
HAL Id: hal-00153157
https://hal.science/hal-00153157v1

Submitted on 8 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

A simple calculus for proteins and cells
Cosimo Laneve, Fabien Tarissan

To cite this version:
Cosimo Laneve, Fabien Tarissan. A simple calculus for proteins and cells. Workshop on Membrane
Computing and Biologically Inspired Process Calculi (MeCBIC’06), 2006, Venise, Italy. �hal-00153157�

https://hal.science/hal-00153157v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

MeCBIC 2006

A simple calculus for proteins and cells

Cosimo Laneve a, Fabien Tarissan b,

a Dipartimento di Scienze dell’Informazione, Università di Bologna

b Équipe PPS, CNRS & Université Paris VII

Abstract

The use of process calculi to represent biological systems has led to the design of
different calculi such as brane calculi [1] and κ-calculus [3]. Both have proved to be
useful to model different types of biological systems.

As an attempt to unify the two directions, we introduce the bioκ-calculus, a
simple calculus for describing proteins and cells, in which bonds are represented by
means of shared names and interactions are modelled at the domain level. Protein-
protein interactions have to be at most binary and cell interactions have to fit with
sort constraints.

We define the semantics of bioκ-calculus, analyse its properties, and discuss its
expressiveness by modelling two significant examples: a signalling pathway and a
virus infection.

1 Introduction

One problem when dealing with molecular biology is to extract a functional
meaning out of the mass of current knowledge. This problem has pleaded
for the development of specific tools that describe biology in a faithful way.
Among these tools, process algebras have been proved powerful enough to
formalise the interactions, to render in a natural way the massive parallelism
and concurrency of interactions, and to analyse the overall behaviour.

Two different process algebraic developments in particular brought some
interest and various results. A first approach based on the π-calculus [7]
and following principles proposed in [8] uses shared names to represent bonds
between proteins. One of those calculi – the κ-calculus [3] – showed to be
very convenient for representing mechanisms such as signalling pathways or
regulatory networks. Another family of calculi – the brane calculi – proposed
in [1] by relying on Mobile Ambient [2], used action and co-action capabilities
located on the surface of cell membranes. Such calculi demonstrated to be
suitable for representing molecular transport as well as virus infections.

As these calculi turn out to commit to very different paradigms, it seems
compelling to develop a unified framework able to handle the two kinds of

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Laneve & Tarissan

systems. Such a unified framework is the aim of this contribution. In partic-
ular, the challenge is to enucleate few basic realistic primitives that permit to
describe systems using mechanisms of κ-calculus and brane calculi.

Our new calculus, called bioκ-calculus, uses interactions that are com-
plexations and decomplexations of two proteins. These interactions follow the
same pattern of those of κ-calculus. Actually, they are similar, but even sim-
pler, to mκ-calculus interactions [3], a calculus introduced to ease the transla-
tion of κ-calculus in π-calculus. The bioκ-calculus also retains compartments
denoting cells. We precisely describe protein interactions when one of them
belongs to the cell membrane and the other one to the nucleus or to the ex-
ternal solution. In such cases, a side-effect may occur: the interaction may
change the capability of the membrane, thus preparing the cell to future fu-
sions, endo- or exocytosis.

Cell fusions open the cell to other cells. In particular, the nucleus, whose
interactions with the external solution are mediated by the membrane, may
directly interact with another solution – the nucleus of the fusing cell – after
the fusion. To model fusions we use a mechanism similar to one defined in the
higher-order π-calculus [9].

Other relevant cellular interactions are also considered, such as translo-
cations, which transport proteic material inside the cells, and phagocytosis,
which allows a cell, such as viruses, to enter other cells. In the process of
phagocytosis, the entering cell is enclosed into a membrane that is pull out
the host cell membrane. This extraction is particularly difficult to formalise
because it amounts to check that the membrane of the host cell has enough
material for the new one. The bioκ-calculus formalisation overcome this dif-
ficulty by admitting matches of patterns of proteins.

Biological solutions are modelled in bioκ-calculus as labelled transition
systems where labels carry information about the reactants and the rule used.
It is folklore in process calculi that such transition systems are too inten-
tional objects and equivalences are proposed to quotient them. In this paper
we consider weak bisimulation [6] that equates two systems if they simulate
each other. We demonstrate that weak bisimulation is a congruence in bioκ-
calculus: two weakly bisimilar biological systems behave in the same way when
put in every solution.

Notwithstanding the simplicity of the bioκ-calculus interactions (binary
interactions between proteins or between membranes), the calculus is expres-
sive enough. We discuss in full detail two significant biological examples:
the RTK-MAPK pathway and a virus infection. However, the purpose of
bioκ-calculus is to be a core framework for molecular biology, to be extended
suitably for modelling complex systems.

The next section defines the bioκ-calculus where the interaction mecha-
nisms are restricted to be between two proteins. Section 3 extends the basic
interaction mechanisms with fusions that make structural modifications in the
hierarchical organisation of a system. Section 4 discusses further extensions of

2

Laneve & Tarissan

the calculus accounting for translocations and phagocytosis. Section 5 draws
few concluding remarks and hints at possible future works. Proofs are omitted
for fitting with space limits.

