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Abstract. The initialization problem, also known as naming, assigne onique
identifier (ranging from 1 ta) to a set ofn indistinguishable nodes (stations or
processors) in a given wireless netwokk N is composed ofi nodes randomly
deployed within a square (resp. a cube)We assume the time to be slotted akid
to be synchronous; two nodes are able to communicate if tleewighin a distance
at mostr of each otherr(is the transmitting/receiving range). Moreover, if two or
more neighbors of a procesaotransmit concurrently at the same roundloes not
receive either messages. After the analysis of variougariransmitting/sensing
ranges for connectivity and coverage of randomly deploystsar networks, we
design sub-linear randomized initialization and gosgtgorithms with running

time © (nl/2 log (n)l/z) and® (n1/3 log (n)z/g)) in the two-dimensional and the
three-dimensional cases, respectively. Next, we proposegg-efficient initializa-
tion and gossiping algorithms running in tirﬁb(n3/4 log (n)1/4), with no station

being awake for more tha®? (n1/4 log (n)3/4) rounds.

Keywords. Coverage, connectivity; hop-diameter; minimum/maximuegrees;
transmitting/sensing ranges; analytical methods; enemysumption; topology
control; randomized distributed algorithms; fundametitaits of random radio
networks.

1. Introduction

Distributed, multi-hop wireless networks, such as ad hdawoks, sensor networks or
radio networks, are gaining in importance as subject ofnmede with very many practical
real-life applications [32]. In the paper, wireless netkgoare a collection of transmitter-
receiver devices, referred to aedes stationsr processorsaccording to the context.

A wireless network\ consists in a group of nodes that can communicate with each
other over a wireless channel. The nodes (or processafé)aafme without ready-made
links and without any centralized controllg¥. can be modeled by iteachability graph
G, within which the existence of a directed edge> » means thai can be reached from



u. If all transmitters/receivers have the same power, thikedging graphG is symmet-
ric. As opposed to traditional networks, wireless netwanesoften composed of a num-
ber of nodes that can be several orders of magnitude higaettie size of conventional
networks [2]. Sensor nodes are often deployed inside a mediberefore, the positions
of these nodes need not be engineered or pre-determinedalldws random and rapid
deploymentin inaccessible terrains and suit well the $jpanteds to disaster-relief, law
enforcement, collaborative computing and other specigigae applications.

As customary [3,4,5,9,17,26,27] the time is assumed todieesl and nodes (pro-
cessors) can send messages in synchromousls(or time slot$. In each round, every
node can act either agi@nsmitteror asreceiver A nodeu acting as receiver in a given
round gets a message, if and only if, exactly one of its nedghis transmitting within
the same round. If more than two neighborsuadre transmitting simultaneously,re-
ceives nothing. More precisely, such a netwdfkhas no ability to distinguish between
the absence of message and at least one collision or coiiffict.assumption is moti-
vated by the fact that, in many real-life situations, they}idevices used do not always
have the collision detection ability. Moreover, even if Budetection mechanism were
present, it should be of limited value; especially in thespreee of some noisy chan-
nels. Therefore, itis highly desirable to design algoristthat work independently of the
existence/absence of any collision detection mechanisms.

We consider that the nodes of\ are initially homogeneously scatterada square
X of size| X| (or in a cubeX of volume|X|). As in several applications, the users\¢f
can move, and therefore the topology is unstable. For thisoe we wish the algorithms
to refrain from assumptions about the topology\for about initial information that
processors may have concerning the topology. In the presgrar, we assume that no
processors has any topological knowledge, except the meéswrface or volume)X|
of X, where they are randomly dropped. Besides, observe thatiE|X| is known ex-
actly whilen is not (viz. exactly, or up to its order of magnituade= O(|X|)), an equa-
tion such as Eq. (6) in Theorem 2 (see below) allows to handileschanges involved
betweer®(n) andO(| X|) and occurring in the constants hidden in the “big-Ohs”. More
over, these assumptions are strengthened by the fact thiagdbeir deployment some
nodes can be faulty with unknown probability.

Methods to achieveself-configuratiorand/orself-organizationof networking de-
vices appear to be amongst the most important challenge$é@bess computing [2].
Initialization is part of these methods: before networking, each node nawstdunique
identity (identifier or address) denotéDd. A mechanism that allowsy/” to create a
unique identity (ID) automatically for each of its partiaing nodes is aaddress self-
configurationalgorithm. In the present paper, nodes are initiailyistinguishableThis
assumption arises naturally, since it may be difficult orasgible to get interface serial
numbers while on missions (see also [17,26,27]). Thus Deef such self-configuration
algorithms must not rely on the existence of serial numbers.

The problem addressed here is to design and analféyalistributed algorithms
for the initialization problem. As far as we know, the initzation problem was first
handled in the seminal papers of Hayashi, Nakano and Olarii2§,27] for the case
whenG is complete. (For the sake of simplicity, we writé (a wireless network) fo6s
(its underlying reachability graph) when appropriate.)

Note that the transmitting range of each station can be smirte valueg ranging
from 0 toryax - Such a model is commonly used in mobile computing and raetwaork-



ing [7,19,33]. It is frequently encountered in many domafrem statistical physics to
epidemiology (see e.g., [16] for the theory of coverage psses or [23] for percolative
ingredients). The random graphs generated in such a waylemrefirst considered in
the seminal paper of Gilbert [14] (almost simultaneoustgds and Rényi considered the
well-known G (n, p) model [12]). The analysis of their properties, such as cotivigy
and coverage, have been the subject of intense studieg}{28,29,30,31].

Fig. 1 shows devices randomly deployed on some field. Thectigbexamples sug-
gest that transmission ranges can play a crucial role whiging@rotocols at least for
randomly distributed nodes (stations). Other paramefdrsmortance are the number
of active nodes, the shape of the alewhere stations are scattered and the nature of the
communications to be established.

Figure 1. A typical radio network is generated according to the umifatistribution of coordinates of the
devices. The transmission ranges of stations are gradunaligasing from left to right. The last two pictures
show that if the graph obtained has more edges than neededuyhber of colliding packets is more difficult
to control.

Considering the above observations, the design of effic&gdrithms requires to
take into account and to exploit the structural propertied/o In our scenario, since
none of the nodes knows the numireof stations inA/, our first task is to find dis-
tributed algorithms that allow a probabilistic countingtbése nodes. Then, by setting
the transmitting range parameter correctly,can be self-initialized with high proba-
bility>. This is achieved irO (n*/2log (n)Y/?) rounds in the two-dimensional case and
in O (nY/2log (n)?/3) rounds in the three-dimensional cAsAs far as we know, this is
the first analysis of multi-hop initialization protocoldr(gle-hop protocols are treated
in [17,26,27,33]). Our algorithms are shown to take advgetaf the fundamental char-
acteristics of\/. Such limits are computed with the help of fully distributgdorithms:
once known, an initialization algorithm is run to assignteat the n stations (nodes)
one distinct ID ranging from 1 to. Whenever all IDs are assigned, and even though the
algorithm is probabilistic, one can chedkterministicallywhether each ID is unique (if
needed). For the purpose, deterministic linear algoritfiorexample) can be used, such
as the gossip protocol for symmetric networks in [22, Sechp

Under the conditions described above, Figures 2 and 3 suizertaiefly the input
and output of the distributed initialization algorithmepented.

In order to implement the initialization problem, we use &gjp algorithm. Gos-
siping and broadcasting [8] are fundamental techniquesgogading out information,

IThroughout the paper, an evefit is said to occuasymptotically almost surelf; and only if, the proba-
bility P (€n) tends to 1 as — co. We also say, occurswith high probability(w.h.p. for short).
2In this paper, log denotes the natural logarithm.
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Figure 2. nindistinguishable processors Figure 3. Each of then processors (stations) is as-
randomly placed in the squade The only signed a unique ID ranging from 1 to The IDs can

knowledge required is the sizX| of the support.  serve as IP address (here= 24).

and they represent naturally the most extensive studidulgnts in radio networks (see
for instance [9,22] and references therein). In the gosgijpiroblem, every station is
initially given one distinct message that needs to be sentltother ones. Under the
same assumptions as above, we design a randomized gosdipimighm that performs
its task w.h.p. in® (n¥2log (n)*/2) and© (n*3log (n)?3) rounds in the two and three
dimension cases, respectively.

