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Abstract. The initialization problem, also known as naming, assigns one unique
identifier (ranging from 1 ton) to a set ofn indistinguishable nodes (stations or
processors) in a given wireless networkN . N is composed ofn nodes randomly
deployed within a square (resp. a cube)X. We assume the time to be slotted andN

to be synchronous; two nodes are able to communicate if they are within a distance
at mostr of each other (r is the transmitting/receiving range). Moreover, if two or
more neighbors of a processoru transmit concurrently at the same round,u does not
receive either messages. After the analysis of various critical transmitting/sensing
ranges for connectivity and coverage of randomly deployed sensor networks, we
design sub-linear randomized initialization and gossiping algorithms with running

timeO
(

n1/2 log (n)1/2
)

andO
(

n1/3 log (n)2/3
)

) in the two-dimensional and the

three-dimensional cases, respectively. Next, we propose energy-efficient initializa-

tion and gossiping algorithms running in timeO
(

n3/4 log (n)1/4
)

, with no station

being awake for more thanO
(

n1/4 log (n)3/4
)

rounds.

Keywords. Coverage, connectivity; hop-diameter; minimum/maximum degrees;
transmitting/sensing ranges; analytical methods; energyconsumption; topology
control; randomized distributed algorithms; fundamentallimits of random radio
networks.

1. Introduction

Distributed, multi-hop wireless networks, such as ad hoc networks, sensor networks or
radio networks, are gaining in importance as subject of research, with very many practical
real-life applications [32]. In the paper, wireless networks are a collection of transmitter-
receiver devices, referred to asnodes stationsor processors, according to the context.

A wireless networkN consists in a group of nodes that can communicate with each
other over a wireless channel. The nodes (or processors) ofN come without ready-made
links and without any centralized controller.N can be modeled by itsreachability graph
G, within which the existence of a directed edgeu → v means thatv can be reached from



u. If all transmitters/receivers have the same power, this underlying graphG is symmet-
ric. As opposed to traditional networks, wireless networksare often composed of a num-
ber of nodes that can be several orders of magnitude higher than the size of conventional
networks [2]. Sensor nodes are often deployed inside a medium. Therefore, the positions
of these nodes need not be engineered or pre-determined. This allows random and rapid
deployment in inaccessible terrains and suit well the specific needs to disaster-relief, law
enforcement, collaborative computing and other special purpose applications.

As customary [3,4,5,9,17,26,27] the time is assumed to be slotted and nodes (pro-
cessors) can send messages in synchronousrounds(or time slots). In each round, every
node can act either as atransmitteror asreceiver. A nodeu acting as receiver in a given
round gets a message, if and only if, exactly one of its neighbors is transmitting within
the same round. If more than two neighbors ofu are transmitting simultaneously,u re-
ceives nothing. More precisely, such a networkN has no ability to distinguish between
the absence of message and at least one collision or conflict.This assumption is moti-
vated by the fact that, in many real-life situations, the (tiny) devices used do not always
have the collision detection ability. Moreover, even if such detection mechanism were
present, it should be of limited value; especially in the presence of some noisy chan-
nels. Therefore, it is highly desirable to design algorithms that work independently of the
existence/absence of any collision detection mechanisms.

We consider that then nodes ofN are initiallyhomogeneously scatteredin a square
X of size|X| (or in a cubeX of volume|X|). As in several applications, the users ofN

can move, and therefore the topology is unstable. For this reason, we wish the algorithms
to refrain from assumptions about the topology ofN or about initial information that
processors may have concerning the topology. In the presentpaper, we assume that no
processors has any topological knowledge, except the measure (surface or volume)|X|
of X, where they are randomly dropped. Besides, observe that even if |X| is known ex-
actly whilen is not (viz. exactly, or up to its order of magnitude:n = O(|X|)), an equa-
tion such as Eq. (6) in Theorem 2 (see below) allows to handle subtle changes involved
betweenO(n) andO(|X|) and occurring in the constants hidden in the “big-Ohs”. More-
over, these assumptions are strengthened by the fact that during their deployment some
nodes can be faulty with unknown probability.

Methods to achieveself-configurationand/orself-organizationof networking de-
vices appear to be amongst the most important challenges in wireless computing [2].
Initialization is part of these methods: before networking, each node must have aunique
identity (identifier or address) denotedID. A mechanism that allowsN to create a
unique identity (ID) automatically for each of its participating nodes is anaddress self-
configurationalgorithm. In the present paper, nodes are initiallyindistinguishable. This
assumption arises naturally, since it may be difficult or impossible to get interface serial
numbers while on missions (see also [17,26,27]). Thus, the IDs of such self-configuration
algorithms must not rely on the existence of serial numbers.

The problem addressed here is to design and analyze afully distributed algorithms
for the initialization problem. As far as we know, the initialization problem was first
handled in the seminal papers of Hayashi, Nakano and Olariu [17,26,27] for the case
whenG is complete. (For the sake of simplicity, we writeN (a wireless network) forG
(its underlying reachability graph) when appropriate.)

Note that the transmitting range of each station can be set tosome valuer ranging
from 0 torMAX . Such a model is commonly used in mobile computing and radio network-



ing [7,19,33]. It is frequently encountered in many domains, from statistical physics to
epidemiology (see e.g., [16] for the theory of coverage processes or [23] for percolative
ingredients). The random graphs generated in such a way havebeen first considered in
the seminal paper of Gilbert [14] (almost simultaneously, Erdös and Rényi considered the
well-knownG(n, p) model [12]). The analysis of their properties, such as connectivity
and coverage, have been the subject of intense studies [15,24,28,29,30,31].

Fig. 1 shows devices randomly deployed on some field. The depicted examples sug-
gest that transmission ranges can play a crucial role when setting protocols at least for
randomly distributed nodes (stations). Other parameters of importance are the numbern
of active nodes, the shape of the areaX where stations are scattered and the nature of the
communications to be established.

Figure 1. A typical radio network is generated according to the uniform distribution of coordinates of the
devices. The transmission ranges of stations are graduallyincreasing from left to right. The last two pictures
show that if the graph obtained has more edges than needed, the number of colliding packets is more difficult
to control.

Considering the above observations, the design of efficientalgorithms requires to
take into account and to exploit the structural properties of N . In our scenario, since
none of the nodes knows the numbern of stations inN , our first task is to find dis-
tributed algorithms that allow a probabilistic counting ofthese nodes. Then, by setting
the transmitting range parameter correctly,N can be self-initialized with high proba-
bility1. This is achieved inO

(

n1/2 log(n)1/2) rounds in the two-dimensional case and
in O

(

n1/3 log(n)2/3) rounds in the three-dimensional case2. As far as we know, this is
the first analysis of multi-hop initialization protocols (single-hop protocols are treated
in [17,26,27,33]). Our algorithms are shown to take advantage of the fundamental char-
acteristics ofN . Such limits are computed with the help of fully distributedalgorithms:
once known, an initialization algorithm is run to assign each of then stations (nodes)
one distinct ID ranging from 1 ton. Whenever all IDs are assigned, and even though the
algorithm is probabilistic, one can checkdeterministicallywhether each ID is unique (if
needed). For the purpose, deterministic linear algorithms(for example) can be used, such
as the gossip protocol for symmetric networks in [22, Section 5].