2 The core of the bioκ-calculus

In this section we present a core version of the bioκ-calculus where interactions
never change the hierarchical organisation of biological solutions. We define
its syntax, its operational semantics, and weak bisimulation. We also analyse
its expressiveness by encoding the RTK-MAPK pathway.

Notational preliminaries. Four disjoint countable sets of names will be
used: a set of protein names, ranged over by a, b, c, · · ·; a set of edge names
E, ranged over by x, y, z, · · ·; a set of membrane names, ranged over by m, n,
· · ·. Protein names are sorted according to the number of sites they possess.
Let s(·) be the function yielding the sites of proteins. The sites of a protein
are indicated by the natural numbers in the set {1, · · · , s(a)}.

Sites may be bound to other sites, visible, i.e. not connected to other sites,
or hidden, i.e. not connected to other sites but not useful for interactions. The
state of sites are defined by maps:

• interfaces, ranged over by σ, σ′, · · ·, are partial functions from naturals to
the set E∪{v, h} (we are assuming that v, h /∈ E). For instance, [1 7→ x; 2 7→
v; 3 7→ h] is an interface. In order to simplify the reading, we write this map
as 1x + 2 + 3. In the following, when we write σ + σ′ we assume that the
domains of σ and σ′ are disjoint.

Interfaces are injective on edges E. Since edges have two endpoints, we
are excluding that such endpoints belong to the same protein (cf. self
complexation in [3]).

The sites of a protein a are completely defined by total interfaces on
[1 .. s(a)]

• v-h-maps, ranged over by φ, ψ, · · ·, are interfaces onto {v, h}. We write φ
for the following v-h-map:

φ(i) =

h if φ(i) = v

v if φ(i) = h

The syntax. The syntax of the bioκ-calculus defines (biological) solutions
S:

S ::= 0 | a(σ) | mL S M[S] | S , S

(empty) (protein) (cell) (group)

Solutions can be either empty, or a protein a(σ) indicating a protein name

3

Laneve & Tarissan

and its interface, or a cell mL S M[T], that is a solution T, called nucleus 1 ,
surrounded by another S, called membrane, or a group of solutions S, T. Two
auxiliary functions will be applied to solutions and interfaces. The function
en(·) returns the set of edge names occurring in the argument; the function
de(·) returns the set of dangling edge names of the argument, namely those
names that occur exactly once; the function be(·) returns the set of bound
edge names of the argument, namely those names that occur exactly twice.
Clearly de(S) = en(S) \ be(S) and similarly for σ. For instance, in S =

mL c(1y +2) M[a(1x +2+3), b(1+2x)] the set en(S) is {y, x} and the set de(S)
is {y}. We abbreviate the group a1(σ1) , · · · , an(σn) with

∏

i∈1..n ai(σi).

In the whole paper, we identify solutions that are equal up to a renaming
of edge names that are not dangling (called alpha-conversion) and we assume
that all solutions meet the following well-formedness conditions :

• (edge-condition) in every solution, edge names occur at most twice;

• (membrane-condition) every membrane is a group of proteins, that is cells
do not occur in membranes;

• (nucleus-condition) the dangling edges of nuclei of cells are connected to

the corresponding membrane, that is, for every mL S M[T], de(T) ⊆ de(S).

For example mL c(1x + 2) M[a(1x + 2 + 3), b(1 + 2x)] does not meet the edge
condition because the edge x has three ends (it is a multi-edge). The solution

mL b(1 + 2) , c(1 + 2) M[a(1 + 2x + 3)] does not meet the nucleus condition
because the nucleus a(1 + 2x + 3) has a dangling edge that is not connected
to the membrane.

In the following, solutions that are membranes will be addressed by M,N, · · ·.

Biological reactions. Biological reactions that we consider in this section
are of two types: complexations, which create edges between possibly discon-
nected proteins, and decomplexations, which remove edges. For instance a
complexation reaction is (we are assuming s(a) = s(b) = 3)

a(1x + 2 + 3) , b(1 + 2 + 3) −→ a(1x + 2y + 3) , b(1y + 2 + 3)

that creates an edge y connecting the site 2 of a and the site 1 of b. These
two sites, in order that this reaction be executed, must be visible. This means
that the application of a complexation must check whether the sites being
connected are visible or not. For example the above reaction cannot be applied
to the group a(1x + 2 + 3) , b(1 + 2 + 3) because the site 2 of a is hidden.
Reactions in bioκ-calculus may also change the state of sites that are visible or
hidden in the reactants, switching them into hidden and visible, respectively.
In the example above, this happens to the sites 3 of a and 2 of b. A concise
way for defining the above reaction is the schema

r : ((a, 2, 3), (b, 1, 2))

1 We refer to every material surrounded by a membrane with the generic term “nucleus”;
this is also referred as “cytoplasm”.

