Sylviane R Schwer
email: sylviane.schwer@lipn.univ-paris13.fr

Temporal Reasoning without Transitive Tables

Keywords: Temporal reasoning, formal languages, constraints satisfaction c{b, a}

Representing and reasoning about qualitative temporal information is an essential part of many artificial intelligence tasks. Lots of models have been proposed in the litterature for representing such temporal information. All derive from a point-based or an interval-based framework. One fundamental reasoning task that arises in applications of these frameworks is given by the following scheme: given possibly indefinite and incomplete knowledge of the binary relationships between some temporal objects, find the consistent scenarii between all these objects. All these models require transitive tables -or similarly inference rules -for solving such tasks.

, we have defined an alternative model, renamed in [31] S-languages -for Set-languages -to represent qualitative temporal information, based on the only two relations of precedence and simultaneity. In this paper, we show how this model enables to avoid transitive tables or inference rules to handle this kind of problem.

Introduction

Representing and reasoning about qualitative temporal information is an essential part of many artificial intelligence tasks. These tasks appear in such diverse areas as natural language processing, planning, plan recognition, and diagnosis. Allen [START_REF] Allen | An Interval-Based Representation of Temporal Knowledge[END_REF][START_REF] Allen | Maintening Knowledge about Temporal Interval[END_REF] has proposed an interval algebra framework and Vilain and Kautz [START_REF] Vilain | Constraint Propagation Algorithms for Temporal Reasoning[END_REF] have proposed a point algebra framework for representing such qualitative information. All models that have been proposed afterwards in the litterature derive from these two frameworks. Placing two intervals on the Timeline, regardless of their length, gives thirteen relations, known as Allen's [START_REF] Allen | Maintening Knowledge about Temporal Interval[END_REF] relations. Vilain [START_REF] Vilain | A system for reasoning about time[END_REF] provided relations for points and intervals, Kandrashina [START_REF] Von Stechow | Representation of Temporal Knowledge[END_REF] provided relations for points, intervals and chains of intervals. Relations between two chains of intervals have been studied in depth by Ladkin who named them non convex intervals [START_REF] Ladkin | Time Representation: A Taxonomy of Interval Relations[END_REF]. Al-Khatib [START_REF] Lina | Reasoning with non-convex time intervals[END_REF] used a matricial approach. Ligozat [START_REF] Ligozat | On generalized interval calculi, Proceedings of the AAAI[END_REF] has studied relations between chains of points, named generalized intervals.

One fundamental reasoning task that arises in applications in these frameworks is given by the following scheme: given possibly indefinite and incomplete knowledge of the relationships between some temporal objects, find the consistent scenarii between all these objects. All these models have in common that the representations of temporal information are depicted as sets of binary relationships and are viewed as binary constraint networks. The reasoning is then based on transitive tables that describe the composition of any two binary relations. All these models require transitive tables -or similarly inference rules -for solving such tasks. The logical approach of the I.A. community explains this fact.

The framework of formal languages, inside which the model of S-languages has been proposed [START_REF] Sylviane | Raisonnement Temporel : les mots pour le dire[END_REF][START_REF] Sylviane | S-arrangements avec répétitions[END_REF], provides the same material both for expressing the temporal objects and the n-ary relationships between them. The reasoning is based on three natural extensions of very well-known rational operations on languages: the intersection, the shuffle and the projection. More precisely, we have shown in [START_REF] Sylviane | S-arrangements avec répétitions[END_REF] that binary relations between two generalized intervals are in a natural correspondence with S-languages that express Delannoy paths of order 2. By the way, we provide to Henry Delannoy (1833Delannoy (-1915)) a large domain of applications (though unexpected) of his theory of minimal paths of the queen from one corner to any other position on a chess-board [START_REF] Delannoy | Emploi de l'échiquier pour la résolution de certains problèmes de probabilités[END_REF].

The main idea for using formal languages for temporal representation and reasoning is that a word can be viewed as a line, with an arrow from left to right (the way of reading in european languages). Hence, assigning a letter to each temporal object, as its identity, and using as many occurrences of this identity as it has points or interval bounds, it is possible to describe an atomic temporal relation between n objects on the timeline, as far as there is no simultaneity, with a word on an n-alphabet (alphabet with n letters). Simultaneity requires to be able to write several letters inside a same box. This is the aim of the theory of S-languages.

In this paper, we show how the S-languages framework allows to represent n-ary qualitative temporal relations and to reason without any transitive tables.

In the next part, we recall the basis of formal languages, following [START_REF] Autebert | Langages Algébriques[END_REF][START_REF] Ginsburg | The Mathematical Theory of Context-Free Languages[END_REF], and S-languages, and we examine the usual operations of the relational algebra [START_REF] Ladkin | On Binary Constraint Problems[END_REF] in the context of S-languages. We then provide two examples of how to reason without transitivity tables. The first one is a revisitation of the well-known unsatisfiable closed network of Allen [START_REF] Allen | Maintening Knowledge about Temporal Interval[END_REF] . The second one revisits the Manna-Pnuelli's problem of the allocation of a resource between several requesters [START_REF] Manna | Proving precedence properties: The temporal way[END_REF]. This aims to show how a problem of concurrency for complex systems, written in modal temporal logic can be solved with the S-languages framework.

Formal languages

Let us first recall some basis on formal languages.

Basis

An alphabet X is a finite nonempty set of symbols called letters. A word (of length k ≥ 0) over an alphabet X is a finite sequence x 1 , . . . , x k of letters in X. A word x 1 , . . . , x k is usually written x 1 . . . x k . The unique word having no letter, i.e. of length zero, called the empty word, is denoted by ε. The length of a word f is denoted by |f |. The number of occurrences of a letter a in the word f is denoted by |f | a . The set of all words (resp. of length n) on X is denoted by X * (resp. X n). Let us remark that X * = n≥0 X n . The set of all words on X is written X * . A subset of X * is called a language. The empty set ∅ is the least language and X * is the greatest language for the order of inclusion.