Under the conditions described above, Figures 2 and 3 summarize briefly the input
and output of the distributed initialization algorithms presented.

In order to implement the initialization problem, we use a gossip algorithm. Gos-
siping and broadcasting [8] are fundamental techniques forspreading out information,

1Throughout the paper, an eventEn is said to occurasymptotically almost surelyif, and only if, the proba-
bility P (En) tends to 1 asn → ∞. We also sayEn occurswith high probability(w.h.p. for short).

2In this paper, log denotes the natural logarithm.
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Figure 2. n indistinguishable processors
randomly placed in the squareX. The only
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Figure 3. Each of then processors (stations) is as-
signed a unique ID ranging from 1 ton. The IDs can
serve as IP address (heren = 24).

and they represent naturally the most extensive studied problems in radio networks (see
for instance [9,22] and references therein). In the gossiping problem, every station is
initially given one distinct message that needs to be sent toall other ones. Under the
same assumptions as above, we design a randomized gossipingalgorithm that performs
its task w.h.p. inO

(

n1/2 log(n)1/2) andO
(

n1/3 log(n)2/3) rounds in the two and three
dimension cases, respectively.

Finally, it is shown that bothsub-linearalgorithms (gossiping and initialization) are
asymptotically optimal, since they achieve (w.h.p.)O(D logn) = O(D1) rounds, where
1 is the maximum degree ofN andD its hop-diameter.

Outline of the paper. The paper is organized as follows. Section 2 presents a random-
ized distributed algorithmSEND for sending information in our settings. Next, this algo-
rithm is analyzed. In Section 3, we discuss how to set correctly the transmission range of
the nodes. Section 3 also provides results on the relationship between the transmission
ranger , the number of active nodesn, the size ofX, the maximum degree1 and the
hop-diameterD of N . These results and the use of the procedureSEND allow to build a
broadcasting protocolBROADCAST. The Section ends with the design and analysis of a
protocol namedSFR (Search-For-Range), which serves to find the appropriate transmis-
sion range distributively. More precisely, by varying the transmission range, the protocol
SFR broadly provides orders of magnitude of the characteristics ofN . Section 4 presents
the randomized gossiping algorithm specifically intended for random wireless networks.
This Section is organized as follows: we first present a randomized algorithm that colors
the nodes ofN in such a way that every pair of processors(u, v) within a distance of
at most two hops from each other is assigned two distinct colors. Though “greedy”, the
latter algorithm is shown to color the graph in polylogarithmic rounds (depending onn)
usingO(1) = O(logn) colors. This efficient coloring algorithm treats the directand
hidden terminal problems. Once it is obtained, the 2-hop coloration leads to a natural
scheduling of the communications to gossip inO(D1) rounds. In turns, the gossiping
algorithm is used to initializeN . This is easily done by means of a simple ranking ar-



gument. Section 4 ends with the proofs of correctness and optimality of both algorithms
(gossiping and initialization protocols). Finally, Section 5 presents an energy-efficient
initialization algorithm based on an energy-efficient gossiping algorithm.

2. Basic protocols for sending information

First, no deterministic algorithm can work correctly in wireless networks when proces-
sors are anonymous. This is easily checked: conflict betweentwo indistinguishable nodes
can not be solved deterministically. Therefore, this impossibility result implies the use
of randomness (see [5]). Since processors do not have identifiers (IDs), the first task is to
design a basic protocol for the nodes which compete locally to access the unique channel
of communication in order to send a given message. This can beachieved by organizing
a flipping coin game between them. Recall also that if the transmission/receiving range
is set to a valuer , only neighbors within distance less thanr are able to communicate
in the absence of conflicts. In [30], Penrose proves that there exists a common radius of
transmission to achieve the connectivity of the reachability graph.

In the very simple following procedure this parameter as well as the durationT of
the trials must be taken into account.

ProcedureSEND(msg,T,r )
For i from 0 toT do
With probability 1/2i sendmsgto every neighbor (⋆ to all processors at distance≤ r ⋆)
end

Note thatr is a parameter which can be tuned to a precise value. Again, itis clear that
only neighbors within a distance of at mostr can receive the message when there is no
conflict. Therefore, we have the following definition.

Definition 1 Given a transmission radius r and a set of n nodes uniformly and inde-
pendently scattered in a square X of size|X| = O(n), a random graph is defined by
adding edge between any pair of nodes(x, y), such that the Euclidean distance between
x and y is less than or equals to r . Denote by rCON the transmission range required to
have a connected graph. For a fixed radius of transmission r , let dv (depending on r, i.e.
dv ≡ dv(r )) be the degree of any given nodev.

Theorem 1 Let r ≥ rCON be the current transmission range of the processors. Suppose
that each of the dv neighbors ofv starts the execution ofSEND(msg, T, r ) in the same
round. LetP(T, dv) be the probability thatv receives the message msg at least once
between the time t= 0 and the time t= T .
Then, there exists a function f(T, dv) = O(dv/2T ) + O(1/

√
dv) such thatP(T, dv)

satisfies

.8111+ f (T, dv ) ≤ P(T, dv) ≤ .8113+ f (T, dv ). (1)

Proof. The assumption thatN is connected ensures that, for any nodev, the degree ofv
is such thatdv > 0.

We haveP(T, dv) = 1 −
∏T

i=0

(

1 −
(dv

1

)

/2i
(

1 − 1/2i
)dv
)

, since only one of thev



neighbors can succeed:v and all otherdv − 1 nodes are kept silent. For any giveni1 and

for all i ≥ i1,

(

1 − d/2i
(

1 − 1/2i
)d
)

≤
(

1 − d/2i exp
(

−d/2i (1 + 1/2i1)
)

)

. So, if

2t ≫ d, by choosingi1 = ⌈1/2 log2 d⌉, we obtain after a bit of standard algebra

1 − P(t, d) ≤ exp



−
∑

m≥1

1

m

t
∑

i=i1

dm

2im
exp

(

−
dm

2i

(

1 + O

(

1
√

d

)))



. (2)

Now, by Mellin transform asymptotics methods (see [13] and [20, p. 131]), for any
m ≥ 1,

∣

∣

∣

∣

∣

∣

t
∑

i=i1

dm

2im exp

(

−
dm

2i

(

1 + O

(

1
√

d

)))

−
m

mm+1 log 2

∣

∣

∣

∣

∣

∣

≤
10−5

mm log 2

+ O

(

1
√

d

)

+ O

(

dm

2tm

)

, (3)

where the 10−5 term is due to small fluctuations: the amplitude of the tiny coefficients of
the Fourier series occurring in Mellin transform asymptotics [13].