Finally, it is shown that botkub-linearalgorithms (gossiping and initialization) are
asymptotically optimakince they achieve (w.h.g)(D logn) = O(D A) rounds, where
A is the maximum degree df andD its hop-diameter.

Outline of the paper. The paper is organized as follows. Section 2 presents a nando
ized distributed algorithrBEND for sending information in our settings. Next, this algo-
rithm is analyzed. In Section 3, we discuss how to set cdyrdat transmission range of
the nodes. Section 3 also provides results on the relatiptsitween the transmission
ranger, the number of active nodes the size ofX, the maximum degred and the
hop-diameteD of A/. These results and the use of the proce@isD allow to build a
broadcasting protoc@ROADCAST. The Section ends with the design and analysis of a
protocol name®&FR (Search-For-Rangewhich serves to find the appropriate transmis-
sion range distributively. More precisely, by varying thensmission range, the protocol
SFRbroadly provides orders of magnitude of the charactessti¢\". Section 4 presents
the randomized gossiping algorithm specifically intendeddndom wireless networks.
This Section is organized as follows: we first present a remzed algorithm that colors
the nodes ofV in such a way that every pair of process@usv) within a distance of

at most two hops from each other is assigned two distinctrsolthough “greedy”, the
latter algorithm is shown to color the graph in polylogamiib rounds (depending am
usingO(A) = O(logn) colors. This efficient coloring algorithm treats the direcid
hidden terminal problems. Once it is obtained, the 2-hopredion leads to a natural
scheduling of the communications to gossiplD A) rounds. In turns, the gossiping
algorithm is used to initializeV". This is easily done by means of a simple ranking ar-



gument. Section 4 ends with the proofs of correctness annohality of both algorithms
(gossiping and initialization protocols). Finally, Secti5 presents an energy-efficient
initialization algorithm based on an energy-efficient goisg algorithm.

2. Basic protocols for sending information

First, no deterministic algorithm can work correctly in eless networks when proces-
sors are anonymous. This is easily checked: conflict betiveeimdistinguishable nodes
can not be solved deterministically. Therefore, this ingiuiity result implies the use
of randomness (see [5]). Since processors do not havefiden(iDs), the first task is to
design a basic protocol for the nodes which compete localfctess the unique channel
of communication in order to send a given message. This cacliieved by organizing
a flipping coin game between them. Recall also that if thestrassion/receiving range
is set to a value, only neighbors within distance less thamre able to communicate
in the absence of conflicts. In [30], Penrose proves thaetbeists a common radius of
transmission to achieve the connectivity of the reachglgliaph.

In the very simple following procedure this parameter ad a®lthe duratio of
the trials must be taken into account.

Procedure SEND(msgT ,r)

Fori from0OtoT do

With probability 1/2' sendmsgto every neighborgto all processors at distanger x)
end

Note thatr is a parameter which can be tuned to a precise value. Agamgiéar that
only neighbors within a distance of at mostan receive the message when there is no
conflict. Therefore, we have the following definition.

Definition 1 Given a transmission radius r and a set of n nodes uniformly izde-
pendently scattered in a square X of sjz§ = O(n), a random graph is defined by
adding edge between any pair of nodrsy), such that the Euclidean distance between
x and y is less than or equals to r. Denote Ry the transmission range required to
have a connected graph. For a fixed radius of transmissioetrd,| (dependingonr, i.e.

d, = d,(r)) be the degree of any given node

Theorem 1 Letr > rcon be the current transmission range of the processors. Séppos
that each of the dneighbors ob starts the execution dBEND(msg T, r) in the same
round. LetP(T, d,) be the probability thab receives the message msg at least once
between the time+ 0 and the time t=T.

Then, there exists a function(T, d,) = O(d,/2") + O(1/4/d,) such thatP(T, d,)
satisfies

8111+ f(T,d,) < P(T,d,) < .8113+ f(T,d,). 1)

Proof. The assumption that’ is connected ensures that, for any nedéhe degree of
is such that, > 0.

. . dv
We haveP(T,d,) = 1 — []i_, (1— (dl")/z' (1— 1/2') ) since only one of the



neighbors can succeedand all othed, — 1 nodes are kept silent. For any givigrand
. -\ d : . :

foralli > iy, (1 —d/2 (1 _ 1/2') ) < (1 —d/2 exp(—d/2 (1+ 1/2'1))). So, if

2! > d, by choosing1 = [1/2log, d], we obtain after a bit of standard algebra

S Ehe( (o) e

m>l i=i1

1-P,d) < exp(

Now, by Mellin transform asymptotics methods (see [13] &@ p. 131]), for any
10°°

m>1,
- 0" o —dm 1r0(2 m
2. om P\ 75 Jd m™1log2| = mmlog2

o(3) o) o

where the 10° term is due to small fluctuations: the amplitude of the tingftioients of
the Fourier series occurring in Mellin transform asympus{il 3].

Next, sincem/m™2 < e-™/mwhenm > 7,

6 m o0 6 m 0 o—m

m=1 m=1 m=1 m=7
and
S e m 1
e (60e In (1 1/e)+60e +306* + 2063 + 1562 + 12e + 10)
= m 60eb
we derive

> m
.18869... < exp| — ——— ) < .18879... 4

Similarly, for anyx € 0, 1 andd > 1, (1 — x)9 < e 9x,
Therefore,(l— d/2 (1- Elr)d) > 1 — d/2' exp(—d/2'), and this time we get

exp( Z ZZIm ( m)) < 1-P(,d). ()

m>l i=iy

Using the latter inequality yields Eq. (1) after computatiaimilar to Egs. (3) and (4).
|

In [5], Bar-Yehudaet al. designed a randomized procedure callCAY to send
information with probability of success larger thémsee for instance [5, p. 108-109]).



In our procedur&END, the proof of Theorem 1 (see also [13]) shows that, by chang-
ing the basis of the coin flipping game, viz. by substituting probability Ja' for 1/2!
in the algorithm for any constaat > 1, the probability of success of tAetrials can be
made arbitrary close to 1 (also with a logarithmic numbemooids such tha' > d).

In the next Section, we turn to the problem of finding suitatalieies of transmission
range whenever the onyypriori knowledge of processors [iX].

3. Transmission ranges and characteristics oV’

The aim of this Section is to provide randomized distribuagbrithms that allow the
stations of\ to find the required transmission range to achieve at leastamivity of
N. To this end, we need to know the relationships between Hresmtnission range,
the number of processonsand the measureX| of the support. Other characteristics of
interest, such as the minimum (resp. maximum) degt@esp.A) and the hop-diameter
D of AV, are also fundamental for setting wireless algorithms [SBe Moreover, the
limits of the randomly generated netwahk help when designing such algorithms. We
refer here to [14,15,24,31,36,37] for works related to manchetworks. Two distinct
problems are addressed in this Section.

e The first one (Subsection 3.1) concerns the characterisfitee reachability
graphG in the superconnectivity regime, i.e. when the radius afgnaission of
the stations grows much faster than the one required toaebannectivity ofG.

e Subsection 3.2 is devoted to the design and analysis ofribdistd protocoSFR,
that will allow the nodes to approximate the aforementioctearacteristics.

3.1. Fundamental limits of a random graphs in the supercotivigy regime

Following Miles’s model [24], a great numberof devices are dropped in some avéa

As n — oo with n = O(|X]), the graph generated by the transmitting devices can be
well approximated with a Poisson point process (see e.{). [Ri6st of all, its extremen-
dependencproperty allows penetrating analysis. Next, Poisson meegremaimvari-
antif their points are independently translated (translatibaing identically distributed
with some bivariate distribution: direction and distanc®), the results may take their
importance fomoving stationgnd therefore, they are well suited to randomly deployed
mobile devices. Last, if with probability such thatp n = O(] X|), some nodes afaulty

or intentionallyasleep(e.g. for saving batteries in energy-efficient algorithi2ig]], our
results remain valid. This is due to Poisson processes giepand in the latter scenario,
the number of nodesis simply replaced by’ = pn.

Among other results, Penrose [30] proved thatifX| = O(1) and X is a two
dimensional area, then

lim ]P’(LanON — log(n) < w) = exp(—€79), weR.

n— oo [ X]

Penrose’s result asserts that, by letting the radius o$tnégsion range grow as
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for any arbitrary functionw(n) tending to infinity withn, the graph obtained is a.a.s.
connected.

For our purpose, we need the following results related taddgrees of the nodes
according to the successive orders of magnitude of trasgmisange values.