Let u and v be words in X * . If u = u 1 . . . u r and v = v 1 . . . v s are words, then u.v (usually written uv), called the concatenation of u and v, is the word u 1 . . . u r v 1 . . . v s . For instance let X = {x, y}, u = xx and v = yy, then the concatenation is uv = xxyy. Let us notice that uv = vu. We also have to set

u 0 = {ε} , u 1 = u, u n+1 = uu n . One has v.ε = ε.v = v.
The concatenation can be extended to languages on X by setting L.L ′ = {uv|u ∈ L, v ∈ L ′ }. This operation endows 2 X * with a structure of noncommutative monoid. We also have

L 0 = {ε} , L 1 = u, L n+1 = LL n , L * = n≥0 L n . u * = n≥0 u n .
Even if u * is a set, it can be worked with like an element, so that we will take this alternative and use u * as a word or S-word.

The shuffle is a very useful operator which is used in concurrency applications. The shuffle operator describes all possibilities of doing two concurrent sequences of actions in a sequential manner. Therefore, this is not a binary combination of X * because, from two words, it provides a set of words, that is a language. Its definition is the following: Let u and v be two words written on an alphabet X * . The shuffle of u and v is the language

u∨ ∨v = {α 1 β 1 . . . α k β k ∈ X * |α 1 , β k ∈ X * , α 2 , . . . , α k , β 1 , . . . , β k-1 ∈ X + , u = α 1 . . . α k , v = β 1 . . . β k }.
For instance let X = {x, y}, then xx∨ ∨yy = {xxyy, xyxy, yxxy, xyyx, yxyx, yyxx}.

The concatenation uv means an order between u and v, this is a word of the language u∨ ∨v. One has ε∨ ∨v = v∨ ∨ε = v for any word v of X * . The shuffle can be naturally extended to languages on X by setting L∨ ∨L ′ = u∈L,v∈L ′ u∨ ∨v. The shuffle endows 2 X * with a structure of commutative monoid.

Words are read from left to right, so that the reading induces a natural arrow of Time. Any occurrence of a letter can be viewed as an instant numbered by its position inside the word. Traces languages or paths expressions [START_REF] Campbell | The Specification of Process Synchronization by Paths Expressions[END_REF] are used for such a purpose: planning the order of execution of events. But with these languages, it is not possible to differentiate two occurrences that are concurrent (i.e. one may be before, at the same time or after the other) from those that must occur at the same time: these two events are said to commute. It is presupposed that the granularity of the time measurement is fine enough to avoid the case at the same time.

S-alphabet, S-words, S-languages

In order to model explicitly concurrency with words, various tools have been proposed such as event structures or equivalence relations on words i.e. traces. In those theories, it is not possible to model only synchronization. One is able to say that two events can be done at the same time but it is not possible to express that they have to be done at the same time. This is due to the fact that concurrency is modelled inside a deeply sequential framework, hence, synchronization is simulated with commutativity. But one has to handle with instant, in the sense of Russell [29]. This is why we introduce the concept of S-alphabet which is a powerset of a usual alphabet.

Basic definitions

Let us set Definition 2.1 If X is an alphabet, an S-alphabet over X is a non-empty subset of 2 X -∅. An element of an S-alphabet is an S-letter. A word on an Salphabet is an S-word. A set of words on an Salphabet is an S-language.

S-letters are written either horizontally or vertically: {a, b} = {a, b, a b }. For S-letters with only two letters, we also write a b instead of a b . Examples of S-alphabets over X are:

1. the natural one Ẋ = {{a}| a ∈ X} that is identified with X. 2. the full S-alphabet over X, i.e. X = 2 X -∅.

S-alphabets obtained from others S-alphabets

with the following construction:

For an S-alphabet Y over X, define Y = {A|∃A 1 , . . . , A k ∈ Y : A = k i=1 A i }.
Y is also an S-alphabet over X.

Note that, for all S-alphabets Y and Z over X, we have Y = Y and Y ∪ Z = Y ∪ Z. A S-word on a full S-alphabet over X will be simply designed by an S-word on X.

In this work, we use the full S-alphabet X = 2 X -∅. Identifying any singleton with its letter, we write X ⊂ X and X * ⊂ X * . In order to link S-words on X with letters of X, we set Definition 2.2 Let X = {x 1 , . . . , x n } be an nalphabet and f ∈ X * . We note f x for x ∈ X the number of occurrences of x appearing inside the S-letters of f , and f the integer 1≤i≤n f xi .

The Parikh vector of f , denoted f , is the n-tuple (f x1 , . . . , f xn).

Example 1 :

f = a b cba a c c a b a    a b c    aaaa is an S-
word such that f = (10, 4, 4).

Concatenation and shuffle

The concatenation of two S-words or two Slanguages are defined exactly in the same way as in formal languages. The S-shuffle has to be generalized in the following way:

Definition 2.3 Let X and Y be two disjoint alpha- bets, f ∈ X * , g ∈ Y * .
The S-shuffle of f and

g is the language [f ||g] = {h 1 . . . h r |h i ∈ X ∪ Y ,
: f = f 1 . . . f k , g = g 1 . . . g k , satisfying, (i) ∀i ∈ [r], |f i |, |g i | ≤ 1, (ii) 1 ≤ |f i | + |g i |, and (iii) h i = f i ∪ g i }.
For The S-shuffle of two S-languages L and L ′ written on two disjoint alphabets is the language

[L||L ′] = ∪ f ∈L,f ′ ∈L ′ [f ||f ′].
The S-shuffle is, like the shuffle, an associative and commutative operations, which allows to note [u 1 || • • • ||u n] for the S-shuffle of n S-words or Slanguages.

