m N i n LE F G H r (6)

The state D L�F G H is a Gaussianrandom variable defined
by its estimatedmean uD�L�F G!v G�H and its estimatedcovariancew L F G!v G�H (bothobtainedusinga modelbasedfilter). Underthe
roadconstraint,the estimatedstate uD�E K L�F G!v G�H is thereforethe
stateobtainedby the maximizationof pdf (6) given the eventn LE . Finally, under the gaussianassumptionof the Kalman
filter the analytic expressionof the constraintestimatestate
associateto the motion model M

L
is obtainedby calculating

theLagrangianof (6) undertheconstraint(3). Theexpressions
of constraintestimatedstateandit covariancearegivenin [13].

We have presentedthe taget motion model and the esti-
matedstateon a road segment s accordingto the dynamic
M
L
. However the road network is composedof several road

segmentsand a groundtarget hasseveral motion models.In
the paper [2] we have presentedour approachfor tracking
several targetswhich are manoeuvringon the road network.
So we have consideredan IMM (InteractingMultiple Model)
with a variablestructureto adapttheconstraintmotionmodels
set to the road network configuration. We have extended
this approachwith the targetsof interestwho can leave the
road network. The VS IMMC combined with a SB-MHT
has beenusedon real data. The obtainedresultsare better
than the usual approachwithout constraint and/or without
several motion modelsunder constraint,in order to palliate
thetargetsmanoeuvreson theroad.However, theweaknessof
our algorithmis, it doesnot take in accountthe non-detection

of thetargetsexpectedby a randomeventcharacterizedby the
sensordetectionprobability x�y . In thesectionIII, we enlarge
the algorithmby tackingin accountthe non-detectionsdueto
the stop of the targets,the rangeradial velocity lessthan the
MDV andthe terrainmasks.

D. Measurementmodel

According to the NATO GMTI formats, the MTI reports
areexpressedin WGS84coordinatessystem.All MTI reports
are export for each tracking station in the TCF. A MTI
measurementz at the currenttime k is given in the TCF by:z F G H�I6{f|!F G H~}!F G H��� �&F G H�� � (7)

The coupleF |!F G H�i }�F G H H is the MTI coordinatein the local
frame (0,X,Y) and �� � is the associatedmodified range-rate
measurementexpressedin the TCF:�� � F G H�I |!F G H�P��|!F G H�S&}�F G H�P��}!F G H� | _ F G H�S&} _ F G H (8)

We don’t considerthe range-rate �� obtain directly in the
sensor frame becausethe range-rateis correlated to the
MTI location components.In the literature it exists several
techniquesto uncorrelatethe range-ratefrom the location
componentslike the SEKF from Wanget al. in [9] which use
a Cholesky decompositionin order to do it. Nevertheless,we
preferto usethe AEKF (Alternative ExtendedKalmanFilter)
presentedby Bizup and Brown describedin the paper[10].
This last one is very simple to computebecausethe authors
proposeonly to use an alternative linearizationof the EKF
(ExtendedKalman Filter). For our problem, the alternative
linearization of the observation function is verified only if
we considerthe range-ratein the local frame TCF. Then,the
measurementequationis given accordingto the AEKF, by:z F G H�I)��F G H�P D�F G H�S$V�F G H (9)

with V�F G H a zero-meanwhite gaussiannoisevectorand ��F G H
definedby:

��F G H�I��� R a�a�aa�a R aa����� ��� N �� � a����� �?� N �� �
��

(10)

Theexplicit expressionof (10) is given in [10]. In the follow-
ing of thearticle,theevent � N K � is associatedto the � � � sequen-
tial measurementsm N K � andrepresentsthe setof measurement
generatedby the target (it exists a subsequencen anda mea-
surementi in the mannerthat m N K � I&o m N ��� K c i � � � i z L F G H r ).

I I I . PERCEIVABIL ITY PROBABIL ITY

In this part,basedon thework of Dezertet al., we introduce
the event that the targetsof a track � N K � is perceivableor not
by the GMTI sensors.