Next, sincem/mm+2 ≤ e−m/m whenm ≥ 7,

6
∑

m=1

m

mm+2
≤

∞
∑

m=1

m

mm+2
≤

6
∑

m=1

m

mm+2
+

∞
∑

m=7

e−m

m

and

∞
∑

m=7

e−m

m
= −

1

60e6

(

60e6 ln
(

1−1/e
)

+ 60e5+30e4 + 20e3 + 15e2 + 12e+ 10
)

,

we derive

.18 869. . . ≤ exp

(

−
∞
∑

m=1

m

mm+2 ln 2

)

≤ .18 879. . . (4)

Similarly, for anyx ∈ 0, 1 andd ≥ 1, (1 − x)d ≤ e−dx.

Therefore,
(

1 − d/2i (1 − 1
2i )

d
)

≥ 1 − d/2i exp(−d/2i ), and this time we get

exp



−
∑

m≥1

1

m

t
∑

i=i1

dm

2im
exp

(

−
dm

2i

)



 ≤ 1 − P(t, d). (5)

Using the latter inequality yields Eq. (1) after computations similar to Eqs. (3) and (4).

In [5], Bar-Yehudaet al. designed a randomized procedure calledDECAY to send
information with probability of success larger than1

2 (see for instance [5, p. 108-109]).



In our procedureSEND, the proof of Theorem 1 (see also [13]) shows that, by chang-
ing the basis of the coin flipping game, viz. by substituting the probability 1/ai for 1/2i

in the algorithm for any constanta > 1, the probability of success of theT trials can be
made arbitrary close to 1 (also with a logarithmic number of rounds such thataT ≫ d).

In the next Section, we turn to the problem of finding suitablevalues of transmission
range whenever the onlya priori knowledge of processors is|X|.

3. Transmission ranges and characteristics ofN

The aim of this Section is to provide randomized distributedalgorithms that allow the
stations ofN to find the required transmission range to achieve at least connectivity of
N . To this end, we need to know the relationships between the transmission ranger ,
the number of processorsn and the measure|X| of the support. Other characteristics of
interest, such as the minimum (resp. maximum) degreeδ (resp.1) and the hop-diameter
D of N , are also fundamental for setting wireless algorithms (see[5]). Moreover, the
limits of the randomly generated networkN help when designing such algorithms. We
refer here to [14,15,24,31,36,37] for works related to random networks. Two distinct
problems are addressed in this Section.

• The first one (Subsection 3.1) concerns the characteristicsof the reachability
graphG in the superconnectivity regime, i.e. when the radius of transmission of
the stations grows much faster than the one required to achieve connectivity ofG.

• Subsection 3.2 is devoted to the design and analysis of a distributed protocolSFR,
that will allow the nodes to approximate the aforementionedcharacteristics.

3.1. Fundamental limits of a random graphs in the superconnectivity regime

Following Miles’s model [24], a great numbern of devices are dropped in some areaX.
As n → ∞ with n = O(|X|), the graph generated by the transmitting devices can be
well approximated with a Poisson point process (see e.g. [16]). First of all, its extremein-
dependenceproperty allows penetrating analysis. Next, Poisson processes remaininvari-
ant if their points are independently translated (translations being identically distributed
with some bivariate distribution: direction and distance). So, the results may take their
importance formoving stationsand therefore, they are well suited to randomly deployed
mobile devices. Last, if with probabilityp such thatp n = O(|X|), some nodes arefaulty
or intentionallyasleep(e.g. for saving batteries in energy-efficient algorithms [27]), our
results remain valid. This is due to Poisson processes properties and in the latter scenario,
the number of nodesn is simply replaced byn′ = p n.

Among other results, Penrose [30] proved that ifn/|X| = O(1) and X is a two
dimensional area, then

lim
n→∞

P

(

n

|X|
π r 2

CON − log(n) ≤ ω

)

= exp(−e−ω), ω ∈ R.

Penrose’s result asserts that, by letting the radius of transmission range grow as



r =
√

logn + ω(n)

πn
|X|

for any arbitrary functionω(n) tending to infinity withn, the graph obtained is a.a.s.
connected.

For our purpose, we need the following results related to thedegrees of the nodes
according to the successive orders of magnitude of transmission range values.

Theorem 2 Let r denote the transmission range of the n nodes randomly distributed in
the square X of size|X| = O(n). Then, in the following three regimes, the graph G is
connected with high probability:

(i) For fixed values of k, that is k= O(1), if πr 2 n/|X| = logn+k log logn+ω(n),
then G has a.a.s. a minimum degreeδ = k.

(ii) Let k ≡ k(n) and1 ≪ k ≪ logn/ log logn.
If πr 2 n/|X| = logn+k(n) log logn, then the minimum and the maximum degree
(resp.) are a.a.s.δ = k(n) and1 = e logn (resp.).

(iii) If πr 2 n/|X| = (1 + ℓ) logn with ℓ > 0, then each nodev of G has a.a.s. dv
neighbors with

−
ℓ logn

W−1

(

− ℓ
e(1+ℓ)

) + o(logn) ≤ dv ≤ −
ℓ logn

W0

(

− ℓ
e(1+ℓ)

) + o (logn) , (6)

where W−1 and W0 denote the two branches of the Lambert W function3 which
are detailed in [10]. Moreover, in the case whenπr 2 n/|X| = (1 + ℓ) logn with
ℓ > 0, each geographical point of the support X is also recovered by 2(logn)

disks of transmission.

Sketchproof.For the proof of Theorem 2, we refer to [33], where asymptoticcoverage
as well as connectivity properties are treated in details for the ranges of transmission
considered in Theorem 2.
Observe that in the 3-dimensional case (with a cube instead of a square), similar results
hold with the same assumptions as in Theorem 2: every occurrence of the surface (πr 2)
being replaced by the volume (4/3πr 3). For example, to have each point of the cube
recovered by2(logn) balls, it is sufficient to set the transmission radius to the value
r = 3

√

3 (1 + ℓ) logn |X|/4πn. In this case, w.h.p. the degreedv of each nodev also
satisfies Eq. (6).

In the remainder of the paper, we mainly concentrate our attention on results re-
lated to the 2-dimensional case, since there exist direct correspondences with the 3-
dimensional case, such as the one mentioned above.

Next, we derive an upper-bound of the hop-diameterD in the superconnectivity
regime.

3The Lambert W function is usually considered as a “special function” and its computation has been imple-
mented in mathematical softwares such as Maple.