In the case where all S-words of a language L share the same Parikh vector, we note L this common Parikh vector. In particular, on the n-

alphabet X = {x 1 , • • • , x n }, the language, L(p 1 , • • • , p n) = {f ∈ X * | f = (p 1 , • • • , p n)} that we call (p 1 , • • • , p n)-Delannoy Language -on X -,
are of a particular interest for temporal qualitative reasoning, as we will show it in the next section. Let us just recall [START_REF] Sylviane | S-arrangements avec répétitions[END_REF] that the cardinality D(p 1 , . . . , p n) of a (p 1 , • • • , p n)-Delannoy Language is given by the following functional equation:

D(p 1 , . . . , p n) = Pred(p1,...,pn) D n (p 1 , • • • , p n)
where for p > 0), p = {p, p -1}; 0 = {0} and Pred((

p 1 , • • • , p n)) = {(p 1 , • • • , p n)}-{(p 1 , • • • , p n)}.
In particular D(p, q)=D(p, q -1) + D(p -1, q -1) + D(p -1, q) with the initial steps D(0, 0) = D(0, 1) = D(1, 0) = D(p, q) are the well-known Delannoy numbers [START_REF] Delannoy | Emploi de l'échiquier pour la résolution de certains problèmes de probabilités[END_REF][START_REF] Weisstein | CRC Concise Encyclopedia of Mathematics[END_REF][START_REF] Neil | sequence A001850/M[END_REF] that enumerate Delannoy paths in a (p,q)-rectangular chessboard. A Delannoy path is given as a path that can be drawn on a rectangular grid, starting from the southwest corner, going to the northeast corner, using only three kinds of elementary steps: north, east, and northeast. Hence they are minimal paths with diagonal steps. The natural correspondence between (p,q)-Delannoy paths and L(p, q) on the alphabet {a, b} is: the S-letter a corresponds to a north-step, the S-letter b to a east-step and the S-letter a b to north-east-step.

Projection

We extend the well-known notion of projection in formal languages theory to S-languages. The aim is to be able to erase all occurrences of some letters in an S-word and having as results a new S-word. The problem is how to handle an S-letter with all its letters erased. For that purpose we set: let X be an alphabet and f ∈ X * ,

X f = {x ∈ X| f x = 0}. Definition 2.4 Let X be an alphabet and Y ⊆ X. The S-projection from X * to Y * is a monoid mor- phism π X
Y defined by the image of the S-letters: for

s ⊂ X, its image is π X Y (s) = s ∩ Y if this intersec- tion is not empty, ε if not. The projection on Y of an S-word f is denoted f |Y instead of π X Y (f). Example 2 (Example 1 continued) Let f = a b cba a c c a b a    a b c    aaaa, -f |{a} = aaaaaaaaaa, -f |{b} =bbbb, -f |{c} =cccc, -f |{a,b} = a b baa a b a a b aaaa, -f |{b,c} = bcbccb b c , -f |{a,c} = aca a c caa a c aaaa, -f |{a,b,c} =f .

Qualitative Temporal Objects and Relations in the binary algebra and their transitivity tables

We examine qualitative temporal objects and relations inside the framework of relational algebra, as Ladkin and Maddux initiated it [START_REF] Ladkin | On Binary Constraint Problems[END_REF]. We recall the usual qualitative temporal binary algebra: the point algebra, the interval algebra [START_REF] Allen | Maintening Knowledge about Temporal Interval[END_REF], the pointinterval algebra [START_REF] Vilain | A system for reasoning about time[END_REF][START_REF] Vilain | Constraint Propagation Algorithms for Temporal Reasoning[END_REF], chains algebra.

In this paper, we use the term situation for the description of a unique temporal relation (complete information) between objects, which is sometimes called an atomic relation.

Let us recall the principia of transitivity table. Given a particular theory Σ supporting a set of mutually exhaustive and pairwise disjoint dyadic situations, three individuals, a, b and c and a pair of dyadic relations R 1 and R 2 selected from Σ such that R 1 (a, b) and R 2 (b, c), the transitive closure R 3 (a, c) represents a disjunction of all the possible dyadic situations holding between a and c in Σ. Each R 3 (a, c) result can be represented as one entry of a matrix for each R 1 (a, b) and R 2 (b, c) ordered pair. If there are n dyadic situations supported by Σ, then there will be n × n entries in the matrix. This matrix is a transitivity table. Transitive tables for binary situations have been written for convex intervals (Allen), for points, for points and convex intervals: knowing an atomic relation between objets A and B and an atomic relation between objects B and C, derive the possible -or other said not prohibited -relations between objects A and C.

Cohn et al. [START_REF] Randell | Computing Transitivity Tables: A Challenge For Automated Theorem Provers[END_REF] have studied transitivity tables for reasoning in both time and space in a more general context. They noted the difficulty to build such secure transitivity tables.

The Point Algebra.

The three situations are the three basic temporal relations: before <, equals = and after > as shown in Figure 1. The set of point qualitative

• < = > < < < ⊤ = < = > > ⊤ > > Fig. 2.

point transitivity table

For instance, if A < B and B > C then A⊤C.

The Interval Algebra.

In Figure 3, we recall the thirteen situations between two intervals studied by Allen [START_REF] Allen | An Interval-Based Representation of Temporal Knowledge[END_REF].

The transitivity table is given in Table 4 where1 : 2 = ⊤, that is there is no constraint, every situa-

Rel OR Rel ∼ equals(=) OR equals(=) started-by (s ∼) OR starts (s) contains(d ∼) OR during (d) finished-by (f ∼) OR finishes (f) overlaps (o)ORoverlapped-by(o ∼) meets (m) OR met-by (m ∼)
before (<) OR after (>) Fig. 3. the set of 13 situations between two intervals on line tion is allowed, 3 = ⊤-{<, m, m ∼ , >}, which means that the two intervals intersects on an interval, this is exactly what Kamp named the overlapping2 relation • on two processes [START_REF] Kamp | Events, Instants and Temporal Reference[END_REF] and Freksa the contemporary relation [START_REF] Freksa | Temporal reasoning based on semiintervals[END_REF],

Γ ∼ = {<, m, o, s, d}, that is the relation begin be- fore, Λ = {<, m, o, d ∼ , f ∼ }, that is the relation end af- ter α = {<, m, o}, δ ∼ = {o, s, d}, ρ ∼ = {o ∼ , d, f }, ŝ = {s, =, s ∼ }, f = {f, =, f ∼ }
and using the following property:

∀A ⊆ ⊤, x ∈ A if f x ∼ ∈ A ∼ .

The Point-Interval Algebra

In order to take into account both instantaneous and durative processes, Vilain provided a model with points and intervals [START_REF] Vilain | A system for reasoning about time[END_REF]. Figure 5 shows the five situations between a point and an interval.