4

Laneve & Tarissan

that makes explicit the reactant proteins – the first items of the triples –, the
corresponding sites to be complexated – the second items – and the part of the
interface whose state must be switched. For example, the rule r also applies
to a(1 + 2 + 3) , b(1 + 2 + 3) or a(1 + 2 + 3) , b(1 + 2 + 3x) yielding solutions
a(1 + 2y + 3) , b(1y + 2 + 3) and a(1 + 2y + 3) , b(1y + 2 + 3x), respectively. In
general, the shape of a reaction schema is

r : ((a, i, ψ), (b, j, φ))

that is a reaction name r and two triples containing a protein name, a site
and a v-h-map. A generic application of the schema r may be written as

a(i+ ψ + σ) , b(j + φ+ σ′) −→ a(ix + ψ + σ) , b(jx + φ+ σ′)

where x is a fresh edge name and i+ψ+σ and j+φ+σ′ are total on [1 .. s(a)]
and [1 .. s(b)], respectively. It is worth to observe that the interfaces σ and σ′

are not changed by r, for this reason they are not mentioned in the schema.

Decomplexations are complexations in the other way round. For instance
a decomplexation reaction is

a(1x + 2y + 3) , b(1y + 2 + 3) −→ a(1x + 2 + 3) , b(1 + 2 + 3)

that removes the edge y. The schema describing decomplexations is similar
to that of complexations:

r′ : ((a, i, ψ′), (b, j, φ′))

The application of the decomplexation rule is different from complexation: in
this case the two reactants must be connected by an edge between the site i
of a and the site j of b. So, for example, a generic application of r′ is

a(ix + ψ′ + σ) , b(jx + φ′ + σ′) −→ a(i+ ψ′ + σ) , b(j + φ′ + σ′)

In order to separate complexations from decomplexations we consider two
functions, C for complexations and D for decomplexations, from rule names to
tuples ((a, i, φ), (b, j, ψ)). These functions C and D are assumed with disjoint
domains, therefore a rule name uniquely defines whether it is a complexation
or a decomplexation.

Let R range over C and D; let also (a, i, φ) ∈ R(r) if either R(r) =
((a, i, φ), (b, j, ψ)) or R(r) = ((b, j, ψ), (a, i, φ)). Finally let µ range over ax

r or
τ and let diff(S, S′) be the set (en(S′)\en(S)) ∪ (en(S)\en(S′)).

Definition 2.1 The transition relation
µ

−→ is the least relation satisfying the

5

Laneve & Tarissan

reductions:

(com)

(a, a, φ) ∈ C(r) x /∈ en(σ)

a(a+ φ+ σ)
ax
r−→ a(ax + φ+ σ)

(dec)

(a, a, φ) ∈ D(r)

a(ax + φ+ σ)
ax
r−→ a(a+ φ+ σ)

(sol)

S
µ

−→ S′ diff(S, S′) ∩ en(T) = ∅

S ,T
µ

−→ S′ ,T

(mem)

M
µ

−→ M′ diff(M,M′) ∩ en(S) = ∅

mLM M[S]
µ

−→ mLM′ M[S]

(nucleus)

S
τ

−→ S′ diff(S, S′) ∩ en(M) = ∅

mLM M[S]
τ

−→ mLM M[S′]

(react)

S
ax
r−→ S′ T

bx
r−→ T′ a 6= b

S ,T
τ

−→ S′ ,T′

(ms-react)

M
ax
r−→ M′ S

bx
r−→ S′ a 6= b

mLM M[S]
τ

−→ mLM′ M[S′]

and the symmetric rule for (sol).

Let S
τ

=⇒ S′ if S
τ

−→
∗

S′ and S
µ

=⇒ S′, with µ 6= τ , if S
τ

−→
∗ µ
−→

τ
−→

∗

S′.

Rules (com) and (dec) respectively define complexations and decomplex-
ations capabilities of proteins by lifting these information to labels of transi-
tions and, at the same time, updating the proteins. Rules (sol) and (mem)
lift transitions to groups and membranes; it is crucial that edge names created
or deleted do not occur elsewhere. Rule (nucleus) lift internal transitions
of nuclei to the whole cell; as before, edge names created or deleted must not
occur elsewhere. We observe that (nucleus) bans complexation or decom-
plexation between nuclei and the solution external to the cells. Rule (react)
and (ms-react) define reactions, both complexations and decomplexations,
in groups and cells. In particular (react) also accounts for reactions be-
tween membranes of different cells. It is worth to notice that the constraint
a 6= b allows reactions between different proteins only. This is for simplicity
sake: in case reactants are proteins with a same name we need to carry more
information on the labels to separate them.

By Definition 2.1, the previous notation −→ must be read as
τ

−→. In facts,
in [3] the transitions of the mκ-calculus were defined by means of an unlabelled
reduction relation −→ that corresponds to the foregoing rules (com), (dec),
(sol), and (react). In this case we have adhered to a labelled transition for
reducing the number of the rules: such number should have been larger than
in Definition 2.1 because of the presence of membranes.

The transition relation preserve well-formedness of solutions.

Proposition 2.2 If S is well-formed and S
µ

−→ T then S is well-formed as
well.

6

Laneve & Tarissan

It is worth to observe that membrane names do not play any role at this
stage. They will be relevant in the complete system with complex membrane
reactions presented in Section 3.

Example 2.3 The so-called RTK-MAPK pathway are intensely used and
studied in many approaches modelling and simulating biological systems [8,3].
We therefore model the first steps of such a pathway in bioκ-calculus, thus
providing a touchstone for our calculus.