Theorem 2 Let r denote the transmission range of the n nodes randortyildited in
the square X of sizeX| = O(n). Then, in the following three regimes, the graph G is
connected with high probability:

(i) Forfixed values of k, thatis k O(1), if zr?n/|X| = logn+kloglogn+w(n),
then G has a.a.s. a minimum degeee: k.

(i) Letk =k(n) and1 « k « logn/loglogn.
If zr2n/|X| = logn+k(n) loglogn, then the minimum and the maximum degree
(resp.) are a.a.sd = k(n) and A = e logn (resp.).

(iii) If zr2n/|X] = (1 + ¢)logn with ¢ > 0, then each node of G has a.a.s. d
neighbors with

I I
__ Ctlogn ogng + o(logn) < d, < __ flogn ogr;
Woq (_ ‘e(1+€)) Wo (_ e(1+€))

where W.; and W, denote the two branches of the Lambert W funétiehich
are detailed in [10]. Moreover, in the case when?n/|X| = (1 + ¢) logn with
¢ > 0, each geographical point of the support X is also recoverg@®iogn)
disks of transmission.

+ o(logn), (6)

Sketchproof. For the proof of Theorem 2, we refer to [33], where asymptoticerage
as well as connectivity properties are treated in detaildtie ranges of transmission
considered in Theorem 2.

Observe that in the 3-dimensional case (with a cube insteadgquare), similar results
hold with the same assumptions as in Theorem 2: every ocmeref the surfacer( 2)
being replaced by the volume (@zr3). For example, to have each point of the cube
recovered by (logn) balls, it is sufficient to set the transmission radius to thkue

r = J3(1+¢)logn|X|/4zn. In this case, w.h.p. the degrég of each node also
satisfies Eq. (6).

In the remainder of the paper, we mainly concentrate ountidie on results re-
lated to the 2-dimensional case, since there exist diracespondences with the 3-
dimensional case, such as the one mentioned above.

Next, we derive an upper-bound of the hop-diamd2ein the superconnectivity
regime.

3The Lambert W function is usually considered as a “speciattion” and its computation has been imple-
mented in mathematical softwares such as Maple.



Theorem 3Let D = D(r) be the hop-diameter of G. Suppose that the transmission
range meets the condition+ /3 (1 + ¢)logn|X|/4zn, with¢ > 0. Then

() If ¢ > 2%,
nlmwp(o <3 /%Hoa)) 1 )
(i) If ¢ < 25,

Il
=

T n
im P{D<5 | —— +0(1 8
SEUS ( - (14 ¢) logn +O( )) ®
Proof. Split the squareX into j? equal subsquareS;, S, ..., S;2. Each of the sub-

squares has a sidg[X[/j and an areX|/j2. Choosej such that each subsquagecan
entirely contain a disk of radiusas depicted below.

Subdivision ofX VIXI/2) =1 = /@A +¢)logn|X[/zn.
N\ So,j = 1/2/zn1/(1 + ¢)logn. For the
SRV "\ sake of simplicity but w.l.0.g., assunjdo
be a non negative integer. By Theorem 2
» (property (iii) ), there are®(logn) nodes
A~ inside the disk with high probability.
Size|X|fJ/2

Any pair of nodes inside the same disk neatimost2 hops to get connected, since
they are within a distance of at most 2nd since each subgraph inside such a disk is
a.a.s. connected.

Lemma 4 Communications between two adjacent subsquaresns 3, viz. between
any node ae S and any node & $, need at most (w.h.p.)

a) 6 hops wher > 4=% = 0.7519... and
b) 10hops whert < 2=%.

Proof. Consider adjacent subsquares as depicted in Figs. 4, 5 and 6.

A bit of trigonometry shows that each lens-shaped regioh sisd 1 (in Fig. 4) has a
surfacelL1| = 1/6 (47 — 3v/3)r2.

L1 represents the intersection of two disks of equal radiubose centers are at distance
r. Therefore, there is no node inside the lens-shaped regiavith probability

ILa\" 1 1+ 6)logn\"
(1_W) _(1—6(4n—3ﬁ)f)

IA

exp(—é(4n -3/3) 1+ f)n).
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Figure 6. “Indirect” transmission.

Since each subsquare has at most 4 lenses of|lside none of these regions is
empty with probability at least

4j?
(1—exp(—%(4n —3x/§)(1+€)n)) >

- n1—%(4z —3V3)(1+¢)
-2 . 9
eXp 1+ ¢)logn ©)

Hence, with probability tending to 1 as— oo, there is at least a node in every lens-
shaped region of siZé 1| . So, 6 hops at most are needed to transmit a message between
two horizontally (or vertically) adjacent subsquares Big 4), and whence) holds.

To proveb), we consider lenses suchlagdepicted in Fig. 5. The size of such region
is|Lo| =r?(z —2)/2, which measures the area of the intersection of two eqaksdif
radiusr and at distance/2r. With arguments similar to Eq. (91 + ¢)(x — 2)/2 > 1
must hold for every lens of siz& ;| to be non-empty (w.h.p.). This condition holds only
when¢ > 2/(r —2) — 1 = 0.7519. ... For values off < 0.7519..., transmissions
are sent horizontally and then vertically (or vice-ver&ajch transmissions can required
up to 10 hops (cf. Fig. 6). The proof of the Theorem is now gaziimpleted by simple
counting arguments. ]

In the 3-dimensional case, we have the following result.



Theorem 5 Suppose that n sensor nodes are randomly deployed in a cegicrr of
volume| X| according to the uniform distribution. If their common teamission range is
settor= J3(1+ ¢) logn|X|/4zn with¢ > 11/5, then the diameter D of/ satisfies

. / Tn

Proof. See [33]. |

3.2. BROADCAST and SFR (Search-For-Range) protocols

Subsection 3.1 gives almost sure characteristicd/ofNow, we have to verify and
to exchange such information by means of distributed algms. Two procedures are
needed. The first one is the protodiROADCAST. In this algorithm, some stations
(called source$ try to scatter a given message to all other node/inlt makes sev-
eral calls of SEND. The second is the protoc8FR (Search-For-Rangelt is used to
adjust the correct transmission range of the nodes, in dodéake control” of the main
characteristics alV'. SFRworks as follows.

Each station starts with the maximum range of transmissitien, at each step,
the transmission range is reduced gradually, till some @hibdes are disconnected. At
this stage, all newly isolated nodes readjust their tragsiomn range to get reconnected.
Each of them uses the protod®ROADCAST to sped out its “disconnection” message
informing all other nodes inV. A node quits the protocol in two cases only: either
whenever it broadcasts the “disconnection” message owcoanected after isolation, or
after reception of a “disconnection” message containifigrination about the adequate
transmission range.

3.2.1. The broadcasting protocol

The procedurd8ROADCAST is similar to the one designed in [5] except for the use of
SEND to transmit messages.

Procedure BROADCAST(msge,A,r,N)
k = 2[log, A7 (* A is an upper-bound of the maximum degsge
7 = [log, (N/é€)] (x N is an upper-bound of the number of nodgs
Wait until receiving a messagasg
Fori from1tor do
Wait until Ti M mock = 1 (x to synchronize)
SEND(msg k, r) (x attempt to senchsgx)
end.

In the above procedure, > 0 can be made arbitrarily smalh is a parameter
representing the maximum degree &t or an upper bound on the maximum degree
(according to the regime, Theorem 2 makes it possible to coerpfor a given value of
the transmission rangel) is an upper-bound on the number of active nodesve is a
protocol which allows any given node to get the current tif@lowing the proof given
in [5, Theorem 4], we have



Theorem 6 Bar-Yehuda, Goldreich, Itai [5].

Suppose that r> rcoy is the actual transmission range of the nodes. AssumeAhat
(resp. N) is an upper-bound of the maximum degree (resp. tingbar of nodes) in
Nandlet T= 2D + 5 x max(«/ﬁ, \/Iogz(N/e)) x ,/log, (N/e). Also assume
that some initiators (or sources) start the procedBROADCAST(msge¢,A,r,N) when

Ti1 Me = 0. Then, with probability> 1 — 2¢, all the nodes receive the message after
2[log, AT rounds. Furthermore, with probability 1 — 2e¢, all nodes terminate by time

2[logy AT (T + [logy(N/e€)1).