Besides the two preceding transitivity tables, are needed six more transitivity tables: (i) points/intervals-intervals/points, (ii) points/intervals-intervals/intervals, (iii) points/points-points/intervals, (iv) intervals/intervals-intervals/points, (v) intervals/points-points/intervals, (vi) intervals/points-points/points.

• = < > d d ∼ o o ∼ m m ∼ s s ∼ f f ∼ = = < > d d ∼ o o ∼ m m ∼ s s ∼ f f ∼ < < < 2 Γ ∼ < < Γ ∼ < Γ ∼ < < Γ ∼ < > > 2 > Λ ∼ > Λ ∼ > Λ ∼ > Λ ∼ > > > d d < > d 2 Γ ∼ Λ ∼ < > d Λ ∼ d Γ ∼ d ∼ d ∼ Λ Γ 3 d ∼ ρ δ ρ δ ρ d ∼ δ d ∼ o o < Γ δ ∼ Λ α 3 < δ o ρ δ ∼ α o ∼ o ∼ Λ > ρ ∼ Γ 3 α ∼ ρ > ρ ∼ α ∼ o ∼ δ m m < Γ δ ∼ < < δ ∼ < f m m δ ∼ < m ∼ m ∼ Λ > ρ ∼ > ρ ∼ > ŝ > ρ ∼ > m ∼ m ∼ s s < > d Λ α ρ ∼ < m ∼ s ŝ d α s ∼ s ∼ Λ > ρ ∼ d ∼ ρ o ∼ ρ m ∼ ŝ s ∼ o ∼ d ∼ f f < > d Γ δ ∼ α ∼ m > d α ∼ f f f ∼ f ∼ < Γ δ ∼ d ∼ o δ m ∼ δ o d ∼ f f ∼ Fig. 4. interval transitivity table u u u u u

Chains Algebras

The T-model of Kandrashina [START_REF] Von Stechow | Representation of Temporal Knowledge[END_REF] has three qualitative basic notions: the point, the interval and the sequence of intervals. Situations between two sequences of intervals are derived from situations between intervals. Some frequent situations are shown like the one in Figure 6: These objects has been revisited and studied for their own by Ladkin [START_REF] Ladkin | Time Representation: A Taxonomy of Interval Relations[END_REF] under the name of nonconvex intervals. Ligozat [START_REF] Ligozat | On generalized interval calculi, Proceedings of the AAAI[END_REF] generalized to sequences of points and/or intervals under the name of generalized intervals.

There are 3 situations between two points, 5 between a point and an interval, 13 situations between two intervals, 8989 situations between two sequences of three intervals or two sequences of 6 points. Ladkin [START_REF] Ladkin | Time Representation: A Taxonomy of Interval Relations[END_REF]Theorem1], proved the number of situations between two chains of intervals is at least exponential in the number of intervals. The exact number of situations between a sequence of p points and a sequence of q points has been provided by [6, p. 83] without doing the connection with Delannoy numbers.

Freksa studied transitivity tables with respect to convex set of intervals [START_REF] Freksa | Temporal reasoning based on semiintervals[END_REF], Randel & al. [START_REF] Randell | Computing Transitivity Tables: A Challenge For Automated Theorem Provers[END_REF] have studied transitivity tables for reasoning in both time and space in a more general context, both in order to below the complexity rate of the computations. That was also the aim of Vilain et al. who have studied the fragment of the interval algebra, that can be written without disjunction inside the point algebra, based on the fact that relations between intervals can be translated in terms of their bounds, inside the point algebra. An interval A is a couple of its bounds (a, ā) viewed as points they can contain or not, with the constraint a < ā. Situations between intervals are represented in terms of the situations of their bounds:

-A is before B iff a < ā < b < b -A meets B iff a < ā = b < b -A overlaps B iff a < b < ā < b -A starts iff B a = b < ā < b -A during iff b < a < ā < b -A finishes iff b < a < ā = b -A equals B iff a = b < ā = b.
4. Qualitative Temporal Objects and Relations in the S-languages framework

Temporal Objects

All temporal items previously reviewed are based on points or maximal convex interval, that is isolated points or pairing points. The idea is to assign an identity to each temporal objects. The set of these identities is the alphabet on which the Slanguages will be written. A temporal object with identity a and p bounds and/or isolated points is depicted by the (S-)word a p . To distinguish between points and bounds, it is possible to mark the right bound of an interval. If one non-marked letter follows a non-marked letter, then the first one depicts a point. For instance the S-word aaāaaaāaā depicts the sequence : point, interval, point, point, interval, interval.

Temporal Relations

A relation between n temporal items, using alphabet X = {x 1 , • • • , x n }, is an S-word on X * = 2 X -∅ that describes exactly the situation of the points on the timeline, described by the relation.

For instance

Example 3 (Examples 1 and 2 continued) Let A, B, C three temporal items as depicted in figure 7.

On the alphabet X = {a, b, c}, item A is written aaaaaaaaaa, item B bbbb and item C cccc. The situation between them is given by the S-word f of Example 1, that is

f = a b cba a c c a b a    a b c    aaaa. Hence, in
Example 2, we have computed:

- The following theorem [START_REF] Sylviane | S-arrangements avec répétitions[END_REF] is the most important for our purpose:

f |{a} , which is item A, -f |{b} , which is item B, -f |{c} , which is item C, -f |{a,
T 1 , • • • , T n , L(p 1 , • • • , p n) is its correspond- ing language.
In dimension 2, it is obvious to see that there is a natural correspondence between L(p, q) and Delannoy paths in a (p,q)-rectangular chessboard. The correspondence between interval situations, L(p, q) and (2,2)-Delannoy paths is shown in Figure 9, inside the Nökel Lattice [START_REF] Nökel | Convex Relations Between Time Intervals[END_REF].