A. Perceivability probability in the target tracking process

At time � , the target stateprobability is representedby the
following exhaustive andexclusive events:�����¡  ¢ £ ¤ ¥ ¦ ¢�§ ¨?©�¦ ¤ ª ¦ § « £ ¬  ¦ ®¯�����¡  ¢ £ ¤ ¥ ¦ ¢�§ ¨?° ± ©�¦ ¤ ª ¦ § « £ ¬  ¦ ® (11)

here,
�f�

will denoteboth the target can be detectedby the
sensorand the randomevent. By introducethe both event in
the conventional IMM, we obtain a new formulation of the
likelihoodfunction.But the perceivability event doesnot take
in accountthe non-detectiondue to the target stop. That is
why, we usedthe IMM proposedby Kirubarajanet al. in [3],
wheretheauthorsintroducea stopmotionmodelnoted ²<³´ . In
the VS IMMC, we have for eachmotion modelbeyond µ�¶&·
motionsmodels ¸ ¹�º�»   ¼ ½ ¾ ¾ ¾ ½ µ ® ¿ :À?Á ¸ � ¿��/Â?Ã�Ä ¸ � ¿ ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ Ï (12)

where
Ä ¸ � ¿ is the MTI report define in (7), Æ � Ç�È É Ê is a

particularsequenceof previousmeasurement.Now, according
to the total probability rules,we introducethe event that the
target is detected(i.e.

  Ð6� · ® ) or not (i.e.
  Ð6�)¼ ®

) and
the events

�f�
and
¯���

. We obtain from (12):À?Á ¸ � ¿��ÑÂ?Ã�Ä ¸ � ¿�½ Ð6� · ½ ����ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ ² Á Î ¸ � ¿ Ï¶ Â?Ã�Ä ¸ � ¿�½ Ð6� · ½ ¯�f��ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ ² Á Î ¸ � ¿ Ï¶ Â Ã Ä ¸ � ¿�½ Ð6�$¼ ½ �f��ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ ² Á Î ¸ � ¿ Ï¶ Â?Ã�Ä ¸ � ¿�½ Ð6�$¼ ½ ¯�f� ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ ² Á Î ¸ � ¿ Ï
(13)

However, an unperceivabletarget can not be detected.so the
event

Ã Ð6� · ½ ¯��� Ï is equaltoÒ Ó Ô Õ Ó Ö . Accordingto theKirubarajanapproach,wedistinguish
the motion model STOP noted ²<³ from the set of motion
models.The event

Ã�Í ³Î ½ Ð6� · Ï is equal to × , becausethe
STOP motion modelmustnot be activatedif thereis at least
one detection.By using the Bayes rule, we find the new
expressionof the likelihood function ¸ ¹�º�»   ¼ ½ ¾ ¾ ¾ ½ µ ® ¿ :À?Á ¸ � ¿�� ¸ ·fØ/Ù Ú É ³ ¿�Û Ü�ÝÛ Â?Ã�Ä ¸ � ¿ ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿�½ �f� ÏÛ Ü Ã ����ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ Ï¶$¸ ·fØ Ü�Ý'¿�Û Ù Ú É ³ Û Ü Ã �f��ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ Ï¶!Ù Ú É ³ Û Þ ·fØ Ü<Ã��f� ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ Ï�ß (14)
and À ³ ¸ � ¿�� Ù Ú É ³ Û Ü9Ã�����ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ³Î ¸ � ¿ Ï (15)

where Ù Ú É ³ is the Kronecker function equal to unity if
there is no detection (

Ðà��¼
). The probability to ob-

tain at least one measurementis equal to the detec-
tion probability (i.e.

Ü Ã Ð6� · ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿�½ �f� Ï �¸ ·fØÑÙ Ú É ³ ¿�Û�Ü�Ý ) in opposition to obtain no measurement
(i.e.
Ü9Ã�Ð��)¼�ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿�½ ��� Ïá� ¸ ·fØ/Ù Ú É ³ ¿UÛ¸ ·fØ Ü�Ý'¿ ).

B. Unperceivability probability calculation

In this part,we presentthedifferentreasonsdueto thetarget
undetection.In order to know the perceivability probability
we calculatethe unperceivability probability. We considerin
this paperthat the target is unperceivableby theGMTI sensor
becausethetargetis eitherhiddenby theterrainelevation(this
masksis noted ² £ È ), or either the radial target velocity is
less than the MDV (this masksis noted ² £ â ). So for each
motion model we calculate the unperceivability probability¸ ¹�º�»   ¼ ½ ¾ ¾ ¾ ½ µ ® ¿ :Ü9Ã ¯����ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ ÏÑ�Ü9Ã�Í&ã ä ¸ � ¿�å9Í/ã æ ¸ � ¿ ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ Ï (16)