Theorem 3 Let D ≡ D(r ) be the hop-diameter of G. Suppose that the transmission
range meets the condition r=

√

3 (1 + ℓ) logn |X|/4πn, withℓ > 0. Then

(i) If ℓ > 4−π
π−2 ,

lim
n→∞

P

(

D ≤ 3
√

π n

(1 + ℓ) logn
+ O(1)

)

= 1. (7)

(ii) If ℓ ≤ 4−π
π−2 ,

lim
n→∞

P

(

D ≤ 5
√

π n

(1 + ℓ) logn
+ O(1)

)

= 1. (8)

Proof. Split the squareX into j 2 equal subsquaresS1, S2, . . . , Sj 2. Each of the sub-
squares has a side

√
|X|/ j and an area|X|/ j 2. Choosej such that each subsquareSi can

entirely contain a disk of radiusr as depicted below.

√
|X|/j

Subdivision ofX

· · ·

Size|X|/ j 2

√
|X|/2 j = r =

√

(1 + ℓ) logn |X|/πn.
So, j = 1/2

√

πn 1/(1 + ℓ) logn. For the
sake of simplicity but w.l.o.g., assumej to
be a non negative integer. By Theorem 2
(property (iii) ), there are2(logn) nodes
inside the disk with high probability.

Any pair of nodes inside the same disk needsat most2 hops to get connected, since
they are within a distance of at most 2r and since each subgraph inside such a disk is
a.a.s. connected.

Lemma 4 Communications between two adjacent subsquares S1 and S2, viz. between
any node a∈ S1 and any node b∈ S2, need at most (w.h.p.)

a) 6 hops whenℓ > 4−π
π−2 = 0.7519. . . and

b) 10hops whenℓ ≤ 4−π
π−2.

Proof. Consider adjacent subsquares as depicted in Figs. 4, 5 and 6.
A bit of trigonometry shows that each lens-shaped region such asL1 (in Fig. 4) has a
surface|L1| = 1/6 (4π − 3

√
3)r 2.

L1 represents the intersection of two disks of equal radiusr whose centers are at distance
r . Therefore, there is no node inside the lens-shaped regionL1 with probability

(

1 −
|L1|
|X|

)n

=
(

1 −
1

6
(4π − 3

√
3)

(1 + ℓ) logn

n

)n

≤ exp

(

−
1

6
(4π − 3

√
3)(1 + ℓ)n

)

.
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Figure 4. Horizontal transmission.
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Figure 5. Diagonal transmission.
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Figure 6. “Indirect” transmission.

Since each subsquare has at most 4 lenses of size|L1|, none of these regions is
empty with probability at least

(

1 − exp

(

−
1

6
(4π − 3

√
3)(1 + ℓ)n

))4 j 2

≥

exp

(

−2
πn1− 1

6 (4π−3
√

3)(1+ℓ)

(1 + ℓ) logn

)

. (9)

Hence, with probability tending to 1 asn → ∞, there is at least a node in every lens-
shaped region of size|L1| . So, 6 hops at most are needed to transmit a message between
two horizontally (or vertically) adjacent subsquares (seeFig. 4), and whencea) holds.

To proveb), we consider lenses such asL2 depicted in Fig. 5. The size of such region
is |L2| = r 2 (π − 2)/2, which measures the area of the intersection of two equal disks of
radiusr and at distance

√
2r . With arguments similar to Eq. (9),(1 + ℓ)(π − 2)/2 > 1

must hold for every lens of size|L2| to be non-empty (w.h.p.). This condition holds only
whenℓ > 2/(π − 2) − 1 = 0.7519. . .. For values ofℓ ≤ 0.7519. . ., transmissions
are sent horizontally and then vertically (or vice-versa).Such transmissions can required
up to 10 hops (cf. Fig. 6). The proof of the Theorem is now easily completed by simple
counting arguments.

In the 3-dimensional case, we have the following result.



Theorem 5 Suppose that n sensor nodes are randomly deployed in a cubic region of
volume|X| according to the uniform distribution. If their common transmission range is
set to r = 3

√

3 (1 + ℓ) logn |X|/4πn withℓ > 11/5, then the diameter D ofN satisfies

lim
n→∞

P

[

D ≤ 12 3

√

π n

6 (1 + ℓ) logn

]

= 1. (10)

Proof. See [33].

3.2. BROADCAST andSFR (Search-For-Range) protocols

Subsection 3.1 gives almost sure characteristics ofN . Now, we have to verify and
to exchange such information by means of distributed algorithms. Two procedures are
needed. The first one is the protocolBROADCAST. In this algorithm, some stations
(calledsources) try to scatter a given message to all other nodes inN . It makes sev-
eral calls ofSEND. The second is the protocolSFR (Search-For-Range). It is used to
adjust the correct transmission range of the nodes, in orderto “take control” of the main
characteristics ofN . SFR works as follows.

Each station starts with the maximum range of transmission.Then, at each step,
the transmission range is reduced gradually, till some of the nodes are disconnected. At
this stage, all newly isolated nodes readjust their transmission range to get reconnected.
Each of them uses the protocolBROADCAST to sped out its “disconnection” message
informing all other nodes inN . A node quits the protocol in two cases only: either
whenever it broadcasts the “disconnection” message once reconnected after isolation, or
after reception of a “disconnection” message containing information about the adequate
transmission range.

3.2.1. The broadcasting protocol

The procedureBROADCAST is similar to the one designed in [5] except for the use of
SEND to transmit messages.

ProcedureBROADCAST(msg,ǫ,1,r ,N)
k = 2⌈log2 1⌉ (⋆ 1 is an upper-bound of the maximum degree⋆)
τ = ⌈log2 (N/ǫ)⌉ (⋆ N is an upper-bound of the number of nodes⋆)
Wait until receiving a messagemsg
For i from 1 toτ do

Wait until TIME modk = 1 (⋆ to synchronize⋆)
SEND(msg, k, r ) (⋆ attempt to sendmsg⋆)

end.

In the above procedure,ǫ > 0 can be made arbitrarily small.1 is a parameter
representing the maximum degree ofN or an upper bound on the maximum degree
(according to the regime, Theorem 2 makes it possible to compute1 for a given value of
the transmission range).N is an upper-bound on the number of active nodes.TIME is a
protocol which allows any given node to get the current time.Following the proof given
in [5, Theorem 4], we have



Theorem 6 Bar-Yehuda, Goldreich, Itai [5].
Suppose that r≥ rCON is the actual transmission range of the nodes. Assume that1

(resp. N) is an upper-bound of the maximum degree (resp. the number of nodes) in

N and let T = 2D + 5 × max
(√

D,
√

log2 (N/ǫ)
)

×
√

log2 (N/ǫ). Also assume

that some initiators (or sources) start the procedureBROADCAST(msg,ǫ,1,r ,N) when
TIME = 0. Then, with probability≥ 1 − 2ǫ, all the nodes receive the message after
2⌈log2 1⌉T rounds. Furthermore, with probability≥ 1−2ǫ, all nodes terminate by time
2⌈log2 1⌉

(

T + ⌈log2(N/ǫ)⌉
)

.