The arrow means, for S-words, the Thue rewriting rules [START_REF] Autebert | Langages Algébriques[END_REF] Point lattice as we can see it in Figure 8. Autebert et al. have proved [START_REF] Autebert | Le treillis des chemins de Delannoy[END_REF] that the S-language L(p, q) on the alphabet {a, b} (that is any set of situations between a sequence of p points and a sequence of q points or Ligozat's Π(p, q) set [START_REF] Ligozat | On generalized interval calculi, Proceedings of the AAAI[END_REF]) can be generated from the single S-word a p b q and these Thue rewriting rules. They also rigorously proved that these rules make the (p,q)Parikh vector S-language to be a distributive lattice. They also characterize the subset of union-irreducible S-words, which is the lattice of ideals of the language :

{a p-1 b q-1 | p > 0, q}||{c} ∪ {a p-k b l a k b q-l | 0 < l ≤ q, 0 < k ≤ p}.
Its cardinality is 2pq. Autebert and Schwer [START_REF] Autebert | On generalized Delannoy Paths[END_REF] generalized the results to the n-ary case, proving that L(p 1 , • • • , p n), with the following Thue rewriting rule is also a lattice, but not distributive because not modular, as soon as n ≥ 3 like Figure 10 shows it. Given an arbitrary order over the letters of X by a 1 < a 2 < • • • < a n , this induces over the S-letters a partial order P < Q ⇐⇒ [∀x ∈ P, ∀y ∈ Q : x < y]. Then the Thue system denoted -→ on X * , by the following:

∀P, Q, R ∈ X such that P < Q and R = P ∪ Q, set P Q -→ R and R -→ QP .

Operations on temporal relations

In a relational algebra, relations are basic objects on which operators operate. Apart of sets operators like union, intersection and complementation, we have yet seen two operations : the composition • and the inverse ∼. The inverse operation exchanges the role of the objects: aSb ⇐⇒ b(S) ∼ a. There is an other unary operation, closed to the Time arrow: the symmetry function that inverses the arrow of Time. The symmetrical of aSb is aS ∼ b. In the framework of S-languages, the transposition is the identity function; the symmetry function is the mirror one that is the reading from right to left.

The third operation, the composition, is the fundamental operation for the reasoning. We show now how the S-language framework avoids such a material.

These operations have their correspondents inside the S-languages framework, but we prefer to simulate them with the two new operators from Swords to S-languages that we now introduce. The first one is the inverse of the projection, named integration, it is an unary operator; the second one is the main operator, it is closed to the composition of relations. It aims to answer the following question: having three worlds X, Y, Z -with possible intersections -, and having information f in world X and information g in world Y, what possible -i.e. not forbidden -information can be deduced from them in world Z? This operator is the one which allows to avoid transitive table. -The free integration of the S-word f on the alphabet Z, denoted Z f , is the S-language

Z f = [π X f ∪Z X f] -1 (f) = {g ∈ Z ∪ X f * |g |X f = f } -For any distinct letters t 1 , • • • , t n of Z, and ν = (t p1 1 , • • • , t pn n), the bounded to ν integra- tion of the S-word f on the alphabet Z, de- noted ν Z f , is the S-language ν Z f = (Z f) ∩ (Z∪X f L(p 1 , . . . , p n)) = {g ∈ Z ∪ X f * |g |X f = f, ∀i : ||g|| ti = p i }
These definitions are extended to languages in the following natural way: The free integration of the S-language L on the alphabet Z, denoted Z L, is the S-language

Z L = f ∈L Z f
The bounded to ν integration of the S-language L on the alphabet Z, denoted which contains the word f . We never compute the integration. It is just an artifact in order to have every constraints written on the same alphabet. The operation which costs the most is the intersection. In fact, we do not do it. We operate a kind of join, which consists in (i) computing the set of letters in common under the two integrals, (ii) verifying if all occurrences of these letters are ordered in the same manner under the two integrals (iii) shuffle the two subwords which are between two such following occurrences.

(i) and (ii) causes no problem. If the common letters are isolated (that is, not inside a shuffle part), the complexity of (iii) is linear but in the worse case, it can be exponential. We are studying convex part of lattices and heuristics in order to improve the complexity of the computation, in the spirit of [START_REF] Dubois | Classification topologique des ensembles convexes de Allen[END_REF].

Reasoning inside the S-language framework

It is usual in temporal applications that information arrives from many various sources or a same source can complete the knowledge about a same set of intervals. The usual way to deal with that, when no weight of credibility or plausibility is given, is to intersect all the information. The knowledge among some set of intervals interferes with some other sets of intervals by transitivity: if you know that Marie leaved before your arrival, and you are waiting for Ivan who attempts to see Marie, you can tell him that he has missed her.

Vilain and Kautz [START_REF] Vilain | Constraint Propagation Algorithms for Temporal Reasoning[END_REF] argued that there are two kinds of problems:

Problem number 1 Let R 1 (A, C) and R 2 (A, C) be two sets of constraints between intervals A and C, what is the resulting set of constraints for A and C? Problem number 2 Let A, B, C be three intervals and R(A, B) and R(B, C) the sets of constraints respectively between A and B and between B and C. What is the deduced set of constraints between A and C?

The first problem requires an and logical operator or an intersection set operator. The second problem requires a transitivity operator based on tables.

In our framework, the answers to these two problems are described exactly in the same manner, the difference being just a matter of integra-

tion alphabet. Let R 1 (a, b) [resp.R 2 (b, c), R(a, c)] be the language associated to R 1 (a, b) [resp. R 2 (b, c), R(a, c)], the first answer is R(a, c) = π X Z ((2,2,2) X R 1 (a, c) ∩ (2,2,2) X R 2 (a, c))
and the second answer is

R(a, c) = π X Z ((2,2,2) X R 1 (a, b) ∩ (2,2,2) X R 2 (b, c))
with in both cases Z = {a, c}. More generally, our main result, set in terms of intersection and integration, is:

Theorem 5.1 Let I = {I 1 , . . . , I n } be a set of n temporal items, X = {x 1 , . . . , x n } be the corresponding alphabet and ν = (x p1 1 , • • • , x pn n) their Parikh vector. Let J 1 , . . . , J k be k non empty subsets of I and Y 1 , . . . , Y k their corresponding alphabets and ν Yi their Parikh vectors. For

1 ≤ i ≤ k, let {L i1 , . . . , L is i } ⊆ L(ν Yi) be a set of languages describing s i -ary temporal qualitative constraints among J i .
-The all solution problem for I is given by the language

1 ≤ i ≤ k 1 ≤ j ≤ s i νX X L Iij
-The temporal satisfaction problem for I is satisfied if and only if

1 ≤ i ≤ k 1 ≤ j ≤ s i νX X L Iij = ∅
In order to have a look on what kind of language is computed, let us revisit the unsatisfiable closed network of [START_REF] Allen | Maintening Knowledge about Temporal Interval[END_REF]. There are four intervals A, B, C, D. We then take the alphabet X = {a, b, c, d} and L(2, 2, 2, 2) on X. The data are :

L 1 = ν X { a d da, d a d a} L 2 = ν X { c d dc, d c d c} L 3 = ν X dbdb L 4 = ν X {ca a c , ac a c } L 5 = ν X {bccb, cbbc} L 6 = ν X {adda, daad}
The solution is

L = L 1 ∩ L 2 ∩ L 3 ∩ L 4 ∩ L 5 ∩ L 6
that we now compute.