where
Í Õ È and

Í Õ â are the events associatethe unper-
ceivability due to the mask ² £ È and ² £ â respectively. The
problemis the both eventsare not independentsbecausethe
mask ² £ È dependson the sensorlocation to computethe
binary picture I of terrain masksand the mask ² £ â depends
on the sensorline of sight, thenthe sensorlocation.However,
our goal is only to know the target perceivability (the target
is undetectedeither by a mask ² £ È , either by a mask ² £ â
or the both), that is why we usethe max operatorto compute
the probability (16). It follows :Ü9Ã ¯����ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ ÏÑ�Ð Õ ç ¸ Ü9Ã�Í/ã ä ¸ � ¿ ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ ÏO½ Û Û ÛÜ Ã Í&ã æ ¸ � ¿ ÅÅ Æ � Ç�È É Ê ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ Ï ¿ (17)

The prior unperceivability probability of the mask due to
the terrain elevation is evaluatedthanksto the digital terrain
elevation data called DTED. Knowing the location of the
sensorand the DTED, it is possible to compute a binary
picture I, which indicate the non-detectionareas.We use a
Z-buffer algorithm in order to know if a pixel from I is
seenor not by the sensor. Starting with the predictedstateèç Á É Î ¸ �!é ��Ø&· ¿ underconstraintfrom eachmotion model and
its associatecovarianceê Á É Î ¸ �!é ��Ø/· ¿ , we areable to obtain
the target location ¸ ë ì ½ ë í ¿ and the location covariance ê Ì î ï
in the picture I, according to the transformationfunctionð�ñ�ò�ó�ô!õ

betweenthereal locationin theTCF andthepicture
I. Due to the uncertaintyon the target location,we proposeto
take in accounta neighbourhoodof ¸ ë ì ½ ë í ¿ in orderto know if
the target is unperceivable.Finally, the prior unperceivability
probability ²Ñö ä is equalto:Ü9Ã�Í/ã ä ¸ � ¿ ÅÅ Æ � Ç�È ½ Ë � É Ì ½ Í ÁÎ ¸ � ¿ Ï�ø÷ùÁ ú È ÷ùû ú È üÑýþ ÿ � � � � � � Ç�È � ¸ º ½ � ¿ �<Û Û Û��Þ ë þ ¶/º�Ø	� ÷ â 
 Ø&· ½ ë �'¶ � Ø�� ÷ â 
 Ø&· ß (18)

where ü ýþ ÿ � � � � � � Ç�È � ¸ º ½ � ¿ is the pdf value of the Gaussian
distribution at the pixel ¸ º ½ � ¿ :



��� � � � � � � � ��� � � � � � �! �" � # $ % $ & ' ��(*) + , � - - -. �# -0/21 ���3 . 1*4 �4 5 3 687 - 9 , ��� -0/21 ���3 . 1:4 �4 5 3 6 �
(19)

The value ; is the gate equal to the maximum standard
deviation of 9=< > ? and @ - A symbolizesthe integral part.

We calculate now the prior unperceivability probability
that the target can not be detecteddue to its radial velocity
inferior to the MDV. According to a Gaussiandistribution,
the predictedradial velocity, noted BC D � EGF E .�H � , from each
trackandeachmotionmodelgiven in [5] is evaluatedandthe
probability that the radial velocity is underthe MDV can be
calculated.I*JLKNM O � E � PP Q � ��� R S � T � R < � K DU � E � V: I J�WYX BC D � EGF E .NH � X K	Z*[ PP Q � ��� R S � T � R < � K DU � E � V

(20)

C. Principle

If the perceivability probabilityI:JL\ �0PP Q � ��� R S � T � R < � K DU � E � VY� ]0�!^`_ W � a a a � b c � is equal
to one, we find the likelihood function given in [3], i.e.
the target is perceivable and if there is no detection, the
stop motion model is activated. On the other hand, if this
perceivability probability for each motion model is equal
to zero, the stop likelihood function (15) is equal to zero
(that brings about the non activation of the stop motion
model) and the others motion model likelihood functions
(14) are equi-probablethat brings about the keep of track
during its masking.Now, we mustcalculatethe perceivability
probability from eachmotion model.

Consequentlythe prior perceivability probability (16) can
be calculatedfor eachmotion model. In the particular case,
wherethe systemtrack only one target in a terrainmask,the
proposalapproachis sufficient for the track maintenance.In
the terrain mask, the perceivability probability (16) is equal
to zeroandthe predictedstatesarepropagatedandeachroad
sectionduring the masking.