3.2.2. Adjusting the transmitting range: the proto&R

The stations need to know bounds of the value of the numhdrthe nodes. Ifpg =
llog, n] then 20 < n < 2Po+1,

Thus, by settingR(2P) = ,/(log (2P) + 2log 2) | X|/z 2P, the values oR(2P) decrease
whenp increases. In the protoc8FR, we increment the values @fone by one, starting
from a value close to the maximal transmission range of tht#osts. Whenevep passes
throughpo — 1, po and po + 1, there are some new isolated nodes w.h.p. Actually, it is

easily shown that/2 Togn[X[/zn < R(2Po—1),

We are now ready to present the proto86R. ProcedureSFR maintains just one
variablee representing the tolerance parameter and it is run in hialleach station.

( LO) Procedure SFR(¢)
(L1) BEGIN

(L2)  R=xr— /10820421082 1X],
(L3) B:x;——>24{logxx(\/g-l—x—logz(e))—‘;
(* B(x) is the broadcast time)
(L4) DISCONNECTED = false;
(L5)  p=logy (rua)
(L6) REPEAT

(L7) counter=0;

(L8) t = 100x (( log, (p)-l + [log2 (2/6)});

(L9) For i from 1 tot Do

(L10) SEND(p, i, R(p));

(L12) Upon reception of a messag@e, —, R(p)) Do
(L12) counter= counter+ 1;

(L13) EndFor

(L14) If counter=0Then

(L15) For j from 1 to[logz (%)-I Do

(L16) BROADCAST (“Disconnectionp”, €,3p,R(p — 1),2P+1);
(L17) EndFor

(L18) DISCONNECTED = true;

(L19) Else



(L20) Wait for a message up I@Iogz (g)-‘ x B(p — 1) rounds;

(L21) Upon reception of the “disconnection messape”
(L22) Scan the value gb and seDISCONNECTED = true;
(L23) Elsep=p+1;

(L24) EndIf

(L25) UNTIL DISCONNECTED = true;

When reaching the valugo, the isolated nodes, whose transmission ranges are now
set tor = R(pg), can increase their transmission rangeRi@o — 1) in order to get
reconnected. Next, such nodes have to inform all otherstabewpper-bounds am A
andD, respectively given by

2P0 < n < 2P0+l logn < 3po and

1
< - 00000
= “Wo(—e1/2)

T 2Po 2Po
o+ Dilogz -~ 2\ po (1)

where we use Theorems 2 and 3 for boundingndD, with £ = 1, and the transmission

range set to
P log (2Po—1) | X|
B (2r—hyz -

The message of disconnection can be sent and receivedttplyemeans of mul-
tiple calls to the protocdBROADCAST, provided sufficient rounds are given (cf. (L20))
to the broadcasting stations, in order to let all others barawf the bounds given by
Eqg. (11). The message broadcasting the above informat@mapgcial one, sayDiscon-
nection p”, which contains the correct value @f.

Taking Eq. (11) into account, the “broadcast time” given bdye®rem 6 is less than

2log, A7 x <2D +5 max(ﬁ, ,/Iogz(N/e)) x /log, (N/€) + Hogz(N/eﬂ),with
probability greater than % 2¢.

This is strictly less than 24 logo) (+/2P/Po + po — log; (€)).
Given these descriptions, the proto&HR has the following properties.

Theorem 7 Assume that the network randomly deployed is an instandsfisag
Eqg. (11). For any ¢> O there exists a constang c> 0 such that with probability at
leastl — 1/nC, the protocolSFR(1/n) terminates in at mosP (D logn) rounds. After
this time, every node is aware of the upper-boundand D on the values of n with
probability at leastl — 1/n€.

Proof. Inlines (L9)-(L13), the inner loop is repeatetimes. Consider a nodepicked
at random. By Theorem 1, for any given nodeas soon as in line (L9) meets the
condition 2 >> d,, the probability of success of each call$END is at least8. .. By
Theorem 2, and under the assumption that the graph satiséiedrhost sure properties
of a random network, ifp = po = [log, (N)], d, < 3po. Therefore, by setting as



in line (L8), we ensure that if the nodeis still connected, it receives more than one
message from its neighbors with probability at least &/2. Similarly, by making the
just disconnected nodes repeat sufficient callBROADCAST and also have sufficient
rounds to send the “disconnection message” to all otheegs, th.h.p., all stations of the
whole network are allowed to learn the correct upper-bowmds(and thusA andD).

Note that both constantsandc; that appear in Theorem 7 do exist, since one can always
choose: of the forme = 1/n° in order to get probabilities of failure of ordeyd®. M

According to these results and throughout the remainddrepaper, we have the
following definition.

Definition 2 A random graph G (or a random wireless netwd} is said typical if, and
only if,

(i) Theorem 2 and Theorem 3 hold, and

(i) for any constant ¢ > 1, after one invocation of protoc@FR(1/n), every node of
G (or N) knows the same value of patisfying Eq. (11).

Remark. Denote byG(n, p) the random binomial graph [12] where each of @)eedges

of the complete grapKy, is present with probabilityp. The results described above can
be compared to the (almost sure) characteristics of thenistdwandom graph of Erdos-
RényiG(n, p) [12] as shown by the following table whesgn) is any function tending

to infinity with n. In the table belowp = % represents the expected number of points
per area.

Euclidian random graph Erdds-Rényi
MODELS with intensityl—;}| : random graph :
G(n,r) G(n, p)
PARAMETERS Radius r =r(n, X) Edge probabilityp = p(n)
COMMON PROPERTIES Recquired value fof I—erz Recquired value fon p
Connectivity Inn+ w(n) Inn+ w(n)
Total coverage oK Hamiltonicity :
Minimum degree= 2 Inn+Inlnn+ w(n) Inn+Inlnn+ w(n)
Multiple coverage ofX
Minimum degree= j + 1 and if X is a square j-connectivity
j-connectivity
Inn+ jIninn+ w(n) Inn+ jIninn+ w(n)
Quasi-regularity:
All nodes have degree w(n) | w(n)Innwith w(n) « ]% w(n)Inn with w(n) « ]%

For instance, one can read from thHeréw of table that the recquired value mf%rz
(resp.n p) is Inn + w(n) to obtain, with high probability, a connected geometrisgre
Erd6s-Rényi) random grap&(n,r) (resp.G(n, p)). In this case, the connectedness
property occurs almost surely if and onlyifn) — oo with n.

4. Afirstinitialization algorithm in random radio networks

Section 3 solved the problem of determining the correcstraasion range for the nodes
of a random networld/. Typically, N has the characteristics (mainly maximum degree



and hop-diameter) dictated by Theorems 2 and 3. Probabilipper-bounds on such
characteristics can also be established with the protseB! In [4], Bar-Yehudeet al.
propose algorithms for efficient emulation of a single-hepwork with collision detec-
tion in multi-hop radio networks,provided the number otistas (nodes), the diameter
and the maximum degree &f (or upper-bounds on them) are known. Combining the
results in [4] and [26] with the results in Section 3 leads tew initialization protocol.
More precisely, we can emulate a complete network (withisiolh detection) using the
methods in [4]. Therefore, any broadcasting protocol withiflakano-Olariu algorithms
in [26] makes it is possible to build an initialization prot in time O(nB), whereB
denotes the broadcast time of ordee= O(D logn) (see for instance [5,9,22]).

Instead, we first color the graph in a specific manner: the tajo-coloration. In
this problem, the nodes @¥ are colored in such a way that every pair of statians)
within a hop-distance of at most 2 from each other are asdigifterent colors (codes
or “channel assignment”). This specific coloration gives ginaph a natural scheduling
of the communications which avoid&ect and hidden terminal problemBvery pair of
nodes(u, v) at hop-distance: 2 from each other is assigned one pair of color (code)
(cu, ), with ¢y # ¢,. When a statiom (or ») decides to transmit in the exact round that
directly matches its own codeg (or c,, resp.), then it is easily seen that such scheduling
is collision-free

4.1. Choice of temporary IDs

Since the stations are supposed to be indistinguishaleldirg goal is to allocate them
distinct temporary IDs. If an upper-boumdl on n is known, it can be done in one pass
by assigning each station an integer uniformly picked frbenrange{l, N3].

Procedure TMPI Ds(N)
Each node chooses uniformly at random an integer rangimg freo N3
end.

The above very simple procedure has the following property.