3.2.2. Adjusting the transmitting range: the protocolSFR

The stations need to know bounds of the value of the numbern of the nodes. Ifp0 =
⌊log2 n⌋ then 2p0 ≤ n < 2p0+1.
Thus, by settingR(2p) =

√

(log(2p) + 2 log 2) |X|/π2p, the values ofR(2p) decrease
whenp increases. In the protocolSFR, we increment the values ofp one by one, starting
from a value close to the maximal transmission range of the stations. Wheneverp passes
throughp0 − 1, p0 and p0 + 1, there are some new isolated nodes w.h.p. Actually, it is
easily shown that

√
2 logn |X|/πn ≤ R(2p0−1).

We are now ready to present the protocolSFR. ProcedureSFR maintains just one
variableǫ representing the tolerance parameter and it is run in parallel by each station.

( L0) ProcedureSFR(ǫ)
( L1) BEGIN

( L2) R = x 7−→
√

(log(2x)+2 log2) |X|
π 2x ;

( L3) B = x 7−→ 24
⌈

logx ×
(

√

2x

x + x − log2 (ǫ)

)

⌉

;

(⋆ B(x) is the broadcast time.⋆)
( L4) DISCONNECTED = false;

( L5) p =
⌈

log2 (rMAX )
⌉

;

( L6) REPEAT
( L7) counter= 0;

( L8) t = 100×
(⌈

log2 (p)
⌉

+
⌈

log2 (2/ǫ)
⌉)

;

( L9) For i from 1 tot Do
(L10) SEND〈p, i , R(p)〉;
(L11) Upon reception of a message〈p,−, R(p)〉 Do
(L12) counter= counter+ 1;
(L13) EndFor
(L14) If counter= 0 Then
(L15) For j from 1 to

⌈

log2

(

2
ǫ

)⌉

Do

(L16) BROADCAST(“Disconnectionp”, ǫ,3p,R(p − 1),2p+1);
(L17) EndFor
(L18) DISCONNECTED = true;
(L19) Else



(L20) Wait for a message up to
⌈

log2

(

2
ǫ

)⌉

× B(p − 1) rounds;

(L21) Upon reception of the “disconnection message”Do
(L22) Scan the value ofp and setDISCONNECTED = true;
(L23) Else p = p + 1;
(L24) EndIf
(L25) UNTIL DISCONNECTED = true;

When reaching the valuep0, the isolated nodes, whose transmission ranges are now
set tor = R(p0), can increase their transmission range toR(p0 − 1) in order to get
reconnected. Next, such nodes have to inform all others about the upper-bounds onn, 1

andD, respectively given by

2p0 ≤ n < 2p0+1, 1 ≤
1

−W0(−e−1/2)
logn < 3 p0 and

D ≤ 5

√

π 2p0

(p0 + 1) log 2
< 12

√

2p0

p0
, (11)

where we use Theorems 2 and 3 for bounding1 andD, with ℓ = 1, and the transmission
range set to

r =

√

log(2p0−1) |X|
(2p0−1) π

.

The message of disconnection can be sent and received correctly by means of mul-
tiple calls to the protocolBROADCAST, provided sufficient rounds are given (cf. (L20))
to the broadcasting stations, in order to let all others be aware of the bounds given by
Eq. (11). The message broadcasting the above information isa special one, say “Discon-
nection p0”, which contains the correct value ofp0.
Taking Eq. (11) into account, the “broadcast time” given by Theorem 6 is less than

2⌈log2 1⌉ ×
(

2D + 5 max
(√

D,
√

log2 (N/ǫ)
)

×
√

log2 (N/ǫ) + ⌈log2(N/ǫ)⌉
)

, with

probability greater than 1− 2ǫ.
This is strictly less than 24 log(p0)

(√
2p0/p0 + p0 − log2 (ǫ)

)

.

Given these descriptions, the protocolSFR has the following properties.

Theorem 7 Assume that the network randomly deployed is an instance satisfying
Eq. (11). For any c> 0 there exists a constant c1 > 0 such that with probability at
least1 − 1/nc, the protocolSFR(1/nc1) terminates in at mostO(D logn) rounds. After
this time, every node is aware of the upper-bounds1 and D on the values of n with
probability at least1 − 1/nc .

Proof. In lines (L9)-(L13), the inner loop is repeatedt times. Consider a nodev picked
at random. By Theorem 1, for any given nodev, as soon asi in line (L9) meets the
condition 2i ≫ dv , the probability of success of each call ofSEND is at least.8 . . . By
Theorem 2, and under the assumption that the graph satisfies the almost sure properties
of a random network, ifp = p0 = ⌊log2 (n)⌋, dv < 3p0. Therefore, by settingt as



in line (L8), we ensure that if the nodev is still connected, it receives more than one
message from its neighbors with probability at least 1− ǫ/2. Similarly, by making the
just disconnected nodes repeat sufficient calls ofBROADCAST and also have sufficient
rounds to send the “disconnection message” to all others, then, w.h.p., all stations of the
whole network are allowed to learn the correct upper-boundsonn (and thus1 andD).
Note that both constantsc andc1 that appear in Theorem 7 do exist, since one can always
chooseǫ of the formǫ = 1/nc1 in order to get probabilities of failure of order 1/nc.

According to these results and throughout the remainder of the paper, we have the
following definition.

Definition 2 A random graph G (or a random wireless networkN ) is said typical if, and
only if,
(i) Theorem 2 and Theorem 3 hold, and
(ii) for any constant c1 ≥ 1, after one invocation of protocolSFR(1/nc1), every node of
G (orN ) knows the same value of p0 satisfying Eq. (11).

Remark. Denote byG(n, p) the random binomial graph [12] where each of the
(n
2

)

edges
of the complete graphKn is present with probabilityp. The results described above can
be compared to the (almost sure) characteristics of the binomial random graph of Erdös-
RényiG(n, p) [12] as shown by the following table whereω(n) is any function tending
to infinity with n. In the table below,ρ = n

|X| represents the expected number of points
per area.

Euclidian random graph Erdös-Rényi
MODELS with intensity n

|X| : random graph :
G(n, r ) G(n, p)

PARAMETERS Radius :r ≡ r (n, X) Edge probabilityp ≡ p(n)

COMMON PROPERTIES Recquired value forπ n
|X| r

2 Recquired value forn p

Connectivity ln n + ω(n) ln n + ω(n)

Total coverage ofX Hamiltonicity :
Minimum degree= 2 ln n + ln ln n + ω(n) ln n + ln ln n + ω(n)

Multiple coverage ofX
Minimum degree= j + 1 and if X is a square j -connectivity

j -connectivity
ln n + j ln ln n + ω(n) ln n + j ln ln n + ω(n)

Quasi-regularity:
All nodes have degree∼ ω(n) ω(n) ln n with ω(n) ≪ n

ln n ω(n) ln n with ω(n) ≪ n
ln n

For instance, one can read from the 4th row of table that the recquired value ofπ n
|X|r

2

(resp.n p) is lnn + ω(n) to obtain, with high probability, a connected geometric (resp.
Erdös-Rényi) random graphG(n, r ) (resp.G(n, p)). In this case, the connectedness
property occurs almost surely if and only ifω(n) → ∞ with n.