The signal stimulus stems from the epidermal growth factor egf whose
dimeric form (1) can bind to its associated receptor egfr (2), a transmembrane
protein with an extracellular ligand-binding domain located on the plasmic
membrane of some cells. This binding activates egfr by phosphorylating an
internal domain of the protein (3 and 4). This activation leads to multiple
interactions with cytoplasmic complexes of proteins by successive binding-
phosphorylations, starting with the adapter protein shc (5). The cascade
of interactions ends with the activation of the extracellular signal-regulated
kinase erk. This phosphorylated protein can then translocate into the nucleus
and modify the gene expression, stimulating cells to enter mitosis. This causes
the cell to divide and proliferate.

After the biological description egf, rtk, and shc have respective arities 3,
4, and 2. We give here the formal rendering of the five first steps described
above:

r1 : ((egf, 1, 2), (egf, 1, 2)) ∈ C

r2 : ((egf, 2, ∅), (egfr, 1, 4)) ∈ C

r3 : ((egfr, 2, 3 + 4), (egfr, 2, 3 + 4)) ∈ C

r4 : ((egfr, 2, ∅), (egfr, 2, ∅)) ∈ D

r5 : ((egfr, 3, ∅), (shc, 1, 2)) ∈ C

The simple run below displays that our calculus is expressive enough to
define the causality involved in the transduction in a precise yet natural way.

egf(1 + 2) , egf(1 + 2) ,

mL egfr(1 + 2+3 + 4) , egfr(1 + 2+3 + 4) ,M M[shc(1 + 2) ,S]
τ

−→ egf(1z + 2) , egf(1z + 2) ,

mL egfr(1 + 2 + 3 + 4) , egfr(1 + 2 + 3 + 4) ,M M[shc(1 + 2) ,S] (r1)

τ
−→ egf(1z + 2y) , egf(1z + 2) ,

mL egfr(1y + 2 + 3 + 4) , egfr(1 + 2 + 3 + 4) ,M M[shc(1 + 2) ,S] (r2)

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2 + 3 + 4) , egfr(1u + 2 + 3 + 4) ,M M[shc(1 + 2) ,S] (r2)

7

Laneve & Tarissan

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2x + 3 + 4) , egfr(1u + 2x + 3 + 4) ,M M[shc(1 + 2) ,S] (r3)

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2 + 3 + 4) , egfr(1u + 2 + 3 + 4) ,M M[shc(1 + 2) ,S] (r4)

τ
−→ egf(1z + 2y) , egf(1z + 2u) ,

mL egfr(1y + 2 + 3t + 4) , egfr(1u + 2 + 3 + 4) ,M M[shc(1t + 2) ,S] (r5)

A couple of problems of our notation deserve to be discussed though. Con-
sider the initial solution:

egf(1 + 2) , egf(1 + 2) , egf(1 + 2) , egf(1 + 2) ,

mL egfr(1 + 2x + 3 + 4) , egfr(1 + 2x + 3 + 4) ,M M[shc(1 + 2) , S]

After two applications of rule r1, we obtain the solution

egf(1x + 2) , egf(1x + 2) , egf(1y + 2) , egf(1y + 2) ,

mL egfr(1 + 2x + 3 + 4) , egfr(1 + 2x + 3 + 4) ,M M[shc(1 + 2) , S]

that reduces, after two application of rule r2 to the wrong solution

egf(1x + 2) , egf(1x + 2u) , egf(1y + 2v) , egf(1y + 2) ,

mL egfr(1u + 2x + 3 + 4) , egfr(1v + 2x + 3 + 4) ,M M[shc(1 + 2) , S]

where two different dimeric forms of egf connect to a same pair of egfr recep-
tors. Our notation is too simple to rule out such configurations. In mκ-calculus,
this expressiveness issue is solved by the use of reaction ids and pattern match-
ing over them. Actually, this issue is related to a more general question named
self-assembly problem and worth to be studied independently [5].

The second problem is manifested at the end of the RTK-MAPK pathway.
The pathway causes a phosphorylation of a particular protein (erk) that enters
in the nucleus, which is represented as cell, as well. At this stage we have no
mechanism that make entities enter in the cell. Such mechanisms will be
discussed in detail in Section 4.

Extensional semantics: bisimulation. The transition relation of Defini-
tion 2.1 associates solutions to graphs where nodes are solutions and µ-labelled
edges model the transitions S

µ
−→ S′. The induced equivalence on bioκ-

calculus solutions is graph isomorphism: two terms are equivalent provided
their associated graphs are isomorphic. Graph isomorphism is too strong as
a biological semantics because it distinguishes solutions that are equal up-to
τ -transitions:

• Let C(r) = ((a, 1, ∅), (b, 1, ∅)) = D(r′), that is r and r′ are reversible reac-
tions. Then the solutions a(1y +σ) , b(1y +σ′) and a(1+σ) , b(1+σ′) have
underlying graphs that are not isomorphic. Also in this case there is no

8

Laneve & Tarissan

reason to separate the two solutions: they have isomorphic graphs up-to a
τ -transition, which is an internal reduction of the solutions and should not
be observable.

The following equivalence, adapting weak bisimulation in process calculi [7]
to our setting, does not undergo the above criticism.

