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LOW MACH NUMBER LIMIT OF THE FULL
NAVIER-STOKES EQUATIONS

THOMAS ALAZARD

ABSTRACT. The low Mach number limit for classical solutions of the full
Navier-Stokes equations is here studied. The combined effects of large
temperature variations and thermal conduction are taken into account.
In particular, we consider general initial data. The equations lead to
a singular problem whose linearized is not uniformly well-posed. Yet,
it is proved that the solutions exist and are uniformly bounded for a
time interval which is independent of the Mach number Ma € (0, 1], the
Reynolds number Re € [1, +00] and the Péclet number Pe € [1, +o0].
Based on uniform estimates in Sobolev spaces, and using a Theorem
of G. Métivier and S. Schochet [30], we next prove that the penalized
terms converge strongly to zero. This allows us to rigorously justify, at
least in the whole space case, the well-known computations given in the
introduction of the P.-L. Lions’ book [26].
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There are five factors that dictate the nature of the low Mach number
limit: the equations may be isentropic or non-isentropic; the fluid may be
viscous or inviscid; the fluid may be an efficient or poor thermal conduc-
tor; the domain may be bounded or unbounded; the temperature variations
may be small or large. Yet, there are only two cases in which the math-
ematical analysis of the low Mach number limit is well developed: first,
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in the isentropic regime [8, @ [T], M2, [16, 27]; second, for inviscid and non
heat-conductive fluids [TI, B0, 82].

Our goal is to start a rigorous analysis of the general case in which the
combined effects of large temperature variations and thermal conduction are
taken into account. As first anticipated in [2§], this case yields some new
problems concerning the nonlinear coupling of the equations.

1.1. Setting up the problem. The full Navier-Stokes equations are:
Op + div(pv) =0,

(1.1) O(pv) + div(pv @ v) + VP = div T,
O(pe) + div(pve) + Pdive = div(kVT) + 7 - Do,

where p, v = (v',...,v%), P, e and 7 denote the fluid density, velocity,
pressure, energy and temperature, respectively. We consider Newtonian
gases with Lamé viscosity coefficients ¢ and 7, so that the viscous strain
tensor 7 is given by

T :=2CDv + ndivuly,
where 2Dv = Vv + (Vv)! and I is the d x d identity matrix.

Considerable insight comes from being able to simplify the description of
the governing equations ([I]) by introducing clever physical models and the
use of judicious mathematical approximations. To reach this goal, a stan-
dard strategy is to introduce dimensionless numbers which determine the
relative significance of competing physical processes taking place in moving
fluids. Not only does this allow us to derive simplified equations of motion,
but also to reveal the central feature of the phenomenon considered.

We distinguish three dimensionless parameters:

e € (0,1], w € [0,1], k € [0,1].

The first parameter € is the Mach number, namely the ratio of a character-
istic velocity in the flow to the sound speed in the fluid. The parameters p
and k are essentially the inverses of the Reynolds and Péclet numbers; they
measure the importance of viscosity and heat-conduction.

To rescale the equations, there are basically two approaches which are
available. The first is to cast equations in dimensionless form by scaling
every variable by its characteristic value [28], [34].

The second is to consider one of the three changes of variables:

(12) t—e*, = —ex, v—ev, (— uc, n — un, k — kk,
t—et, x—x, v—ev, (—eul, n—eun, k— ekk,
t—t, r—x/e, v—oev, (—e2uC, n—euny, k— e’kk.

See [26], 44] for comments on the first two changes of variables. The third one

is related to large-amplitude high-frequency solutions (these rapid variations

are anomalous oscillations in the context of nonlinear geometric optics [5]).
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In the end, these two approaches both yield the same result. The full
Navier-Stokes equations, written in a non-dimensional way, are:

Op + div(pv) =0,

. vP :
(1.3) O(pv) + div(pv @ v) + = pdiv T,
di(pe) + div(pve) + Pdive = kdiv(kVT) + e2ur - Du.

Our study is concerned with the analysis of the low Mach number limit
for classical solutions of the full Navier Stokes equations ([L3) in the non-
isentropic general case and for general initial data. In particular, the com-
bined effects of large temperature variations and thermal conduction are
accounted. We are interested in the limit € — 0 and in proving results that
are independent of 1 and x. The analysis contains two parts. We first prove
an existence and uniform boundedness result for a time interval independent
of the parameters ¢, u and k. We next study the behavior of the solutions
when ¢ tends to 0.

Many results have been obtained in the past two decades about the justi-
fication of the incompressible limit—which is a special case of the low Mach
number approzimation. Concerning the Euler equations (u = x = 0), the
study began in earlies eighties with works of Klainerman and Majda [22, 23],
Schochet [36], Isozaki [I8, 9], Ukai 2], and others. As regards the isen-
tropic Navier-Stokes equations (u = 1, ¢ and n constants, p = p(P)), the
mathematical analysis of the low Mach number limit has come of age since
the pioneering works. Recent progress are presented in Danchin [8, 9], Des-
jardins and Grenier [I1], Desjardins, Grenier, Lions and Masmoudi [12], Hoff
[16] and Lions and Masmoudi [27]. They are also two very interesting earlier
results concerning the group method: Grenier [I5] and Schochet [37].

For the non-isentropic Euler equations and general initial data, Métivier
and Schochet have recently proved a couple of theorems [30), BT, B2] that
supersede a number of earlier results (a part of their study is extended in
1] to the boundary case). In particular they have proved the existence of
classical solutions on a time interval independent of €. The aim of this paper
is precisely to start a rigorous analysis of the corresponding problems for the
full Navier—Stokes equations.

The study of the low Mach number limit is a vast subject of which we
have barely scratched the surface here. To fill in this gap we recommend
Danchin [T0], Desjardins and Lin [I3], Gallagher [T4] and Schochet [38] for
well written survey papers. For the reader who wishes to learn more about
the physics, Majda [28] and Zeytounian [A4] 45] are good places to start.

Detailed historical accounts of the subject can be found in [34], along
with a broad number of references for further reading. In connection to
the stability analysis performed below, let us point out that the research of
numerical algorithms valid for all flow speeds is a very active field [24), 85 A3].
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1.2. Uniform stability. We consider classical solutions, that is, solutions
valued in the Sobolev spaces H*(ID) with s large enough, where the domain
D is either the whole space R? or the torus T¢. Our main result asserts that,
for perfect gases, the classical solutions exist and are uniformly bounded for
a time interval independent of €, u and k. We mention that the case of
general gases involves additional difficulties (see Remarks [ and [CH) and
will be addressed in a separate paper.

We choose to work with the unknowns P, v = (v',...,v%) and 7. In
order to be closed, the system must be augmented with two equations of
state, prescribing the density p and the energy e as given functions of P
and 7. Here, we restrict ourselves to perfect gases. There exists two positive
constants R and Cy such that

P=Rp7T and e=Cy7.

We begin by rewriting equations (L3) in terms of (P,v,7). Set v =
1+ R/Cy. Performing linear algebra, we find that

WP +v-VP+~yPdive = (v — 1)kdiv(kVT) + (v — 1)eQ,
P
(1.4) p(Ow +v - Vu) + VE—Q = pdivr,
pCy (0T +v-VT)+ Pdive = kdiv(kVT) 4+ €Q,

where p = P/(RT) and Q := eut - Dv.
Equations ([[C4]) are supplemented with initial data:

(1.5) P|t:0 = F, Vjt=0 = V0 and T|t:0 =Tp.

Finally, it is assumed that ¢, 17 and the coefficient of thermal conductivity
k are C'*° functions of the temperature 7, satisfying

kK(T)>0, ((7T)>0 and n(7)+2¢(T)>0.
Notation 1.1. Hereafter, A denotes the set of adimensioned parameters:
A= {a=(epmr)|ee 1], pe01), xe o},

Theorem 1.2. Let d > 1 and D denote either the whole space R% or the
torus T¢. Consider an integer s > 1 + d/2. For all positive P, T and My,
there is a positive time T such that for all a = (e, u, k) € A and all initial
data (P§, v, 15") such that P§ and 1§ take positive values and such that

6_1 ||P61 - £||Hs+1(]]])) + HUSHHS‘H(]D)) + ||76a - IHHS‘H(]D)) < MO,
the Cauchy problem for (LA)—[LH) has a unique solution (P®,v*,T) such
that (P* — P,v*, T% —T) € C°([0,T); HS"Y(D)) and such that P* and T

take positive values. In addition there exists a positive M, depending only
on My, P and T, such that

sup sup e [P = Pl ooy + 1020l ey + 170 = Tl | < M.
a€A te[0,T]
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Remark 1.3. i. We will prove a more precise result which, in particular,
exhibits some new smoothing effects for divv and VP (see Theorem 27).
ii. General initial data are here considered, and allow for large density and
temperature variations. The hypothesis F§(z) — P = O(e) is the natural
scaling to balance the acoustic components, see ([LH) and [0, 22, 28, 30].
iii. One technical reason why we are uniquely interested in the whole space
R? or the Torus T¢ is that we will make use of the Fourier transform tools. A
more serious obstacle is that, in the boundary case, there should be boundary
layers to analyze [3]. For the Euler equations (that is, u = k = 0), however,
Theorem [ remains valid in the boundary case [IJ.

Before leaving this paragraph, let us say some words about the difficulties
involved in the proof of Theorem The main obstacle is that the equa-
tions lead to a singular problem, depending on the small scaling parameter ¢,
whose linearized system is not uniformly well-posed in Sobolev spaces. In
other words, since we consider large temperature variations, the problem
is linearly (uniformly) unstable (see [30] for comments on this unstability).
Therefore, we cannot obtain the nonlinear energy estimates by differenti-
ating the equations nor by localizing in the frequency space by means of
Littlewood-Paley operators. In particular, the technical aspects are dif-
ferent from those present in the previous studies of the Cauchy problem
for strong solutions of ([Il). The latter problem has been widely studied,
starting from [29] and culminating in [, [7] which investigate global strong
solutions in spaces invariant by the scaling ([[L2) with p© = x = 1, following
the approach initiated by Fujita and Kato.

More precisely, after applying the changes of variables given in §24] we
are led to study a mixed hyperbolic/parabolic system of nonlinear equations
of the form:

1
91(0,ep)(Op+ v - Vp) + - dive — §X1(€p) div(8(0)VH) = T4,

1
(1.6) 92(0,ep) (O + v - Vv) + ng — uBs2(0,ep)v =0,

93(0,ep) (9,0 + v - V) + divv — kys3(ep) div(8(0)VO) = T,

where Bj is a second order elliptic differential operator, and Y; (i = 1, 3) are
of no consequence. An important feature of system ([CH) is that g; and g9
depend on . As a consequence Vg; and Vg are of order O(1). System ([LH)
does not enter into the classical framework of a singular limit [I5, B7] because
of this strong coupling between the short time-scale and the fast time-scale.
That is why we cannot derive estimates in Sobolev norms by standard meth-
ods using differentiation of the equations.

One of the main differences between the Euler equations [I, B0] (with
i = 0 = k) and the full equations is the following. When x = 0, it is
typically easy to obtain L? estimates uniform in ¢ by a simple integration
by parts in which the large terms in 1/e cancel out. In sharp contrast (as
observed in [28]), when x # 0 and the initial temperature variations are
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large, the problem is more involved because the penalization operator is no
longer skew-symmetric. Several difficulties also specifically arise for proving
estimates that are independent of 1 and k.

Remark 1.4. For general equations of state, we are led to study systems
having the form (LH) where the coefficients x; and x3 depend also on . As
a consequence, the singular operator is nonlinear.

1.3. The low Mach number limit. We now consider the limit of solutions
of () in R? as the Mach number ¢ goes to 0. The purpose of the low Mach
number approximation is to justify that the compression due to pressure
variations can be neglected. This is a common assumption that is made
when discussing the fluid dynamics of highly subsonic flows. In particular,
provided that the sound propagation is adiabatic, it is the same as saying
that the flow is incompressible. On sharp contrast, this is no longer true if
the combined effect of large temperature variations and heat conduction is
taken into account.
Going back to ([L4l) we compute that, formally, the limit system reads

yPdive = (v — 1)k div(kVT),
(1.7) p(Ov+v- Vo) + Vr = pdivr,
pCp (0T +v-VT) = rdiv(kVT),

where p = P/(RT), Cp = vCy and, in keeping with the notations of Theo-
rem [[L2 P denotes the constant value of the pressure at spatial infinity.

Our next result states that the solutions of the full equations ([C4]) con-
verge to the unique solution of ([L7]) whose initial velocity is the incompress-
ible part of the original velocity. Again, we consider general initial data
which allow very large acceleration of order O(s71).

Theorem 1.5. Fiz u € [0,1] and £ € [0,1]. Assume that (P%,v°,7°)
satisfy (L) and
sup sup [|e (PE(t) = P) |l e + 05 (@) e + | T5(t) = Ll g < o0,
€€(0,1] t€[0,T
for some fized time T > 0, reference states P,7 and index s large enough.
Suppose in addition that the initial data T|§:0 — T is compactly supported.

Then, for all s' < s, the pressure variations e ' (P — P) converges strongly
to 0 in L*(0,T; Hi . (RY). Moreover, for all ' < s, (v°,T°¢) converges
strongly in L*(0,T; HY (R)) to a limit (v, T) satisfying the system (7).

Note that the convergence is not uniform in time for the oscillations on
the acoustic time-scale prevent the convergence of the solutions on a small
initial layer in time (see [I8| A2]).

The key to proving this convergence result is to prove the decay to zero
of the local energy of the acoustic waves. To do so we will consider general
systems which include (LCH) as a special case. In particular, the analysis
of the general systems considered below will apply for the study of the low
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Mach number combustion as described in [28]. We mention that, in view
of [I], it seems possible to consider the same problem for exterior domains
(which is interesting for aeroacoustics [45]). Yet, we will not address this
question. The results proved in [3,82] indicate that the periodic case involves
important additional phenomena.

We conclude this introduction with a remark concerning general gases.

Remark 1.6. For perfect gases, the limit constraint is linear in the fol-
lowing sense: it is of the form divv, = 0 with v, := v — C*kkVT. In
sharp contrast, for general gases the constraint is nonlinear. Indeed, it
reads dive = f(P,7)kdiv(kVT). As a consequence, it is not immediate
that, in this case, the corresponding Cauchy problem for (7 is well posed.

2. MAIN RESULTS

We will see in §Z71 below that it is possible to transform equations (L)
into a system of the form

1
91(0,2p)(Op +v - Vp) + ~ divo - SBl(H,Ep)H =T,

1
(2.1) 92(0,¢ep) (&w +v- Vv) + ng — By (0,ep)v =0,

93(0,¢ep) (&ﬁ +v- VG) + dive — kB3(0,ep)d = Y3,

where the unknown (p, v, #) is a function of the variables (¢,z) € R x D with
values in R x R x R. Recall that D denotes either the whole space R% or
the torus T¢. Moreover, the coefficients g;, i = 1,2,3, are real-valued and
the B;’s are second-order differential operators given by:

Bi(0,ep) := x1(ep) div(B(0) V),

By(0,ep) := xa(ep) div(2¢(0)D-) + x2(ep)V(n(#) div-), 2D :=V +(V-)',

By(6,2p) = xs(ep) div(B(6)V")

Finally, T; := x;(ep)F (0, \/uVv) where F' € C* is such that F'(0) = 0.

2.1. Structural assumptions.

Assumption 2.1. To avoid confusion, we denote by (¥, ) € R? the place

holder of the unknown (6, ep).

(A1) The g;’s, i = 1,2,3, are C°° positive functions of (9, p) € R2.

(A2) The coefficients 5 and ¢ are C*° positive functions of ¥ € R, and 7 is
a C* function of ¥ € R satisfying n(9) + 2¢(9) > 0.

(A3) The coefficients y;, ¢ = 1,2,3, are C*° positive functions of p € R.
Moreover, for all p € R, there holds x1(p) < x3(p)-

Assumption 2.2. Use the notation df = (0f/99)dd+ (0f/0p) dp. There
exists two C* diffeomorphisms R? > (¥, p) — (S(¥9, ), p) € R? and R? >
(9, 0) — (9,000, p)) € R? such that S(0,0) = 0(0,0) = 0 and
(2.2) dS =g3dd —g1dp and do= —%ggdﬁ—kgl de.
3
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Brief discussion of the hypotheses.

The main hypothesis in Assumption [Z1] is the inequality y1 < x3. It
plays a crucial role in proving L? estimates (see Section H). Moreover, given
the assumption G() > 0, it ensures that the operator By(6,0) — B3(6,0)
[which appears in the last equation of the limit system given below in (Z3])]
is positive. This means nothing but the fact that the limit temperature
evolves according to the standard equation of heat diffusion!

The identities given in (Z2]) are compatibility conditions between the pe-
nalization operator and the viscous perturbation. The reason for introducing

S (or p) will be clear in §6.0 (respectively §Z1).

2.2. Uniform stability result. Given 0 <t < 7', a normed space X and a
function ¢ defined on [0, 7] x D with values in X, we denote by ¢(t) the func-
tion D 3 z — ¢(t,z) € X. The usual Sobolev spaces are denoted H? (D).
Recall that, when D = R¢, they are equipped with the norms

2 - —d 20 n 2
e = 2~ [ (€2 @O ds.

where 1 is the Fourier transform of u and (€) := (1+ ¢ \2) 2 With regards

to the case D = T?, we replace the integrals in ¢ € R? by sums on k € Z4.
Let us introduce a bit of notation which will be used continually in the
rest of the paper.

Notation 2.3. Given o € R and ¢ > 0, set ||ul| o = [Jull go-1 + o |Jull go-
o

Recall that A := {(e,p,k)|e € (0,1}, € [0,1],x € [0,1] }. The norm
that we will control is the following.

Definition 2.4. Let T > 0, 0 > 0, a = (e, u, k) € A and set v := /i + K.
The space HI(T) consists of these functions (p,v,0) defined on [0,T] x D
with values in R x R? x R and such that ||(p,v, O)l3o (1) < +00, where

100y = 51w LU0 Oz + 10Oz }+
S )

(SIS

T
</0 Vol fis + £ [ VOl air + 5 | divolFe + (1 + &) VD50 dt)

Similarly, the space Hg , consists of these functions (p,v,0) defined on D
with values in R x R? x R and such that ||(p, v, H)HHUO < 400, where

10,00z, = 1.l gess + 18l yzs with v := VTR

Remark 2.5. At first we may not expect to have to take these norms into
account, but they come up on their own in Section Bl Moreover, not only
the norms, but also the spaces depend on a (since we allow p =0 or k = 0).