L 1 ∩ L 2 = ν X {    a c d    d, d    a c d    , a d c d , c d a d }[a||c]
or equivalently, due to the lack of occurrences of b,

L 1 ∩ L 2 = {    a c d    d, d    a c d    , a d c d , c d a d }.
[a||c]||bb This language contains 164 words.

L 1 ∩ L 2 ∩ L 3 = {    a c d    bd, db    a c d    , a d b c d , c d b a d }.
[a||b||c] This language contains 52 words.

L 1 ∩ L 2 ∩ L 3 ∩ L 4 = { a d b c d , c d b a d }. a c ||b
This language contains 6 words.

L 1 ∩ L 2 ∩ L 3 ∩ L 4 ∩ L 5 = { a d b c d a c b, c d b a d b a c }
This language has 2 words.

L 1 ∩ L 2 ∩ L 3 ∩ L 4 ∩ L 5 ∩ L 6 = ∅
This language is empty: the problem is unsatisfiable.

Temporal reasoning about concurrent systems

Most of the temporal properties of programs have been studied inside either the framework of temporal logics or modal logic. Temporal reasoning about concurrent systems can be partitioned in a natural way into two classes related to the modality used : necessity, symbolized by 2 or possibility, symbolized by 3. Translated in a temporal framework, we use the terms always and sometime. These modalities were studied first by the Megarians3 , then by Aristotle and the Stoic. Despite their variant, these modalities are linked to the universal ∀ and particular ∃ quantifiers.

Manna and Pnuelli [START_REF] Manna | Verification of Concurrent Programs: The temporal proof principles[END_REF][START_REF] Manna | Proving precedence properties: The temporal way[END_REF], defined three important classes of temporal properties of concurrent programs that are investigated inside the modal temporal framework. They are invariance, liveness and precedence properties. The first two ones are closely related to the two basis modalities 2, which is interpreted as always from now on and 3 which is interpreted as sometimes or at least one time from now on. The third one is an extension of the 3 class, proposed by Manna and Pnuelli, closed to the U, the until modality in order to capture precedence in general. These three classes are available for temporal properties in general. We first review these three classes and then we revisit their example inside our formal languages framework. Our purpose is not to criticize their solution, but only to translate it inside our model.

Temporal properties types

The first class is the class of invariance properties. These are properties that can be expressed by a temporal formula of the form: 2ψ or ϕ ⇒ 2ψ. Such a formula, stated for a program P , says that every computation of P continuously satisfies ψ throughout the rest of the computation either from the beginning (first formula) or whenever ϕ becomes true. Among properties falling into this class are: partial correctness, error-free behavior, mutual exclusion and absence of deadlocks.

The second set, associated to the sometimes modality defines the liveness properties class. These properties are expressible by temporal formulas of the form: 3ψ or ϕ ⇒ 3ψ. In both cases these formulas guarantee the occurrence of some event ψ; in the first case unconditionally and in the second case conditional on an earlier occurrence of the event ϕ. Among properties falling into this class are: total correctness, termination, accessibility, lack of individual starvation, and responsiveness.

The third class is the precedence properties class which is very well-known inside the artificial intelligence community. In a broad sense, Manna and Pnuelli asserted that precedence properties are all the properties that are expressible using the until operator U in formulas such as χUψ or ϕ ⇒ χUψ. In both cases the formulas again guarantee the occurrence of the event ψ, but they also ensure that from now until that occurrence, χ will continuously hold. Among properties falling into the until class are strict (FIFO) responsiveness, and bounded overtaking. The meaning they give to the precedence operator, that is to the formula p < q, is that q eventually happens, and p < q is automatically satisfied if q never happens. Hence we have:

p < q ≡ ¬((¬p)Uq)

We are now ready to embark inside the problem of allocating a single resource between several requesters as explained in [START_REF] Manna | Proving precedence properties: The temporal way[END_REF]. In this paper we recall almost every thing about their specification, because this kind of problem is of general interest for all complex systems.

The Allocation Problem

Let us consider a program G (granter) serving as an allocator of a single resource between several processes (requesters) R 1 , . . . , R k competing for the resource. Let each R i communicate with G by means of two boolean variables: r i and g i . The variable r i is set to true (= 1) by the requester to signal a request for the resource. Once R i has the resource it signals its release by setting it to f alse (= 0). The allocator G signals R i that the resource is granted to him by setting g i to true. Having obtained a release signal from R i , which is indicated by r i = f alse, some time later, it will appropriate the resource by setting g i to f alse. 6.2.1. Properties of the system described inside the modal logic framework. Several obvious and important properties of this system belong to the invariance and liveness classes.

An invariant property. Insuring that the resource is granted to at most one requester at a time is an invariant property:

2(k i=1 g i) ≤ 1
A liveness property: responsiveness The important property that ensures responsiveness, i.e. which guarantees that every request r i will eventually be granted by setting g i to true is a liveness property:

(∀i)(1 ≤ i ≤ k)(r i ⇒ 3g i)
Precedence properties. Two precedence properties are set.

-An absolute precedence property: Absence of Unsolicited Response. An important but often overlooked desired feature is that the resource will not be granted to a party who has not requested it. A similar property in the context of a communication network is that every message received must have been sent by somebody. This is expressible by the temporal formula:

¬g i ⇒ (r i < g i)
The formula states that if presently g i is f alse, i.e., R i does not presently have the resource, then before the resource will be granted to R i the next time, R i must signal a request by setting r i to true.