4. A first initialization algorithm in random radio networks

Section 3 solved the problem of determining the correct transmission range for the nodes
of a random networkN . Typically,N has the characteristics (mainly maximum degree



and hop-diameter) dictated by Theorems 2 and 3. Probabilistic upper-bounds on such
characteristics can also be established with the protocolSFR. In [4], Bar-Yehudaet al.
propose algorithms for efficient emulation of a single-hop network with collision detec-
tion in multi-hop radio networks,provided the number of stations (nodes), the diameter
and the maximum degree ofN (or upper-bounds on them) are known. Combining the
results in [4] and [26] with the results in Section 3 leads to anew initialization protocol.
More precisely, we can emulate a complete network (with collision detection) using the
methods in [4]. Therefore, any broadcasting protocol with the Nakano-Olariu algorithms
in [26] makes it is possible to build an initialization protocol in timeO(nB), whereB
denotes the broadcast time of orderB = O(D logn) (see for instance [5,9,22]).

Instead, we first color the graph in a specific manner: the two-hop coloration. In
this problem, the nodes ofN are colored in such a way that every pair of stations(u, v)

within a hop-distance of at most 2 from each other are assigned different colors (codes
or “channel assignment”). This specific coloration gives the graph a natural scheduling
of the communications which avoidsdirect and hidden terminal problems. Every pair of
nodes(u, v) at hop-distance≤ 2 from each other is assigned one pair of color (code)
(cu, cv ), with cu 6= cv . When a stationu (or v) decides to transmit in the exact round that
directly matches its own codescu (or cv , resp.), then it is easily seen that such scheduling
is collision-free.

4.1. Choice of temporary IDs

Since the stations are supposed to be indistinguishable, the first goal is to allocate them
distinct temporary IDs. If an upper-boundN on n is known, it can be done in one pass
by assigning each station an integer uniformly picked from the range

[

1, N3
]

.

ProcedureTMPIDS(N)
Each node chooses uniformly at random an integer ranging from 1 to N3

end.

The above very simple procedure has the following property.

Theorem 8 Suppose that N is an upper-bound on the number of nodes n knownby all
the stations. After one invocation ofTMPIDS(N), with high probability, every station of
N has a unique ID ranging from1 to N3 and no pair of stations share the same ID.

Proof. The proof of this result is a simple application of the balls and bins problem. By
throwingn balls (stations) intoN3 bins (temporary IDs) independently and uniformly at
random, with probability greater than exp

(

−O(n2/N3)
)

every bin contains at most one
ball.

4.2. The two-hop neighbor discovery protocol

Once the temporary IDs are allocated, each nodeu of N has to discover all other nodes
within distance at most 2 hops. The protocolDISCOVER below allows any given node
u of N to know the set of its direct and two-hop neighbors (i.e. neighbors of neighbors).
This algorithm appears to be extremely useful since the stations are deployed in random
fashion and do not have any knowledge of their respective neighborhoods. In the fol-



lowing pseudo-code,N still represent any known upper-bound on the number of nodes
n.

ProcedureDISCOVER(N)
Begin

For each nodeu, setL(u) = ∅;
For k from 1 to(log N)3 Do (⋆ Discovering direct neighbors⋆)

With probability 1/ log N, every nodeu transmits a message containing
its temporary ID: TEMPIDu;

Upon reception of a message〈TEMPID〉, u stores the value TEMPID in a local list:
L(u) = L(u)

⋃

{TEMPID};
EndFor
For k from 1 to(log N)3 Do (⋆ Discovering 2-hop neighbors⋆)
With probability 1/ log N, every nodeu sends the listL(u) of its direct neighbors;
EndFor

End.

Theorem 9 Assume thatN is typical and the transmission range is set to r=
√

2 log(2p0)|X|/(2p0π) with p0 satisfying Eq. (11). The running time ofDISCOVER(2p0+1)
isO

(

log(n)3) and with high probability, after one invocation ofDISCOVER(2p0+1),
(i) Every node u ofN is aware of the list of all its direct and two-hop neighbors.
(ii) For each node u, the number of such direct and two-hop neighbors isO(logn).

Proof. The proof of part(i) is closely related to the proof in [33, Theorem 7]. For clarity,
here are the details. After the first loop of the above algorithm, the proof that every station
is aware of the list of all its neighbors relies on two facts.

First, the main characteristics of the random Euclidean network and second, the
number of iterationsO(logn)3 in this loop are sufficient for each node to send its IDat
least onceto all its neighbors. For the first point, we have seen that if the transmission
range is set to

√

(1 + ℓ) logn|X|/πn (ℓ > 0) for any nodev of N , then the degree ofv
meets the condition w.h.p.

dv ≤ −
ℓ logn

W0

(

− ℓ
e(1+ℓ)

) + o(logn).

SetN = 2p0+1 ≥ n. In the regime considered in Theorem 9, the maximum degree ofN

is bounded byc logn (w.h.p.), wherec is some constant such that e.g.,c ≥ 2 W0 (−1/2e)
(for any constantℓ > 2). Using the latter remark, let us complete the proof of part(i).
For any distinct pair(i , j ) of adjacent nodes and any roundt ∈

[

1, log(N)3], define the

random variableX(t)
i→ j as follows:

X(t)
i→ j =

{

1 if the nodej does not receive the ID ofi at timet ∈
[

1, log(N)3] ,

0 otherwise.

In other terms, the set

{

X(t)
i→ j , i , j 6= i , t ∈

[

1, log(N)3
]}

.



denotes a set of random variables that counts the number of arcsi → j such thatj never
received the ID ofi . Denote byX the r.v.

X =
∑

i 6= j

Xi→ j ,

whereXi→ j = 1 iff X (t)
i→ j = 1 for all t ∈

[

1, log(N)3].

Now, the probability thati does not succeed in sending its ID toj at timet is

P

(

X(t)
i→ j = 1

)

=
(

1 −
1

log(N)

)

+
1

log N

(

1 −
(

1 −
1

log N

)d j
)

.

Therefore, considering the whole range
[

1, log(N)3] yields

P
(

Xi→ j = 1
)

≤
(

1 − O

(

1

log(n)

))log(N)3

≤ exp
(

−O(logn)2
)

,

which bounds the probability thati has never sent its ID toj for roundst in the range
[

1, log(N)3].
By linearity the expectation, and since the number of edges is of orderO(n logn),

E(X) ≤ O(n logn) exp
(

−O(logn)2
)

. (12)

Thus,E(X) ≪ 1 asn → ∞, by the first moment method [3], one completes the proof
that after the first loop of the procedure, every station is aware of all its direct neighbors.