Definition 2.4 A (weak) bisimulation is a symmetric binary relation R be-
tween solutions such that S R T implies:

(i) if S
τ

−→ S′ then T
τ

=⇒ T′ and S′
R T′;

(ii) if S
ax
r−→ S′ then T

ax
r=⇒ T′ and S′

R T′.

S is bisimilar to T, written S ≈ T, if S R T for some bisimulation R .

Proposition 2.5 (i) “ , ” is an abelian monoidal operator with identity 0.
Namely S ,T ≈ T , S and (S ,T) ,R ≈ S , (T ,R) and S ,0 ≈ S.

(ii) ≈ is preserved by injective renamings that are identities on dangling edge
names. Namely, let ι be an injective renaming on en(S) such that ι is the
identity on de(S), then S ≈ ι(S).

(iii) ≈ is preserved by reversible rules. Namely, let C(r) = ((a, i, ψ), (b, j, φ))
and D(r′) = ((a, i, ψ), (b, j, φ)) then a(i+ ψ + σ) , b(j + φ+ σ′) ≈ a(ix +
ψ + σ) , b(1x + φ+ σ′).

A relevant property of ≈ is that every two bisimilar systems behave in the
same way when plugged in a same context.

Theorem 2.6 ≈ is a congruence.

As far as biology is concerned, the substitution property owned by ≈ might
be too strong, thus making this equivalence an unsensible semantics. In this
context, one usually wants to prove that two parts behave in the same way
when plugged under a certain number of contexts, rather than every possible
one. Therefore, a semantics owning a parametric congruence property might
fit better with biology. However what these parameters are and what are
the properties owned by a “good” extensional semantics for biology remains
unclear to us and is left as an open issue.

Other remarks about ≈ are in order.

(i) S ≈ T does not imply de(S) = de(T). For two reasons: First of all, by

bisimulation, S
ax
r−→ S′ may be matched by T

ay

r−→ T′ with x 6= y. Second,
taking empty biological relations – i.e. C = ∅ and D = ∅ –, then a(1x) ≈ 0

but their dangling edges are different.

(ii) Nevertheless a relationship on a subset of the dangling edges of two bisim-
ilar solutions may still be established. Let oe(S), called the observable

edges, be the set {x | S
ax
r−→ S′ and r in domain of D}. It is easy to

prove that if S ≈ T then there is an injective renaming ι such that
oe(S) = ι(oe(T)).

9

Laneve & Tarissan

(iii) Let M be inert when M 6
ax
r=⇒ for every ax

r . It is possible to verify that, if

M is inert, then mLM M[S] ≈ 0.

3 Cell interactions

The calculus of Section 2 is not very different from mκ-calculus. Cells, in
particulars, do not play any relevant role since their structure is preserved by
the transition. In this section we explore an extension with brane primitives,
thus being able to model merging and splitting of cells such as the following
endosomes fusion:

esmLM M[S] , esmLN M[T]
τ

−→ esmLM ,N M[S ,T]

The extension of core bioκ-calculus we are going to design retains higher-
order mechanisms, following higher-order π-calculus, a similar extension al-
ready studied for π-calculus [9]. We begin by augmenting the syntax with
membrane reagents:

S ::= · · · | HM ; SI · S

(mreagent)

An mreagent is an intermediate (unstable) solution that is used for manifesting

the capability to perform a fusion with a cell. Mreagents HM ; SI ·T meet the
following properties: S and T do not contain other mreagents, M is a multiset
of proteins and de(S) ⊆ de(M).

There are two operations involving membranes:

(i) fusions – two membranes are close and they are fused becoming a unique
membrane. Fusions are formalised by a function F from rule names to
triples ((m,m′), n). We write (m⊗m′, n) = F(r) if either F(r) = ((m,m′), n)
or F(r) = ((m′,m), n). We also write m ∈ F(r) if (m ⊗ m′, n) = F(r), for
some m′ and n. We assume that the domains of F , C and D are disjoint.

(ii) side effects of complexations and decomplexations – a complexation of a
protein on the membrane of the cell might activate the membrane and
prepare it for possible fusions. Activations of complexations are defined
by a function A that takes pairs (ar,m) and returns membrane names.

In the following, with an abuse of notation, we use µ to also range over
labels mr.

Definition 3.1 The transition relation
µ

−→ is the least one that includes the
rules in Definition 2.1 where (mem) and (ms-react) have also the premise

10

Laneve & Tarissan

“(ar,m) not in the domain of A” and the following ones

(open)

m ∈ F(r)

mLM M[S]
mr−→ HM ; SI · 0

(grasp)

S
µ

−→ HM ; S′′I · S′

S ,T
µ

−→ HM ; S′′I · (S′ ,T)

(fuse)

S
mr−→ HM ; S′′I · S′ T

nr−→ HN ;T′′I · T′

F(r) = (m ⊗ n,m′)

S ,T
τ

−→ S′ ,T′ ,m′LM ,N M[S′′ ,T′′]

(fuse-i)

S
nr−→ HN ;TI · S′

F(r) = (m ⊗ n,m′)

mLM M[S]
τ

−→ m′LM ,N M[S′] ,T

(mem-a)

M
ax
r−→ M′

A(ar,m) = n diff(M,M′) ∩ en(S) = ∅

mLM M[S]
ax
r−→ nLM′ M[S]

(ms-areact)

M
ax
r−→ M′ S

bx
r−→ S′

a 6= b A(ar,m) = n

mLM M[S]
τ

−→ nLM′ M[S′]

The notations S
τ

=⇒ T and S
µ

=⇒ T, µ 6= τ , are defined in the same way as in
Definition 2.1.