-A relative precedence property: a Strict (FIFO) Responsiveness. Sometimes the weak commitment of eventually responding to request is not sufficient. At the other extreme we may insist that responses are ordered in a sequence parallelling the order of arrival of the corresponding requests. Thus if requester R i succeeded in placing in request before requester R j , the grant to R i should precede the grant to R j . A straightforward translation of this sentence yields the following intuitive but slightly imprecise expression: (r i < r j) ⇒ (g i < g j). A more precise expression is (∀i, j)(i = j)(1 ≤ i, j ≤ k) ((r i ∧ ¬r j ∧ ¬g j) ⇒ (¬g j Ug i).

It states that if ever we find ourselves in a situation where r i is presently on, r j and g j are both off, then we are guaranteed to eventually get a g i , and until that moment, no grant will be made to R j . Note that r i ∧ ¬r j implies that R i 's request precedes R j 's request, which has not been materialized yet.

We implicitly rely here on the assumption that once a request has been made, it is not withdrawn until the request has been honored. This assumption can also be made explicit as part of the specification, using another precedence expression:

r i ⇒ g i < (¬r i).
Note that while all the earlier properties are requirements from the granter, and should be viewed as the post-condition part of the specification, this requirement is the responsibility of the requesters. It can be viewed as part of the pre-condition of the specification.

Two assumptions are also implicitly used but not mentioned:

1. a process is not allowed to make an other request until he has given the resource back, 2. there are as many requests from R i as grants for R i .

We now are leaving the way Manna and Pnuelli have resolved the problem inside the modal logic framework: finding an abstract computation model based on sequences of transitions and states, a proof system [START_REF] Manna | Proving precedence properties: The temporal way[END_REF].

revisitation of the allocation problem inside

the S-languages framework 6.3.1. Objects and relations representations Our formalization attempts to translate any information into a temporal information. The two boolean variables introduced in the formulation of the problem do not belong to the problem but to one of its data interpretation. These boolean variables are evolving through the timeline. It is natural to represent the values of boolean variables evolving through the time as characteristics function of boolean variables on a linear order that can be called temporal boolean functions [START_REF] Bouzid | Temporal Logic Based on Characteristic Function[END_REF][START_REF] Jungjariyanonn | Condition as Temporal Functions[END_REF][START_REF] Jungjariyanonn | Extended Boolean Computations[END_REF]. Inside a determined and bounded period of time, the temporal boolean functions r i (resp. g i) can be interpreted as a chain of intervals with n i intervals, where n i is the number of requests (resp. grants). This number is exactly known at the end of the fixed period of time. Any interval is a maximal period inside which the value of r i (resp. g i) is true.

A priori, for the general specification, either we can choose to write n i as an indeterminate number or to set * for saying that there is a finite but unknown number. To each requesters, we provide 2k chains of intervals written on their identities alphabet X = {r 1 , g 1 , . . . , r k , g k , }. Any language L that satisfies the problem is such that its Parikh number is

L ⊆ ((2, 2)IN, . . . , (2, 2)IN) k times
. But for the sake of an easier reading, we will use the following alphabet X = {r 1 , r1 , g 1 , ḡ1 . . . , r k , rk , g k , ḡk }, which allows to make a distinction between the beginning of the interval (no marked letter) and the end of the interval (marked letter) so that any language L that satisfies the problem is such that its Parikh number is L ⊆ ((1, 1, 1, 1)IN, . . . , (1, 1, 1, 1)IN) k times . 6.3.2. The specification. The invariant property. Insuring that the resource is granted to at most one requester at a time can be interpreted like this: this constraint only concerns granters. After having read a letter g i -a beginning of an allocation to R i -, the first following occurrence of a letter of type g or ḡ inside the S-word is necessarily a ḡi letter (the end of the current allocation to R i . This constraint is formulated by the S-language

L 1 = X (g 1 ḡ1 , . . . , g k ḡk) * . Hence we have L ⊆ L 1 .
The liveness property. The guaranty that every request r i will eventually be granted concerns each R i individually. This organizes every couple of Swords (r i ri) * and (g i ḡi) * saying that after each occurrence of a letter r i , the first occurrence of a letter among the set {r i , ri , g i , ḡi } is an occurrence of the letter g i . There is no constraint between the occurrences of the letters ri and ḡi that is to say that we get

L ⊆ 1≤i≤k X (r i g i [ri , ḡi]) *
But we can give a more precise S-language, because we know that the sequence of actions related to any request is the following: request, allocation, release and deallocation. So more precisely we can give

L ⊆ L 2 = 1≤i≤k X (r i g i ri ḡi) * .
The two precedence properties.

-Absence of Unsolicited Response. A resource will be not granted to a party who has not requested it. This constraint is already written in the preceding constraint.

-Strict (FIFO) Responsiveness. Grants are ordered in the same order as the corresponding requests. This concerns how the occurrences of r i , r j , g i , g j are shuffled together. The case where r i = r j has been already taken into account in L 2 . Restricted to the alphabet {r i , r j , g i , g j }, if R i requests before R j , either R i is granted before the request of R j or after 4 . But R j can request before R i . That is we get four cases that can be organized as product but not as a shuffle. Hence we have

L ⊆ L 3 = 1≤i<j≤k X
(r i g i , r j g j , r i r j g i g j , r j r i g j g i) * 6.3.3. The solution.

All constraints are now to be specified in terms of S-languages. Every S-word contained in L 1 ∩ L 2 ∩ L 3 satisfies the problem, hence the solution is L = X (g 1 ḡ1 , . . . , g k ḡk) * ∩ 1≤i≤k X (r i g i ri ḡi) * ∩ 1≤i =j≤k X (r i g i , r j g j , r i r j g i g j , r j r i g j g i) * If the system can't realize two tasks simultaneously, the solution will be L ∩ X * .