IV. SENTINEL SOLUTION FOR MULTIPLE TARGET

TRACKING

However, when several targets are in the samemask, the
kinematics information is not sufficient to discriminate the
targets in the mask. In fact, if several predictedstatesasso-
ciatedto different tracksare locatedon the sameexit of the
mask,the SB-MHT will take an arbitrary decision(the most
probableassociation)to attachthe new MTI report to only
one tack. Whentwo tracks,noted d � R � and d � R # , exit from a
sameterrain mask their perceivability probability from each
motionmodeltendsto one.Thatbringsaboutthe stopmotion
modelactivation for theboth tracks.If a MTI reportsappears,
the VS IMMC SB-MHT extendsonly one track, for instanced � R � . However thetargetsassociateto thetracksd � R � and d � R #
can manoeuvrein the terrain maskand thereis no guarantee
that thenew MTI reportis originatedfrom thetargetassociate

thetrack d � R � . In orderto modelizetheassociationambiguity,
we proposeto build a new track d � R e , startingfrom the new
MTI report,in which it is possibleto find the informationthat
this new track d � R e is originatedeither from d � R � or d � R # .
For this, it is necessaryto placethe tracks d � R � and d � R # in a
“sentinel” configuration.Then,like a sentinel,the tracks d � R �
and d � R # are fixed (thereis no maintenance)and waiting for
all MTI reportsin their neighbourhood.

A. SentinelActivation

To declarea track as“sentinel”, we computethe combined
perceivability probability of a target as following:I J \ � E � PP Q � ��� R S � T � R < V  fgD h0i I J \ � E � PP Q � ��� R S � T � R < j K DU V - k D � EGF E .�H � (21)

where the perceivability probabilityI J \ � E � PP Q � ��� R S � T � R < j K DU V is complementary the
unperceibaility probability (16) for each motion model
and k D � E8F E .NH � is the predictedmodeprobability given in
[14].

Step1: Sentinelconfiguration.
If the probability (21) is lessthana given thresholdl , the

associatedtrack is placedin a inactive sentinelconfiguration.
Note that the track is always in the terrain mask and the
predictedstatesare always propagated.Then,when the track
in the inactive sentinelconfigurationleaves the terrain mask,
thecombinedperceivability probability increases.In thefigure
IV-A, we canseea track approachinga terrainmask.At time
k, thecombinedperceivability probability function is high and
the predictedstateis updated.But at time k+1 the combined
perceivability probability low and the track is placed in a
sentinelconfiguration.

Step2: Sentinelactivation.
If the probability (21) is higher than the threshold l the

sentinelbecomesactive. This is the caseat eachmask exit.
This special state, called sentinel, is waiting for the MTI
report, like a cat who is waiting for a mouseto come out
of cover. In the figure IV-A, accordingto the road network
configurationthe track in sentinelconfigurationis duplicated
in the intersectionat time k+2. the right track leave theterrain
maskand the combinedperceivability increasesand exceeds
the threshold l . Then the sentinelbecomesactive, whereas
the down track is always in the terrain mask, its combined
perceivability is always inferior than the given threshold l
and the track staysin a inactive sentinelconfiguration.

Step3: Sentinelassociation.
If the activatedsentinelvalidatesa new MTI report,a new

track is build startingfrom this MTI reportwith the informa-
tion that this new trackcomesfrom the trackassociatedto the
sentinel.

B. Decision

Finally, it is possibleto associatein a new track d � R m the
informationthat it is originatedfrom the track d � R < according
to thesentinelvalidation.For eachhypothesis,we evaluatethe



Track n o at time p .

Track n o at time p q o . Track n o at time p q!r .
Fig. 2. Exampleof sentinelactivation

probability that the new track comesfrom the sentinelwhich
canbe written:s*t�u8v w xzy{u|v w } ~~ � v �`�s t���� � � ~~ � vG� � v w } �:� s tL�!� ��� � u8v w } �Y� � v ~~ � v � (22)

the first term of the expression(22) is the global probability
track given directly by the SB-MHT. The secondterm repre-
sentsthe probability that the sentinelis still activatedat the
currenttime

� v . Thisprobabilityhasnota physicalsense.Then
we cansaidthis probability decreaseslinearly. In our casewe
comparethe activatedsentinelto a radioactive elementwho
marksthe new trackswith the associatedold tracks.Thenthe
probabilitythat thesentinelis alwaysin life at thecurrenttime
is: s tL�!� ��� � u v w } ��� � v ~~ � v � ��� � �Y�!� � v � � �� �!� ��� � (23)

where
� �

is the first activation time and
� �!� ���

is the average
sentinelactivationtime. If in a new track

u8v w x
theprobability

(23) of anold track
u|v w }

is important,we decidethat thetracku8v �L� w x
is the trackcontinuityof the track

u|v w }
. Otherwiseno

decision is taken becauseof several old tracks continuation
ambiguities.