Rule (open) prepares a cell to be fused with an enclosing cell or with a
peer cell; the precondition guarantees that the cell may participate to a fu-
sion. Rule (grasp) lifts the fusion capability to groups by freezing them in a
mreagent. Rules (fuse) and (fuse-i) define fusions between peer and nested
cells, respectively. The new cell is created with the membrane name returned
by the function F . Rule (mem-a) is a refinement of (mem). It models possi-
ble side-effects on the membrane name due to interactions between membrane
proteins and proteins outside the cell. Such interactions may activate mem-
branes by changing their fusion capability, which is encoded in our formalism
by membrane names. In a similar way, rule (ms-areact) refines (ms-react).

Example 3.2 A virus is an intracellular parasite that uses the infected cell
replication machinery in order to duplicate its own genetic material. Usually,
a virus consists of a genetic material (DNA or RNA), a capsid – a proteic
structure providing protection of the genetic material (we use the term of
nucleocapsid to denote both the capsid and the genetic material) –, and a
possible envelope (stolen to the infected cell and used later on to infect other
cells).

Below we encode in bioκ-calculus an influenza-like virus relying on similar
descriptions in [1,4]. We focus on the infection part, as we cannot express any
creation of new material. This part consists of the following steps:

(1) a protein-protein interaction between a virus membrane protein – the
hemagglutinin ha – and a receptor – a glycoprotein gly – on the cell’s
membrane; this activates gly and prepares the cell to the phagocytosis;

(2) the phagocytosis of the virus occurs thus creating a new vesicle ves en-

11

Laneve & Tarissan

gulfing the virus;

(3) a fusion occurs between the new vesicle and an endosomal membrane
(edsm) in the cytoplasm; this makes the virus enter the endosome;

(4) a further fusion occurs between the endosome and the virus that is now
part of the nucleus; this leads to an exocytosis that eventually releases
the virus nucleocapsid into the cytoplasm.

We consider the following rules:

r3 : ((edsm, ves), edsm) ∈ F

r4 : ((edsm, vs), edsm) ∈ F

The initial solution is Virus ,Cell where the components are as follows:

Virus := vsL ha(1) M[Nucaps]

Cell := cllL gly(1) ,Mc M[Endosome ,Cytosol]

Endosome := edsmLMe M[Es]

We describe the last part of the infection pathway, assuming that the virus
has already been engulfed in the host cell. We skip the first steps because we
cannot express the phagocytosis of the virus. In Section 4 we will analyse the
missing part. Therefore, let

cllLMc M[Endosome , vesL gly(1) M[Virus] ,Cytosol]

be the initial solution. A possible run is:

cllLMc M[edsmLMe M[Es] ,vesLgly(1) M[Virus] ,Cytosol]
τ

−→ cllLMc M[edsmLMe ,gly(1) M[Virus ,Es] ,Cytosol] (r3)

≡ cllLMc M[edsmLMe ,gly(1) M[vsLha(1) M[Nucaps] ,Es] ,Cytosol]
τ

−→ cllLMc M[edsmLMe ,gly(1) ,ha(1) M[Es] ,Nucaps ,Cytosol] (r4)

Extensional semantics of cells: context bisimulation. The extensional
semantics of Definition 2.4 must be refined in order to account with new transi-
tions and mreagents. This refinement should for instance equate solutions such
as a(1x) ,mL b(1x) M[S] and a(1) , nL b(1) M[S] when C(r) = ((a, 1, ∅), (b, 1, ∅))
D(r′) = ((a, 1, ∅), (b, 1, ∅)) and A(br, n) = m′ and A(b

r′
,m′) = n. This case is

very similar to that of reversible reactions discussed in the previous section.

Definition 3.3 A context bisimulation is a symmetric binary relation R be-
tween solutions such that it is a bisimulation and S R T implies:

• if S
mr−→ HM ; S′′I·S′ then T

mr=⇒ HM′ ;T′′I·T′ and, for every N, R, and n such

that F(r) = (m⊗n, n′), both
(

S′′ , n′LM ,N M[S′]
)

R

(

T′′ , n′LM′ ,N M[T′′]
)

and
(

S′ , n′LM ,N M[S′′ ,R]
)

R

(

T′ , n′LM′ ,N M[T′′ ,R]
)

.

12

Laneve & Tarissan

S is context bisimilar to T, written S ≈c T, if S R T for some context bisimu-
lation R .

Context bisimulation retains the same substitutivity property of ≈.

Theorem 3.4 ≈c is a congruence.

Context bisimilarity retains a universal quantification that is hard to check
in practice. One might wonder whether it is possible to simplify the defini-
tion. For example, instead of quantifying on cells, one may simply require the
bisimilarity of components of mreactants, namely M ≈c M′, S′′ ≈c T′′, and
S′ ≈c T′. It is easy to demonstrate that the induced equivalence, which we
note ≈+

c , is a congruence and ≈+
c ⊆≈c. At the time we write this note it is

not clear to us whether this containment is strict or not. This issue actually
requires further investigations.