With similar methods, it is easily seen that the second loop allows the nodes to know
one after the other their 2-hop neighbors.

To prove part(ii) , observe that ifr is the common transmission/receiving range of
the stations, all two-hop neighbors of a nodeu are inside a circle of radius 2r . Hence, a
simple application of the Eq. (6) in Theorem 2 proves assertion (ii) of Theorem 9.

4.3. A two-hop coloring algorithm

We need some more basic definitions for our coloring algorithms.

Definition 3 Ŵ(u)
def= {neighbors of a fixed node u}. Any v ∈ Ŵ(u) is referred to as a

direct neighbors of u.

The set of2-hop neighbors is given formally byŴ2(u)
def=
⋃

v∈Ŵ(u) Ŵ(v).

Recall that1
def= maxu |Ŵ(u)|. Similarly, define12 as12

def= maxu |Ŵ2(u)|.

To assign codes (colors) to the nodes ofN , let us consider the following simple and
intuitive randomized protocol calledASSIGNCOLOR. As defined above,Ŵ(u)

⋃

Ŵ2(u)

is the set of neighbors ofu at hop-distance at most 2. At the beginning of the algorithm,
each nodeu stores an initial list of colorsp(u) (also referred to aspalette) of size|Ŵ(u)|+



|Ŵ2(u)| + 1 = 1 + 12 + 1 and starts uncolored. We can also assume that each node
has a distinct ID (this can be effective after one invocationof TMPIDS) and knows its
neighbors inŴ(u)

⋃

Ŵ2(u) (by means ofDISCOVER).
Then, the protocolASSIGNCOLOR proceeds in rounds. In each round, eachuncol-

ored node u, simultaneously and independently picks a color at random,say c, from
its palette. Next, the nodeu attempts to send this information to its direct neighbors in
Ŵ(u), and in its turn, each memberv ∈ Ŵ(u) tries to forward the information to every
w ∈ Ŵ2(u). Trivially, this “two-steps” attempt succeedsiff there is no collision with
direct neighbors and also “no collision” with 2-hop neighbors. Therefore, before abso-
lutely assigning its color (code)c to u, every member of the setŴ(u)

⋃

Ŵ2(u) has to sent
one by one a message of reception.
Note that this can be donedeterministicallyas explained in details below. Therefore,u
sends a message ofacknowledgementand every memberv of Ŵ(u)

⋃

Ŵ2(u) canupdate
its own palettep(u) and its own setŴ(u)

⋃

Ŵ2(u).
Hence, at the end of such an iteration the new colored nodeu becomes passive

during the remaining of the algorithm. (Note that the protocol ASSIGNCOLOR is simply
the “2-hop version” of the coloring algorithm presented in [33, Subsection 5.3].)

Assuming that the upper-boundN on the number of nodes satisfies Eq. (11), a brief
description of this procedure follows. Each step below represents abasic iterationof the
main loop of the algorithm. By allowingO(logn)3 iterations, the algorithm is shown to
color correctly the graph.

Basic iteration of the main-loop ofASSIGNCOLOR

Step 0 : Every node needs an initial palette of colors of size|Ŵ(u)| + |Ŵ2(u)| + 1
and a set of active direct and 2-hop neighbors. The upper-bound on the number of
direct neighbors is set to1 = 3⌈log2(N)⌉. Similarly, using Eq. (6) of Theorem 2,
an upper-bound on the number of 2-hop neighbors is set to12 = ⌈8 log(N)⌉−1.
Note that the constant 8 reflects the fact that all 2-hop neighbors ofu are within
an Euclidean distance of at most twice the transmission range fromu. Therefore,
Eq. (6) yields−3/W0(−3e−1/4) ∼ 7.14. . . < 8.

Step 1 : Every nodeu picks a colorc from its palette and tries to send it toŴ(u).
Step 2 : If the previous step succeeds, there is no collision and every nodev ∈ Ŵ(u)

receives correctly the message. SinceDISCOVER allowsu to know its neighbors,
u can rank them and in their turn, one after the other accordingly to their relative
rank, they have to forward the message to the 2-hop neighborsof u, that is to any
w ∈ Ŵ2(u). This phase is deterministic and =synchronization requires1 rounds.

Step 3 : If the previous step works correctly, every member ofŴ2(u) receives the
message and, in its turn, sends it back. In order to avoid confusion, each message
is specifically marked withu (the ID of the initial sender). This step can be per-
formed deterministically, sinceu can also rank its 2-hop neighbors. Thus, step 3
also requires12 rounds.

Step 4 : When all their messages are back, all nodesv ∈ Ŵ(u) need to informu,
one by one and in right order. So, step 4 is performed in1 rounds.

Step 5 : Upon receiving all messages from all its direct and 2-hop neighbors, the
nodeu has to send them back a message of acknowledgement. Again, this step
is deterministic and requires1 rounds (only the direct neighbors are needed to
forward the acknowledgement message). The nodes inŴ(u)

⋃

Ŵ2(u) update their



palettes of colors by removing the colorc, which is now assigned tou, andu
becomes apassivenode.

The corresponding pseudo-code of the protocol is as follows.

( 1) ProtocolASSIGNCOLOR(N)
( 2) Set1 = 3⌈log2(N)⌉ and12 = ⌈8 log(N)⌉ − 1; (⋆ following Eq. (11)⋆)
( 3) Each nodeu isactive, with an initialpaletteof colorsp(u) = {c1, c2, . . . , c1+12+1}

along with a set of active neighbors inŴ(u) and 2-hop neighbors inŴ2(u);
( 4) For i = 1 to log(N)3 Do
( 5) For each nodeu do
( 6) • Pick a colorc from p(u);
( 7) • Send a message containingc with probability 1

1+|p(u)| ;
( 8) If no collisionThen (⋆ 1-hop neighbors→ forward tow ∈ Ŵ2(u)⋆)
( 9) Every stationv in Ŵ(u) gets the message properly, one by one in order
(10) Every stationv in Ŵ(u) forwards a specific message “v u c”;
(⋆ v is the ID of the current node. The step is synchronized by allowing 1 rounds.⋆)
(11) EndIf
(12) Upon receiving a message of the form “forwardv u c” Do

(⋆ 2-hop neighbors→ just send back twice⋆)
(13) Every memberw of Ŵ2(u) one by one and in order
(14) sends back a message to the member ofŴ(u).
(15) Such a message can be of the form “backw u c”;

(⋆ This step can be synchronized by always allowing12 rounds⋆)
(16) end
(17) Upon receiving a message of the form “backw u c” Do
(18) The nodev ∈ Ŵ(u) sends the message back tou along with its own ID;

(⋆ This step needs1 rounds of synchronization⋆)
(19) end
(20) If u receives all the|Ŵ2(u)| + |Ŵ(u)| messagesThen
(21) u sends a message ofacknowledgementwhich is also forwarded
(22) by all members ofŴ(u) to the setŴ2(u); u becomespassive;
(23) EndIf
(24) Upon receiving anacknowledgement message
(25) every station inŴ(u)

⋃

Ŵ2(u) removes the colorc from its palette;
(⋆ This step is synchronized in12 rounds⋆)

(26) EndFor
(27)End.