Notation 2.6. Given a normed space X and a nonnegative M, we denote
by B(X; M) the ball of center 0 and radius M in X.
8



Here is our main result. In the context of Assumptions we prove
that the solutions of (Z1]) exist and are uniformly bounded for a time interval
which is independent of a € A.

Theorem 2.7. Suppose that system ZI)) satisfies Assumptions ZIHZ2A.
Let d > 1. For all integer s > 1+ d/2 and for all positive My, there exists
a positive T' and a positive M such that for all a € A and all initial data in
B(H; g; M), the Cauchy problem for 1)) has a unique classical solution
in B(H;(T); M).

The proof of this result will occupy us untill §.21 The crucial part is to
obtain estimates in Sobolev norms that are independent of a € A. Notable
technical aspects include the proof of an energy estimate for linearized equa-
tions [see Theorem E3] and the use of new tools to localize in the frequency
space [see Propositions and B]. With these results in hands, we begin
in §8 by analyzing the high frequency regime. The rest of the analysis is
devoted to the proof of low frequency estimates. We mention that we do
not need specific estimates for medium frequency components.

Remark 2.8. Up to numerous changes, a close inspection of the proof of
Theorem 77 indicates that, in fact: for all M > My > 0, there exists
T' > 0 such that for all @ € A and all initial data in B(H; 5; Mo) the Cauchy
problem for () has a unique classical solution in B(H3(T); M).

2.3. Convergence toward the solution of the limit system. We now
consider the behavior of the solutions of @1I) in R% as the Mach number ¢
tends to zero. Fix p and k and consider a family of solutions of system (Z1I),
(p°,v%,0°). It is assumed to be bounded in C([0,T]; H° (RY)) with o large
enough and T > 0. Strong compactness of 6° is clear from uniform bounds
for 9;6°. For the sequence (p°,v°), however, the uniform bounds imply only
weak compactness, insufficient to insure that the limits satisfy the limit
equations. We remedy this by proving that the penalized terms converge
strongly to zero.

Theorem 2.9. Suppose that system (Z1I) satisfies Assumption 2. Fiz
w€[0,1] and k € [0,1], and let d > 1. Assume that (p°,v%,0%) satisfy (Z1I)
and are uniformly bounded in Hfglm)(T) for some fixed T > 0 and s >

6-+d/2. Suppose that the initial data 6°(0) converge in H*(R?) to a function
0y decaying sufficiently rapidly at infinity in the sense that (x)°0y € H*(R?)
for some given § > 2, where (x) := (1+|z|*)"/2. Then, for all indices s' < s,
p° — 0 strongly in L*(0, T; Hy, . (RY)) and div v —x (ep®) div(8(6°) V%) — 0
strongly in L2(0,T; H? ~'(R?)).

loc
The proof is given in @8 Tt is based on a Theorem of Métivier and Schochet
recalled below in Theorem B3, about the decay to zero of the local energy
for a class of wave operators with time dependent coefficients.
We have just seen that p® converges to 0. The following result states that

(v, 6°) converges toward the solution of the limit system.
9



Theorem 2.10. Using the same assumptions and notations as in Theorem
23, the family {(v°,6°)|e € (0,1]} converges weakly in L>(0,T; H*(R%))
and strongly in L*(0,T; HY (RY)) for all s' < s to a limit (v,0) satisfying

dive = kx1(0) div(8(0)VE),
(2.3) 92(0,0)(dyv 4+ v - Vv) + Vi — uBs(8,0)v = 0,

93(0,0) (80 +v - VO) — £(x3(0) — x1(0)) div(8(8) V) =0,
for some 7 which can be chosen such that Vr € C°([0,T]; H*~*(R?)).

Given Theorem Z3 the proof of Theorem follows from a close in-
spection of the proof of Theorem 1.5 in [30], and so will be omitted.

2.4. Changes of variables. Let us rewrite equations ([3]) in terms of the
pressure fluctuations p, velocity v and temperature fluctuations €; where p
and 6 are defined by

(2.4) P=Pe?, T=Té or p:= élog(%), 0= log(§>,

where P and 7 are given by the statement of Theorem

We can convert the pressure and temperature evolution equations into
evolution equations for the fluctuations p and 6. Starting from (L4, it is
accomplished most readily by logarithmic differentiation (0;,P = eP0; .p
and 0y, 7 =7 0;,0). By doing so we find that (p,v,0) satisfies

P(dwp+v-Vp) + gdivv - @ div(kTVl) = (v —-1)Q,

P P
(2.5) 778 (v +v- Vo) + ng — pdiv(2¢Dv) — pV(ndivw) = 0,

P
% (0,0 4+ v - V) + Pdive — kdiv(kTV0) = £Q.
Therefore, the system (1) includes (1)) as a special case where
91 ‘_77 g2 = RT’ g3 = R, X1 = ’}/P )y X2 = X3 = P’

where the * indicates that the function is evaluated at (6,ep). Moreover, for
i=1,3, Ti := xi(ep)F (0, \/Vv) where F(0,,/uVv) := Q is as in (4.
We easily verify that the Assumptions are satisfied in this case.
Hence, Theorem as stated in the introduction is now a consequence of
Theorem B since P and 7 (given by (24))) are obviously positive functions
and since we have || - ||co(o,77,msm)) < || - l1s (1) (the details are left to the
reader). Similarly, Theorem [[Alfollows from TheoremZ% and Theorem 210

3. LOCALIZATION IN THE FREQUENCY SPACE

We now develop the analysis needed to localize in the frequency space.
The first two paragraphs are a review consisting of various notations and
usual results which serve as the requested background for what follows. The
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core of this section is §§8.3H34l in which we prove two technical ingredients
needed to localize in the low frequency region. This will not be used before
Section @ and can be omitted before the reader gets there.

3.1. Notations. To fix matters, in this section we work on R?, yet all the
results are valid mutatis mutandis in the Torus T¢. All functions are assumed
to be complex valued unless otherwise specified. The notation og always
refers to a real number strictly greater than d/2, and h stands for a small
parameter. We use K to denote a generic constant (independent of h). The
notation A < B means that A < KB for such a constant K. Given two
normed vector spaces X7 and Xy, £(X1, X2) denotes the space of bounded
operators from Xj to Xp. We denote by |||/, .y, its norm, £(X) is a
compact notation for £(X, X) and I always refers to the identity operator.
Finally, recall that

1/2

(€)= (L+1¢%)

3.2. Preliminaries. Let m € R. A function ¢ belongs to the class S™ if
q(¢) is a C™ function of ¢ € R? and satisfies 10gq(&)] < Co (&)™ lel ) for
all ¢ € R? and for all multi-indices @ € N¢. Such a function is called a
symbol. With the best constants C,, as semi-norms, S™ is a Fréchet space.
Given a symbol g € S™, the Fourier multiplier associat/e\d with ¢ is given by
the operator Q acting on tempered distribution u by Qu := qu.

We now introduce the first of two families of operators which are used
below to localize in the frequency space. Let 7 be a C™ function of ¢ € RY,
satisfying

0<y<1, g§) =1for [§f <1, 5(§) =0for [§] =2, 4(§) =s(=E).

Set g (&) = 3(h€), for 0 < h < 1 and € € R? so that 7, is supported in
the ball of radius 2/h about the origin. Then we define J;, as the Fourier
multiplier with symbol jp:

Jn = g(hDy,).

Let us make a series of remarks on J,. The operator .Jj, is self-adjoint since 75,
is a real-valued function. Using that 7, is even, we deduce that Jyu is real-
valued for any real-valued tempered distribution w. They are smoothing
operators, and the family { J, | 0 < h < 1} is an approximate identity.

We will often use the simple observation that for all > 0, there exists a
nonnegative constant K so that for all h € (0,1] and o € R,

K T
(3.1) [ Tnll o gro+r < hr and I = Jullgo_gor <.

T

One reason it is interesting to assume that j has compact support is the
following:

(3.2) Jyp = JpJg,  forall 0<e< 27t
11



In words, the Friedrichs mollifiers .J;, are interesting because they are
essentially projection operators. Alternatively, it is also interesting to use a
family of invertible smoothing operators. A good candidate is the family

{ A7 .= (I - h*A)"? | h e (0,1]}.
Heuristically, we expect that for nonnegative m,
IR ST, (L= Jp)AR S W™ |[Dg|™.
With regards to negative powers of A, we will use that
RTA™ SATT AT S
The previous statements are made precise by the following lemma.

Lemma 3.1. Let (my,mo) € R? be such that 0 < my < ma. Then, for all
h €10,1] and all o € R, we have

(3.3) [P A

For all m > 0 and all ¢ € (0,1], there exists a positive constant K such
that for all h € [0,1], and all 0 € R,

(3.4) HjchAZ"bHHJ_)HJ <K,
(3.5) H(I — Jch)AhmHHMHU,m < Kh™.

< 1.

HHO’_)HO'+77L1 X

To prove these results, we check that, on the symbol level
0 <A™ (hg)"™ ()™ < 1,
0 < j(chg)(he)™ < (2¢7H)™,
0.< (1= (ch)) (h&)™ (€)™ < h™(e)*.

3.3. A product estimate. We now establish a product estimate, which
says that the smoothing effect of the operators A, ™ is distributive.

Proposition 3.2. Let oy > d/2, (01,02) € R%, (m1,ma) € R2 be such that

(36) 01+ 09 +mq + me < 20¢.
There exists K such that for all h € [0,1] and u; € HI0~% ™,

1A, (s S KA w1 oo [1A7™

)HH‘TO*‘H*"? 2u2HH"0*ff2 .

Proof. The key point is that the operators A, ™ are invertible. This allows us
to derive the desired product estimates from the corresponding results in the
usual setting mq = mo = 0. To do so Proposition is better formulated
as follows: there exists K such that for all h € [0,1] and f; € H70~% (R9),
(3.7)

HAF—Lm1—m2 {(Azhfl)(Azlzf2)}HHUO*U1*02 <K Hfl”HUO*Ul Hf2”H"0*02 .

The proof of this claim is based on the decomposition of each function f;
into two pieces: its low wave number part Jj, f;, and its high wave number
12



part (I — Jp)f;. This leads to four products that are handled the same way
by introducing, for ¢ € {0,1} and m € R, the Fourier multipliers

O, =h""A (J, —cI).
With this notation, the left-hand side of ([B7) is less than
Z Hhc1m1+czm2Af—Lm1—m2 { (@thl fl) (@Z;mz f2) }‘

0<e1,c2<1

H°0—01—02

Hence, to prove ([B7) it suffices now to combine three ingredients:

cimitcama A —Mm1—m2
Hh Ah UHH‘707‘717‘72 < HUHH‘707‘71*‘72*017”17627”2 5

”U1U2HHvo*ffrffz*qmr%mz 5 HU1HHUO*01*61M1 ”U2”H00*02*02M2 )
(S S llollgeow (i € {1,2}).

The first and last inequalities follow from Lemma Bl In order to prove
the second one, we first recall the classical rule of product in Sobolev spaces
(which is Theorem 8.3.1. in [I7]). For (ri,72) € R2 the product maps
continuously H™ (RY) x H"?(R?%) to H"(R?) whenever

(3.8) r14+re >0, r<min{r;,r} and r<r+ro—d/2,

Ho0—0;—¢c;my

with the third inequality strict if r1 or 7o or —r is equal to d/2. We next
verify that (B8] applies with

T i= 09— 01 — 09— C1M| — CaMa2, r; =09 —0; —¢m; fori=1,2.

3.4. A Friedrichs’ Lemma. In this paragraph we present a result which
complements the usual Friedrichs’ Lemma. To do that we first need a com-
mutator estimate, noting that the commutator of a Fourier multiplier of
order m and the multiplication by a function is an operator of order m — 1.

Lemma 3.3. Let g > d/2+1 and m € [0,+00). For any bounded subset B
of 8™ and all o € (—og +m, 09— 1], there ezists a constant K such that for
all symbol q € B, all f € HO(R?), and all u € H? (RY),

(3.9) 1Q(fu) — fQull gro—msr < K |[fll oo lull o »
where Q is the Fourier multiplier with symbol q.

Lemma is classical. Yet, for the convenience of the reader, we include
a proof at the end of this paragraph.

A word of caution: the estimate ([B0) carries over to matrix-valued func-
tions and symbols except for one key point. Suppose that f and ¢ are matrix
valued. In order for ([B3) to be true the following condition must be fulfilled:

(&) f(x) = f(x)q(&) for all (z,&) € R,

Proposition 3.4. Let o9 > d/2+1 and m € [0,1]. For all o in the interval
(=09 + m,o0 — 1], there exists a constant K, such that for all h € (0,1],
all f € H°(R?) and all u € H~0(R?),

310) () — £l o en <K 5]
13



Remark 3.5. The thing of interest here is that the precise rate of conver-
gence does not require much on the high wave number part of w.

Proof. Given p € R and g € H*(R%), we denote by ¢’ the multiplication
operator H *(R%) 3 u +— gu € S'(R?). Then, Proposition B4 can be formu-
lated concisely in the following way. There exists a constant K, depending
only on oy, m and o, such that for all h € (0, 1],

A4 s YA e < B -

The proof of this claim makes use of the division of the frequency space into
two pieces: the low frequencies region || < 1/h and the high frequencies
region |£| 2 1/h. We write

A [, AR = €+ R,

—H°

where
CY == AV [Jn, £ TR AT,
CL = AV [, £ (I = JR)ATO,
and J; = Jy /5.
Firstly, we estimate C’é‘. We rewrite C’é‘ as
(3.11) Co = n" A BTy = 1), £ TR AT

The key point to estimate C{ is to notice that {h™™(s, — 1) |0 < h < 1}
is a bounded family in S™. Indeed, if ¢ € S™ and ¢(§) vanishes for small ¢,
then the symbols ¢x(-) = A™™¢(A-) belong uniformly to S™, for 0 < A\ < co.
Once this is granted, Lemma implies that the family

{Al—m [y — 1), 7] |0 < h < 1}

is bounded in L(H?).
On the other hand { JJA7°T7 | 0 < h < 1} is a bounded family in £(H?),
see (BQ). Consequently, in light of (BII]), we end up with

[ <A AT AT (= D), f7] [TAT | e
SH™ oo -

Our next task is to show similar estimates for C%. With regards to C%,
the fact that the operators J, are essentially projection operators is the key
to the proof. More precisely, we use the identity ([B2) written in the form
Jn(1 = Jp,) = 0 [recall that J; = Jj,/5]. It yields

(3.12) Ch = A" f7 (I — J7) At

It turns out that the situation is even better. Let v belongs to the Schwartz
class S§. The spectrum (support of the Fourier transform, hereafter denoted
by spec) of (Jnf)((I — J},)v) is contained in

spec (Ji f) +spec (I — Jj)v C B (0, 2h_1) +B (0, 10h_1)C CcB (0,3h_1)c,
14
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the exterior of the ball centered at 0 of radius 3h~1. This results in
In((n (U = ) =0,

that is, J, (f((I — J},)v)) = J((I = Jp)f)((I — J},)v)). By combining this
identity with ([EI2), we are left with

Cgo _ Al—th(([ — Jh)f)b (I — J;l) AZO—"—U.

To estimate HC’&HHUQHU

joint. We write (C’é‘o)* as a product of two operators:

()" = {nmomo (T = A (T =T f) (o7 ) A1

where Z denotes the complex conjugated of z. The problem reduces to
establishing that

(3.13) (T =T 7) (07 TA ™ o o0 S B [ F N 5120 -

Indeed, since { h~=707(I—J;)A7°*7 | 0 < h < 1} is bounded in £(H%; H~°)
(see (BH)), the estimate (BI3)) implies that

1(Co) g prme S B 1SN e -

Which in turn implies ||C S ™ || f|| oo and completes the proof.

we prove a dual estimate for the operator ad-

h

OOHHU—J{" ~
We now have to prove (BI3). Let v belongs to the Schwartz class S.

Since o9 > d/2, we can invoke the standard tame estimate for products,

which leads to

(T = Jn) F (W7 IA0) || oy S
(3.14) (T = T Fll oo || (BT T TWAY ™) 0| oy +
(T = ) fll oo || (BT TpAT™)

To estimate these fours terms, we use the embedding of H?°~'(R%) into
L>*(R?) and the bounds given in (1), to obtain

I = Jn)fllee SN = Tn)fll oo S PN llgoo s
H (hao-i-JJhAl—m) — hm—l H (hao+a+1—th)
SE o
I = Tn) fll oo < 1F Nl greo »
[ T A" o oo S ([ (AT TRAT) 0| o
S (G

UHLOO’

”HHUO UHH"OH*"L

UHHUO*W
S AT HUHH%*W*(Uowfm) =h" HU”H*U .
Inserting the four estimates we just proved in ([BI4]), we conclude that
(T = Jn) f (7T T A T0) || oy S B 1 oo 01| -

This completes the proof of ([BI3). O
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Proof of Lemma[Z3. To avoid trivialities (o € ), assume that m < 209 — 1.
We establish the estimate by using the para-differential calculus of Bony [2].
In keeping with the notations of the previous proof, f° denotes the mul-
tiplication operator u + fu. We denote by T} the operator of para-
multiplication by f. Rewrite the commutator [Q, fb] as

[Q,Tf] + Q(f* = Tp) — (f* — Tp)Q.

The claim then follows from the bounds

(3.15) Vo eR, 19 Tl oy pro—m+r < €1(q,0) | fll oo
(3.16) Vo€ (—00,00 — 1], ||f" = Tt yo_ pgors < 2(0) | fll o0 »
(3.17) Vo € R, 19l fro . gro—m < supe ‘<5>_mQ(f)| ;

where ¢1(-,0): S™ — Ry maps bounded sets to bounded sets. We refer the
reader to [2] and [33] for the proofs of the first two inequalities (see also [I7,
Prop. 10.2.2] and [I7, Th. 9.6.4'] for the proof of BIH); a detailed proof
of (BIQ) is given in [I7, Prop. 10.2.9]). The estimate (BID) is obvious. O

4. ENERGY ESTIMATES FOR THE LINEARIZED SYSTEM

Many results have been obtained in the past two decades concerning the
symmetrization of the Navier Stokes equations (see, e.g., [, [, 20, 21]). Yet,
the previous works do not include the dimensionless numbers. Here we prove
estimates valid for all a = (&, u, k) in A, where A is defined in Notation [T}
As already written in the introduction, our result improves earlier works
[, 22, B0] on allowing x # 0. Indeed, when k = 0, the penalization operator
is skew-symmetric and hence the perturbation terms do not appear in the
L? estimate, so that the classical proof for solutions to the unperturbed
equations holds. In sharp contrast (as observed in [28]), when k # 0 and the
initial temperature variations are large, the problem is more involved because
the singular operator is no longer skew-symmetric. Several difficulties also
specifically arise for the purpose of proving estimates that are independent
of 4 and k. In this regard we prove some additional smoothing effects for
divv and Vp.