C. Modificationof the motionmodelin a terrain mask

If the tracks are masked by a short terrain mask, the
combinedperceivability probability (21) is higher than the
given threshold� and the tracksdoesnot becomea sentinel.
On the contrary, for the large terrain masks,the combined
perceivability probability becomeslessthan � and the tracks
becomeinactivated sentinels.If there is no modification of
the motion models, the covariance matrix grow up until
the sentinelis activated.Consequently, the activatedsentinel
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Fig. 3. The sixth groundtargetstrajectories

can validatedfar MTI reportsbecauseof the big estimated
covariance.That is why the motion model (4) is replacedby� �0 !¡`¢ £ � ¤ ¤ ¤ � ¥ ¦ �

:��§L� � � �z¨ § w © � � v � � �0§L� � �Nª � «�¬  ® ¯ ° w � � ±Y� � v � � ² § w © � � � (24)

where
¬  ® ¯ ° w � is the Kronecker symbol equal to one or zero

if the trackbecomesrespectively anactive/inactive sentinelor
not.

V. SIMULATION AND RESULTS

A. Scenariodescription

Weconsider6 targetsmoving in theTopographicCoordinate
Frame.The targets1, 3 and4 move on the sameroadwith a
constantvelocity (3). The targets2 and 5 move on the road
network in order to take anotherroad in an intersection.The
targets 1, 2 and 4 start in a close formation and cross the
targets2 and5. The target 6 doesnot crossthe otherstarget
but deceleratesin order to stopduring 30 seconds.

B. Sensordescription

The 6 targetsaretracked by a GMTI sensorat 0.1 Hz with
20 m, 0.0008rad and1 m/s range,cross-rangeandrange-rate
measurementstandarddeviation respectively. The detection
probability

s!³
is equal to 0.9 and the MDV fixed at 1 m/s.

The sensoris locatedat 60 km from the TCF origine at 4000
m in elevation and moves in the west direction. The terrain
masksarecomputedat eachtime accordingtheDigital Terrain
ElevationData(theyellow trianglesin thefigure4). In addition
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of the undetectedareas,we have addeda fixed terrain mask
(the red trianglesin the figure 4) in order to have the targets
1 to 5 in the sameterrainmask.

C. Filter Parameters

In orderto evaluatethealgorithmperformanceswe compare
theVS IMM SB-MHT with anusualIMM SB-MHT presented
in [15]. The parametersof the IMM are the following: three
motion modelsare considered,one constantvelocity motion
modelwith a small standarddeviation (fixed at 0.05 ¸º¹ » ¼�½ ),
anotherconstantmotionmodelwith a high standarddeviation
(fixedat 0.8 ¸�¹ » ¼�½ ) in orderto palliatethe targetmanoeuvre
and a stop motion model (where the standarddeviation is
equalto zero).TheVS IMMC is composedwith threegenerics
motion models: one constraintconstantvelocity model (the
standarddeviation along and orthogonalto the road segment
areequalto 0.05 ¸	¹ » ¼�½ ), anotherconstraintconstantvelocity
model with a high standarddeviation to adapt the dynamic
to the target manoeuvre(the standarddeviation along and
orthogonalto the road segmentare respectively equal to 0.8¸¾¹ » ¼�½ and 0.4 ¸¾¹ » ¼�½ ) and a stop motion model. Those
genericsconstraintsmotionmodelsmustbeadaptedfollowing
theroadnetwork topology. TheSB-MHT parametersaretaken
in [15].

