
HAL Id: hal-00153120
https://hal.science/hal-00153120v1

Submitted on 8 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Efficiency Protection Solution for Off-Chip
Memory in Embedded Systems

Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet, Russell Tessier, Wayne
Burleson

To cite this version:
Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet, Russell Tessier, Wayne Burleson. High Effi-
ciency Protection Solution for Off-Chip Memory in Embedded Systems. international conference on
engineering of reconfigurable systems & algorithms, Jun 2007, Las Vegas, United States. pp.117.
�hal-00153120�

https://hal.science/hal-00153120v1
https://hal.archives-ouvertes.fr


High-efficiency protection solution for off-chip memory in
embedded systems

Romain Vaslin, Guy Gogniat
Jean-Philippe Diguet

University of Bretagne Sud
LESTER CNRS FRE 3427

Rue de Saint Maud
56321 LORIENT Cedex France

email: vaslin@univ-ubs.fr

Russell Tessier, Wayne Burleson

University of Massachusetts
Dept of Electrical and Computer Engineering

309G Knowles Engineering Building
AMHERST, Mass. 01003

email: tessier@ecs.umass.edu

Abstract This paper proposes a complete hardware solu-
tion for embedded systems that fully protects off-chip mem-
ory. Our security core is based on one-time pad (OTP) en-
cryption and a CRC32 integrity check module. These mod-
ules safeguard external memories for embedded processors
against a series of well-known attacks, including replay at-
tacks, spoofing attacks and relocation attacks. The imple-
mentation limits memory space overhead to about 18.75%
and reduces memory latency from 14 cycles for a alternate
approach to 3 clock cycles. A FPGA-based implementation
of the security core has been completed to gauge the security
overhead and to compare our approach with existing solu-
tions.

Keywords: embedded systems, security, cryptography

1 Introduction

With the development of new wireless communication
standards like WIFI and Bluetooth, inter-entity com-
munication (cell phone, PDA) is becoming unavoidable.
Since sensitive data are often exchanged (e.g. a credit
card number), it is necessary to protect these trans-
fers. Security is quickly becoming a main bottleneck
for communicating entities especially for embedded sys-
tems where performance is limited. More and more sys-
tems are facing hardware and software attacks [1]. Sev-
eral solutions have been proposed that protect system
architectures (secure architecture) and the data which
is transferred (cryptography). Architecture protection
mainly corresponds to the protection of data and the
program stored in the system memory. Communication
protection is related to the protection of data exchanged
over an insecure communication channel.
As a consequence, various solutions have emerged that
improve system protection. It is essential that these
solutions support hardware architectures for embedded
systems that meet tight constraints on memory size,
performance and power consumption. In the following
sections we propose a solution to fully protect an exter-
nal memory (confidentiality and integrity) of embedded
systems.
The paper is organized as follows. Section 2 describes
the threat model and state of the art existing solutions.

Section 3 details the one-time pad (OTP) protection
and necessary extensions for integrity checking. In sec-
tion 4, a typical implementation of our solution which
uses an Altera NIOS II embedded processor [2] is de-
scribed. Finally, section 5 offers perspectives on this
work.

2 State of the art

2.1 Threat model

As described in [3], the external memory of an embed-
ded system can face a variety of attacks, including those
involving probing of the bus between a processor core
and the memory. Often, an adversary can easily ex-
amine the data and address values placed on a bus. If
the bus data is sensitive it must be ciphered with an
encryption algorithm such as 3DES [4] or AES [5]. In
this case, the confidentiality will be guaranteed. With
spoofing attacks, relocation attacks or replay attacks,
data ciphering along does not provide a sufficient level
of security. A spoofing attack (Figure 1) occurs when an
attacker provides a random data value on the bus, caus-
ing the system to malfunction. A relocation or splicing
attack (Figure 2) occurs when an instruction put on the
bus by an attacker is copied from a different bus ad-
dress. If the whole memory is encrypted with the same
key, the swapped instruction will be executed instead
of the original instruction. For example, a swapped in-
struction could make the program jump to malicious
code stored in a non-ciphered part of memory. The last
type of attack a system might face is a replay attack
(Figure 3). This attack is similar to a relocation attack
but an attacker provides a data value that was previ-
ously located at an address before it was overwritten.