We consider the following linearized equations:
~ SO U ~
91(9) (&p +v- Vp) + - divo — - div(B1(9)VO) = f1,

(LD 4 0a(6)(000+ v V2) + V5~ pa(@)AT — pi(0)V livi = o,
93(8) (840 +v - V) + dive — kB3(¢) A8 = fs.

To fix matters, the unknown (p,v,0) is a function of the variables (¢,z) €
[0,7] x D (T is a given positive real number and I denotes either R? or T¢)
with values in R x R? x R. The coefficients ¢ = ¢(t,z) and v = v(t, z) take
their values in RY and RY, respectively (N is a given integer).
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Assumption 4.1. Parallel to Assumption B, we make the following hy-
potheses. Throughout this section we require g1, g2, g3 to be C'°° positive
functions of ¢ € RY, without recalling this assumption explicitly in the
statements. Similarly, it is assumed that (1, Bo, ﬁg and (3 are C'*° functions
of ¢ € RV satisfying

B >0, B>0, BL+48,>0, B5>0.

Our main assumption reads

(4.2) B1 < Bs.

Assumption 4.2. For our purposes, it is sufficient to prove a priori esti-

mates. It is always assumed that the unknown U := (p, v, 6), the coefficients
(v,¢) as well as the source term f := (f1, f2, f3) are in C°([0, T]; H>(D)).

4.1. Statements of the results. We establish estimate on ”ﬁHHO(T) in
terms of the norm [[U(0)]] 40 , of the data and norm of the source term f.
Recall from Definition B that

1Tllpgry == sup {N@ DO gz, + 16y }
te[0,7

T :
T ( | I8 + w19, + v T3 + oo+ ) [ 9512 dt) ,
0

with v := \/u + k. Recall the following notation we use continually in the
sequel: given o € R and o > 0 we set HHHg = Il go-1 + 0|l o -

Theorem 4.3. There is a smooth non-decreasing function C from [0, +00)
to [0,400) such that for all a € A, all T € (0,1], all coefficients v and ¢,

and all (U, f) satisfying @), the norm ”ﬁHHg(T) satisfies the estimate

. . T
10l 7y < C(Ro)e™ ™ |U(0)lly , + C(R) /0 1CFis )l + (13l gyt

where v := \/u+ Kk and
(4.3) Ro := [|9(0)[| oo py » B := sup, 1(¢, e, Vo, vV 26, 0, V) (1) | oo ) -

te|

Remark 4.4. By Assumption EE2], all the functions we encounter in the
previous statement are in C°([0,7]; H>(D)). Yet, one can verify that the
estimate is valid whenever its two sides are well defined.

Theorem is not enough for the purpose of proving high frequency
estimates independent of k. We will need the following version.

17



Theorem 4.5. The statement of Theorem [{.3 remains valid if the system
&) is replaced with

91(6)(@iF + v VD) + = divi — = div(51(9)VE) = fi

~ o1 ~ o~
U9 02(6)(9 + 0 VB) + 2 VP — uBa(9) AT — puf(9)V divE = fo,
93(6) (90 +v - V) + G(¢, V) - T+ divy — KB3(9) A0 = fi,
where G is smooth in its arguments with values in R?.

The proof of Theorem relies upon two L? estimates. Because they
may be useful in other circumstances, we give separate statements in &3l
The proof of Theorem follows from a close inspection of the proof of
Theorem B3l and so will be omitted.

4.2. Example. Some important features of the proof of Theorem can
be revealed by analyzing the following simplified system:

1 1
Op+ —dive — —Af =0,
€ €

1
(45) 8{0 + EVp = O,

040 + dive — BAH = 0.

For the sake of notational simplicity we abandon the tildes in this subsection.
Parallel to (2), we suppose
(4.6) B> 1.

To symmetrize the large terms in e~}
change of variables transforms (L) into

, we introduce v, := v — V6. This

1
Op + B divve =0,

1
Opve + ng — Vdivu. + (6 —1)VAI =0,
9,0 + divve — (8 — 1)AG = 0.

We take the L? scalar product of the first [resp. the second] equation with
p [resp. ve]. It yields:

1d . .
(4.7) 57 1 ve)lz2 + div vel 72 — (8 — 1)( A8, divee ) = 0.

We take the L? scalar product of the third equation with —nA#@, where 7 is
a positive constant to be determined later on. It yields

1d 5
5@ H(P,Ue,\/ﬁve)np
+|divee]2e — (B — 1+ ) (A0, dive.) + (5 — 1) | A8, = 0.
18



Set 1 := 3 — 1, which is positive thanks to assumption Q). We get

1d _
3q (D, ve, VB — 1V8) |32 + ||divy. — (8 — 1)A8][72 = 0.

Let ¢ > 0. Integrating the previous identity from 0 to ¢, and using the
triangle inequality to replace v, by v, we get

t
(48) [|(p, v, VO)(E) |2 + / [dive — BAB|Z: dr < Ky ||(p, v, VO)(O0)||2 -
0

Here and below, Kg denotes a generic constant which depends only on §.
We thus have proved an L? estimate independent of €. To go beyond and
obtain smoothing effect on div v it is sufficient to estimate Af independently.
The strategy is to incorporate the troublesome term div v [in the equation
for 6] into a skew-symmetric operator.
To do so introduce

(:=¢efp—0 and wv.:=c¢w.
We compute
-1
8tC + T le’UE = 0,
Ll L
Ge Ge
040 + édivv€ — BAG = 0.

Ove + —V(+ —Vo =0,

We now use the essential feature of the system, that is assumption (EHI).
Multiply the first equation [resp. the second] by 1/(3 — 1) [resp. 3], to
put the penalization operator in symmetric form. The energy estimate thus

reads
1d
57 | (V1/(B = 1)¢. Bz, 0)lI72 + B[ V672 = 0.
Integrate this inequality, to obtain
¢
@9 1GOOI+ [ 1901 dr < K I C.e O

Since the coefficients are constants, the same estimate holds true for the first
order derivatives of (, v and #. Namely, one has

t
(410)  [V(Cove 0)(0)]2 + /0 IV26]2, dr < K [V(C, v, 0)(0)]2

On applying the triangle inequality, one can replace ¢ with ep in the previous
estimates. Finally, by combining S, (E9) and I0), we get

t 1/2
10,0, 0Ol 2 + [V (6,29, £0) (D) = + ( [ ol + o0, dr)

(4.11)
< K [(p,v,0)(0)[| 2 + K3 [[V(0,ep,e0)(0) || 2 -
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It is worth remarking that, to establish ([ITl), it is enough to prove (E1)
and ([EI0). Let us now compare ([LIT]) with the estimate given in Theorem
We see that the previous study fails to convey one feature of the proof,
namely the usefulness of the additional smoothing effect for Vp. The reason
is that we worked with constant coefficients. In the general case, an estimate
for fot | Vp||72 dr is needed to control the left hand side of (EI) (see Lemma
ECTT below).

Let us explain how to estimate fg ||Vp||2Lz dr. Multiply the second equa-
tion in (LX) by eVp and integrate over the strip [0,¢] x D, to obtain

t t
/ V)2, dr = —/ (O, eVp) dr.
0 0

Integrating by parts both in space and time yields

/(E@tv,Vp>dT:—/ (U,Eath>dT+€[<U(T):Vp(ﬂﬂ:g
0 0

t

= /0 (divwv, edyp) dr +€[<’U(T)v VP(T)HZO'

In view of the first equation in (), we are left with

t t
ﬂgnvm@gd7=3é Idiv ]2, — (dive, A8y dr —e[(v(r), Vp(r))] =",

All the terms that appear in the previous identity have been estimated
previously. As a consequence the estimate (EIT]) holds true if we include
fg HVpH2Lg dr in its left hand side. By so doing, we obtain the exact analogue
of the estimate given in Theorem (for p =0and kK = 1).

4.3. L? estimates. Guided by the previous example, we want to prove L?
estimates for (p,v) and (0,ep,ev). The strategy for proving both estimates
is the same: transform the system (BTI) so as to obtain L? estimates uniform
in € by a simple integration by parts in which the large terms in 1/¢ cancel
out. Namely, we want to obtain systems having the form

(4.12) £1(0, 00U — Lalp, i, U + 25U = F,

where L1 (v, ¢) — La(u, k, ¢) is a mixed hyperbolic/parabolic system of equa-~
tions:

1gy<d 1<y,k<d
and the singular perturbation S(¢) is a differential operator in the space
variable which is skew-symmetric (with not necessarily constant coefficients).

We first prove an estimate parallel to ().
20



Proposition 4.6. Using the same notations as in Theorem [.3, we have

- T ~ 1/2

sup |5, <0 (8) 2 + ( [ RIS + e dt)

(4 13) t€[0,T] 0

) _ T _ 1/2
< C(Ro)e™®) (G, 25, 0)(0)] 12 + C(R) ( | o) dt) ,
0
where
(4.14) Balh,0) = |2 fref)ll g2 1825 o

Corollary 4.7. The estimate [EI3)) holds true with (fOT B.(f,0) dt) Y2 e

placed by
T
/0 N fo)lle + 1 sl .

Proof of Corollary [{] given Proposition [£.g. One has, for all A > 0,

T _ /2 4 . T
([ Brdra) <5 s 1Gepcillys A [ e choll,e dr

te[0,7
Using (E13)) we obtain the desired result by taking A large enough. O
Notation 4.8. Within the proofs of Proposition and E9 Rather than
writing C(R) and C(Ry) in full, we will use the following abbreviations:

C = C(R) and Cy = C(Rp). So that C' denotes generic constants which
depend only on R := H (qﬁ, 0y, Vo, uV? ¢, v, Vv) HLOO([O T)xD) and Cj denotes

generic constants which depend only on Rg := [|¢(0)||jcc(p)- As usual, the
values of Cy and C' may vary from relation to relation.

Proof of Proposition [{.0} All the computations given below are meaningful
since we concentrate on regular solutions of ([1]). Introduce

Ci=eqiBsp— g3, T:=ev and U= ((,7.0)"
where we simply write g;, §; instead of g;(¢), Bi(¢). We first show that

U solves a system of the form [IZ). Expressing p in terms of C and 9
replacing ¥ by e ~'9. and performing a little algebra, yields

atE+v.vZ+ﬁ — P giv o = f1,

92040 +v - V) + EV(ME) + EV(’Ygg) — 1B AT — pBEV div i = efs,
93(00 +v - V) + % div . — kB3 A0 = f3,

1
where vy (= — = 950 and

9133 7 9133
fl=eBsf1 — Bufs + KBV - VO

+ep(9(g183) +v - V(9163)) — 0((g3B1) +v - (Vgsf)).
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In order to symmetrize these equations, we make use of the assumption
[E2), that is B3 — 1 > 0. Multiply the first equation [resp. the third] by
(B3 — B1)~! [resp. 72]. By so doing, we obtain that I/ solves

(4.15) £1(0, ) — Lalp, i, 6 + - S(o)l] = F,

with F := (y1(83 — ﬁ1)_1f{,€f2,72f3)T, L1(v,¢) = Lo(¢)0s + > Lj(v, 9)0;
where

71 0 0
Bz—p
LO = 0 gg]d 0 and Lj = ’UjLo.
0 0 7293

Moreover, the singular and viscous perturbations are defined by

0 mdiv 0 0 0 0
S=[Vm-) 0 Vie)|.Lo=[0 phA+usvVdv 0
0 Yo div 0 0 0 K283

The end of the proof proceeds by multiplying by U and integration by
parts. The point is that the large terms in e~! cancel out for S is skew-
symmetric. Let t € (0,T]. If we multiply [@I3) by U and integrate from 0
to t, we obtain

(4.16)  (Lo(d)U, U)(t) —2 /0 (La(o)U, U dr = (Lo($)U, UY(0) + Y (t),

where (-, -) denotes the scalar product in L?(D) and
t

Y(t) = /Ot<{8tLo(¢)+ Y 8ij(v,<;S)}Z/~{,L~{>dT+2/ (F,U)dt.

1<j<d 0
Here we used the symmetry of the matrices Ly and L;.

We begin by estimating the right-hand side. One easily gathers
|oLo@) + X oiLiwe)||  <C.

155<d =
(where C'is as in Notation EE8) and
(4.17) (P U < Pl [Ull e < CNCefs fa)ll e 1] -

Furthermore, since by definition f{ is a linear combination of efi, fs, ep,

6 and kV6 whose coefficients are estimated in L norm by a constant de-
pending only on R, we get

(4.18) 1Al < Cll(fs:ef)ll g2 + ClI(6: €P) 2 + C 6V 2
Moreover, observe that
(4.19) (0,2p.£0)" = M(g)U,
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where M (¢) is an n x n invertible matrix. As a consequence, there exists
a constant C' such that C~1[|U||;2 < ||(0,ep,ev)| ;2 < C|U|| 2. Hence, the

estimates ([LI7) and EIR) result in
(4.20) (F,U)| < CB(f,0) + C [Ul[72 + C |k 2 1] 2

where B.(f,U) is given by [@Id). For all A > 1, the last term in the right
hand-side of the previous estimate is bounded by

O + - HWHL2

Consequently the right-hand side of (E]ZS]) is less than
(4.21)

" t . 2 t - t »
Co U (0)]2 +>\C/ 2|2 dr+%/ V02, dT+c/ B.(f,U)dr
0 0 0

We want to estimate now the left-hand side of ([I6). In this regard, the
most direct estimates show that

(Lo(o)d ,U) > || Lo(¢) M|z I1U]I3 -
Similarly, using Lemma .2 in Appendix, one has
—(Lo($)U, U > Kpm |V |> + Kem [|VO]* — C |72 ,
where m := min{|| 85|72 , (B2 + 85 1857~ } and K is a generic

constant depending only on the dimension.
To estimate the L> norm of Ly', 85, (B2 + ﬁg)_l and 331, write

[E (@) oo < [[F(2(0))]] oo +/ [0:F(o(T)|| oo dT
(4.22) <Co+t 81[1p] 1F' (¢ ))HLoo 106 (7) || Lo
T7€(0,t

< Co+TC < Coe™.
Consequently, the left hand-side of ([I6]) is greater than

(4.23) coe-TC{HU(t)|yiz+/ | V|® + 5 | VO] dT —c/ ][ dr.

From this and the assumption x < 1, we see that one can absorb the third
term in ([@ZI]) by taking A large enough Then, Gronwall’s Lemma implies

IIU(t)II%er/0 IV +# | VO)* dr < Coe™ IIU(O)IIinrC/0 Be(f,U) dr

We claim that the previous estimate holds true with u replaced by (5, ED, EV).
Indeed, by EIJ) and @22), one has ||(6,ep,ev)] 2 < CoeC [U|| 2.

To complete the proof, take the square root of the inequality thus obtained
and take the supremum over ¢ € [0, 7). O

We next prove an estimate parallel to [E1).
23



Proposition 4.9. Using the same notations as in Theorem [.3, we have

1/2

T
sup_|[(p,0)(®)[ 2 + (/ (V3|72 + s || div D72 dt)
te[0,T 0

T
< O(Ro)e™ ™| (5,2)(0) | 2 + C(R)/0 ICFus F)ll e + & (| fall it

. T . 1/2
o) sup [0y + ([ #IV0E @)
0

te[0,7

Remark 4.10. From now on, we make intensive and implicit uses of the
assumptions p < 1 and k < 1. In particular we freely use obvious estimates
like 1 < /it < v. Similarly, we use the estimate v ||Vul[ ;2 < ||u|| gz without
mentioning it explicitly in the proofs. ’

Proof. Introduce ve := v — Hﬂlvé Performing a little algebra we find that
V= (p,0.)! satisfies

<%1 gfld) (07 +v- VD) + 1 (g dj;) P (g 5022) p-F,
where
Lo = kgafiV (g5 " div +) + pBeA + uB5V div,
and F = (f1, f2 + f4)! with
(4.24)
o= ukBaA(B1VO) + k5N div(BiVE) — rga (051 + v - V1) VE
+ ﬁggﬂ1V(ng§1 div(3,V6) — /ﬁ:gg_lﬁgAg— gglfg) + kga B (V) V6.

The thing of greatest interest here is that —Lso is a differential operator
whose leading symbol is greater than Ck&lé + Cp|€ |2 1.

As before, the proof proceeds by multiplying by Y and integrating on the
strip [0,¢] x D. Then the analysis establishing that the right [resp. left] hand

side of (IH) is smaller than ([Z) [resp. greater than [Z3))] also gives:

. t

1P + / pIVE] 7 + w dive |72 dr

(4.25) 0 . :

< Coe™ I9(0)]2, +c/ V)12 dT+c/ (F, V)| dr.
0 0

Let us estimate the last term in the right-hand side of ([EZH)). Using (@24)
one can decompose f5 as f 1 +\/kV f3 5 where
Hfé@HLz < Cr ||f3HH1 +Ck HV9HL2 + C\/E(,U + k) Hv29||L2 )

1£5.2]| 12 < CEIIVOl 2 + CVi(p + 1) V20| 2 -
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By notation, (F, V) = (f1,5) + (fas 5} + (fhy, 50} — ( fhg, VidiviL).
We thus get, for allA} 1,

/\<F,v>\dT<Ac</ 1 )l + [ sl df)
0 0

1 [t ~ 1
(4.26) +X/ k||div Te|| 72 dr + < xS V)17
0 TE[

t ~ o~
+)\C/ H(HVH,\/E(NJF/@)V?HHiQ ar.
0

Replacing v, with v in ([E2H)—EZH), taking A large enough and applying
Gronwall’s lemma leads to the expected result. O

4.4. End of the proof of Theorem From now on, we consider a
time 0 < 7' < 1, a fixed triple of parameter a = (¢, u, k) € A and a solution

U = (p,7,0) of the system (E)). We denote by Ry and R the norms defined
in the statement of Theorem (see E3))). We also set v := \/u + k.
Introduce the functions N, w,y,Y, Z: [0,T] — Ry given by

(4.27) N(t) :==w(t) + vz(t) + y(t) + vY (),

where
t 1/2
w(t) = sup u@,mv)Hm( /0 V325 + x [ldiv a2 df) ,

T€[0,t]

. t . 1/2
0)i= sup @250+ ( [ VIR + eVl ar)

T€[0,¢]

_ t _ 1/2
V(0= suwp [V olgs + [ wIVO+ vl ar)
0

T€[0,t]
t 1/2
= ([ 197z ar)

Note that HﬁHHg(T) < N(T). Since we have estimated w(T") and y(7T), it
remains only to estimate vY (T) and vz(T). Parallel to ([EI0), we begin by
establishing an estimate for Y.