Theorem 8 Suppose that N is an upper-bound on the number of nodes n Knpwath
the stations. After one invocation @fvPl Ds(N), with high probability, every station of
N has a unique ID ranging frortt to N® and no pair of stations share the same ID.

Proof. The proof of this result is a simple application of the balisl &ins problem. By
throwingn balls (stations) intdN® bins (temporary IDs) independently and uniformly at
random, with probability greater than e(<19(9(n2/N3)) every bin contains at most one
ball. |

4.2. The two-hop neighbor discovery protocol

Once the temporary IDs are allocated, each nodéA has to discover all other nodes
within distance at most 2 hops. The proto€nlscovER below allows any given node
u of AV to know the set of its direct and two-hop neighbors (i.e. hbas of neighbors).
This algorithm appears to be extremely useful since thesware deployed in random
fashion and do not have any knowledge of their respectivghibeirhoods. In the fol-



lowing pseudo-coddy still represent any known upper-bound on the number of nodes
n.

ProcedureDi scovER(N)
Begin
For each node, setL (u) = 4;
For k from 1 to (log N)2 Do (= Discovering direct neighbosg
With probability 1/ log N, every nodas transmits a message containing
its temporary ID: EMPIDy;
Upon reception of a messagEEMPID), u stores the value AMPID in a local list:
L(u)=L(u) U {TeEmpPID};
EndFor
For k from 1 to (log N)2 Do (x Discovering 2-hop neighbosg
With probability 1/ log N, every nodeu sends the list. (u) of its direct neighbors;
EndFor
End.

Theorem 9 Assume that\" is typical and the transmission range is set to +
V/2log(2Po)[X|/(2Poxr ) with pp satisfying Eq. (11). The running time bf SCOVER(2Pot1)
isO (Iog (n)3) and with high probability, after one invocation & scover(2Pot1),

(i) Every node u odV is aware of the list of all its direct and two-hop neighbors.

(i) For each node u, the number of such direct and two-hop neigtib@ (logn).

Proof. The proof of par{i) is closely related to the proof in [33, Theorem 7]. For clarit
here are the details. After the first loop of the above alporitthe proof that every station
is aware of the list of all its neighbors relies on two facts.

First, the main characteristics of the random Euclideawor¢ and second, the
number of iteration€(logn)? in this loop are sufficient for each node to send itsatD
least onceo all its neighbors. For the first point, we have seen thatéftransmission
range is settq/(1 + ¢) logn|X|/zn (¢ > 0) for any node» of AV, then the degree of
meets the condition w.h.p.

¢ logn

d, < ) + o(logn).

Wo (“e(1+€)

SetN = 2P+l > n_ In the regime considered in Theorem 9, the maximum degréé of
is bounded by logn (w.h.p.), wheree is some constant such that eqz 2Wp (—1/2€)
(for any constant > 2). Using the latter remark, let us complete the proof of figut

For any distinct paifi, j) of adjacent nodes and any round [1, log (N)3], define the
random variablé(i(zj as follows:

x® _ | 1 ifthe nodej does not receive the ID dfat timet e [1,1og(N)?],
i=] 7 | 0 otherwise

In other terms, the set

{Xi(zj,i, i i te [1,Iog(N)3]}.



denotes a set of random variables that counts the numbessif as j such thatj never
received the ID of. Denote byX the r.v.

X=in—>j,

i#]

whereX;_,j = 1iff X . = 1forallt [1,10g(N)3].

i—j

Now, the probability that does not succeed in sending its IDjtat timet is

O N f(,_ 1 1 1\
P(Xi—’i_l)_(l Iog(N))+IogN(1 (1 IogN) )

Therefore, considering the whole rarjgelog (N)3] yields

log (N)®
P =1 < (1-0(pos)) = exp(-0doany?).

log (n)

which bounds the probability thathas never sent its ID t§ for roundst in the range
[1. log (N)3].
By linearity the expectation, and since the number of edge$arderO(nlogn),

E(X) < O(nlogn) exp(—(’)(logn)z). (12)

Thus,E(X) « 1 asn — oo, by the first moment method [3], one completes the proof
that after the first loop of the procedure, every station iaravof all its direct neighbors.

With similar methods, it is easily seen that the second Idlogva the nodes to know
one after the other their 2-hop neighbors.

To prove parf(ii), observe that if is the common transmission/receiving range of
the stations, all two-hop neighbors of a nadare inside a circle of radiug 2Hence, a
simple application of the Eq. (6) in Theorem 2 proves asse(ii) of Theorem9. N

4.3. Atwo-hop coloring algorithm

We need some more basic definitions for our coloring algorith

Definition 3 T'(u) o {neighbors of a fixed node}uAnyo» € T'(u) is referred to as a
direct neighbors of u.

The set oP-hop neighbors is given formally By (u) = Uper@ I'®).
Recall thatA & max, |T'(u)]. Similarly, defineA as A» o max, |[T'2(u)].

To assign codes (colors) to the noded\iflet us consider the following simple and
intuitive randomized protocol calleflssi GNCoOL OR. As defined above; (u) | I'2(u)
is the set of neighbors af at hop-distance at most 2. At the beginning of the algorithm,
each node stores an initial list of colorp(u) (also referred to gsalettg of size|I"(u)|+



[T2(u)] +1 = A + Az + 1 and starts uncolored. We can also assume that each node
has a distinct ID (this can be effective after one invocatdi Mpl Ds) and knows its
neighbors inl"(u) |J I'2(u) (by means oDI SCOVER).

Then, the protocohssi GNCOL OR proceeds in rounds. In each round, eaolol-
ored node y simultaneously and independently picks a color at randgangc, from
its palette. Next, the node attempts to send this information to its direct neighbors in
I'(u), and in its turn, each membere I'(u) tries to forward the information to every
w € T2(u). Trivially, this “two-steps” attempt succeed$ there is no collision with
direct neighbors and also “no collision” with 2-hop neightadl herefore, before abso-
lutely assigning its color (code)to u, every member of the s&t(u) | I'2(u) has to sent
one by one a message of reception.
Note that this can be dordeterministicallyas explained in details below. Therefoue,
sends a message atknowledgemerind every membaer of ' (u) | I'2(u) canupdate
its own palettep(u) and its own sef’'(u) | T'2(u).

Hence, at the end of such an iteration the new colored nodecomes passive
during the remaining of the algorithm. (Note that the protag¢ssi GNCoOL OR is simply
the “2-hop version” of the coloring algorithm presented38,[Subsection 5.3].)

Assuming that the upper-boumdion the number of nodes satisfies Eq. (11), a brief
description of this procedure follows. Each step beloweepnts dasic iterationof the
main loop of the algorithm. By allowind(logn)? iterations, the algorithm is shown to
color correctly the graph.

Basic iteration of the main-loop of AssI GNCOL OR

Step 0 : Every node needs an initial palette of colors of qi2éu)| + [T2(u)| + 1
and a set of active direct and 2-hop neighbors. The uppendon the number of
direct neighborsis set th = 3[log,(N)1. Similarly, using Eq. (6) of Theorem 2,
an upper-bound on the number of 2-hop neighbors is septe: [8log(N)]—A.
Note that the constant 8 reflects the fact that all 2-hop righofu are within
an Euclidean distance of at most twice the transmissionerénognu. Therefore,
Eq. (6) yields—3/Wo(—3e71/4) ~ 7.14... < 8.

Step 1 : Every nodeu picks a colorc from its palette and tries to send it Iqu).

Step 2 : If the previous step succeeds, there is no collision and/evaer € I'(u)
receives correctly the message. SibtescovER allowsu to know its neighbors,

u can rank them and in their turn, one after the other accolgliogheir relative
rank, they have to forward the message to the 2-hop neiglolbarghat is to any
w € I'2(u). This phase is deterministic and =synchronization reguireounds.

Step 3 : If the previous step works correctly, every membefgfu) receives the
message and, in its turn, sends it back. In order to avoidusiori, each message
is specifically marked withu (the ID of the initial sender). This step can be per-
formed deterministically, since can also rank its 2-hop neighbors. Thus, step 3
also require\, rounds.

Step 4 : When all their messages are back, all nodes I'(u) need to informu,
one by one and in right order. So, step 4 is performed iounds.

Step 5 : Upon receiving all messages from all its direct and 2-hogmgors, the
nodeu has to send them back a message of acknowledgement. Agaisiep
is deterministic and requires rounds (only the direct neighbors are needed to
forward the acknowledgement message). The nodEélin|  I'2(u) update their



palettes of colors by removing the color which is now assigned ta, andu
becomes passivenode.