2.2 Existing solutions

This section describes three existing memory protec-
tion solutions. Two of these approaches, XOM [6] [7]
and AEGIS [8] [9] [10], also provide other security prim-
itives such as secure context switching and security level
management. However, in this paper we solely eval-
uate techniques for external memory protection. For



each technique there are system concerns which impact
cores in the designated secure area.

Figure 1: Spoofing attack

Figure 2: Relocation attack

Figure 3: Replay attack

2.2.1 XOM

The eXecute Only Memory (XOM) [6] [7] approach
which provides memory protection, is based on com-
plex key management (Figure 4). Each memory parti-
tion is associated with a session key that is needed to
decrypt its contents (shown in Figure 4). Encrypted
sessions keys are stored in main memory and can be
decrypted using an asymmetric secure private key. De-
crypted session keys are stored in the XOM key ta-
ble. The key (private key in Figure 4) required for the
asymmetric decryption is stored in the secure zone of
the architecture. The algorithm used for the symmetric
deciphering is an AES 256. When the core produces a
cache miss, the 256 bits read from the memory need to
be decrypted. For this case, AES increases the memory
latency (case a on Figure 8).
Data integrity is ensured by a message authentication
code [11]. A hash of the data and its virtual address is
concatenated with the data. The hash is then ciphered

Figure 4: XOM architecture

Figure 5: Hash tree

with the data and stored in memory. Although effec-
tive, this solution does not protect the system against
replay attacks.

2.2.2 AEGIS

AEGIS [8] [9] [10] is an additional memory security so-
lution. The confidentiality in the AEGIS solution relies
on OTP encryption. The mechanisms used in OTP will
be detailed in section 3.1. This encryption method typ-
ically has a small impact on memory latency at the cost
of memory space overhead.
The solution used by AEGIS for integrity checking is
called a cached hash tree. This hashing approach is sim-
ilar to a Merkle tree [12] but to increase the efficiency of
the method some hash tree nodes are stored in a cache
memory (Figure 5). For Merkle trees, only the hash
root of tree is securely stored. All hashes must traverse
the tree until the root is reached. For cached hash trees,
a hash is only performed until the desired node is found
in the hash. As a result, cached hash trees offer better
results than Merkle trees. Cached hash trees can only
be considered secure if the hash cache memory is in a
trusted area of the system.

2.2.3 PE-ICE

PE-ICE [3] uses the spreading feature of block cipher-
ing algorithms for AES to provide system confidential-
ity and integrity. Like XOM, a tag is added to the data
before ciphering (Figure 6). For read-only values, the
tag includes the memory address to prevent relocation
attacks. For read-write values, the address and a ran-
dom value are included to prevent replay attacks. Due



Figure 6: Write request with PE-ICE

Figure 7: Read request with PE-ICE

to the spreading feature of AES, if one memory bit is
modified, a huge impact will appear in the deciphered
value. Indeed, the output of an AES is influenced by the
input. The plaintext is composed of the data and the
tag. When the system performs a comparison between
the deciphered tag and the original one concatenated
with the data, it can detect if data integrity has been
maintained (Figure 7). Like XOM, PE-ICE can have
an impact on memory read latencies since decryption
can only be performed after the read of a full cache
line from external memory. Integrity checking is added
just with a comparator for the address and the tag. So
the amount of logic needed to guarantee integrity is not
important.

3 OTP encryption with extensions
for integrity checking

3.1 OTP encryption standard solution

OTP encryption was initially proposed by Gilbert Ver-
nam during World War I [13], but was only recently
adapted for digital memory protection [10]. This pre-
vious work proposed to use the memory read access
time to compute a random key called an OTP. This
key is then XOR’d with the ciphered data to obtain
the retrieved plaintext. Each OTP is created before a
memory write and is used for encryption. The same
OTP is used for subsequent decryption.
In most systems, memory accesses require a long la-
tency. As a result, the cache line read latency may be
long enough to perform OTP computation with AES.
The AES algorithm is used to generate a random key.
As shown in Figures 8(b) and (c), the latency added by
encryption is reduced compared to case a which repre-
sents previous solutions (XOM, PE-ICE). These previ-
ous solutions use the data to be stored as the input for
AES. In the case (b) on Figure 8, the latency added by