Lemma 4.11. There exists a constant Cy depending only on Ry and a

constant C' depending only on R such that for all t € [0,T] and all X > 1,

Y ()2 < Coet“Y(0) +)\C/ dT+—/H (div®, Vp)|32 dr
(4.28)

+ (€ [ b + 11 ) df) .
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Proof. The proof, if tedious, is elementary. Indeed, the strategy for proving
([E2])) consists in differentiating the system (1)) so as to apply Proposition
with (5, ep,ev) replaced by V(g, ED,ED).

Let 1 < j < d and set

U; := (pj,0;,0;) == (9;p, 00, 9;0).
We commute! the ith equation in @) with g;(9;g; ). Tt yields
_ ~ T ~
gl((ﬁ) (8tpj +v- ij) + g div ’Uj — g dlv(ﬂl((ﬁ)vej) = Fl,
~ ~ 1. ~ .~
gg((ﬁ) (at’l)j +v- VU]') + ngj - ,uﬂg(gﬁ)Avj - uﬂg(gﬁ)v div v = FQ,
93(9) (085 + v - V;) + divy; — kBs3(¢)AG; = F,
where, for i = 1, 2,3, the source term Fj is given by
F; = F! + F? .= g;0;(g; ' ;) + :F?,
with

= I N e . = K 1 ..
2= —0v-Vp— gﬁjgl Hdiveo — kdiv(1 V) } + ~91 L div(9;6,V0),
~ ~ 1 i _ ~ _ .~
§i=—0jv- Vi — Eajgz Y + 1;(g5 ' Ba) AT + udj (g5 - B5)V div T,
ng =—0jv- Vo — ajggl divo + /{Oj(gglﬁg)Ag.
Proposition implies that

o~ t ~
(420) Y2 < Coe™[UO)2 +C Y / B.(F.T;) dr.
0

1<j<d

where U := (Vbz, eVp,eVv) and B is defined by ([I4]). We now have to
estimate B.(F,U;). The source terms are directly estimated by

|(Fd B3 eBD) || < Cllfsllgn + C NG )l s
|(F2,eF3.2E2)||,0 < C(W 2 + (divE, VP)l| 2 + [ (€n V25, £920)]|12)

The last estimate implies that, for all positive A and )/, one has

B.(F2,U;) < 1+ A+ X)C U3
c, .. - C - ~
+ 5 Idive, V)72 + 3 (enV*T, sV°0) 72
Moreover, the term fg |B.(F*, 17])| dr is estimated as in the proof of Corol-
lary E71 With these estimates in hands, we find that the last term in the

1Which means that we commute 0; with the ith equation (i = 1,2, 3) premultiplied by
9; ! and we next multiply the result by g;.
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right-side of ([E29) is less then

t
~ C
/0 L+ X+ X)C U3z dr + < G Set[lp]IIZ/lHLz

t C _ _ ~
(4.30) +/ < Idive, VB) 72 dr + y/ eV, KV20)| 75 dr
0 0

t 2
+)\II<C/O /31l g+ 111y f2)ll d7—> '

By definition, sup ¢ U2 + fot |(enV27, KV20) |32 dr < Y (t)2. Hence,
taking ' = )" large enough, one can absorb the second and fourth terms in
(E30) in the left hand side of [E29), thereby obtaining the desired estimate

E23). O
To obtain a closed set of inequalities it remains to estimate z(t).

Lemma 4.12. There exists a constant Cy depending only on Ry and a
constant C' depending only on R such that for all t € [0,T],

T 2
(4.31)  v22(t)* < Coe Y {?Y ()2 + w(t)?} +c</0 I(f1, f2)ll 2 dt) .

Proof. Set € := [0,t] x D and denote by ((, )) the scalar product in L*(€);).
Multiplying the second equation in @) by ev?gy 1¥p, and integrating over
Q; yields

V¥ (95 'VD, VD) =

(4.32) — e (0 +v - V)T, VD) +eur*( g5 L BaAT, VD))
+epr?(( gy B3V divE, VB ) +ev?(( g3 fa. V).

The most direct estimates show that

(95VD, VB) = lloall o VBN 72000 -

en®(( g3 B2, V) < Nl95 " Ball oo ) 1tV 20 2y 1V B L2y -
ep*{( g5 BV div, VB ) <
V207" for V) < 195 L poe oy I ol 12 €02Vl

where we used the shorthand notations

t 1/p
I opx = s -l and1-lpx = ( IR dr) |

T€[0,t

195 153”@0(9,5 HENVV2"~)HL2 () ”Vvﬁ”w(gt)’

With the bound ([22)), the previous four estimates and [#32) imply
(4.33)
VB2 0,y < Coe™C |ev3( (81 + v - V)7, V)|

2
+ Coe™ (llemw V20l 2y + 1ol iy 12 + eV Vbl gz )
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Note that the second term in the right-hand side of the previous estimate is
bounded by the right-hand side of ([31]). It thus remains to estimate the
first term. To do so integrate by parts in both the space and time variables
to obtain

ev? {8 +v-V)v, VD))
= 51/2<<div v, (8 +v-V)p))
— ev{(diva(t), p(t)) + ev*{dive(0), H(0))
+ev*(Vu, VPR 7)) — ev?(dive, v - Vp).

(4.34)

The last two terms in the right-hand side of ([34]) are estimated by
2 ~12 ~112
KtV ol2p e 712052 + eVl e < TCw(t? +v2Y ()2,
and the second and third terms are estimated by
levValige ra + [BllEpLe < v2Y (1) +w(t)®.

In particular, the sum of the last four terms in the right-hand side of [E34])
is estimated by e?“{w(t)? + 12Y (t)2}. This brings us to estimate the first
term. Using the first equation in (EI), we get
ev?(dive, (8 +v - V)p) = —*{divy, g; ' div))
+ V2 dive, gyt div(51V0) ) +ev?(div, g f1).

Then, the analysis establishing [E33)) also gives
ev? [{(diva, (9 +v - V)p))

< Coe™ {12 | (div 5, k920) 22 0, + 125 [(V0.£V) 2z + | ill2y 12 )

which in turn is bounded by the right-hand side of [3I). The proof is
complete. O

We thus have proved a closed system of estimates. Indeed, by taking
appropriate combinations of the previous estimates, we see that there exists
a constant Cy depending only on Ry and a constant C' depending only on
R such that for all t € [0,7] and all A\ > 1, the norm N(¢) (as defined in
(EZ0)) satisfies the estimate

t
N(t)? < Coel“N(0)2 + \C / N(r)%dr + %N(tﬁ + CF(T)?,
0

where F(T) := [ [|(f1, fo)ll s + |1 fsll gy dlt.
Again, take A large enough and apply the Gronwall’s lemma. The proof
of Theorem B3 is complete since [|U ||y ) < N(T).
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5. HIGH FREQUENCY REGIME

To establish Theorem 7, the crucial part consists of obtaining a priori
estimates in Sobolev norms independent of a € A. Theorem .3 provides the
basic L? estimates. However, the estimates of the derivatives also require a
careful analysis. Indeed, the classical approach, which consists of differenti-
ating the equations, certainly fails since it reveals unbounded terms in e 1.
However, one can follow this strategy in the high frequency regime where
the parabolic behavior prevails.

More precisely, given a smooth solution U = (p,v,0) to ), we will
estimate the H:(T) norm of (I — J,)U, where Hi(T) is as defined in §Z2
(see Definition EZ4)) and, in keeping with the notations of §8 { J, | h € [0,1] }
is a Friedrichs’ mollifier and A® := (I — A)%/2,

In order to make our energy estimates applicable, the main difficulty is
to verify that the commutator of (I — J,)A® and the equations (1) can
be seen as a source term. To do so we first note that for h = O(e), one
can gain an extra factor ¢ in the commutator estimates [see ([2) below].
Yet, this costs a derivative. To compensate this loss of derivative, we use in
an essential way the parabolic behavior of the equations. Consequently, we
search h under the form ¢(u, x)e. Since for our purposes the main smoothing
effect concerns the penalized terms divv and Vp, we take c(u, k) = \/u + k.

Proposition 5.1. Given an integer s > 1+ d/2, there exists a continuous
nondecreasing function C such that for all a = (e,u,k) € A, all T € [0,1]
and all U = (p,v,0) € C([0,T]; H® (D)) satisfying €1),

(5.1) (I — JaV)U”Hg(T) < C(Qo)eﬁc(9)7
where v := \/u+ K, Qo = HU(O)HH;O’ Q= HUHHQ(T) (see §23, Defini-
tion [Z4).

Remark 5.2. Note that we establish estimates for the exact solutions
of (1)) and we do not estimate the solutions of the linearized system (EII).

5.1. Preliminaries. To avoid interruptions of the proofs later on, we now
collect a few nonlinear estimates which will be used throughout this section.

Lemma 5.3. Let s > 1+ d/2. There exists a constant K such that for all
he[0,1], all 0> 0, all f € H**Y(D) and all u € H*(D), we have

(5:2) [|[£, (1 = J) ATy < (oMK L Fllwroe Nell s+ Fll o el oo }
where || fllyioe := |[fll oo +IV oo - Recall that |[-| gg := ||| gro-1+0 -l o -

Remark 5.4. This inequality provides a way to gain an extra factor h
[with o = h| or a derivative [with ¢ = 1]. In this respect it is like the
estimate ([BI0), to which we will return in a moment (see Lemma [.6l).

Proof. To prove this result we need a tame estimate version of ([B0]). We use
the following result, which is Proposition 3.6.A in [41] (see also [25]). Let
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m > 0. For all Fourier multiplier @ with symbol ¢ € S™ and for all o > 0,
we have

(5.3) H [f> Q]UHHU <K HfHleOO ||UHH0+m*1 + K HfHHm+cr HUHLOO )

where the constant K depends only on m, s, o, d and a finite number of
semi-norms of ¢ in S™.

Since the support of the symbol 1 — j is limited by || > 1/h, the most
direct estimates show that {h=(1 — 7(h&))(€)*|h € [0,1]} is uniformly
bounded in the symbol class S*T1. Thus, the commutator estimate (&),
applied with (m, o) := (s + 1,0), implies that

G4) ([T = TNl o S B e el e + 1Al e Tl o) -

On the other hand, the family {(1 — 3(h§))()° |h € [0,1]} is uniformly
bounded in S*, so that (E3) applied with (m, o) = (s,1) implies that

(5.5) 11, (= T A Tul[ o S 1 e llull g + 1 s Nl o -
Combining (4] with (&3] multiplied by o, yields (B2). O

We next prove two Moser-type estimates for the norms ||| ;-
4

Lemma 5.5. Let s > 1+ d/2. There exists a constant K such that for all
0> 0 and for all u; € Hy(D),

(5.6) lurue|l g < K fJuall g lull gy -
This result extends to vector valued functions.
Proof. Using the standard tame estimate for products, we get
lurval -1 S lluall oo lluell o + luall o luzll Lo
lurugll s S llull poo lluall g + luall gs lluzll o -
We next put the parameter ¢ in appropriate spots, to obtain
lurwall gy < llwallpoo lluzll g + lluall g lluzll g

which completes the proof since |||l ;o0 S |Jufgem1 < [lu]| s O
e

Lemma 5.6. Let s > 1+ d/2 and F: R" — C be a C* function such
that F(0) = 0. Then, for all 0 > 0 and all u € Hy(D) with values in R",

(5.7) 1)l s < C (M)

where C(-) depends only on a finite number of semi-norms of F in C.
Proof. Recall that, for all ¢ > d/2,

(5.8) IE ()l oo < Cllullgoe) 1l oo -

Using this estimate at orders s — 1 and s, we have

(5.9 1E @)l < C(lull e 1l

This in turn implies the desired estimate. O
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Lemma 5.7. Let s > 1+ d/2, F: R" — C be a C* function such that
F(0) =0 and Q be a Fourier multiplier with symbol q € S*. For all vector-
valued function u € H*(D) we have

(5.10) [Q(F(w) = F'(w)Qul| yu < C(llull ),

where F' is the differential of F and C(-) is a smooth nondecreasing function
depending only on s, d, a finite number of semi-norms of q in S® and a finite
number of semi-norms of F in C°.

Proof. To establish (I we use the para-differential calculus of Bony [2].
Denote by T’y the operator of para-multiplication by f. Starting from

F(u) = Tpryu + R(u; 2, Dy )u,
where R(u;x, D) is a smoothing operator (see (BI1])), we obtain
Q(F(u)) — F'(u)Qu = (Tpr(u) — F'(u)) Qu+ [Q, Ty | u + QR(u; 2, Dy )u.
The claim then follows from the bounds [BIH)—(BID) and the estimate
(5.11) | Rus 2, Do)l e < ().
See [I7, Th. 10.3.1] and [I7, Corollary 9.3.6] for the proof of (BI). O

5.2. Localization in the high frequency region. To simplify the pre-
sentation, we fix a real number s strictly greater than 1 + d/2.
To proceed further, we need some more terminology.

Notation 5.8. For all i € [0, 2], define
Qp = (I — Jp)A%.
Hereafter, the parameter h is a product ev with (g,v) € [0, 1] x [0, 2].
Introduce next the commutator of the equations ([Z1]) and Q..
Notation 5.9. Given a = (g, u, k) € A, v € [0,2] and U = (p,v,0), set
Pip(U) = [91(6). Q) + [31(6)v. Q] - Vb = Z[Bi(@), Qa0
fotip(U) = [92(0), Qev] v + [g2(¢)v, Qev] - Vv — pu [Ba(6), Qv ],
fstp(U) = [93(9), Qe 0:0 + {g3(¢)v - VO; Qi } — k [B3(6), Q= ],
where ¢ is a shorthand notation for (6,ep) and

{93(¢)U - Vo; qu} = g3(d)v - VQe,0 + g3(¢) VO - Qepv — Qe (93(¢)U : VG)

Remark 5.10. For the purpose of proving estimates independent of x, we do
not consider the exact commutator of the third equation in &II) with Q..

Let us recall that
Bi(¢) := x1(ep) div(B(O)V -),
Bs() := xz(ep) div(2¢(0) D) + x2(ep)V(n(6) div -),

B3(¢) := x3(ep) div(B(0)V:).
31



The following lemma shows that fﬁg can be seen as a source term.

Lemma 5.11. There ezists a smooth nondecreasing function C = C(-) such
that for all a € A, all T > 0, all v € [0,2] and all vector valued function
U= (p,v,0) € CH([0,T]; H>(D)),

75t O s, SCR{L+ l10upll gy + 5 1611 gss2

1550 @)y SCOR{1+ lleBevl gy + gt llev]| asa }

1550 @)y SCR{L+ 1066175 + 5 [10llgesa}
where R := (. 0)| g1 + 101 o1

Remark 5.12. We will apply this lemma with v := /u + k. Yet, we prove
estimates independent of v € [0, 2] to explain why the separation of the high
and low frequency components occurs at frequencies of order of 1/(e\/p + k).

Proof. We make intensive use of the following obvious observations. Firstly,
using the Sobolev embedding Theorem and the very definition of the norms
|-l g7 We have

e

(5:12) ullpoo S llull o < Hlullgy  and  Jlullyre S lullgs < llull gger -
Since € < 1 and v < 2, directly from the definition of [|-|| ., we have
(6.13)  vlullge <llullgg <3lullge  and [lew]| g < flull gag -

Note the following corollary of the second inequality: ||(ep,ev)ys+1 < R.
This in turn implies [[@[| ys+1 == [|(0,ep)|| gs+1 < R.

STEP 1: Estimate for f}}{z(U). a) We begin by proving that

(5.14) 1 [91(8). Q) 0upl s < CCR) 0hpl
Applying the commutator estimate (B2) with h = ¢ = ev, we have

191(9), Qev0upl| 1 < e 191(D) w1 10epll 7o + €v 1|1 ( D) gosr [Oepll oo
S 191D e 1€l g + 191 (D) | s ledepll e

where g; is defined by §1 = g1 — ¢91(0). The estimates (BI2)) imply that the
right side is less than K [|g1(¢)|| ys+1 [€0p| fys- Using Lemma BB, we obtain

191 (&) gs+2 < C([[@] s+1) < C(R). This proves (BIE).
b) Next, we prove that

(5.15) [[91(0)v, Qe] - V| < C(R).

Again, this follows from the commutator estimate (B.2) applied with h =
o = ev. Indeed, it yields

[g1(&)v, Qev] - V|11

S g1 (@)vllwree 1eVPll gy + llegi(@)oll o VPl o -
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The first term in the right-hand side is estimated by C(R) since
171(2)vllpr10 < C I8l s 10llyroe) < CUSl s 0] ) < C(R),

and eVpllys < Il < R
It thus remains to estimate [eg1(¢)v[|ys+1. To do so use Lemma
and .8 to obtain

legi(@)vll g1 S N91(D) | g1 vl gger < C(R)R.
c) Let us prove that
K
(5.16) — [1[B1(@): Q0] s, < C(R) (18] o=

By definition Bj(¢) = x1(ep) div(B(0)V ), so we can decompose the com-
mutator [Bi(¢), Q|0 as

(517) [51(¢)7 Qeu] Af + [82(¢7 qu)v Qeu] : V97

where &1(¢) = x1(ep)B(6) and E3(¢p, Vo) = x1(ep)V3(0) = x1(ep) 3 () V6.
The commutator estimate (5:2)) [applied with h = ¢ = ev] implies that

1€, Qe ] A0 1 S ell€llyroe 1A0] gy + € IEl]grsor [ A0]] e
162, Qev] - VO 1 S e llv€allyrce IVOIl o + € 2]l s VO] 1o

where £ := & — £1(0). Claim (&I6) then easily follows from the estimates:

1)l < Cl ) < C(R), 1A0] g < MO vz
1€1(@) | 1 < Cl1¢llgrs+1) < C(R), 180 oo < 11011 7542
[v€2(0, Vo) lwree < CI0ll ggr1) < C(R), VOl s <10l oz
1€2(0, V) jyz+1 < C(R) 10| o2 VOl Lo S 101l gs < R

The first six inequalities follows from Lemma B the Sobolev Theorem
and the estimates (BI2)-(ET3). To estimate ||E2(¢, V@)|| fys+1, we first use

Lemma B3l to obtain

(5.18) 1£:(6. V)t S (0 + 100(eD) g )L+ 15O gzos) 1V s
and next use Lemma to bound the HS™!'-norms of y;(¢6) and G'(6) by
C(R). This yields the desired bound since |[VO|[s+1 < (6] grore-

STEP 2: Estimate for f3}r(U). Note that it is possible to obtain f3:(U)
from f]%4p(U) by replacing p by v, 8 by ev and by pu. Therefore, we are
back in the situation of the previous step, and hence conclude that

02(6), Quu)rolly < COR) vl
020 @] - Vel < OO
NH[BQ((ZS%QQJ]UHH;V C(R) ”/’LEU|’H5+2 .