Example

Let us suppose that there are three requesters and the order of the requests is

R 1 R 2 R 3 R 1 R 3 .
The temporal objects are the four chains expressed with the S-words -that are also wordsr 1 r1 r 1 r1 , g 1 ḡ1 g 1 ḡ1 , r 3 r3 r 3 r3 , g 3 ḡ3 g 3 ḡ3 , and the intervals expressed with the S-words r 2 r2 , g 2 ḡ2 . The set of all possible situations is given by the language [r 1 r1 r 1 r1 ||g 1 ḡ1 g 1 ḡ1 ||r 3 r3 r 3 r3 ||g 3 ḡ3 g 3 ḡ3 ||r 2 r2 ||g 2 ḡ2]. That is the S-language with Parikh vector ((2, 2), (2, 2),(1, 1),(1, 1), (2, 2), (2, 2)) on the ordered alphabet {r 1 , r1 , g 1 , ḡ1 , r 2 , r2 , g 2 , ḡ2 , r 3 , r3 , g 3 , ḡ3 }.

The requests order R 1 R 2 R 3 R 1 R 3 induces the following sequence between the letters of type r : r 1 r 2 r 3 r 1 r 3 . L 2 = X {r 1 g 1 r1 ḡ1 r 1 g 1 r1 ḡ1 , r 2 g 2 r2 ḡ2 , r 3 g 3 r3 ḡ3r 3 g 3 r3 ḡ3 }. The condition on the r letters and the expression of sL 3 allows to substitute to L 3 , the language L ′ 3 : L ′ 3 = X g 1 g 2 g 3 g 1 g 3 . L 1 = X g 1 ḡ1 g 2 ḡ2 g 3 ḡ3 g 1 ḡ1 g 3 ḡ3 .

The shuffle of all these fragments are depicted by a Hasse graph of the precedence ordering on the instants corresponding to the bounds of intervals, that is the letters in figure 12. This is a graphical representation of the resulting S-language L.

Conclusion

In this paper, we have presented the S-languages framework and shown how to represent and to reason on qualitative temporal problem. The Hasse Diagram we provide for the allocation problem has to be compared with the temporally labeled graph of Gerevini and Schubert [START_REF] Gerevini | Efficient algorithms for qualitative reasoning about time[END_REF]. Different implementations have been made in order to improve the complexity on the computations. They take benefits of the algorithms used for computing operations in formal languages theory, and the use of automata theory. The problems come, as usual, from the parts of S-languages that have to be broken into disjoint parts, in order to go on in the computation.

Two implementations has already been made, concerning the interval algebra. The first one is based on the notion of pattern [START_REF] Dubois | Classification topologique des ensembles convexes de Allen[END_REF]. The second one [START_REF] Picard | Etude des structures de données et des algorithmes pour une implantation des éléments et relations temporelles en vue du traitement automatique de la temporalité dans le langage naturel[END_REF] applies it on the linguistical model of Desclés based on topological intervals [START_REF] Desclés | State, Event, Process, and topologie[END_REF]. Bounds of intervals are labelled in order to mention whether an interval is open or closed. As L(p 1 , • • • , p n) is a lattice, we work on convex parts, following the approach of Freksa [START_REF] Freksa | Temporal reasoning based on semiintervals[END_REF]. These prototypes suggest that ii may be better to compute in two steps: first accepting all situations, even those not allowed situations, and second without forbidden situations, rather than to compute directly the good solution.

 instance [aa||bb]={aabb, a a b b, abab, a b ab ,ab a b , a b a b , baab, ba a b , abba, a b ba, baba, b a b a, bbaa} = {f ∈ {a, b} * | f = (2, 2)}.

Fig. 1 .

 1 Fig. 1. situations of the black point with respect to the white point.

 binary relations is the set : {<, >, =, , , =, ⊥, ⊤}, where ⊥ is the empty relation (no feasible relation) and ⊤ the universal relation (any relation is feasible). The transitive table is given in Figure2

Fig. 5 .

 5 Fig. 5. The 5 situations between a point and an interval (each point designs a situation)

Fig. 6 .

 6 Fig. 6. S 1 alternates S 2

Fig. 7 .

 7 Fig. 7. A relation between 3 chains of intervals

 b} , which is the relation between A and B, f |{b,c} , which is the relation between B and C, f |{a,c} , which is the relation between A and C, f |{a,b,c} , which is the relation between A, B and C.

Theorem 4 . 1

 41 For any integer n ≥ 1, let T 1 , • • • , T n be n temporal items, X n = {x 1 , . . . , x n } be an alphabet and x p1 , • • • , x pn -writing x n the word x . . . x ntimes -their temporal words on X. Let us denote by Π(p 1 , . . . , p n) the set of all n-ary situations among

Fig. 8 .

 8 Fig. 8. Point lattice

Fig. 10 .Fig. 9 .

 109 Fig. 10. L(1, 1, 1) is a non modular lattice.

Definition 4 . 2

 42 For any alphabet Z and any word f ∈ X * ,

f

 For instance -cf. end of Section 2 -let Z = {a, b, c} and ν = (a 10 , b 4 , c 4).

c 4 =

 4 L Z[START_REF] Desclés | State, Event, Process, and topologie[END_REF][START_REF] Autebert | Le treillis des chemins de Delannoy[END_REF][START_REF] Autebert | Le treillis des chemins de Delannoy[END_REF].

νZ

 f |{a,b} = [f |{a,b} ||c 4] and ν Z f |{b,c} = [f |{b,c} ||a 10]. We then have ν Z f |{a,b} ∩ ν Z f |{b,c} = a

Fig. 11 .

 11 Fig. 11. Allen's instance of an inconsistent labeling.

Fig. 12 .

 12 Fig. 12. Graphs of the example resulting S-languager 1 r 2 r 3 r 1 r 3 E E E E

 with max(|f |, |g|) ≤ r ≤ |f | + |g| and such that there are decompositions of f and g

The notation is taken, whenever possible, from Delannoy paths draw as kind of greek letters on the chess, with the following convention: Upper case for 5-subsets, lower case for 3-subsets

In french, couverture

A school founded by Euclid of Megaric, student of Socrates, like Plato, this school was concurrent of Aristotle's one.

The system is not allowed to receive simultaneous requests.

Acknowledgements

I would thank Jean-Michel Autebert and Jérôme Cardot for their fruitful comments on the text.