OTP encryption is only the latency of a logical XOR
operation. In general, the time needed to retrieve the
data from the memory for decryption is longer than the
time needed to compute the OTP with AES.
From a security standpoint, it is essential that the OTP
key is used only one time. The OTP key is obtained
with AES, so the AES inputs also need to be used just
one time. If an OTP key is used several times, infor-
mation leakage may occur. The attacker may be able
to determine if data ciphered with a same OTP have
the same values. In some cases, this leakage could be
considered to be a problem depending on the level of
desired security.
Since OTP computation is supported by AES, the in-
puts to AES must be determined. To prevent a system
against relocation attacks, the data memory address is
used as an AES core input for OTP generation (Fig-
ure 9). To prevent replay attacks, time stamps (TS)
are used. As shown in Algorithm 1, the TS value asso-
ciated with each data address is incremented by 1 after
each OTP generation. For each new cache line memory
write request, the system will compute a different OTP
since the value of TS is incremented. The TS values are
stored in a memory for later use during memory read
operations. During a read, the original TS value is used
for comparative purposes (Algorithm 2). The retrieved
TS value is provided to AES during the read request.
The result of AES will give the same OTP as the one
produced for the write request and the encrypted data
will become plaintext after being XOR’d (Algorithm 2).
Read-only data does not require protection against re-
play attacks because these data are never modified. No
TS values are needed for these data so the amount of TS
memory space can be reduced. Read-only data may be
the target of relocation attacks but the address used to
compute the OTP guarantees protection against these
attacks. The size of the address and the TS might not
be long enough to completely fill the AES function in-
put, so padding may be necessary. A random value
(RV) is used to pad the input value.

Algorithm 1 - Cache memory write request:

1− CRC (@) = CRC {plaintext}
2− Time stamp incrementation : TS (@) = TS (@) + 1
3−OTP computation : OTP = AES {TS (@) , @, RV }
4− Ciphered data = plaintext⊕OTP
5− Ciphered data ⇒ memory
6− TS (@) ⇒ TS memory

7− CRC (@) ⇒ CRC memory

The use of time stamp and data addresses for OTP pro-
tects a system against replay and relocation attacks. If
data is replayed, the TS used for ciphering will differ
from the one used for deciphering. If data is relocated,
its address will differ from the one used to generate the
OTP. In both cases, the deciphered data will be invalid.
To use this information, the secure memory access sys-
tem must be able to detect that the deciphered data is
incorrect. Thus, we present an extension to the OTP
encryption in the next section.



Algorithm 2 - Cache memory read request:

1−Get TS (@) ⇐ TS memory

2−Get CRC (@) ⇐ CRC memory

3−OTP computation : OTP = AES {TS (@) , @, RV }
4−Get ciphered data ⇐ memory
5− Plaintext = Ciphered data⊕OTP

6− CRC (@) ≡ CRC {plaintext}
7− Plaintext ⇒ cache memory

Highlighted operations are only available for the extended OTP

solution proposed here with integrity checking

Our OTP implementation is efficient because it per-
forms OTP computation (operation 3 in Algorithm 2)
in parallel with memory data requests (operation 4 in
Algorithm 2). The Figure 8 provides a view of the gain.

Figure 8: Overview of the latency added by different
security solutions for different memory read latencies.
Cases a-top, b and d: the memory read latency is
shorter than AES computation. Cases a-bottom, c and
e: the memory read latency is longer than the AES
computation.

Our OTP implementation is useful because it performs
OTP computation (operation 2 in Algorithm 2) in par-
allel with memory data requests (operation 3 in Algo-
rithm 3). The Figure 8 provides a view of the gain.

3.2 Integrity checking extension

The system must be able to produce an error if an
OTP core indicates an OTP mismatch. Therefore, a
detection mechanism is needed. Additionally, integrity
checking must be performed with a negligible overhead
to minimize latency. Our solution to this issue involves
the use of a CRC32 module. Prior to OTP generation,
the CRC32 of the cache line (operation 1 in Algorithm
1) to be encrypted is stored in a cache (operation 7 in
Algorithm 1). Later, when the processor core requests
a read, the CRC32 result of the final XOR operation is
compared with the CRC32 value stored in the memory
(operation 6 in Algorithm 2). If data is changed follow-
ing storage, the CRC32 of the retrieved value will differ
from the stored value, so the attack is detected. As

previously stated, the results of decryption following a
replay or relocation attack will differ, so the CRC will
differ. As shown in Figure 8 the latency added to the
original OTP solution by our extension is the latency
of CRC computation and checking. This CRC compu-
tation can be completed in one clock cycle. With the
extended OTP, the minimum latency added to a mem-
ory access is the time to obtain the result of the XOR
and the CRC check (Figure 8).