STEP 3: Estimate for f3§p(U). The estimates for the first and the last

terms in fg 1p(U) can be deduced by following the previous analysis. We
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only indicate the point at which the argument differs: we use the commutator
estimate ([B) with A = ev and ¢ = v (instead of p = ev).
Let us concentrate on the second term. We claim that
[{gs(®)v - V8; Qeu }|| g < C(R).
We first decompose {gg((b)v -V; QEV} as

(5.19) (93(9), Qev]v - VO + g3(8)Z

where Z :=v-VQ.,0 +VO-Q.,v— Q. (v- V).
Applying the commutator estimate (2) with A = ev and o = v, and
using the estimates (B12), we get

[g3(), Qev]v - VO 1y S N33(D) st llv - VOl -

Using Lemma and 6] we find that the right-hand side of the previous
estimate is dominated by C(||[ gs+1) [0l s VO] < C(R).

Since 95(6)Z . < 195(0) s~ 12l < CCR) 1], to control the
H}-norm of the second term in (EId), only the estimate of || Z|| 1 is missing.
We split || Z]| 1 as || Z]| 2 + v || Z]| 2, and we prove that || Z]| 2 and v | Z] g
are both estimated by C(R). To estimate || Z|| 2, note that

(5.20) Z=V0-Q,v+[v,Q9.,] V0.

The second term in the right-hand side is estimated by way of the commu-
tator estimate (B3). Indeed, applying Lemma with o9 = m = s and
o=s—1, we get

v, Qeu] - VOl L2 S ol s V0] grems < [0l e 0] s < R2.
With regards to the first term in the right-hand side of (&20), we write
IV6 - Qevll > <IIVOlI oo [1Qevvll e S 110l gy 0] e < B
Moving to the estimate of v || Z|| 1, we remark that
vZ = F'(u)Qepu — Qo (F(u)),
with u = (u1,u2) := (v,vVE) and F(u) = ujuz. Hence, (BI0) yields
v[IZll g < C(Iw, v V0 gs) < CI0llgs + 110 ze2) < C(R).

The previous estimates imply that || Z|| ;1 is controlled by C(R). This com-
pletes the proof of Lemma BT11 O

Remark 5.13. Let us explain the reason why we assume that G depends
only on 8. Had we worked instead with general coefficient 5 depending also
on ep, the corresponding inequality (I8 would have involved ||eVp]| HsHL-
The problem presents itself: ||ep|| L1(0,7;H3+2) is not controlled by the norm
l(p, v, H)HHg (1) 1t is possible to get around the previous problem, yet we do
not address this question.

In view of Lemma .11 we are led to estimate 0,1 where ) := (0, ep, ev).
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Lemma 5.14. There ezists a continuous nondecreasing function C(-) such
that for all a € A, all T > 0, all v € [0,2] and all (p,v,0) € H(T) solv-
ing ), the function ¢ := (0,ep,ev) satisfies

(5.21) 106, < COR){1 + R},

where
R:=|[(p, )| g + 110 ps+1

5.22 .
(5.22) R = v ||(dive, V)|l s + VEIIVOl gerr + VE VO] gaer -

Remark 5.15. This estimate plays a key role in proving estimates indepen-
dent of 1 and k. Indeed, this is the only step in which we use the additional
smoothing effect for dive and Vp. More precisely, the fact that the esti-
mate (BZI) is tame [linear in R'] allows us to control [0l 207,15y PY

C(H(pﬂ)ae)”HZ(T)) for all v < \/m

Proof. The proof is straightforward. We write

(5.23) G(qﬁ)(&ﬂ/} +v-V)+ LU 4+ By x(¢)Y =0,
where 1) and U are identified with (ep, v, 8)! and (p, v, 0)!, respectively, and
g 0 0 0 div 0 0 0 kB
G=|0 gl 0),L:=|V 0 0|, Bue:=10 pBy 0
0 0 g3 0 div 0 0 0 kBsg

Since max{y, xk} < 1, we can easily verify that there is a family {F, |a € A}
uniformly bounded in C*°, such that F,(0) = 0 and 0;¢) = F,(E), with = :=
(v, W, Vb, div v, Vp, eV, /{V20). Using the Moser-type estimate (£9), we
find that [0 g < C([|E[ go-1){1+v [[E] 2 }. To complete the proof, note
that, directly from the definitions (22 and the assumption (u, ) € [0,1]2,
we have ||Z|| g1 < Rand v ||E|| s < R+ R O

We are now prepared to prove Proposition Bl

5.3. Proof of Proposition Bl Set v := /u+k < V2. We first show
that

ﬁ = (ﬁ, 5,9) = (Qeypa Qeu’uy Q€V0)7
satisfies (B4 for suitable source terms fi, fa, f3 and coefficients (1, fa, 35,

B3, G. Tt readily follows from Notation that (p,v,0) solves
~ - 1. . K ~ a,v
91($) (0 + v - VD) + Zdive = =B1(9)0 = fiue (U),

92(8) (0 + v V7) + 2 V5~ pBal6)7 = f3iie(U),

93() (00 +v - VO +T - V0) + dive — £B3(¢)0 = f1p(U),
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where ¢ = (0,ep). Set B1 := x1, B2 = 2x2(, B5 = xan, fBs := xaf and
G(¢,Vo) = g3(¢)V, to obtain that (p, v, d) satisfies () where

fri=fapU) + flue + QoY1 with fi yp := —SVM(EP) - (B(0)V0),
for=fonp(U) + four  with f3 yp = px2(ep){2DvV((9) + divovn(6) },
f3 = faxp(U) + fapp +€Qe Y3 with f3 yp = kxa(ep)VB(0) - Y

where Y; are as in system (E1]).
By definition of the norm ||-[|5/ 7 (see Definition E4I), the Sobolev em-
bedding Theorem and Lemma BET4 imply that

(¢, 00, V&b, VV2¢=U7VU)HL°°([O,T]><IDJ) < C((Q),

where € := [[U||3s (1. Similarly, [[¢(0)]| ooy < Qo := HU(O)HHZ()'

Observe that Assumption Il implies that the conditions in Assump-
tion E] are satisfied.

With these preliminary remarks in hands, Theorem yields

1T gy < C Q)" DNT )l , + COO{FT) +F(T) + (1)},
with

= [|(f{5e () foiie( )HLl(O,T;Hsll,) + Hf;ﬁF(U)HLl(O,T;Hg)’
3’(T = | (s Fome) || o,y + 13m0,y
S'”(T = HQeuTluLl (0,T3HL,) + ||5Q€VT3||L1 (0,T;HL)-

By definition, HUHHO a = I - JE,,)UHHé . Similarly, we have the
bound ||U (0 )”Ho = H(I Jeu)U (0 )HHS Qo Therefore in view of the
elementary 1nequahty T+ y < 2xe¥ (for all x > 1 and y > 0), the proof of
Proposition Bl reduces to establishing that §(T)+§ (T)+3"(T) < VT C(RQ).

The estimate F(T) < VTC(Q) immediately follows from the preliminar-
ies. Indeed, define R and R’ as in (E222)). By the definition of v := \/pu + &,

we have u < /uv and k < /kv. Hence, it can be easily verified that
Lemma BETT and Lemma ET4 imply

52 ey + 15Oy + 50y < COR{L+ R,

Since C(+) is nondecreasing, by integrating and using the Cauchy—Schwarz
estimate, we obtain

§(T) < VTC (1Rl e o,0) {1+ IR 20,1 }-

This in turn implies the desired estimate §(7T') < VT C() since, by defini-
tion, we have Q &~ ||| 00 0.1y + [l 12(0.7)-
Let us prove that, similarly, § (7)) < VTC(Q). To do that it is sufficient

to prove that (£.24]) holds true with f;'{j,(U) replaced by f; . This in turn
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follows from direct estimates. Indeed, observe that

fLHF = rF1 (¢7 vp)V§7 fé,HF = :u*7:2(¢7 ve)v/i;v fé,HF = ’{*7:3(¢7 ve)vgy

for some C*° functions JF; vanishing at the origin. As already seen, one can
give estimates for the coefficients F; by combining the Sobolev embedding
Theorem with the Moser estimate (7). It is found that

(5.25) H(ﬁ,HF’fé,HF)HHslu"i'Hfé,HFHHg < C(R{IVEV O gy +1IVEV . }-
We next use 9, < A®, to obtain
VRVl + IV gy < VENOlgse + Vil gsge < R

Consequently, the left-hand side of ([E2H) is controlled by C(R)R'.
To conclude the proof it remains to show that §’(7) < vVT'C(Q). This is
nothing new in that it follows from the estimates:

3'(T) < ﬁ\\(T1,T3)|’L2(o,T;H§j1)
< \/TC'(H(QS’ \/ﬁVU)HLoo([o,T}xD)) {1 + (¢, \/ﬁVv)Ile(ovT;ngl)}
< VTC(IR] oo o) {1+ 1R | 20,2}
<VTO(Q).

We have proved Proposition Il This completes the analysis of the high
frequency regime.

6. LOW FREQUENCY REGIME

This section is devoted to the proof of a priori estimates in the low fre-
quency region, which is the most delicate part.
We prove the following estimates.

Proposition 6.1. Given an integer s > 1+ d/2, there exists a continuous
nondecreasing function C such that for all a = (e,pu, k) € A, all T € [0,1]
and all U = (p,v,0) € C*([0,T]; H*(D)) satisfying 1),

(6.1) HJEVUHHZ(T) < C(Qo)e(ﬁ—ka)C’(Q)’
where v i= /i FF, Qo = [UO) sy » Q= |Ullygyr (see Definition E).

As alluded to previously, the nonlinear energy estimates cannot be ob-
tained from the L? estimates by an elementary argument using differentia-
tion of the equations with respect to spatial derivatives. For such problems
a general strategy can be used. First we apply to the equations some oper-
ators based on (e0;). Next, one uses the special structure of the equations
to estimate the spatial derivatives.

This basic strategy has many roots, at least for hyperbolic problems (see,
e.g., [1 [18, B9, @0]). For our purposes, the key point is that the hyperbolic
behavior prevails in the low frequency regime. Yet, in sharp contrast with
the Euler equations (@ = k = 0), the form of the equations (Z1I) shows that
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the time derivative and the spatial derivatives do not have the same weight.
In particular, our analysis requires some preparation.

We begin our discussion in §6.0] by establishing some estimates which
allows us to commute J.,(e0;)"™ with the equations. The latter task is
achieved in §6.3 With these preliminaries established, we can proceed to
give an estimate for J.,(£0;)°U. The fast components J.,(divv, Vp) are
estimated next by using an induction argument. To conclude, we give the
estimates for the slow components 6 and curl v.

For the sake of notational clarity, in this section we deliberately omit the
terms Y and €Y in the system (Z1]). Nothing is changed in the statements
of the results, nor in their proofs.

6.1. Non-isotropic estimates. The fact that the time derivative and the
spatial derivatives do not have the same weight is made precise by the fol-
lowing lemma (whose easy proof is left to the reader).

Lemma 6.2. There is a family {Ba,a|a €A aeN, 1< < 2}

uniformly bounded in C™(RY;RVN*N) (where N = (d + 2)?) such that for
all a € A and all smooth solution (p,v,0) of 1)), the function

(6.2) U= (w,atzp,vw) where 1) := (0,ep, ev),

solves

(63) 0¥ = > B (W)U +e(u+r) Y 9;(Ban(¥)opD).
1<ji<d 1<g,k<d

We want to introduce an operator based on (£0;) which has the weight of
a spatial derivative. The previous result suggests introducing the following
family of operators.

Definition 6.3. For alle > 0, v > 0 and £ € N, define the operators
ZEZ,V = Ae_f(gat)zv

where, we recall that AZ! := (I — (ev)?A) 42,

We will need the following technical ingredient.

Lemma 6.4. Given F € C>®(R") satisfying F(0) = 0 and o¢ > d/2, there
exists a function C(-) such that for all e € [0,1], all v € [0,2], all T > 0, all
vector-valued function U € C*°([0,T]; H* (D)) and all N 3 m < oy,

(6.4) |22, FO) | oy < (D2 1120 Ullgone )-

0<l<m

Proof. To prove this claim, observe that (¢0;)™F(U) is a sum of terms of
the form

FU) () ur -+ (€0p) P up,
with p < m and Zlgigp £; = m. In this formula, f is a C**° function and

u1,...,u, denote coefficients of U.
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In order to estimate these terms, we use the following result (whose proof
follows from Proposition 22 by induction): let a = (ag,,...,a,) € NPT! be
such that Y7 a; = |a| < 09, then

p
‘ Heo—lal ™ H HA;uaiViHHUO,% ,
=0

where the implicit constant depends only on d,o¢ and a.
Set f = f~— f(0). We apply the previous result with ag = 0, o; = ¥¢;
(i>1), Vo= f(U) and V; = (€0y)%u; (i = 1). This yields

[AS" (FU)(0) M ur -~ (201) P u)

i=

HH"O*m
S (U IF O e 122wl gog-es - 1225 gl -1

Since Z2, = I, the estimate (B) implies 1£(U) )| goo < C(]| 22 U“HJO).
Which completes the proof. O

Now we are in position to prove that Zalw has the weight of a spatial
derivative. The following result states that, for m € N, Z7, ¥ satisfies the
same estimates as A" F(U) does (where F' is a given function).

Proposition 6.5. Let s > 1+d/2 be an integer. There exists a function C(-)
such that for all a = (e,u,k) € A, all T > 0 and all smooth solution
(p,v,0) € C([0, T); H* (D)) of &), if v € [(1+£)/2,2] then the function
U defined by [E2) satisfies

(6.5) o2 ¥ ees S CUP N o),
0<e<s
(6.6) Do 11289 yse SCU N grom) 19 gz -
0<I<s

Proof. We prove by induction on m € {0,...,s} that

(6.7) SN2ZE, v CUIY] ),
0<e<m
(6.8) SNZE, v e < CUYN ) 1915 -
0<<m

Assume the results [E20)—(68) at order m < s (note that they are obvious
with m = 0).
By definition, Z"H = A Z™ (e8;). It thus follows from (B3) that

ZrmH = ZA 2, (Baj(0)0;V) + (e(pu + K)05A51) 22, (Ba,jk (V)0 0).

Since v > i+ k we have e(u + 1)9; A5 ST (see B3)). Similarly, A} < 1.
U

I
The proof thus reduces to estimating terms having the form Z, (B(V)0; ).
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More precisely, it is sufficient to prove that, for all integers m < s and for
all smooth functions B, we have

(6.9) 122, (B(%)0;9) 1]l go1),
(6.10) 122, (B(¥)0;7) CUll ) 1] g

where C(-) depends only on a finite number of semi-norms of B in C'°.
Firstly, writing B(¥)0;¥ as 0;F(¥) for some smooth function F' such
that F'(0) = 0, and using Lemma 4] with o9 = s — 1, we find that

122 (B V)| oz < (122 F(O)| s

m
<O(XN20 Ul yer).
=0

As a consequence, the estimate (B3] follows from the induction hypothe-
sis (B). Moving to the proof of (EIU), we begin with the Leibniz rule

(0)™(B(0)9;¥) = Y @) (c0,)™ " B(W)(0,)"0; .

0<e<m

sz <
<

HHsfmfl

Let N3 ¢ < m. Since s > 1+ d/2 and m < s — 1, Proposition applies
with og =s—1, 01 =m1 =m — £ and g9 = mo = £. It yields

122, (B(¥)d;v)

(o
m

SN2 B fecrcimen 122 059 || yacie -
£=0

Using Lemma 6.4 to estimate the first term in the summand, we get

|22, B0y < (3125w ) D12 W
/=0 /=0

Using the induction hypotheses (6.7)—(71), we have proved (GI0). O

We next prove a commutator estimate with gain of a factor €.

Lemma 6.6. Given s > 1+d/2, there exists a constant K such that for all
e €0,1], allv € 10,2], all T > 0, all m € N such that 1 < m < s and all
frue C=([0,T]; H* (D)),

m—1
11F, Ten 0™ i < K1 e+ D2 1ZE 00F | oo}
£=0

m—1
X {HZ;?VUHH;’”” + Z HZa{uuHHssz}'
=0

Remark 6.7. This technical ingredient is an analogue of the commuta-
tor estimate (B2) (with ¢ = h) which we used in the analysis of the high
frequency regime.
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Proof. The proof is based on the tools we developed in Section Bl
The commutator [f, Jz, (€0;)™]u is expanded to

(6.11) £, e (€00) ™ u + Je [ £, (0) ™ u.
a) We first claim that
(6.12) [[f: Jo)(e00) ™ ul| fsmmsr S v [l g | 285 | e -

Since s > 1+d/2 and 1 < m < s, Proposition BI0 applies with (h, m, ¢, 0)?
replaced by (ev,1,s,s —m). It yields

[, T ) (€00) ™ u| o S v 1 F || g IAZZS ™ (00)™ | goom -
Since m < s, there holds AZET™ < AZ". Hence, we have the first half
of (E12), namely:

(613) H [fa JEV] (gat)muHHs,m S.; ev ”f”Hs

The technique for obtaining the second half is similar. We first apply Propo-
sition with m = 0, to obtain

(6.14) [ Jo)(€0)™ | ypomsn S N F s

and we next multiply (GI4) by ev.
b) Moving to the second term in (GIT), we claim that

(6.15)  [|Jew [, (€00) ™| fys—ms

ZZ, | oo -

m
ZE,VuHHsfm Y

m—1 m—1
SJ € Z Hth,V atfHHsflff Z stg,uuHHsﬂfz .
£=0 =0
Starting from the Leibniz rule, we get
m—1
010 [rEau=e> (7)) (oo
(=0

Let 0 < ¢ <m—1. Since s > 1+d/2 and 1 < m < s, Proposition B2 applies
with og =s—1, 01 =m1 =fand 0o =mo =m — 1 —£. It yields

HAa_mH ((e@t)eﬁtf) (58t)m_1_zu) [ -

SASE (E00) O f Il gro—ae A7 (0)™ | recrm—1—p) -

By summing over all 0 < £ < m — 1, we obtain from the definition of the
operators Z_, that H*/X;,mJrl f. (sat)m]uHHs,m is estimated by the right-

hand side of (EIH). To complete the proof of ([EIH), use the elementary
estimate

(6.17) 1 evull rozmsr S el o S UAZ" tll o

2Here, m refers to the index used in the statement of Lemma
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6.2. Notations. Let us pause here to fix a few notations and to make some
running conventions.