The corresponding pseudo-code of the protocol is as follows

(1) Protocol Assi GNCoL OR(N)

(2) SetA = 3[log,(N)] andA2 = [8log(N)] — A; (x following Eq. (11)x)

(3) Each node is active with an initialpaletteof colorsp(u) = {c1, C2, ..., CA+A,+1)
along with a set of active neighborsii{u) and 2-hop neighbors ifiz(u);

(4)  Fori =1tolog(N) Do

(5) For each noda do

(6) e Pick a colorc from p(u);

(7) e Send a message containingith probabilityﬁ ;

(8) If no collisionThen (* 1-hop neighbors> forward tow e T'2(u)*)

(9 Every station in I'(u) gets the message properly, one by one in order
(10) Every station in I'(u) forwards a specific message U ¢’;

(x v is the ID of the current node. The step is synchronized bywtig A roundsx)
(11) Endif

(12) Upon receiving a message of the form “forwardi ¢’ Do
(* 2-hop neighbors> just send back twice)
(13) Every membew of I'2(u) one by one and in order
(14) sends back a message to the membé&¥(ofJ.
(15) Such a message can be of the form “baak c”;
(* This step can be synchronized by always allowingroundsx)
(16) end
a7 Upon receiving a message of the form “baoku ¢’ Do
(18) The node e I'(u) sends the message backitalong with its own ID;
(* This step needa rounds of synchronizatios
(19) end
(20) If ureceives all thel'>(u)| + |T'(u)| message$hen
(22) u sends a message aéknowledgementhich is also forwarded
(22) by all members of (u) to the setf">2(u); u becomegpassive
(23) Endlf
(24) Upon receiving anacknowledgement message
(25) every station i’ (u) |J I'2(u) removes the colot from its palette;

(* This step is synchronized i roundsx)
(26) EndFor
(27)End.

Theorem 10 Assume that the randomly deployed network is typical, waighttansmis-
sion range set to = ,/21og(2Po) | X|/(2Pexr). Suppose also that the stations have dis-
tinct IDs. Then, after the execution 86s1 GNCoL orR(N), with probability tending td

as n— oo, every pair of nodegu, ») s.t. ue I'(v) | I'2(v) receives two distinct codes
(colors). Moreover, the running time of thessi GNCOL OR is O(log (n)*) rounds and
the protocol use§(logn) colors.

Proof. Though it is more difficult, the proof of Theorem 10 is very #anto the proof
in [33, Theorem 8]. Observe first that the only randomized phthe algorithm is the
attempt ofu to allocate a color (cf. line 7); after what, all steps areed®inistic. So,



whenever it is successful, such an attempt can easily bé&etidxy the initiatou, since

u maintains the list of nodes ifi(u) and inT'2(u). Precisely, the algorithm builds a new

graphin which each new edge is (virtually) added betweeryaaar of 2-hop neighbors.
For any noday, recall thatT"(u) | I'2(u) represents the set of its direct and 2-hop

neighbors and lep, denote the size of its current palette. Now, define the randhmmn

ableY, as follows,

Y = I 1 if the nodeuremains uncolored after the 104 steps 0fAssI GNCOL OR
Y7 | 0 otherwise
(13)
Let FL(P andl“fjt)2 (resp.) denote the set attivedirect and 2-hop neighbors af(resp.)
at any given iteratiort of the algorithm. Suppose that we are in such an iteration
Independently of its previous attempiistemains uncolored with probability

1 1 1 T Tl
Put = (1_(A+pu)) LTyl bl (1_(A+pn)) - (19

where there is at leastdirect collision with a neighbop e Fﬂt) or a “2-hop collisior

with a neighbon e Fff)z.

For allt, |1“L(,t)| < A, |FS)2| < Azand, forallo,1 < |py] < A+ A2+ 1. Of more
importanceA = O(logn) andAz = O(logn). Thus,

(t) t)
1 1\ Tu +ITy 5] 1
<1- —— (= <1-0of_——=).
Pt = 27 ¥ o (A) =1t-0 (Iogn)

Since there aré(log (n)°) iterations, there exists a constarguch that, with probability

at most
1 O(logn)3 X
(1 -0 (m)) < exp(—a log (n) )

u remains uncolored during the whole algorithm. The expeatetiber of uncolored
vertices at the end of the protoocdtsi GNCoOL OR is thus less than

E(Y)= > E(Yy) < n exp(-@(log (n)z)). (15)
u
Finally, by Markov inequality (cf. e.g. [3]), the proof of Eorem 10 follows. [ |

4.4. An optimal gossiping algorithm i?(./nlogn) rounds

The 2-hop coloring process induces a natural schedulirgittign for gossip. The gossip
algorithm is very intuitive: oncéV is colored, in each round every stations allowed
to transmitiff its colorcy is such thafli M modc, = 0 (whereTI ME is a function



that returns the global current round). Procedbossi P below starts with a randomly
deployed set of stations and uses all the procedures dedgiBviously.

ProcedureGossi p
Step 1:Start estimating the main characteristics\6fwith SFR(1/|X|);
Such procedure allows all stations to get estimates on dmstnission range,
the maximal degred, the hop diameteD and the number of active nodes
Step 2: Allocate temporary IDs to the stations wittmpl DS(N);
(*x N denotes a probabilistic upper-boundo#f)
Step 3:Color the graph wittAssi GNCoL OR(N);
Step 4: Use the obtained colors as follows:
Repeat100 x /N/Tog N times
For each node with colorcy
If TI ME modcy = 0Then
Transmit all known IDs;
Endlf
EndRepeat
End.

Since,AssI GNCOL OR assignsD(logn) distinct colors and the hop-diameter of the
N is given byD = O(y/n/logn), we easily derive the following immediate but impor-
tant result.

Theorem 11 If the random plane network is typical, then the procedBessi P re-

quiresO(4/nlogn) rounds and for every pair of statiortg, v), u receives the temporary
ID of v with high probability.

4.5. An optimal initialization algorithm i (D A) rounds

The initialization procedure below is a straightforwarshsequence of the above algo-
rithm.

Procedurel NI T1 ALI ZATI ON(N)

Gossl P;

For each station, sort all received messages;

ID (u) = rank ofu in the sorted array of temporary IDs;
End.

Theorem 12 With high probability, the proceduréNI T1 ALI ZATI ON(|X]|) assigns
each station of\" one unique identity ranging frothto n in O(y/nlogn) rounds.

Corollary 13 The gossiping and initialization algorithms presented \abare asymp-
totically optimal.

Proof. This is an immediate consequence of the results of Kushileuid Mansour
in [21]. Since gossiping and initializing are harder thandatcasting, which requires
Q(Dlog(n/D)) rounds in graphs such as random plane networks, they botiireeaf



leastQ (D log(n/D)) rounds. Fortunatelyp A and D log (n/D) have a same order of
magnitude (w.h.p) ioV. |

Note that all the above results remain valid wi@iin'/3(logn)%3) is substituted
for O(4/nlogn), inside a cube (instead of a square).

5. Divide-and-conquer algorithms and energy-efficient préocols

In this Section, we present a randomized algorithm runningi(n®* log (n)*/4)
rounds, with no station being awake for more th@n(n'/4 log(n)*4) rounds. It
is shown that our sublinear and energy-efficient initigl@a algorithm is at most
O (logn/loglogn) far from optimality, with respect to the number of roundsturieed.
In fact, the running time i€ (D logn) = O(DA), whereA is the maximum degree of
N andD denotes its hop-diameter. Indeed, it was shown in [22] thalhe same setting,
the easiest broadcasting problem requig® log logn) rounds.

The main lines of the algorithms are given below.
In order to schedule all communications, the station&'afre colored in such a way that
any pair(u, v) of nodes within distance 2 are assigned two distinct colors. This color-
ing algorithm suggests a natural scheduling of all the cominations in our protocols.
This specific algorithm and some others are caledPARATI ON protocols.

Next, the divide-and-conquer principle is applied. We ®uthe graph (witlCL USTERI NG),
with a specific node called th@uster headn each cluster. Every cluster is then locally
initialized (withLOCAL 1 NI TI ALI ZATI ON).

Finally, the global initialization stepGL OBAL | NI TI ALI ZATI ON) is carried out over
the graph of clusters. All communications are realized l@adpecific paths constructed
between neighboring clusters (by swapping over from onle fgafnother). A gossiping
algorithm between all cluster heads just followed by a ragkilgorithm complete this
last step.