D. Results

The target tracking goal is to track for a long time the
target with olny one track. Then, in order to evaluate the
tack maintenancewe use the track length ratio criterion for
a target n betweenthe truth target trajectorylength ¿ À andthe
associatedtrack length Á=À obtainedin a run. According to
100 Monte-Carloruns, we obtain for eachtrack the average
track length ratio Â Ã0Ä`Å`Æ Ç È É É É È Ê Ë Ì :Í ÀYÎÐÏ Ñ ÑÒ Ó Ô Ï

¿ ÀÇ Õ Õ8¹ Á!À (25)

In addition for each algorithm (VS IMMC or IMM) we
have two length ratios. The ratio length noted1 is the track
length ratio obtainedwithout ambiguity association(i.e. the
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track is obtainedafter thedecisiondescribedin thesubsection
IV-B). Thesecondratio lengthnoted2 is thetrack lengthratio
obtainedwith ambiguity association(i.e. the track has been
generatedby several sentinelsand no decisioncan be taken
on the track continuity).

On the figure 5, we can see that for each targets the
associatedtrack ratio is never equalto one.That implies the
systematictrackslost with theIMM. In factwhenthetracksof
the targets1 to 5 enterin the terrainmaskthe tracksbecomes
in a sentinelconfigurationand the sentinelsareplacedat the
exit of the mask. But the tracks are not constrainedon the
roadandevolve in the last updateddirection.Thenthe targets
follow the road network and the unconstraintsentinelsare
inevitably not placedat the roadproximity. When the targets



appearthrough their MTI reports,the sentinelsare far away
in orderÖ to be attachedto the new tracks generatedby the
MTI reports.That is why the track type lengthratio 2 is low:
there are few new tracks in which the sentinel information
exists. On the other hand, the track length ratio 2 of the
VS IMMC (seefigure 6) is near to one for the target 1 to
4. Given that the tracksare constrainedto the road network
the sentinelsare placedat the proximity of the target MTI
report. So the new tracks contain the information that this
track could be the continuationof the old track associatedto
the sentinel.In addition, the track length ratio type 1 of the
tracks1 and4 is high thatmeansthat the algorithmhastaken
the decisionto declarethe new track like being the old track
continuationwithout ambiguity. However, for the targets 2
and3 no decisioncanbe taken becausein the corresponding
new track thereis an ambiguity, in the mannerthat eachnew
track can be attachedto several sentinels(either the sentinel
associatedto thetarget2 or thesentinelassociatedto thetarget
3). For thetarget5, wecanseethatthetracklengthratio type1
and2 is low. This is theweaknessof our approach.The target
5 entersin the terrain maskjust when the target 1 leaves the
mask.A new track is createdwith the target 1 MTI reports
andthe sentinelis attachedto this track.Sometimesin a run,
the target 5 track is also associatedto this MTI report.After
few scanstheSB-MHT decidesthat thetrackassociatedto the
sentinelis moreprobablethanthe track associatedpreviously
to the target 5 andthis last one is lost. That explainsthis bad
result.The figure 7 representsthe Root MeanSquareError of
the targets1 and4 obtainedwith the IMM SB-MHT and the
VS IMMC SB-MHT. We canseethat theRMSEis betterwith
theVS IMMC thantheIMM. However whenthetargetsmove
in the terrain mask between150 s and 230 s, the RMSE of
the VS IMMC increases.This is dueto the last updatedstate
residualerror which is propagatedin the mask.Nevertheless,
the predictederror is compensatedby the sentinelactivation
becausethe sentinelis waiting for a new MTI report.Another
weaknessof ourapproachis thetargetmanoeuvrein theterrain
masks.If the target manoeuvresquickly, the motion models
are not adaptedbecausein the terrain mask,eachpredicted
stateis propagatedandnot updated.Themanoeuvrecanbenot
detected.That is why thetrackscouldbe lost is theassociated
targetsmanoeuvrequickly in the terrainmasks.

VI . CONCLUSION

In this paper, we have presenteda methodto trackmultiple
ground targetswith terrain obscuration.We assumethat the
non-detectionof target is eitherdueto stopof thetargetor the
radial velocity underthe MDV or the terrain mask.We have
defineda perceivability probability to detectthe obscuration
areas.However, the usualsalgorithmsare not adaptedto the
track maintenanceif several targets enter and exit in same
terrainmask.So, a “sentinel” solutionhasbeendevelopedto
modelizethe uncertaintyon the track continuationif several
targetsleave the sameterrain mask.This approachimproves
the track maintenanceexpected if the targets manoeuvre
quickly in the terrain mask. In this case it is difficult to
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Fig. 7. Root MeanSquareError of the targets1 and4

discriminatethe targets. That is why, in a future work, we
must reducethe terrain mask areasby using several GMTI
sensorsandusethe fusion with heterogeneousinformation in
order to obtain the “type” informationon a track.
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