From now on, we consider a time 0 < T' < 1, a fixed triple of parameter
a = (e, k) €A and a smooth solution U = (p,v,0) € C>([0,T]; H>* (D))
of the system (ZII). The notations ¢, 1) and ¥ are shorthand notations for

(618) 6= (B.ep), o= (B,epev) and W i= (1,00, V).
Hereafter, s always denotes a fixed integer s > 1 + d/2. We set

vi= Vit R, Q= U0y, and Q= Ul

where the norms are defined in Definition [Z4].

As in (BZ2), we set
R = [[(p,0)ll s + 116 g1 -
R = T 5 ||(dive, Vp) | s + VA V0ll g + VE VO] s

With these notations, we have Q ~ || R|| oo,y + [ Bl 20 7)-

To say that a smooth nondecreasing function C': [0,400) — [1,+00) is
generic means that C(-) is independent of T', a and (p,v,0). Given a generic
function C(-), we denote by C the positive constant

(6.19)

(6.20) C = C(Q)eVTHICQ)

The factor € is of no consequence but makes some arguments work more
smoothly. We will often use the simple observation that for all generic
function C(-), we have C(Q) + (VT +)C(R) < C.

To clarify matters, with these conventions, Proposition is formu-
lated in the following way: there exists a generic function C(-) such that
”JauUHH;(T) < C.

6.3. Localization in the low frequency region.
Definition 6.8. Given m € N, set
(6.21) XM= Jo(e0)™.

Notation 6.9. Denote by fi'tx = (f{'vp, fo1p: f3Lr) the commutator of the
equations (7)) and the operator X™:

fiie = [91(6), A™]0p + [1(6)0, &™] - Vp — Z[Bi(@), X™]e,
foir = [92(9), X" 0w + [g2(¢)v, X™] - Vv — p [Ba(ep), X™]w,
fiir = [93(0), X 00 + [g3(d)v, X™] - VO — k [Bs(¢), X™]6.

The aim of this paragraph is to estimate f’n. To begin with, consider the

case when m > 1.
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Lemma 6.10. There exists a generic function C(-) such that for allm € N
such that 1 <m < s,

1Nl o= ([ (s £5) | ramer + (S5 [ yammin < CRIL+ RS,
where R and R’ are as defined in ([E1).

Proof. To emphasize the role of the slow component ¥ (as defined in (E18)),
many bounds are given in terms of:

Y= Wl and T o= |05, .

Directly from LemmaB.I4, [|0¢)]| a1 < C(R) and [0 . < C(R){1+R'}.
Furthermore, directly from the definition of 1 (see (EIH)), we have the
estimate || (6, V) [, < (.0l 51 + |52 < R. Henee,

(6.22) v =91 <C(R) and T = ||V, < C(R){1+R'}.

Note that Proposition applies since the condition v € [(u + k)/2,2] is
fulfilled.

STEP 1: Estimate for f]'}p.
a) We begin by proving

(6.23) 191(6), ™) 04p|| s i < CVT.

Starting from Lemma B8] we find that the left-hand side is bounded by

m—1 m
(6.24) {1310l + D 122, 0010 | rese J{ D2 1220 (200) | g0 -
=0 =0

Since ¥ = (..., (edy)p,...), the estimate (GH) implies that the second fac-
tor in (B24)) is estimated by C(y)I'. Moving to the first factor, note that
0g1(9) = F(¢,0:¢) for some C* function F such that F(0) = 0. As a
consequence, Lemma implies that

Hsflff) .

HS*1 ¢S <Z H v (0,0:0) ‘

Again, since ¥ = (¢,...,0.0,...), the estimate (G implies that the right-
hand side in the previous estimate is bounded by C(v). It remains to esti-
mate ||G1(4)]| s To do so we write

191()lzz= < C(Illz) < CUIW, V) za-1) < C()-
b) We next prove that

(6.26) | [g1(@)v, &™) - V|

H

m—

(6.25) 5:591
é:O

HE M < Ch/){HVpHHsﬂ + F}.
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Lemma implies that the left-hand side is bounded by

Hsflfé}
Hsfé }
v

By definition ¥ = (6,ep,ev). Hence, one can rewrite g1 (¢)v as G(¢) for
some C'*° function G. Consequently, the first term in the above written
product is the exact analogue of the first term in (24]) with g;(¢) replaced
by G(1). We thus obtain that this term is estimated by C(7).

{lzgn(9) \|HS+ZH L Or(egr ()|
(6.27)

{10l + 30122, V)
(=1

Next, using the very definitions of Z 8 L, We write
m
(6.28) D N2, Vbl ys-e = Z 12E5! ALV (0| e -
Since A} < I, this in turn implies
m m—1
> 12 ¥l < 3 1 O
(=1 £=0

which, as in the previous step a), is estimated by C(v)T.
c¢) To complete the estimate of f{beF, we establish

K
(6.29) - [[B1(¢), X™]0]| =i < C(v, R){[|60]| s 2 + T}
Parallel to (1), we decompose the commutator ke~![Bi(¢), X™]0 as
(6.30) = [61(0). A7) A0 + Z[Ex(6, V), ] - VO,

where &1 (¢) := x1(ep)B(0) and E2(é, Vo) := x1(ep) B (0)VE
Replacing 9;p with ke~1Af, the arguments given in a) yield

~ @), 220

Hg;m+1 \ Z H /{AH H’§,[ .

We split the sum in the previous right-hand side as

[KA8] s + Z H L (RAB)|

HE Y
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The first term is bounded by [[£0]| ;s+2. With regards to the second term,
we proceed as in b). Namely, we write

ZKH W _ZHZf ! (erAL) A) 0,0

/=1 =

H!

,,_.

!lZﬁV ]
=0

where we have used exA;!A < Al (which stems from x < /& < v). Note
that U = (..., 040, ...). Therefore, estimate (0] implies that the right-hand
side of the previous inequality is controlled by C'(v)I.

We now have to estimate the HS, ™" norm of the second term in (E30).
Since k¥ < v and k < 1, Lemma implies that this term is bounded by

{Iveal e + Z 2L, 002l s {0 s + 3 [ ZE, V0| o}
(=1

This in turn is bounded by C(v){C(R) + '} since
(6:31)  [lv&(6, Vo)l < C(R), v 22, 0:E2(6, V)| yose < CONT,
(632) V0.1 <. vee m), |vzt, Vo], < ().

HE

The first inequality in (E31]) follows from (&7)). The second inequality fol-
lows from (EI0) since the term 0;£2(¢, V@) can be written as F(V)VV for
some C* function F'. The first inequality in (632 is obvious. In order to
prove the last one, as already seen, we can write

|wzE, V0| .0 S 125 (v AL V)0,
S HZeZ,ul \I'HHsfk(zq) <C().

d) By combining (6Z3) with (GZ8) and (GZ9), we obtain
[T gzomer < Cly, R){|IK0] g2 + T},
so that the desired estimate || f{ypllys—m+1 < C(R){1 + R’} follows from

observation (G.22).

STEP 2: Estimate for f37p.

Note that one can obtain f3}  from f]'; by replacing p by v, 6 by ev and
K by . Therefore, we are in the situation of the previous step and hence we
can conclude that

[[92(¢), X™ 00| e min < C
[g2(@)v, X7] - Vo[ o < CONIIVO ] s + T,
[ [B2(6), Aol s < Cr B vl gsv2 + T,

STEP 3: Estimate for f37p.
45



Note that, for all v € HY,
(6.33) lull g < €™ llull g, -

Hence,

| lgs(e), X™]0u0)|

<~ [[Tos(9). ¥ 040

The first term in the right-hand side is estimated as in a) above (by replacing
Oip by e710:0) and the second term has been estimated in c).

For technical reasons, the estimate for [g3(¢)v, X™]- V6 is somewhat more
complicated. We argue as in the proof of Lemma G0 Set f := g3(¢)v and
u = V6. We begin by splitting the commutator [f, X™] - u as

P+ Q = JEV[fa (Eat)m] U+ [fa JEV] : (gat)mu-
By combining (613]) with (@I4]) multiplied by v, we find that
QN grg=mr S M Fllggs [| 225 wl| fys—m < C(7, R)T,

where we have used (632).
Our next task is to show a similar estimate for P. To do so we decompose
P into two parts:

(6.34) P+ Py := {Je,,[ £, (20)™] -t — Ty (- (20)™ f)} + T (u- (20)™ F).

Let us prove that ||Pi|s-m+1 < C(v). In light of ([E33), all we need to
prove is that

(6.35) [Pl grsoma < €C().
We repeat the proof of Lemma B8, to obtain

s + 5] [Ba(0). 2]

Hsfm+1
v

et + = || [Bs(@), 276

He,mH

pre-i-e (126, 0|

m—1
l
||P1||H§;m+1 S € Z HZE,I/ atf‘ Hs—1-¢°
=1

The sum differs from the one that appears in Lemma [0 in that it is indexed
by £ > 1 instead of £ > 0. This fact allows us to write

m—1
||P1HH;‘;"L+1 S € Z Hsz,u (Eat)fHHsflfl Hzf;l 8tu‘ Hs—1—£
(=1

Let 1 <2 <m—1. We write (¢0;)f as F(¥) for some C* function F' such
that F'(0) = 0. By combining Lemma B4l and the estimate (G1), we obtain

Hzf,u (eat)f|

Moving to the estimate of Zf;l Oyu, we use the very definitions of u = V6
and ¥ = (...,0:0,...), to obtain thanks to ([E3):

125" 0| e < || 2551 ] il

vV

<C().

Hs—1-£ ™=

Hs—*¢ = H Hs—(£-1)—1 < C(’Y)
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We have proved ([63H). So to conclude it remains only to estimate the second
term P, in (E34]). This is accomplished using

Zgj;/_l (5at)fHHsfm+l ’

as the reader can verify, yielding the bound [ P[ fs-m+1 < C(v, R)T'.
This completes the proof of Lemma O

Ty p——T

Note that in the case when m = 0, the previous method does not work as
it stands, since the estimate (EI2) is no longer correct.
Now we give an estimate valid for all 0 < m < s —1.

Lemma 6.11. There exists a generic function C(-) such that for allm € N
such that 0 < m < s —1,

(6:36) |1 fikllpr-m = | (e £500) | o + [ F3p N g < C(R).

The estimate (G36]) is nothing new in that it can be deduced by following
the proof of Lemma One only has to use the following analogue of the
calculus inequality in Lemma 6.0k

m—1
H [fa Jeu(Eat)m]uHHgljm 5 E{”f”Hs + Z Hzf,u atfHH372fl}
=0

m—1
< ANZ2 g + D0 N2l gare -
(=0

In the case when m = 0 the sum ) 5 !is interpreted as 0. The index s —2—¢
in the second term of the first set of parentheses is not a typographical error.
It is of use to us for the estimate of 9.E5(¢, Vo) where & is as in ([G3T]).

6.4. The fast components. We give here the estimates for the fast com-
ponents divv and Vp. We use of the notations introduced in 6.2
Notation 6.12. For all integer m < s, set Uy, := X™U = J.,(¢0;)™U.

As a preliminary step towards the estimate of (div v, Vp), we estimate the
HO(T)-norm of U,,.
Lemma 6.13. For all integers m < s, there exists a generic function C
such that ||Un|lyo ) < C, where C'is as defined in ([G20).

Proof. Having estimated the commutators f{'}, this result can be deduced
by following the end of proof of Proposition Bl (see §53)). We therefore
only indicate the points at which the argument is slightly different.

It readily follows from Notation that (p,v,0) := (Pm, Vm, Om) satisfies
the linearized system (E1]) where

m 1 k
fr=flLe + fiee with fipp:= ——-Vxalep) (BEO)VOm),

fo = f3tp + forp with  fopp = pxe(ep){2D0v,, V¢ (0) + div v, Vn(0) },

fs= fip + fip with 51 p = rxs(ep)VB(0) - Vo,
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recalling that we deliberately omit the terms Y7 and €Y in the system (Z1I).
Set

3(T) = H(flrfLLFvf2TfLLF)HL1(o,T;H;V) + Hf?TLFHLl(o,T;Hg)’
§'(T) = |(flue fouoll oo,y + 1500l 1 0y
Applying Theorem L3, we get
Ui llgry < Q)™ [Ua(0) s, + COFT) + COF (D).
The proof thus reduces to establishing that
[Un(0) e, < CQ0).  §(T) +§(T) < VTC(Q).

To fix matters, we concentrate on the hardest case when m = s. Note
that the conclusion of Lemma is the exact analogue of (5:24]). Hence,
we have §(T) < VTC(Q). As in §53, all that has to be done in order to
prove §(T) < VTC(RQ) is to check VEIVOs| 1+ el Vsl gy, < C(R){1+
R'}. To do so, using the definition of 65 = J.,(£0;)%0, we first rewrite
Vb, as €J.,(c0;)*"1VH0. Next, by combining the estimate HEJEVUHHg <
|Jevullgn S || Jevu]| 2 with the inequality /k < v and the definition of
U= (. .E,V(‘?tH, ...), we obtain

VEIVO:llmy S v )220 V|| . < |22 2,y -
Analogous computations lead to
VAV, S sl < 01255 €000,y < 125502, -

Hence, the desired bound follows from (6.6 and (G22).
The technique for estimating the initial data is similar. Indeed, we have

Vallg, S 1250 9]
as the reader can verify, yielding ||U;(0)]] 40 , S C(R(0)) = C(Q). O
We now come to the induction argument.
Notation 6.14. Define [[ul|ico 1y := [[ull Loo (0,1, o1y + ¥ [l L2007, 1)
Lemma 6.15. Let U := (p, v, 5) be a solution of the system:
P x
91(0)9p + z divo — gBl((ﬁ)@ = f1,

(6.37) 980T+ VP~ uBa(0)i = fo

93(9)0:0 + div s — kB3(¢)0 = f3.
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If the Fourier transform of U is supported in the ball {I¢] < 2/ev}, then
there exists a generic function C(-) such that for all o € [1,s],

151 g1y + 1div Bl
<C H(Eat)m;cg(:r) +C H(Eat)diVﬁH,Cgﬂ(T)

(6.38) _ o -
+ C Pl Lo 0,7522) + ClO(0)]] g +2 +eC(Q) w0l e +1 ()

+2C(Q) | (f1s £2)lleg () + vC I f3ll 20,7110 -

Proof. a) For further reference, we first prove three estimates.

1) Let 0¢p > d/2 and o € [0,00]. There exists a constant K such that for all
0 > 0 and for all (u1,u2) € H?® x Hg (D),

(6.39) luruz|l g < K [lutll goo 1wzl g -

To prove this result, we use a standard Moser’s estimate. Since o9 > d/2,
the product maps continuously H?° x H" to H" for all r € [—09, 0¢]. Hence,
we have

lwrugl g = llurvell o + 0 lurus|| g
S llullgoo (Juzll o + elluallgo) = lluall oo lluzll s -
2) Let 0 € [0,s] and ¢q € [1,400]. Given a C* function F', there exists a
generic function C' such that for all ¢ > 0, and for all uw € L9(0,T; HY),
(6.40) IE(W)ull oo rimrg) S Cllll Lao. gy
where 1) is as defined in (GI).
In light of (E39), to prove this estimate we need only show that
(6.41) 1F @) | 14y < C-
This will be established (independently) in (G3]) below.
2’) Let us infer from (E40) that, for all o € [0, 5],

(6.42) IF@)ullg iy < C llullicg ()
To see this, we write

||F(1/))u||,C5(T) = ||F(¢)u||Loo(o,T;Hofl) +v ||F(7/))U||L2(0,T;Hv)
I F(@)ull oo o117 -1y + 1F (@O0l 207,119

<
< C{HUHLOO(O,T;HU*) + ”U”LQ(O,T;Hg)} <C HUHICg(T) :

3) Let 0 € [0,s], f € H*}(D) and v: D — (0, +0c0) be a function bounded
from below by a positive constant. Furthermore, suppose 7 := v—v € H*(D)
for some constant . We claim that if v € H’(D) satisfies div(yVu) = f,
then there exists a constant K = K (d, s) such that

(6.43) lull goer < BNy~ oo U o+ 130 s Null 2} + llull -
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Commuting the equation div(yVu) = f with A? and using the commutator
estimate (B) to bound div([y, A]Vu), we see that the proof of ([E43]) can
be reduced to the special case ¢ = 0. On the other hand, the case ¢ = 0 is
immediate by the usual integration by parts and duality arguments.

b) Hereafter, RHS denotes the right-hand side of (638]). To prove that
(6.44) [div vf| o () < RHS,
we begin by showing that
(6.45)  [|div o 1y < CLIED)Blicq ¢y + 190l g+ + € 1 f1llice () }-
We rewrite divv as
—91(0)(e00)P + KEL(D)AD + kE2 (¢, V) VO + e f1,
where £; and & are as in (G30). Using (E22), we have
l91(8)(€00)Plics () < € 1(0)Bllcz
1K€ (&) A8 kg 7y < C N8l g2 -

To infer (E40) it remains only to estimate the 7 (T")-norm of k€ (¢, Vo)Ve.
Using the very definition of (¢, V@) and the estimate (E41]), we obtain

1€2(6, VO | oo 0.7:115-1) S C-

Since s — 1 > d/2, the estimate ([B39) applies with og := s — 1. It yields
(6.46) N L o
||82(¢7 Vgb)ve||L°°(O,T;HU*1) < C ||V9||Loo(0’T;Ho—1) < C ||0||LOO(O’T;HO') .

Moreover, one can easily verify that
v [|1E2(6, V)Vl 120 1eprey

< w26, V)l 20, 73115) 1VOlL oo 0,1 100)

< VT ||E(9, Vo) oo 0,12 Ha”LOO(O,T;HU“)

RV axel ([T Ry [

<VTC(Q) H§HL°°(O,T;HU+1) <C Hg”Loo(O,T;HUH) :
From this together with (48], we conclude that

[€2(0, V¢)V5H/cg(T) <C ”§HL<>°(0,T;HU+1) :

This completes the proof of [EZH) since ”5HL°°(O,T;HU+1) < ”5HIC,Z+Q(T)' So
to prove (644) it remains only to show that

(6.47) 150 g () < RHS.

To see this, solve the first equation in ([G37) for dive and substitute the
result in the third equation, to obtain

(6.48) 93(0)08 — K(Bs() — B1(¢))0 = f5 + f3,
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with f4 = g1(¢)(e0y)p — ef1. Since
Bs(¢) — Bi(¢) := (xs(ep) — x1(ep)) div(B(0)V+),

the assumption x1(p) < xs3(g) (which is (A3) in Assumption 2] implies
that the equation (48] is parabolic. Hence, one can use the following
estimate (see (@2) below):

||/1§||;cg+2(:p) < ||\/EV§||LO<>(0,T;H0+1) + \/EH\/EV§HL2(O,T;H"+2)
< CUVRAO) o + v |13+ fill 2 o,i00) }-

From which we easily infer the desired bound (EZ41).
c) Estimate for Vp. Note that, by combining (6.42) with ([E243]), we have
(6.50) ([ VBlligry < Clldiv(g2(6) V) xeo—1(ry + C 15 poo 01:22) -
Starting from Vp = —g2(0)(€0;)0 + euBa()v + £ fa, it is found that
div(ga(¢)~'VD) = —(0;) divy + epuFi(¢)V? dive

+ epFa(p, Vo)V + epFa(p, Vo, V2$) Vi + e div(ga(s) ' f2),

for some C*° functions F;, F» and F3 vanishing at the origin.