4 Implementation with an embed-
ded processor

4.1 Global architecture features

Figure 9: OTP write request

The Altera NIOS II embedded processor has been used
to test our new memory protection approach. The cho-
sen configuration includes both an instruction and a
data cache, each with 512 bytes and a 256 bits cache
line. As seen in Figures 9 and 10, NIOS caches are
interconnected to the OTP design via a 32 bits connec-
tion. A 32-bit wide connection is also used to connect
to 4 Mbits of SDRAM.
For this work, we assume that the OTP core cannot
be attacked using techniques such as fault injection.
The memory space required to store the time stamps
and CRC32 values depends on the nature of the stored
data. Overheads are summarized in Equation 1.
As an example, we consider a system with a total mem-
ory size of 512 KB. A total of 256 KB is read-only data
and the remaining 256 KB is read-write (RW) data. Ac-
cording to Equation 1 we need to have OTP storage = 96
KB (32 KB for TSstorage and 64 KB for CRC32storage

with a TS SIZE and a CRC32 SIZE of 32 bits ).
Time stamps are unnecessary for read-only data.



Figure 10: OTP read request

Equation 1 - OTP memory consumption

OTP storage = TSstorage + CRC32storage

TSstorage =
(

RW DATA MEMORY SIZE
CACHE LINE WIDTH

)
∗ TS SIZE

CRC32storage =
(

TOTAL MEMORY SIZE
CACHE LINE WIDTH

)
∗ CRC32 SIZE

For our example system, an AES core of 128 bits is
selected to minimize the hardware impact of OTP on
the overall design. As a result, OTP values are 128
bits long. As described in section 3.1, each OTP value
should not be used more than once. Since the AES core
generates 128 bits and each cache line has 256 bits per
line, each 128 bits OTP must be used twice to encrypt
a full cache line. In this case, information leakage is
not a significant enough concern to warrant a 256 bits
OTP. The adversary may be able to determine that
the first 128 bits of the OTP are the same as the 128
last bits (Equation 1). If a more secure implementa-
tion is required, a 256 bits AES implementation may
be used (Equation 2). In Section 4.2, we evaluate the
cost of both the AES 128 and AES 256 solutions. The
CRC32 module has an input of 256 bits (a full cache
line). This module produces a 32 bits output which is
stored in the CRC32 cache (Figure 9) or compared with
a value stored in the cache (Figure 10).

Equation 2 - Two security levels

1−OTP 128 = AES128 {TS (@) ,@, RV }
1− Ciphered data256 = plaintext256 ⊕ {OTP 128, OTP 128}
2−OTP 256 = AES256 {TS (@) ,@, RV }
2− Ciphered data256 = plaintext256 ⊕OTP 256

Base NIOS + OTP128 NIOS + OTP256
NIOS + CRC + CRC

overhead overhead
Logic (ALUTs) 2134 6193 x2.90 6767 x3.17
Memory (KB) 512 600.56 +18.75% 603.12 19.7%
Read latency 10 21 +11 21 +11

(cycles)
Write latency 0 12 +12 12 +12

(cycles)

Table 1: Cost of security for NIOS II

OTP128 core OTP AES128 CRC32
+ CRC control

Logic (ALUTs) 4059 1918 1479 662
Memory (KB) 98.56 32 2.56 64

OTP256 core OTP AES256 CRC32
+ CRC control

Logic (ALUTs) 4633 1999 1972 655
Memory (KB) 101.12 32 5.12 64

Table 2: OTP core overhead breakdown

total AES data (8) XOR CRC32
latency (11) fetch (2/1) (1)

Read latency 11 - x x x
(cycles)

Write latency 12 x - x -
(cycles)