In light of the previous Sections, we know thitsatisfies the following main char-
acteristics with high probability.
e There exist two constantg andC, such that the degres of any noder meets the
condition

celogn < d, < C/logn.

e NV is (¢, logn)-connected.
e The hop-diameter (or diameter) .&f meets the conditio® = © (logn).

5.1. Clustering

The aim of this step is to design a randomized algorithm thditpns the set of nodes
into disjoint groups. The hop-diameter of each group rabgéseerk and X, wherek is

a parameter that will be fixed later in the analysis of the @llgm. In each cluster, there
is a specific node called treuster head CH for short). The principle of the clustering
algorithm is simple and intuitive.



At first, each node becomes a candidate cluster head withtairc@robability. If
two or more candidate cluster heads are too close from e&eh @tiz. they are within
distance less thak-hops ), all of them must be eliminated but one, which is abnsi
ered the true cluster head. This can be done by choosing titkdede with the biggest
TEMPID amongst all others; eliminated candidates become nanotés.

In the end of the algorithm, we have to collect@phannodes, that is all the nodes
which are not within &-hop neighborhood of the newly marked out.CThe orphans
choose the nearestHCamong all the possible cluster heads in their respectivbdd
neighborhood. During the clustering protocol, every comioation is mainly performed
by using the 2-hop coloration algorithm mentioned above.

This partitioning process is a key ingredient of our iniiation algorithm. After the
execution of the clustering protocol, each cluster can tialized locally.

5.2. Local initialization

In order to initialize each cluster locally, the proto€dssi p is used. The idea is very
similar to those in [34]. The local initialization protodslexecuted distributively by all
the stations in all the clusters. Every nodeNnhtransmits its EMPID to all other sta-
tions. The gossiping protocol uses the collision-free daker that the coloration algo-
rithm provides and when a station receives a messagg it appends its EMPID to
msgand transmits this new message to all its neighbors. Sirecedloration algorithm
usesO(logn) colors,aftei®(k logn) rounds, all stations know theeEmpIDs of all other
stations in their cluster. Finally, the rank of theNirPID of a station simply becomes its
local ID (denoted locALID).

Upon termination of the local initialization step, eachtista owns two “IDs”: its tem-
porary ID (TEMPID) and its local ID (LocALID), according to the cluster it belongs
to.

5.3. Paths between the clusters

In the next step, the paths of communication between eastecimust be constructed.
The idea is as follows. During such communications, aligtatare intentionallasleep
to save their batteries, except the stations on such conuattion paths. To avoid “energy
holes” (on the most crowded paths), we have to find out as miajoirt paths as possible
and swap over from one path to another.

5.4. Global initialization

The global initialization step is performed by means of asggiag algorithm between
all cluster heads, just followed by a ranking algorithm. édmmunications are carried
out via the disjoint paths between clusters, and by skipfsimg one path to the other.

Figures 7 and 8 describe and briefly summarize the main sfaps itialization pro-
tocol.
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Figure 7. Division of the graph into disjoint clusters and local ialization of each cluster. In the figure on
the right above, 3 clusters are initialized with integersmiag from 1 to 141, from 1 to 287, and from 1 to 192,
respectively.

Cluster
Head

[1.173]

[1..141) ey
- = wid
- ..

L

1..287]

Figure 8. After the paths construction between clusters (dashed)litiee global initialization is just executed
by means of the gossiping algorithm performed via thesespath

5.5. Detailed Algorithms and Analysis

In this Subsection, we are concerned with three basic dhgns which are fre-
quently used and discussed throughout the remainder ofghperpFirst, the protocol
AsSI GNCOL OR is executed (see the design in [34, Section VA}$SI GNCOL OR re-
quiresO (Iog (n)4) rounds and use8 (logn) colors. After the execution &ssi1 GNCOL OR,
any two stations within 2 hops-distance receive two distaodes (colors) with high
probability. Once it is well-colored\ is collision-free and we are now ready to design
the protocoBROADCAST. (The pseudo-code is in Fig. 9.)

It is easily seen that such an algorithm requitd& log n) rounds, under the condi-
tion that the randomized coloring algorithm succeeds witibpbility 1 (i.e, it errs with
probability 0).

One can design a gossip algorithm based UPROADCAST. In the gossiping problem,
the task is to sped out the information contained in eacliostéb all others. Such a
protocol can be derived from the broadcasting one by chgregfiew lines, as described
in Fig. 10.

Since there ar@(logn) colors andk steps, the execution time @bssi p(k) is the same
asBroabpcAasT(k): O(klogn).



Procedure BROADCAST(msg: messagé,: integer )
Begin
Repeat(100x k x logn) times
For a noda colored withcy, upon receiving a message of the fofmsg k) Do
If (TIME modcy) =0andk > 0Then
BROADCAST(msg k — 1) EndIf
EndRepeat
End

O ~NO O, WNPE

Figure 9. The BROADCASTING protocol.

1 ProcedureGossi p(k : integer)
2 Begin
3 Repeat(100x k x logn) times
4  For each statiow with initial messagensgu) and coloredy,
upon receiving any message of the fopnsg k) Do
5 If(TIME modcy) =0andk > 0 Then
6 msg= appendmsg msgu));
7 TRANSMI T(MSQ);
8 Gossl p(k — 1) EndIf;
9 EndRepeat
10 End

Figure 10. The GOSSIPING protocol.
5.6. Random clustering

In order to apply a divide-and-conquer algorithm, we detiigrprotocolCLUSTERI NG,
which works as follows.

At first, each station chooses to be a candidate cluster i@&#8dxith a certain probabil-
ity (to be specified later in the analysis). The protocol méee following specifications:

(i) each cluster has atG
(i) each node knows itsKG which is at most within R-hops distance;
(iif) any two GHs are at a distance of at le&st 1 hops from each other.

Therefore, there exist randomly chosen candidates in thpatiareaX. In order to
satisfy specificatiofiii) , a few candidates which are too close from each other must be
eliminated.

By using a broadcasting algorithm at a distakdgith BROADCAST), each candi-
date G4 can detect whether there exist some other candidateskirhite neighborhood.
The candidate with the biggestemprID becomes a true i€and all others are eliminated.
Finally, the orphans (nodes without adiCare collected as follows (witl€oLLECT).
Every (H executes a protocol, with a specific message that enablesgatan to choose
the nearest g in its 2k-neighborhood.
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ProcedureCoL LECT(] : integer)
Begin
For each noda Do
If uis a cluster hea@hen
Repeat(100x j x logn) times
If (TIME modcy) =0Then
TRANSMI T(TEMPID,1)
EndRepeat
Else
CLUSTER(U) := NIL, distance :=x;
Upon receiving a message of the fofffEMpID, radius
EndIf
If distance> radiusThen
CLUSTER(u) := TEMPID, distance = radius;
Repeat(100x j x logn) times
If (TIME modcy) =0Then
TRANSMI T(CLUSTER(u),distance-1);
EndRepeat
EndIf
EndElse
End

ProcedureCLUSTERI NG(K : integerp : float)

Begin

Step 1:Each station chooses to be a CANDIDATE cluster head with gindiby
p;

Step 2:For each CANDIDATE station ruBROADCAST(TEMPID,K);

Step 3: Upon receiving a broadcasting message, eliminate the datedi which
TEMPID is smaller than the ID(s) of some other(s) candidate(s).

Step 4:The remaining candidates are now cluster heads and brdddeasTEM-

PID by means ofCoL LECT(TEMPID,2k), to inform the stations atk2hop dis-
tance of their presence and status.

Step 5:For each noda, CLUSTER(u) is set to the nearest cluster head among the
nodes that invocated the protocbL LECT.

End

From Section 3, we derive the following result.

Theorem 14 CLUSTERI NG(K,P) requires© (max(k logn, log (n)#)) rounds. After the
execution of the protoc@L USTERI NG, w.h.p. any station belongs to a specified cluster
and knows its cluster head, which is at a distance of at ralo$tops.



Proof. By choosingP o 9/(k?(1 + ¢) log (n)), we make sure that the disks with radius
kr that are centered at the candidate stations achieve a fidt@ge of the support area
More precisely, let be the random variable counting the number of candidat®stat
The average number of candidate stations is giveR({@y = nP.