The most direct estimates show that the XJ~!(T)-norms of the first and
the last three terms in the right-hand side of (GAIl) are bounded by RHS.
So we only need to concentrate on the second term. Since 0 < ¢ — 1 < s,
the estimate (£42) implies that

e ($)V? div Bl o1y < C [lepV? div Bl cg1 ) -

(6.49)

(6.51)

The following observation is important since this where the spectral local-
ization of U enters. Since v = J,, /30 and since E,uV2J€,,/3 < A, we have

lepV? divlyeg -1y S I1div Dl 7 -

The piece of information already determined in ([EZ4]) implies that this in
turn is < RHS. Hence, the right-hand side of ([@h0) is < RHS. The proof

of (B38) is complete. O

Recall that the purpose of the two previous lemmas is to estimate the fast
components div J.,v and VJg,p.

Lemma 6.16. There exists a generic function C(-) such that
(6.52) | Jevpll Lo 0,715y TV 1 TPl 20 11541y < C,
(6.53) [div Jev vl oo 0,151y + ¥ 1AV Tev 0]l 20 ey < C.

Remark 6.17. Since we have already estimated the high frequency compo-
nents (see Proposition B, the previous lemma implies that

C,

C.

N

(6.54) Pl oo 0,775y + ¥ 1Pl 20,7 1151y

N

||divv||L°°(07T;H571) +v ||divv||L2(0,T;Hs)
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Proof. To avoid repetition, we just give the scheme of the analysis. Set
X = ||pmlljcs—m+1 7y + A1V v || es=m (7 -

Setting U := U, and f := e — G(¢)v - VU, where G(¢) is as defined
in (B23), we are in the situation of the previous lemma and hence the
estimate (E3]) easily implies that X, < CX,,,11 + Y, where

< G{HUmHHO(T + HUm<o>uHs,m}

Gathering the results of the previous lemma one obtalns
<SC{C+CQ)} + (e +VT)ICQ){CQ) +CQ)} < C.
Hence, we end up with X, < C’Xm+1 +C. By an elementary induction, we
therefore obtain Xo < CX, 4+ C. Finally, noting that X, < ||Us 30 () and
using Lemma leads to the desired bound Xy < C. O

6.5. The slow components. Having proved the estimates for the fast com-
ponents, we now prove the estimates for the slow components 6 and curl v.
To prove both estimates we use Assumption This furnishes us with a
C function S = S(¥, p) such that S(0,0) = 0 and

(6.55) dS(¥, p) = g3(9, p) dV — g1(9, p) dp,

(6.56) (9, p) — (S(9, p), p) is a C* change of variables.
Recall that (9, p) € R? is the place holder of (6, ep).
Notation 6.18. Set o := S(6,¢ep).

One reason it is interesting to introduce the coordinate S = S(¥, p) is
that o is well transported by the flow (see also Remarks and B.23)).

Lemma 6.19. Given F' € C*®(R) satisfying F'(0) = 0, there exists a generic
function C(-) such that

(6.57) 10 +v - V)F (o)l 20,m:14) < C(9),
(6.58) 1E (o)l oo (0,1515) < C-
Proof. Firstly, we form an evolution equation for o. Directly from the iden-
tity (G.55]), we have 0,0 = g3(¢)0¢ 20 — £91(¢)O¢ 2p. By combining the first
and the last equations in ([ZJ]) with this identity, we compute
(6.59) o +v-Vo — k(xs(ep) — x1(ep)) div(B(9)VO) =
Therefore,
0o +v-Vo = kG1(6,VO) + kG () A

for some C*° functions G and G, with G1(0) = 0. Hence, the Moser
estimate (B8] implies at once that

10t +v - Vol g < Cllo]l ) {1 + & VOl resr }-
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Since vk < v, we have & ||V jave < VK[|V ysr1, so that
|0i0 +v - Vol g < C(R){1+ R},
where R and R’ are as defined in ([@I9). Since Q ~ || R|| (o 1)+ | 2l| 207

(6.60) 1@+ v V)l 20 7ome) < C(Q).

The chain rule and the rule of product in Sobolev spaces imply that the
left-hand side of (1) is estimated by

(6.61) K@+ F(0) o tor:o) 10 + v - V)0 | 120 7010)

where F'(z) = F'(z) — F'(0) and F’ denotes the differential of F.

The first term in (EET) is bounded by C([|o|| e (g 7.p+)) < C(2) (here
is where we use the hypothesis that S(0,0) = 0). Hence, (G27) follows
from (G60).

Moving to the proof of (B58]), we first recall an usual estimate in Sobolev
spaces for hyperbolic equations (see the estimate (2) below with n = 0).
For all functions u,x € C°([0,7]; H*(D)), with s > 1 +d/2,

T
(6.62) [[ull o 0 7,125) S €™ 1001+ + /0 DX |+ x - V| e dt,

where X := KfOT x|l s dt for some constant K depending only on (s, d).
The Cauchy-Schwarz inequality readily implies that the right-hand side is
estimated by

e TIMloe . £11w(0) | o + VT 10t + X - Vuull oo 1o -
Applying this bound with (u, x) = (F(0),v), we find that the L>°(0,T; H?)
norm of F'(o) is estimated by

eKTRC(0) + VT |0F(0) + 0 VF@) | paorotie -
We complete the proof of (GE8) by using (E21). O
Corollary 6.20. Given F € C®(R?**9) satisfying F(0) = 0, there erists a
generic function C(-) such that
(6.63) IE @) oo 01500y < C-

Proof. The property (E56]) implies that there exists a C* function F** such
that F(9, p,v) = F*(S(¥, ), p,v) for all (¥, p,v) € R x R x RY. Moreover,
the hypothesis S(0,0) = 0 implies F*(0,0,0) = 0.

We decompose F(v) := F(0,ep,ev) = F*(o,ep,ev) as

F*(0,0,0) + {F*(a,ep,ev) - F*(J,0,0)}.

The first term is estimated by way of (Gh8). To bound the second term,
we observe that one can factor out (ep,ev). Consequently, there exists a
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function C(-) depending only on F™* such that

|F* (0, ep, ev) — F*(0,0,0)| s < eC([|(8,p,v) 575) < eC(R) < C.
This completes the proof. O
Remark 6.21. The estimate (B21)) implies [|0:F(¥)| 120 7.5y < C().
Just as in @22), it yields |F()[| o (o 1.5y < C(Q0) + VTC(Q) < C. Yet,
this is weaker than (663)) [indeed H§ = H*1].

Now we really use the special feature of the low frequency analysis. The
following lemma states that Ao satisfies parabolic-type estimates.

Lemma 6.22. There exists a generic function C(-) such that
“Agylo-“Loo(O,T;H3+l) + \/E HA;VIO-”L2(07T;H3+2) < C.

Proof. In light of the estimate |[o|| oo (g 1,5y < C' (see ([E35F)), it suffices to
prove that ¢ := vA_! Vo satisfies
(664) ||O.-||Loo(07T;Hs) + \/E ||d||L2(O,T;HS+1) < C

Let us form a parabolic evolution equation for ¢ := vA_!Vo. Writing the
identity (E5H) in the form d¥ = c1 (9, p)dS + ca(d, p) dp with ¢; := 1/g3"
and c2 1= ¢1/9g3, yields

(6.65) VO = c1(¢)Vo + eca(¢)Vp.
Inserting this expression for V@ into the equation (E53), yields
(6.66) 0o +v - Vo — kk(¢)Aoc = kGs + KkGy,

where k := (x3 — x1)Bc1 is a smooth positive function® and
Gs + Gy := G3(0, Vo) + eGy(d, Vo) Ap,

for some C'*° functions G3 and G4, with G3(0) = 0.
We compute

(6.67) 00 +v-Vo — kk(p)Ac =G,
where the source term is given by
G = —vAL} (Vv Vo) + v, AL ] - VVa
+ kAZN(VE(9)A0) 4 rkrlk(o), AS AV
+vkAL VG 4+ veAL VGy.

Let us give the scheme of the analysis. In light of the standard esti-
mate (2) (given in the appendix below), to prove (G64]) we need only show
that the source term G can be split as G + \/kGy with

16121 0s) S C and [Gell 2o gy < C
( ) ( )

3By the hypotheses, x1 < x3, 0 < ¢1 1= 1/gs and 0 < 3 (see Assumption 7).
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To see this, there are only two nontrivial points. Firstly, note that
||V\/EAE_V1VG4||L2(0,T;HS*1)
= HV\/EA;}V{EGAL(Qﬁa V(b)Ap}HLQ(O,T;HS*U
< IVRGH(6, V) Ap 20 71151 CAZSES)
S (14 [|Ga(9, Vo)l Lo o,1:15-1)) H\/EPHB(O,T;HSH) (straightforward)
scc. (by (683), (654)

Secondly, set I, := v/(\/it + v/k) < 1 and decompose vVv - Vo into two
parts:

vVv-Vo =1, ,./uVv-Vo+1,,./cVv-Vo.

Using the usual Moser estimates as well as the weighted versions (B50)-(B.7),
it is easily found that
VEIVY- Vol SIVolly: IVolly: S (B+R)C(R),
n VR
Vo Vol o S [0l gs o]l S RO(R),

so that
VIV Vol oremsy + V0 Vol 2o sy < VTC(Q) < C.
With these estimates established, the proof easily follows. O

Remark 6.23. One interesting feature of the equation (G686 for o is that
it is coupled to the momentum equation only through the convective term.
Indeed, for the purpose of proving estimates independent of k, we cannot
see the term divwv [in the equation for ] as a source term.

We denote by curlv the matrix with coefficients (curlv);; := 0jv; — 0;v;.
The basic idea of the forthcoming computations is to apply the curl operator
to the equation for v so as to cancel the large term e~ Vp. Yet, this requires
some preparation because the factor g2(0, ep) multiplying the time derivative
of v admits large oscillations in O(1). To get around this, we follow the
analysis of [30]. Namely, as in the proof of Corollary G20, we decompose
g2(0,ep) into two parts: the first which is well transported by the flow, the
second which admits small oscillations of typical size O(e).

In particular, we do not estimate curlv directly. Instead we estimate
curl(ypv) where the coefficient 7 is defined as follows.

Notation 6.24. By (GXG), one can write ga(9, p) = I'(S(¥, p), p) for some
C® positive function I'. Set T'o(d, p) := I'(S(9, p),0) and

(6.68) Y0 := To(, ep).

Lemma 6.25. There exists a generic function C(-) such that

(6.69) ||curl(70v)||LOO(O7T;H571) + Vi ||Cur1(70v)||L2(07T;HS) <C.
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Proof. We begin by computing the equation satisfied by w := curl(yov). It
follows from elementary calculus that there exists a C'*° function I'; such
that for all (p, ) € R?

(6.70) Lo(d, 9)/92(9, p) = 1 + pl'1(J, p).

We first insert the expression for go(6,ep) given by (EX0) into the equation
for v, thereby obtaining

Y0(0v +v - Vo) + e Vp — uBov = FT,

with FT := —py;Vp + eupy1 Bov where 1 := I'1(6,ep). Consequently, the
equation for v is equivalent to

(& +v-V)(y0v) + £ 1Vp — uByv = FT 4 (940 + v - Vo).
Using the elementary identity curl V = 0, we find
(8¢ +v - V) curl(yov) — pBy curlv = Fit,
where
FIT .= curl FT — [curl, v] - V(yov) + p[ curl, Bo|v + curl(v(dy0 + v - Vo).

Next, write By curl = 7y YoBy curl = Yo 1B, curl(vo-) + 7o 1 [’yo, By curl] to
obtain that w = curl(ygv) satisfies

(6.71) Bw + v Vw — g ' Baw = F,

with F:= F + uyg ™t [0, Bz curl]v.
To sum up, F = El<i<6 F; with

Fy = —curl(py1 Vp), Fy := plcurl, BoJv,
Fy := epcurl(py; Bov), Fy := —[curl, v] - V(yov),
Fy = curl(v(00 +v- V),  Fs = vy [, Bz curlv.

Estimate for F. As in the proof of Lemma B22 to prove (G689 it suffices
to show that one can decompose F' as f1 + /fi.f2 with

(6.72) ”fl”Ll(O,T;HS*U <C and Hf2”L2(0,T;H5*2) <C.
To do so we decompose F' as f1 + /pfo with
(6.73) [ fill 207 pa-1) S C () and  [[f2ll poo 0 1y pre-2) < C().

[Note that (B73) implies 72) since vVT'C(Q) < C.]

Set fo := e\/upy1 curl(Bav) — \/ﬁfyo_lv A BosVyg and f1 :== F — fo. It
follows from the very definition of §2 that fy satisfies the second estimate
in (B73)). With regards to fi, the key point is the following: Starting from

1Bl o1 S Mlvll s 19570 + v - V0l s

we obtain [[Fs|[ 20 71y S N0l o 0,19 10070 + 0 - Vol 20,19y As @
consequence, using the very definition of vy (see (EEH)), the estimate (G01)
implies that || F3| 20 7, pgs-1y < C(Q).
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Let us estimate the other terms without repeated uses of the rules of
product. To do so set P := (p,Vp), V := (v,Vv) and O := (0, V6). Direct
computations show that one can write F; + Fy + Fy + F5 + Fgs — fo as

(6.74) Y (Vi0:)*Gau(P.V,0)  (ae N, [of <1),

for some C*° functions G, q such that the family {Goq|a € A, |of < 1} is
bounded in C*°, with in addition Gy 4(0) = 0. The Moser estimate (B3
implies
1(V/102)" G a(P,V, O)llroes < 1 Gaal PV, O)llpys
< OUE,V,O)ll o) [PV O s -
m
Hence, directly from the definition of {2, we arise at the desired bound

|(Vi02) G (P,V, ©) oo a1 < CL),
which completes the proof of the claim (E73). O

6.6. The end of the proof of Proposition In order to prove Propo-
sition B0l it remains to estimate J.,0 and J., v.

Lemma 6.26. Given F € C°°(R?) such that F(0) = 0, there exists a generic
function C(-) such that

“JauF(¢)“Lw(o,T;Hg+1) +VE |’JauVF(¢)HL2(o,T;H3+1) < C.
Remark 6.27. With F'(¢) = 6 this is the expected bound for J., 6.
Proof. In light of (E63), it suffices to prove that
(675) v e VE@)ll e o0,015) + VA 1w V2F(O) 20,10y < C-

By (E58]) we have
(6.76) VF(¢) = F1(¢)Vo + eFa(¢)Vp,

for some C functions F; and F5. Applying Proposition with og = s,
01 =09 =my1 = 0 and mg = 1 leads to

VAL F(@)l s S (L4 1)) IVVAL 0] gy
+ (L + 1E2(0)ll =) IVer AL Dl e
where F := F — F(0). Using v ||| s < (RIF?PE evVAZ < T and ([E63), we
obtain
||VVA;/1F(¢)HLO<>(0,T;HS) < 6’{||Aa_ulff||Loo(o,T;H;‘+1) + ||P‘|Loo(o,T;Hs)}-

As a consequence, from LemmaB.22 and (6541), we get the first half of (673,
namely: |’VJ61/VF(¢)|’L°°(O,T;HS) <C.
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The technique for obtaining the second half is similar. We differentiate
(@.70) to obtain: 9;0;F(¢) := Fr + Frr with

Fr1 = F1(9)0;0;0 + eF>(4)0;0;p,
Fir = 0;F1($)0j0 + €0; F2(¢)0;p.
Exactly as above, we have
vk ”J6V~7:IHL2(O,T;HS+2)
S ClVm AL ol o messy + VPl 2o ropsen) } < CC.

In order to estimate Fir, note that Fj; := G(¢, V) for some C* function
G such that G(0) = 0. Hence,

VK I Frell 20,71y S VT ||G(9, Vo) pooor,usy  (straightforward)
N \/TC(”(b”LOO(O,T;H,i“)) (by (B.2))
= \/TC(Q) <C (by definition).
This completes the proof. O
The next estimate finishes the proof of Proposition G11

Lemma 6.28. There exists a generic function C(-) such that
HJEV’U”LOO(QT;ngl) + Vi HJEVVUHB(QT;HES#) <C.

Proof. We need only explain how to combine all the previous Lemma.
a) To shorten notations, given a function f such that f — f € H? for some
constant f, we denote by || f|| 7 the norm || f — iHHG. The semi-norm ||-|| 7,

is defined in the same way.
We claim that for all smooth positive functions -, there exists a constant

K such that for all (e,r) and for all vector fields u € H*(D), we have
(6.77) vl e < KMPFH [ div Jeyu]| oo + [leurl(yu)]| o
' + [ Jevull 2 + € lull s 3

where M =14 ||y o + 17 go+1-
To prove this result, we start from the following estimate: for all o > 0,

(6.78) [ull groer S lldivull o + lleurlul| go + [|ull 2 -
As curlu = vy~ !curl(yu) — y~'Vy A u, by the usual rule of product in
Sobolev spaces, we infer that for all o € [0,s — 1],

leurlul| o S (14 v~ g ) leurl(yu) | o + 171l o el e }

< M ||eurl(yu)| o + M |[ull - -
Thus, the estimate ([EZ8) turns into

lull rosr © M2{[[div ull o + lleurl(y) || o + el o }-
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By induction on N 3 ¢ < s — 1, this yields
(6.79) lull g S M2 { || div ul| o + [lewrl(yu)|| ga—s + Jull 2 }-
Furthermore, by BI0) applied with (m,09,0) = (1,5 + 1, s), we have
Jeurl(1 )l gre-s < 1 ow ctrl(ya) | gocs + 1 ool
S llewrl(vu) ([ o + ev [yl grasn [Jull g -

From the estimate v ||y gorn < [[7]lgs+r < M and (EZJ) applied with u
replaced by J,u, the previous fact implies ([GE271).

b) Let v := o (as defined in (EB8)) and let M := 1+ |y~ !|| 5. + 71l s+
We list our bounds:

by Lemma 28] : ”M”Loo(o,T) <C,

by (653) - [div Jau””Loo(o,T;HH) <C,
by Lemma G20 : [eurl(0v) || oo (0,1 prs-1y < C,
by Lemma ETI3(with m = 0) : [Jevvll oo 0,1 02) < C,
directly from the definitions : lev| oo 0,1 mre) < € < C.