4 Translocation and phagocytosis

The bioκ-calculus presented in Sections 2 and 3 has a limited expressive
power: mechanisms such as translocation, where a single protein may en-
ter a cell, or phagocytosis, where a cell may enter another cell cannot be
described. For this reason we overlooked the first steps of the virus infec-
tion in Example 3.2. The integration of translocation and phagocytosis in
bioκ-calculus is not simple and admits several design choices. We discuss few
possible formalisations below.

Translocation. Translocation is a mechanism enabling the transport of pro-
teins through a membrane. This mechanism is very specific and controlled by
particular membrane proteins that are different for each type of membrane.

Translocations usually do not transport the full proteins in one step be-
cause they are too big for traversing the membrane. This problem is solved in
two ways. One way is that protein codes – the mRNA chains – interact with
a ribosome (big proteic complex in charge of translating the code) and the
interactions translate part of the code in the cell and, at the same time, create
the encoded protein. Alternatively, biology uses ad-hoc proteins – the chap-
erons – that unfold the entering protein during the process (this is actually
what happen at the end of the RTK-MAPK cascade described in Section 2).

We abstract from this low level mechanisms and assume that proteins may
safely traverse the membrane. A first approximative definition of translocation
might only check that the entering protein be disconnected and retains a
suitable interface:

a(φ+ ψ) ,mLM M[S]
τ

−→ mLM M[a(φ+ ψ) , S′]

(according to our notation, both φ and ψ are v-h-maps, therefore en(φ+ψ) =
∅). This description is not satisfactory for at least two reasons. First, this
rule admits a possibly infinite feeding of cells with membrane m by proteins
a. This is not the case in biology: after a certain number of translocations,

13

Laneve & Tarissan

the membrane name changes, disabling further translocations. Second, the
above rule makes the membrane play a passive role. This means that it is not
possible to model the effects of organelle and chaperon proteins.

A better way is to model translocation as a decomplexation rule between
an external protein already connected to the membrane (and nowhere else)
and a membrane protein. To avoid the confusion of two different phenomena
– simple decomplexations and decomplexations with translocations – we use
a further function T from rule names to tuples ((a, i, ψ, ψ′), (b, j, φ),m, n). As
usual we assume that there is no clash between rule names in the domain of
T and the other functions that have been used in the paper. The two rules
controlling translocations are:

(trs-p)

T (r) = ((a, i, ψ, ψ′), (b, j, φ),m, n)

a(ix + ψ + ψ′)
ax
r−→ 0

(trs-m)

M
bx
r−→ M′

T (r) = ((a, i, ψ, ψ′), (b, j, φ),m, n)

mLM M[S]
bx
r−→ nLM′ M[a(i+ ψ + ψ′) , S′]

In rule (trs-p) the interface of a has exactly one site bound because the
interfaces ψ and ψ′ are v-h-maps according our notation. The interface ψ is
being turned into ψ during the translocation, ψ′ is unchanged. The protein
a disappears during (trs-p). Dually, the protein a appears during (trs-m).
The translocation will be the effect of the synchronisation (react).

Phagocytosis. Phagocytosis is a process allowing cells to enter other cells.
Phagocytosis of mLM M[S] – usually a small cell – by nLN M[T] – usually a
big cell – transports the former into the nucleus of the latter by surrounding
mLM M[S] with a new membrane that is part of N. This surrounding mecha-
nism is the problematic one because it amounts to split the host cell membrane
in some “not local” way. For example the transition

mLM M[S] , nLN M[T]
τ

−→ nLN M[n′L0 M[mLM M[S]] ,T]

is not very appropriate because the new membrane n′ is empty. As we don’t
have any mechanism for feeding the membrane yet, the solution ban complex-
ations of the new membrane with proteins.

Actually, phagocytosis should be possible provided the membrane of the
host cell had enough material for a new membrane. We therefore model phago-
cytosis as a decomplexation of two proteins in the membranes of the reactant
cells with the side effect of splitting the host cell according to some prede-
fined pattern. As for translocations, we use a new functions from rule names
to tuples ((a, i, ψ), (b, j, φ),m, n, n′, n′′,N′), where de(N′) = ∅. The meaning
of this tuple is the following: (a, i, ψ) and (b, j, φ) are the two proteins that
decomplexate and are located in two membranes m and n, respectively. The
name n′ is the one given at the new membrane surrounding the phagocytosed
cell, N′ is the membrane material of the new cell.

In the following rules, transition labels are extended with mx
r and still

14

Laneve & Tarissan

ranged over by µ. Let ⊎ denote disjoint union of sets. The rules defining
phagocytosis are:

(open-p)

M
ax
r−→ M′ P(r) = ((a, i, ψ), (b, j, φ),m, n, n′, n′′,N′)

mLM M[S]
mx

r−→ HM′ ; SI · 0

(open-c)

M
bx
r−→

∏

k∈I⊎J bk(σk) P(r) = ((a, i, ψ), (b, j, φ),m, n, n′, n′′,
∏

j∈J bj(σj))

nLM M[S]
nx
r−→ H

∏

i∈I bi(σi) ; SI · 0

(phago)

S
mx

r−→ HM ; S′′I · S′ T
nx
r−→ HN ;T′′I · T′

P(r) = ((a, i, ψ), (b, j, φ),m, n, n′, n′′,N′)

S ,T
τ

−→ S′ ,T′ , n′LN M[n′′LN′ M[mLM M[S′′]] ,T′′]

Rule (open-p) defines the transition of the phogocytosed cell. The label ax
r of

the membrane transition becomes mx
r in the cellular transition. This exposes

the phagocytosis to the label. Similarly for the rule (open-c). In (open-c)
the material needed for the new membrane surrounding the phagocytosed cell
is removed from the host cell membrane. This material is restored in the rule
(phago).