Table 3: OTP core latency

4.2 Cost of security

In this section, we present the cost of adding our mem-
ory protection mechanisms to a NIOS II based system.
In Table 1, it can be seen that the impact on the de-
sign logic size in look-up tables (ALUTs) is significant
(x2.81). Memory overhead is 18.75% for our chosen pa-
rameters. As discussed in the previous section, these
overheads depend on the memory architecture and de-
sired security level of the system (Equation 1).
The added circuitry has an effect on latency; 11 addi-
tional cycles are needed to perform read transactions
compare with a base NIOS architecture (security la-
tency on Figure 11). These 11 cycles include 8 cycles
to perform the read of a full cache line with OTP. The
last 3 clock cycles represent the time needed to perform
XOR and CRC check operations on the data (note Ta-
ble 2). This overhead is significant but as shown in
Figure 8 the overhead is less important for our new ap-
proach versus previous approaches based on AES pro-
tection because the data fetching is done in parallel
(Figure 11). With a standard encryption solution, the
latency would be the time needed for the data fetch-
ing (8 cycles) and the delay of AES computation (14
cycles). It means 22 cycles compared to the 11 of our
proposition. For a read request, the base NIOS archi-
tecture has an intrinsic latency of 10 cycles, while write
latency is null (Figure 11). In the case of our secure
architecture, the overhead for a write request is 12 cy-
cles (the security latency on Figure 11). A total of 11
cycles are due to the time required to perform AES.



Figure 11: Management of NIOS request with a SDRAM

base AES our solution XOM PE-ICE AEGIS
(no integrity) OTP + CRC AES + MAC AES OTP + cached hash trees

overhead overhead overhead overhead
Memory (KB) 512 600.56 +18.75% N/A N/A 776 +51.5% 768 +50%

Read latency(cycles) 22(14+8) 11(3+8) -11 22 0 25(17+8) +3 ≈ 4715/80 +4502/69
Write latency(cycles) 22(14+8) 12(8+4) -10 22 0 26(18+8) +4 N/A N/A

Table 4: Overhead comparison of all the solutions with a classic AES protected solution. The latencies presented,
are those added by encryption (the time to fetch data is included, 8 cycles are required)

The last cycle is due to OTP management and con-
trol. These latencies are significant but all solutions re-
quiring block ciphering will require some latency. The
benefit of a solution depends on the time required to
perform encryption (Figure 8). In our case, this time is
1 or 3 cycles but for previous AES solutions (PE-ICE
or XOM), about 14 cycles are required.
It is interesting to note that the latency of the OTP128

is the same as OTP256. A standard AES 256 would re-
quire 14 cycles, but for this experiment we implemented
two AES 128 cores in parallel. Thus, the latency of the
system is the same but the hardware cost is more im-
portant.
Tables 2 summarizes the overhead of the OTP cores.
In both cases the logic overhead due to the CRC is con-
stant, in contrast to AES. In the OTP128 core, the AES
128 represents 36% of the design size and 46% for the
256 bits version. The memory requirement for the AES
256 differs slightly from AES 128 (See Eq. 4.1 for de-
tails).

4.3 Evaluation

In the previous section, we described the cost of secu-
rity for our solution. In this section, we compare this
cost to previous solutions described in section 2.2. Ta-
ble 4 summarizes a number of relevant cost values. All
of these approaches support the same level of security
(confidentiality and integrity for an off-chip memory).
The first desired point of comparison is logic area over-
head. Unfortunately, a lack of data from the other ap-
proaches made this comparison impossible. In general,

each approach requires at least one AES core. Differ-
ences include the number of cores used by each solu-
tion and the method chosen for integrity check. For
PE-ICE, there is no hardware cost for integrity check-
ing. For AEGIS, the integrity check (cached hashed
tree) uses an SHA-1 algorithm which is generally per-
formed in software. The software approach can be time
consuming. In [9], the authors propose a hardware im-
plementation of SHA-1 although no overhead values are
presented. For our case, the logic overhead added by
integrity checking is only in the CRC check module.
In terms of memory, our solution consumes less space
than other solutions. AEGIS also guarantees confiden-
tiality using OTP so it also requires space for time
stamps. However, the use of a cached hash tree for
integrity checking causes a memory overhead of 33%.
For XOM no memory overhead figures have been pub-
lished. However, since the XOM integrity check uses
a MAC solution some storage space will be needed to
store hash signatures. Memory overhead for PE-ICE
results from tags (address and random values) added
to the data (Figure 6) and also from on-chip storage
needed to securely store random values.
A final comparison point is system memory latency. If
we compare the latency of our new approach with an
earlier AES based solution (such as XOM or PE-ICE),
it will be less. For PE-ICE, latency is an issue due to the
time needed to check if a tag is the same as one stored
in on-chip memory. For AEGIS, which is based on OTP
encryption, the latency caused by confidentiality is rea-
sonable, but the integrity check is done in software.