Hence, we deduce from ([B77) that [[Jo vl feo(o ey < C. This in turn
implies HJQ,UHLOO(O TiHzr S C, indeed recall that [Jevvllgerr S 1 ev]l o

¢) By [€1X), (E53) and Lemma [ET3 to prove \/,UHJH,VUHLQ(O Tz S C
we need only check that /it [lcurl Jeyvl| 20 sy < C. For this purpose,
write

leurl eyl o S (1 + 70l ) {lleurl(Yodewv) s + 0l gesr 0]l s}
and
[curl(voJep )| s S llcurl(vov)[] s + V0l grota 101l s

where we used the commutator estimate (BI0) with (m,cg,0) = (0,541, s).
These two facts and the estimate /% [|Y0| o (o 7, r=+1) < [0l o o 7 rs+1) <

C' (see Lemma [6.20]) imply that

Vi [|eurl Jal/UHL2(0,T;HS) < 6{\/,‘7chrl(’YO’U)HL2(0,T;HS) + H’U”L2(0,T;Hs)}-

Hence, the expected bound directly follows from Lemma and the
estimate [[v]| 2o 7y < VT 0]l oo o,715) < C- U

7. UNIFORM STABILITY

In this section we complete the proof of Theorem 1
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7.1. Local existence result. Granted the uniform a priori bounds proved
in the previous sections, the end of the proof of Theorem B essentially
reduces to establishing a local existence result for fixed a € A.

For fixed a € A, the fact that the Cauchy problem for ([T]) is well-posed
is immediate provided that one chooses to work with the unknown (p,v,7).
With this choice of dependent variables the system is a coupled hyper-
bolic/parabolic system in symmetric form, so that the general theory ap-
plies. We shall show that this remains valid for the system (ZTI).

Introduce first a definition clarifying the structure of the systems we pro-
duce. Consider a system of nonlinear equations

(7.1) Aow)du+ > Ag(w)du = F(u, Vu),

aeNd 1<|a|<2

where each Ag (0 < |A] < 2) is a n x n matrix smooth in its arguments
and furthermore symmetric: Ag = Ag. We suppose F' is smooth in its
arguments, with values in R".

Definition 7.1. The system is said to be of coupled hyperbolic/parabolic
type provided that there exists (ny,n2) € N2, and a splitting of the unknowns
u = (u',u?) € R™ x R™ so that F(u, Vu) = (0, F?(u, Vu))* and

Ao(u) = <A5;(“) A%S(u)>, () = <8 Aag(m) for all o] =2,

where in addition

V(u,€) e R x ST Afl(w) >0, AP(w) >0, — > AZ(u)¢” > 0.
|a|=2

(here M* denote the sub-blocks of the matriz M which correspond to the
splitting R" > u = (u',u?) € R™ x R™).

The general theory [28, 41| for hyperbolic or parabolic problems applies
for coupled hyperbolic/parabolic ones. One can prove the following results.

Proposition 7.2. Let s > 2+ d/2. Assume that ([J) is of coupled hy-
perbolic/parabolic type. Then for all initial data uy in H*(D) there exists
a positive T = T(||ug|| <) such that the Cauchy problem for (1) has
a unique classical solution ®(ug) € CO([0,T]; H*(D)) such that ®%(ug) €
L2(0,T; H**1(D)) where ®2(ug) are the last no components of ®(ug) where
ngy is as in Definition [7.1]

Proposition 7.3. With notations as in Proposition[7.3, the interval [0,T*)
with T* < 400, is a mazimal interval of H® existence if and only if
lim sup @ (o) ()| 1,00 () = +00-
Corollary 7.4. Let u be a classical solution of ([[)). If u(0) € H*(D) then
u € C>°([0,T]; H*(D)).
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Fix a = (e, u, k) € A. We next show that an appropriate change of vari-
ables transforms System (Z1]) into a system of coupled hyperbolic/parabolic
type. Let o denote the function given by Assumption 22 Since the mapping
R? 5 (0, p) — (0, 009, p)) € R? is a C* diffeomorphism, it is equivalent to
work with (p,v,0) or with (p,v,0) where p := o(0,ep).

Firstly, we form an evolution equation for p := o(6,ep). By combining the
first and the last equations in ([1]) with the second identity in ZZ) written
in the form y3do = x391 dp — x193 d9, we get

(7.2) X3(0p+v-Vp)+ (x3 — x1)dive = 0.
The second identity in ([Z2) written in the form

1
dp = 71 dV + 72 do := 2 4y 4 —dp,
X301 91

yields eVp = v VO + v Vp. Summing up, we have

X3(0p+v-Vp)+ (x3 —x1)dive =0,
(7.3) G2(0v + v - V) 4+ e 29, VO + e 24, Vp — uBov = 0,

93(00 + v - V) + divev — kB3 = 0,
where all the coefficients are positive by Assumption ZT1 We also mention
that all the coefficients are evaluated at (0,ep) = (6,P(0,p)) for some C*
function P. We next symmetrize the system ([Z3)). To do so, we multiply

the first equation by (x3 — x1) '71, the second by €2 and the third one by
2, to obtain

61(p +v-Vp) + 71 dive =0,
(7.4) do (0w +v-Vu)+mVp+ 1Vl — e21uByv = 0,
93(00 + v - VO) + yo dive — kya B3 = 0,

with 81 := (x3 — Xx1) '71X3, 62 := €2go and 3 := 7293 (compare with the
system (ELTH)). By Assumption BTl the coefficients d;’s are positive, so that:

Lemma 7.5. For all (p, k) € [0,1])2, the symmetric system ([L3A) is of coupled
hyperbolic/parabolic type.

Therefore, we obtain that the Cauchy problem for ([Z4) is well-posed for
all fixed a € A, so is the Cauchy problem for (21l since ([Z4) has been
deduced from (1) by using a C*° diffeomorphism.

7.2. The end of the proof of Theorem 27 Let s > 1+d/2 and M, > 0.
The previous analysis implies that, for all a € A, there exists T, = T,(My)
such that for all initial data Uy in the ball B( 0,00 M), the Cauchy problem
for (1) has a unique classical solution U, in H:(7,). We denote by T
the maximal time of existence of such a classical solution. For all ¢t < T,

set Qq(t) = [|Uallpss()- Our task is to show that there exists T > 0 and
M < +o0 such that
(7.5) Va € A, Tr>T and Qu(T) < M.
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Up to replacing the initial data Uy by J5Uy, letting é goes to zero and using
a continuity argument for solutions of coupled hyperbolic/parabolic systems,
we can assume that Uy € H*°(D). In light of Corollary [[4] it means that we
can assume U, € C*°([0,T}); H*(D)). Hence, we can apply Propositions 51
and We thus know that there exists a smooth nondecreasing function
C(-) such that for all a € A and all ¢ < min{T}¥, 1},

(7.6) Qu(t) < C(Q,(0))eViHIC(Qa(®)
Choose My > C'(My) and next T3 < 1 and &1 < 1 such that
(7.7) C(Mp)eWTite)COM)  ppy

Let t < min{7T},T1} and a = (e, 4, k) € A besuch that e < €;. By combining
the inequalities ([ZH) and ([Z7) with the hypothesis ,(0) < M)y, we infer that
Q4 (t) # M. Besides, we can assume without restriction that My < Mj, so
that Q,(0) < M;j. Since the function ), is continuous, we infer Q,(t) < M;.
Consequently, the continuation principle (which is Proposition [[3]) shows
that T(; > T7.

On the other hand the (omitted) proof of Proposition implies that
there exists 75 > 0 and My < 400 such that for all a = (¢, 4, k) € A with
e > ¢e1, we have T > T and Q,(T2) < Mo.

We have proved (L) with 7" := min{7}/2,T»} and M := max{M;, Ms},
which completes the proof of Theorem Z71

8. DECAY OF THE LOCAL ENERGY

We will consider systems which include (1) as a special case. The mo-
tivation is to consider a structure general enough to include, say, the com-
bustion equations. To do so we allow the limit constraint on the divergence
of the velocity field to read dive = F(D™)) where 1 is the slow variable
(namely 0y1p = O(1)), m is a given integer and

D™y = {88y |a e NY, |a| < m}.

More precisely, we consider systems of the form:

1 : 1 m m m m
gl(w)(?tp—i-gdlvv:gFl(D ) + Fo (D™, D"'p, D™v),

1
B e+ =Vp = Fy(D™, D", D™0),

8t¢ = F4(Dm1/}7 Dmp7 Dmv)a

where (p,v,) is defined on [0,T] x R? with values in R x RY x R, n > 0
and m > 0 are given integers.

Assumption 8.1. The functions g; (¢ = 1,2) and F; (j = 1,2,3,4) are
smooth in their arguments, satisfying

91(y),92(y) >0, Fi(Y),FR(Y,Z)eR, F(Y,Z)eR? F(Y,Z)eR",
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where y, Y and Z are the place holders of ), D™ and (D™p, D™v). More-
over F;(0) =0 for j =1,2,3,4.

Assuming that the slow variable decays sufficiently rapidly at spatial in-
finity we prove that the penalized terms converge to 0.

Proposition 8.2. Let T >0, m > 1 and s > 3m + d/2. Assume that the

functions (p°,v¢,¢°) satisfy &) and

82) (0%, v%, ¥ ) lics () == s 1, ) (Ol s + 14" (@) ]| grssem—1 < +o00.
telo,

Assume further that 1° converges strongly in C°(]0, T]; Hl‘zc(Rd)), for some
o >1+d/2, to a limit v satisfying, for all (t,x) € [0,T] x R?,

€
(8.3) [(t.2)| < K 27177, [Vt 2)| < K [ 777,

for some positive constants K and ~y.
Then, p¢ — 0 strongly in L*(0,T; HfO/C(Rd)) for all s < s, and divo® —
Fi(D™y) — 0 strongly in L*(0,T; Hp (RY)) for all s' < s — 1.

Proof. Since (p®,v®,°) is uniformly bounded in K*(T) (see (82)), using an
interpolation argument, it is sufficient to prove that p® and div v®— Fy (D)%)
converges strongly to 0 in L?(0,T; L2 (R?)). To prove this result we use the
following Theorem proved in [30] (although not explicitly stated in this way).
To clarify matters, we mention that: (1) all the functions considered in the
following statement are real-valued; (2) all the convergences considered in

this proof are strong.

Theorem 8.3 (from Métivier & Schochet [30]). Let T > 0 and let u® be a
bounded sequence in CO([0, T]; H?(R?)) such that
£20,(a0puf) — div(b°Vus) = ¢,

where the source term ¢& converges to 0 in L2(0,T; L>(R%)). Assume further
that the coefficients (a®,b%) are uniformly bounded in C°([0,T]; H (R?)),
for some o > 1+d/2, and converges in C°([0,T]; HY, (R?)) to a limit (a,b)
satisfying the decay estimates

la(t,z) —al <K |z|7'77,  |Va(t, )|

b(t, ) = b <K |a|7' 77, [Vb(t, )|
for some given positive constants a, b, K and ~.

Then, the sequence u® converges to 0 in L?(0,T; L2 (R%)).

loc

K |27,

<
<K 2777,

We can directly apply Theorem to prove the first half of Proposi-
tion B2, that is, the convergence of p° to 0 in L?(0, T Lfoc(Rd)). Indeed,
applying £20; to the first equation in (&), we compute

(8.4) £201(a®0yp°) — div(b°Vp©) = ¢ = f?,
with a® := g1(¢°), b° := 1/g2(¢°) and
(8.5) fi= 0 R (Y?) + 0 Fo(YE, Z°) — div (b F3 (Y, Z9)),
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where Y€ := D™® and Z° := (D"p®, D™v").
The equations (B]) imply that one can rewrite f€ as
fs — f(D2mp€ D2mvs D2mwe)
where F is a C* function such that F(0) = 0. Using the usual nonlinear
estimate in Sobolev spaces (B.8)), the hypothesis (82) implies that f¢ is uni-
formly bounded in C°([0, T]; H*~2™(R9)). Consequently, ¢ = ¢ f¢ converges
to 0 in L2(0,T; L?(R%)) and Theorem B3 applies.

To prove the second half of Proposition B2, we begin by proving that
pF = (0;)p° converges to 0 in L%(0,T; L2 (R%)). To do so we apply (£0;)
on equation (§4l), to obtain

£20,(a°0,p°) — div(b°Vp©) = & =& f°,
with _
fE =€l f® — by (615(16(6813)])8) + div(@thVpa),
where f€ is given by (BX). Again one can verify that fe is a bounded
sequence in C°([0,T]; L?(R%)), which proves the desired result.
To complete the proof, observe that

dive® — F1(Y*®) = —g1(¢°)(e0,)p° + e Fa(Z°).
Hence, the fact that dive® — F1(Y?) converges to 0 in L2(0,T; L2 (R9))

loc

follows from the previous step and the fact that g1(¢°) — g1(0) and F5(Z%)
are uniformly bounded in C°([0, T]; H*(R?)). O

8.1. Proof of Theorem To simplify the presentation we concentrate
on the hardest case when k is a fixed positive constant.
We first prove the convergences for some sub-sequence of (p°, v, 6%).
The equation for 6 implies that 9,0 is bounded in C°([0,T]; H*~(R%)).
After extracting a sub-sequence, we can assume that, for all s’ < s,

(8.6) 0= — 6 in CO[0,T); HEFH(RY)),
where the limit 8 belongs to C°([0,T]; Hi 1 (R%) N L°(0, T; H*+'(RY)).

Since (p°, v°) is uniformly bounded in C°([0, T]; H*(R%)), after extracting
further sub-sequence, we can also assume that

(8.7) (p°,v%) = (p,v) weakly x in L>(0,T; H*(R?)).
Note that the system (B includes system () as a special case where
Y& = (6%,epf) and m = 2.
It follows from the very definition of ¢° and the norms ||-|| ;. that
4
1@ v ) s + 195 [ sem— <A@ 0 s + e IP N gpora + 10 o
<@ o) g+ +110°] o
S I@ v gz + 0% gz

where the implicit constant depends only on the fixed positive value of v :=
VIt K. It follows that |’(p€7?)€=1/1€)H;cs(T) 5 ”(p€71)€70€)|’7—[f )(T)' As a
£, 4, K
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consequence the first hypothesis of Proposition is satisfied. Therefore,
in order to apply Proposition to the equations (ZJ]) so as to obtain
Theorem [Z9, it only remains to show that ¢ = (0,0) satisfies the crucial
assumption (&3).

Multiplying the first equation in II) by ¢ and passing to the weak limit
(in the sense of distributions) shows that divv® —x1(ep®) div(5(6°)VE*) con-
verges to 0 in that sense. Therefore, the limit 6 satisfies

(8.8) 93(6,0)(9:0 + v - V) — £(x3(0) — x1(0)) div(B(0) V) = 0.

The assumption x3 > x1 [see (A3) in Assumption ] implies that (BX)
is parabolic. Hence, the desired spatial decay follows from estimates in
weighted Sobolev spaces. Indeed, introduce 5 := (x)°0 for some given
6 > 2. Then

0165 — div(k(0)Vs) = > Va(t,2)0305 (@ € N, |a] < 1),
for some smooth positive function £ and some coefficients V,, such that
Vallgs < C([(v,0)]| 7). Commuting A® with the equation and applying
the usual L? estimate, we obtain
(8.9) 1051l oo (0,775 < C N06(0) | 7 »
for some constant C' depending only on [[(v,0)| (o7 ps) (see €2 with

1 = 1). The convergence (BH) implies that #(0) is the limit 6y of the initial
data 6°(0). Using the hypothesis (x)°0y € H*(R%), it follows from (E3) that

1051|100 (0,7 115y < 00

Since s > 14 d/2, the Sobolev Theorem implies that H*(R?) < W1 (R%).
Hence, assumption (B3)) is satisfied.

A moment’s thought shows that the convergences hold for the full se-
quence. The proof of Theorem is complete.

9. SOME ESTIMATES FOR ELLIPTIC, HYPERBOLIC OR PARABOLIC SYSTEMS

First, we briefly recall some standard estimates for hyperbolic or parabolic
systems which we used throughout the paper. We state estimates for the
solutions u = u(t,z) € R™ of systems having the form:

(9.1) Out > Adfu—n Y AdSu= fi+ /ifa
la]=1 laf=2
where each A, = A, (t,x) is a n X n matrix valued-function smooth in its
arguments and furthermore symmetric: A, = A!; also, the source terms
fi = fi(t,x) are smooth functions with values in R™. In particular, when
n =0, system (@) is symmetric hyperbolic. We assume that for n > 0 the
system is parabolic: there exists a positive ¢ such that for all triple (¢, z, &)
with & # 0,
RS Aalt,2)e® > clelL.

|ar|=2
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Lemma 9.1. Let 0 < 0 < s € (1 +d/2,+0). There exists a function C(-)
such that for all T € [0,1], all u € C*([0,T); H®(D)) satisfying @) and
alln € [0,1],

[ull oo 0,710y + V1 Ul 20,1 o1
< KeCRIT (HU(O)HHo + il ooy + Hf2HL2(0,T;HU*1)) ’
where K = K(s,d) and R =37, [VAal poo (0,7, 15-1)-

(9.2)

Proof. By commuting the equation (@) with A, using the commutator
estimate (BH) and the Gronwall’s lemma, the proof of (IZ) can be reduced
to the special case 0 = 0. The latter case relies upon the usual integrations
by parts and duality arguments. See [A1] for the details. O

We next prove an estimate used in the proof of Proposition

Lemma 9.2. There exists two constants K; = K;(d) such that for all Lip-
schitz functions ¢ = ((x) and n = n(x) such that { >0 and n+ ¢ > 0, and
for all vector field v € H' (D),

Ky M?

9.3)  —(CAutnVdivu, u)g 1y = Kim||Vu|2s — ull7,

where m = infzep{((x), ((z) +n(z)} and M = |[V{]| o + V7| oo -
The proof is credited to R. Danchin.

Proof. Decompose u as u + V¢ := Qu + (I — Q)u where Q is the Leray
projector onto divergence free vector field, so that

CAu+nVdivu = (Au+ (¢ +n)VAQ.
It results from divu = 0 that
—(CAu+nVdivu, u)g-1,q = ((Vu, Vu) + (((+n)A¢, Ad) + R,

where R is such that |R| < K3M ||Vul| 2 [|u] -

To infer the desired bound, we use two usual inequalities: (1) for all A > 1,
we have |R| < (m/\) ||Vull7s + (AK3M?/m) |Jul/32; (2) the simplest of all
Calderén—Zygmund estimates: |[V2¢|;2 < Ky ||Ad| 2. O
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