It is not clear to us how close the above rules are to the biological phago-
cytosis. It is worth to observe that (open-c) is computationally expensive, at
least if compared to the other operations described in the paper. According
to (open-c), extracting a pattern of proteins out of a membrane amounts to
a long sequel of checks that lock the membrane, thus inhibiting other inter-
actions. It is an open question whether it is possible or not to design simpler
and more basic mechanisms for phagocytosis.

Then we could finish the modelling of Example 3.2 by adding

r1 : ((ha, 1, ∅), (gly, 1, ∅)) ∈ C

(1) (glyr1 , cll) 7→ acll ∈ A

r2 : ((ha, 1, ∅), (gly, 1, ∅)), vs, acll, cll, ves, (gly(1)) ∈ P

The formal rendering of Example 3.2 can now be stated from the beginning,
namely before that the phagocytosis occurs.

vsLha(1) M[Nucaps] , cllLgly(1) ,Mc
M[Endosome ,Cytosol]

τ
−→ vsLha(1x) M[Nucaps] ,acllLgly(1x) ,Mc

M[Endosome ,Cytosol] (r1 − (1))

τ
−→ cllLMc M[vesLgly(1) M[vsLha(1) M[Nucaps]] ,Endosome ,Cytosol] (r2)

15

Laneve & Tarissan

5 Conclusions

We have presented a unique framework for modelling proteins and cells inter-
actions – the bioκ-calculus. Protein interactions in bioκ-calculus are of two
types: complexations and decomplexations; cell interactions in bioκ-calculus
describe fusions. All interactions are “local” in the sense that they always
involve two proteins. Fusions have been modelled by using an higher order
semantics in the style of [9]. We have studied the operational semantics of
bioκ-calculus and an extensional semantics of its – the bisimulation. The
expressiveness has been analysed by modelling two significant systems and
comparing them with similar ones that have been proposed in other algebraic
approaches.

Some extensions of bioκ-calculus rules may be done without difficulties. In
this paper we have discussed rules modelling translocations and phagocytosis,
even if the latter ones are not very satisfactory. Other extensions have not been
discussed, but are simple. For instance complexations and decomplexations
might check a part of the interface without modifying it. It suffices to upgrade
the functions C and D to tuples ((a, i, φ, φ′), (b, j, ψ, ψ′)) and change rules
(com) and (dec) into

(com)

(a, a, φ, φ′) ∈ C(r) x /∈ en(σ)

a(a+ φ+ φ′ + σ)
ax
r−→ a(ax + φ+ φ′ + σ)

and

(dec)

(a, a, ψ, ψ′) ∈ D(r)

a(ax + ψ + ψ′ + σ)
ax
r−→ a(a+ ψ + ψ′ + σ)

Other biological reactions have not yet been considered and are left to future
work, such as those in [1] or in [4].

Extensional semantics of bioκ-calculus are an intriguing issue we plan to
investigate in the future. In particular we are interested in mathematical tools
and techniques that help in assessing properties of biological solutions. Such
tools might be extensively used to predict outputs of experiments in vitro.

References

[1] Luca Cardelli. Brane calculi. In CMSB, pages 257–278, 2004.

[2] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoritical Computer

Science, 240(1):177–213, 2000.

[3] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoritical

Computer Science, 325(1):69–110, 2004.

16

Laneve & Tarissan

[4] Vincent Danos and Sylvain Pradalier. Projective brane calculus. In CMSB,
pages 134–148, 2004.

[5] Vincent Danos and Fabien Tarissan. Self-assembling graphs. In José Mira
and José R. Álvarez, editors, Mechanisms, Symbols, and Models Underlying

Cognition, volume 3561 of Lecture Notes in Computer Science, pages 498–507.
Springer, June 2005.

[6] Robin Milner. Communication and Concurrency. International Series on
Computer Science. Prentice Hall, 1989.

[7] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge
University Press, Cambridge, 1999.

[8] Aviv Regev, William Silverman, and Ehud Shapiro. Representation and
simulation of biochemical processes using the π-calculus process algebra. In R. B.
Altman, A. K. Dunker, L. Hunter, and T. E. Klein, editors, Pacific Symposium

on Biocomputing, volume 6, pages 459–470, Singapore, 2001. World Scientific
Press.

[9] Davide Sangiorgi. From π-calculus to Higher-Order π-calculus — and back. In
M.-C. Gaudel and J.-P. Jouannaud, editors, Proc. TAPSOFT’93, volume 668,
pages 151–166, 1993.

17

	Introduction
	The core of the bio-calculus
	Cell interactions
	Translocation and phagocytosis
	Conclusions
	References