H n _ n
By Chernov bounds, we know that, SINGR T A Togm — O E=0 (Wg(n))
w.h.p. Hence, standard calculus yields

1
P (350 << < 280)) = 1- exp( - 05 (16)

Next, by virtue of the result in [25, Thm. 3.2], i/ BE(&)k?r2 > 2.83|X| the disks
generated by the candidate stations ensure a full covefdage support aregX| w.h.p.
Then, it is easily seen that the elimination of two “colligincandidate Gs can be
worked out by using thBROADCAST protocol. Similarly, any station which still needs
a cluster head is assigned the closesti€its 2k-hops neighborhood, by means of the
COLLECT protocol.

Finally, CLUSTERI NGis made ofAssI GNCoL ORandBROADCAST, which require
o (Iog (n)4) (cf. [34]) andO(k logn) rounds, respectively. Hence, the time complexity

of CLUSTERI NGis clearlyO (max(klogn, log (n)?)). [ |

5.7. Learning the neighborhood and local initialization

The aim of the protocol oTALKNOWL EDGE is to allow each station to “learn” the topol-
ogy of itsi-hops neighborhood, wherés a parameter of the procedure. In order to con-
struct the adjacency matrix of its neighbors, a given nodebes the local procedure
APPENDTOADJ ACENCYMATRI X. It works as follows:

e Every nodeu (with degreed,) maintains a local list_(u), initialized to
L(u) = TEMPID(u) —> NIL.

e Upon receiving the number of its direct neighbotsvy,. . ., vq,, U updated. (u)

to
L(u) =TEMPID(U) > v1 ---vg, = NIL
NIL --- NIL.
e Next, every neighbows, ..., vq, Sends its respective list(v1), ..., L(vq,) thatu

appends to its current list and constructs its own neightmitadjacency matrix.

Clearly, afteri steps each participating node can build its awn i adjacency matrix,
which represents ishops neighborhood.

Procedurd ot ALKNOWL EDGE, which runsAPPENDTOADJ ACENCYMATRI X is as fol-
lows.

1 ProcedureTOTALKNOW.EDGE(i : integer)



2 Begin
3 Each nodel with TEMPID (u) and colored,
maintains a list_(u) = TEMPID (u);
4 t=i;
5 Repeat(100x i x logn) times
6 Ift>0and(TIME modcy) =0Then
7 TRANSMI T(L(u),t);
8 t=t-1;
9 Endlf
10 Upon receiving a list. Do L (u) =APPENDTOADJACENCYMATRI X(L);
11 EndRepeat
12 End

The local initialization protocoLocALl NI T is the combination of the two protocols
CLUSTERI NGandToTALKNOW. EDGE

1 ProcedureLocALl NI T(i : integer)

2 Begin

3 TOTALKNOWL EDGE(i);

4 For each noda belonging to CUSTER(U) LocID(u) = rank ofu
in the sorted array of IDs of all nodes in.GSTER(u);

5 End

5.8. Paths construction between clusters

Each statioru runsToTALKNOWL. EDGE(4K) independently. After whatj owns the ad-
jacency matrix of all its K-hops neighbors. With this information, and the knowledge
of all its neighboring clusters, Bellman-Ford algorithneisecuted. Every node can thus
deterministically build the same routing table between heaghboring clusters; more
precisely, between any given pds, t) of stations, each within its respective cluster, as
described in Fig. 11.

Therefore, the fact that all involved stations do have timeesahoice of the paifs, t)
is important of course. For example, the first pair of stati@t) between two adjacent
clusters may be taken as the two smallest statiodsALIDs in both ones. If such an
(s, t)-path exists, the Bellman-Ford algorithm executed by thiéqipating stations finds
it.
Observe that the latter algorithm is not run distributiv8gsides, the choice of the pa-
rameter & ensures that all these stations have the right requirecdexjg submatrix
(which size is at mostkx 2Kk).
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Figure 11. The choice of = 4k as parameter afoT ALKNOWL EDGE allows the stations to construct all paths
deterministically, one after the other, between any twglmeoring clusters.

5.9. Gossiping over clusters and main results

Finally, a gossiping algorithm over disjoint paths of lemgt most 4, is performed over
the graph of clusters.

As shown in Fig. 12, the communication process between tvighbering clus-
ters is then worked out along the constructed disjoint pathsrder to synchronize the
communication between adjacent clusters, we cut up theititoé'phases” that arekd
rounds long. Each such phase is actually made @d¢ communication delay time: it
serves as a kind of frame in the swap-over process from a giaédnto a next disjoint
one. The gossiping algorithm is therefore deterministic ia each round every station
knows exactly whether sleeping or communicating.
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Figure 12. The square of surfac® k2r2) and itsm regular strips frame, that link two half-covered neigh-
boring clusters for swapping over between the disjoint path

Lemma 15 Let CLUSTER(U) and CLUSTER(») be any two adjacent clusters. W.h.p.,
there exist at leasb(k?) disjoint paths betweeBLUSTER(U) and CLUSTER(v).



Proof. (Sketch)

Let c1k andcyk be the hop-radius of two neighboring clusters. Clearky &1 < 2 and
1 < ¢z < 2. As shown in Fig. 12, there exists a squ&ref surface|S| = O (kr?)
covering half of each two clusters. Sptinto m regular (rectangular) strip§ of equal

size|S§| = (’)(%2) (i € 1, m), and letN; be the number of stations within each strip

S.1fKr2/m>» 1, E(N) = O (k*r?/m) >» 1.
Now, by Chernov bounds, we know that there exist two constargndy; for each
1 <i <m,suchthat

2.2 2.2 2.2
]P’(Vi K <N <y k_r) > 1—eXp(—0(k—r))-
m m m

Next, fixi € 1, m and denotecoy, the transmission range required to have a con-
nected graph inside the strifs. Among other results, Penrose proved in [30] that if
Ni/IS|=O(),

lim ]P’(:r %rgw —log(Ni) < w) = exp(—e_“’).

N; —» oo

Finally, if we letm = O(kZ), then

| N; k2 2
%i)'S' - O(Iog (?r)) = O(log logn). 17)

In the present case, the transmission radius is such that O(logn), and there-
fore, any subgraph withii§ is connected with probability greater than éxm®®).
Since the numbem of strips is at most polynomial im, it is growing much slower
than the above probability of any subgraphSnto be connected; and this holds for all
i =1,2,...,m Hence, w.h.p. the number of disjoint paths betweew£rer(u) and
CLUSTER(v) is at least?(k?), and we are done. |

As an immediate consequence, we have the following mainrEined6.

Theorem 16 Let n stations be randomly deployed on a support area X witina |
ear size|X| = O(n) and assume the radius of transmission of each station to be
r =./(1+¢)log(n)|X|/(zn).

For any k< /n/logn, the initialization of the stations requirgd(k./nTogn) rounds,

with no station being awake for more tha@ (max(v/nTogn/k, klogn, log (n)*))
rounds.

Proof. If each cluster is considered as a graph node, the runnirydfrthe initialization
protocol isO(kDlogn) = O(ky/nlogn) rounds (whereD denotes the hop-diameter of
the graph). Swapping over from (disjoint) path to path betwadjacent clusters requires
that each station is used only evepyk?) rounds, and the result follows. |

Corollary 17 Under the assumptions of Theorem 16, there exists a ranédrmtial-
ization protocol running in0 (n3/4 log (n)1/4) rounds, with no station being awake for

more thanO (n%/ log (n)*#) rounds.



6. Conclusion

In the present paper, a performing and energy-efficientréibgo for the initialization
problem is designed and analyzed. Its running time, as vgetha awake time per
station are both broadly sublinear. More precisely, thestcomplexity of our algo-
rithm achieves?D (n3/4 log (n)1/4) rounds, with no station being awake for more than

O (n* log (n)*/#) rounds.

It is also worth to emphasize the fact that choosing= O(1) yields an almost
time optimal algorithm. In such a case indeed, the runnimg shrinks ta® («/n ogn),

whereas the easier broadcast problem requires atfmé % log Iogn) rounds [9,

logn
loglogn

22]. Hence, our result is at mo@c( ) far from optimality.

Finding the lower-bound on the awake time per station forititéalizing stations
in a random radio network is an open challenging problemtHéumore, an even more
challenging open problem remains of course the design aalgsis of an initialization
algorithm which could reach the latter lower-bound whilepimg a nearly optimal time
complexity.
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