This issue badly impacts the system. For example, in
[9], the authors report that the SHA-1 algorithm needs
4715 cycles to compute the hash. If the implementation
was done in hardware, the latency would be around 80
cycles which is still significant. It is clearly shown in
Table 4 that our approach reduces latency compared to
other approaches. Only 3 cycles are needed instead of
the 14 cycles required by previous AES based solutions.

5 Perspectives

In this paper, we have evaluated the impact of off-chip
memory security on a processor architecture and we
have verified that the cost of our solution is moder-
ate. A number of interesting issues remain. So far,
we have only analyzed the latency to obtain plaintext.
The next step is to study the overhead of our solution
on software execution. Since many embedded systems
require battery-based operation, power consumption is
also an important issue. A complete analysis of the
power costs of our approach is needed. From a security
standpoint, additional work is needed to protect on-
chip memory used to store TS and CRC32 values. This
memory could be targeted by fault injection attacks
leading to incorrect system operation. TS and CRC32
values possibly could be stored in off-chip memory
The work presented in this paper uses a reconfigurable
target (FPGA). The features of reconfigurable archi-
tectures provide some interesting perspectives for secu-
rity. It may be possible to adapt the security level of
the architecture in response to different threat levels.
In [14], the authors propose reconfigurable mechanisms
to provide for a fault tolerant AES. Another security
adaptation opportunity might involve real-time oper-
ating systems (RTOS). The RTOS may have specific
primitives to enable hardware security primitives. The
isolation of non-sensitive data would reduce the amount
of memory needed to store TS and CRC32 tags.

6 Conclusion

This paper presents an efficient security solution (con-
fidentiality and integrity) for off-chip memory. OTP
encryption is combined with CRC32 integrity checking
to reduce memory access latency and secure memory
overheads. The demanding requirements of embedded
systems have led us to propose a solution for such sys-
tems. The next step for this approach might be the im-
plementation of memory overheads in non-secure parts
of the architecture which could be exposed to fault in-
jection.

References

[1] David Dagon, Tom Martin, and Thad Starner. Mobile
phones as computing devices: The viruses are coming!
IEEE Pervasive Computing, 3(4):11–15, 2004.

[2] http://www.altera.com/. ALTERA website.

[3] Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre
Guillemin, Michel Bardouillet, and Albert Martinez.

A parallelized way to provide data encryption and in-
tegrity checking on a processor-memory bus. In DAC
’06: Proceedings of the 43rd annual conference on De-
sign automation, pages 506–509, July 2006.

[4] 3DES RFC 1851. ftp://ftp.rfc-editor.org/in-
notes/rfc1851.txt, September 1995.

[5] AES RFC 3565. ftp://ftp.rfc-editor.org/in-
notes/rfc3565.txt, July 2003.

[6] David Lie, Chandramohan Thekkath, and Mark
Horowitz. Implementing an untrusted operating sys-
tem on trusted hardware. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems
principles, pages 178–192, October 2003.

[7] David Lie, Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tam-
per resistant software. In ASPLOS-IX: Proceedings of
the ninth international conference on Architectural sup-
port for programming languages and operating systems,
pages 168–177, 2000.

[8] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev,
and Srinivas Devadas. Design and implementation of
the aegis single-chip secure processor using physical
random functions. In ISCA ’05: Proceedings of the
32nd Annual International Symposium on Computer
Architecture, pages 25–36, 2005.

[9] G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. Aegis: archi-
tecture for tamper-evident and tamper-resistant pro-
cessing. In ICS ’03: Proceedings of the 17th annual in-
ternational conference on Supercomputing, pages 160–
171, 2003.

[10] G. Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten van Dijk, and Srinivas Devadas. Efficient mem-
ory integrity verification and encryption for secure pro-
cessors. In MICRO 36: Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchi-
tecture, page 339, 2003.

[11] H. Krawczyk, M. Bellare, and R.Canetti. Hmac:
Keyed-hashing for message authentification, February
1997.

[12] R. C. Merkle. Protocols for public key cryptography.
In IEEE Symposium on Security and Privacy, pages
122–134, 1980.

[13] Ross J. Anderson. Security Engineering: A Guide to
Building Dependable Distributed Systems. John Wiley
& Sons, Inc., 2001.

[14] Wayne Burleson, Guy Gogniat, and Tilman Wolf.
Reconfigurable security support for embedded sys-
tems. In HICSS ’06: Proceedings of the 39th Annual
Hawaii International Conference on System Sciences
(HICSS’06), page 250.1, January 2006.