Theorem 10 Assume that the randomly deployed network is typical, with the transmis-
sion range set to r=

√

2 log(2p0) |X|/(2p0π). Suppose also that the stations have dis-
tinct IDs. Then, after the execution ofASSIGNCOLOR(N), with probability tending to1
as n→ ∞, every pair of nodes(u, v) s.t. u∈ Ŵ(v)

⋃

Ŵ2(v) receives two distinct codes
(colors). Moreover, the running time of theASSIGNCOLOR is O(log (n)4) rounds and
the protocol usesO(logn) colors.

Proof. Though it is more difficult, the proof of Theorem 10 is very similar to the proof
in [33, Theorem 8]. Observe first that the only randomized part of the algorithm is the
attempt ofu to allocate a color (cf. line 7); after what, all steps are deterministic. So,



whenever it is successful, such an attempt can easily be checked by the initiatoru, since
u maintains the list of nodes inŴ(u) and inŴ2(u). Precisely, the algorithm builds a new
graph in which each new edge is (virtually) added between every pair of 2-hop neighbors.

For any nodeu, recall thatŴ(u)
⋃

Ŵ2(u) represents the set of its direct and 2-hop
neighbors and letpu denote the size of its current palette. Now, define the randomvari-
ableYu as follows,

Yu =
{

1 if the nodeuremains uncolored after the logN3 steps ofASSIGNCOLOR
0 otherwise.

(13)
Let Ŵ(t)

u andŴ
(t)
u,2 (resp.) denote the set ofactivedirect and 2-hop neighbors ofu (resp.)

at any given iterationt of the algorithm. Suppose that we are in such an iterationt .
Independently of its previous attempts,u remains uncolored with probability

pu,t =
(

1 −
1

(1 + pu)

)

+
1

(1 + pu)
×



1 −
(

1 −
1

(1 + pv)

)|Ŵ(t)
u |+|Ŵ(t)

u,2|


, (14)

where there is at least adirect collision with a neighborv ∈ Ŵ
(t)
u or a “2-hop collision”

with a neighborw ∈ Ŵ
(t)
u,2.

For all t , |Ŵ(t)
u | ≤ 1, |Ŵ(t)

u,2| ≤ 12 and, for allv, 1 ≤ |pv | ≤ 1 + 12 + 1. Of more
importance,1 = O(logn) and12 = O(logn). Thus,

pu,t ≤ 1 −
1

(1 + pu)

(

1

1

)|Ŵ(t)
u |+|Ŵ(t)

u,2|
≤ 1 − O

(

1

logn

)

.

Since there areO(log(n)3) iterations, there exists a constantα such that, with probability
at most

(

1 − O

(

1

logn

))O(logn)3

≤ exp
(

−α log(n)2
)

,

u remains uncolored during the whole algorithm. The expectednumber of uncolored
vertices at the end of the protocolASSIGNCOLOR is thus less than

E(Y) =
∑

u

E(Yu) ≤ n exp
(

−O(log(n)2)
)

. (15)

Finally, by Markov inequality (cf. e.g. [3]), the proof of Theorem 10 follows.

4.4. An optimal gossiping algorithm inO(
√

n logn) rounds

The 2-hop coloring process induces a natural scheduling algorithm for gossip. The gossip
algorithm is very intuitive: onceN is colored, in each round every stationu is allowed
to transmitiff its colorcu is such thatTIME mod cu ≡ 0 (whereTIME is a function



that returns the global current round). ProcedureGOSSIP below starts with a randomly
deployed set of stations and uses all the procedures described previously.

ProcedureGOSSIP
Step 1:Start estimating the main characteristics ofN with SFR(1/|X|);
Such procedure allows all stations to get estimates on the transmission ranger ,
the maximal degree1, the hop diameterD and the number of active nodesn;
Step 2:Allocate temporary IDs to the stations withTMPIDS(N);

(⋆ N denotes a probabilistic upper-bound ofn ⋆)
Step 3:Color the graph withASSIGNCOLOR(N);
Step 4:Use the obtained colors as follows:

Repeat100×
√

N/ log N times
For each nodeu with colorcu

If TIME mod cu = 0 Then
Transmit all known IDs;

EndIf
EndRepeat

End.

Since,ASSIGNCOLOR assignsO(logn) distinct colors and the hop-diameter of the
N is given byD = O(

√
n/ logn), we easily derive the following immediate but impor-

tant result.

Theorem 11 If the random plane network is typical, then the procedureGOSSIP re-
quiresO(

√
n logn) rounds and for every pair of stations(u, v), u receives the temporary

ID of v with high probability.

4.5. An optimal initialization algorithm inO(D1) rounds

The initialization procedure below is a straightforward consequence of the above algo-
rithm.

ProcedureINITIALIZATION(N)
GOSSIP;
For each stationu, sort all received messages;
ID(u) = rank ofu in the sorted array of temporary IDs;

End.

Theorem 12 With high probability, the procedureINITIALIZATION(|X|) assigns
each station ofN one unique identity ranging from1 to n inO(

√
n logn) rounds.

Corollary 13 The gossiping and initialization algorithms presented above are asymp-
totically optimal.

Proof. This is an immediate consequence of the results of Kushilevitz and Mansour
in [21]. Since gossiping and initializing are harder than broadcasting, which requires
�(D log(n/D)) rounds in graphs such as random plane networks, they both require at



least�(D log(n/D)) rounds. Fortunately,D1 and D log(n/D) have a same order of
magnitude (w.h.p) inN .

Note that all the above results remain valid whenO
(

n1/3(logn)2/3
)

is substituted
for O(

√
n logn), inside a cube (instead of a square).

5. Divide-and-conquer algorithms and energy-efficient protocols

In this Section, we present a randomized algorithm running in O
(

n3/4 log(n)1/4)

rounds, with no station being awake for more thanO
(

n1/4 log(n)3/4) rounds. It
is shown that our sublinear and energy-efficient initialization algorithm is at most
O (logn/ log logn) far from optimality, with respect to the number of rounds required.
In fact, the running time isO(D logn) = O(D1), where1 is the maximum degree of
N andD denotes its hop-diameter. Indeed, it was shown in [22] that,in the same setting,
the easiest broadcasting problem requires� (D log logn) rounds.

The main lines of the algorithms are given below.
In order to schedule all communications, the stations ofN are colored in such a way that
any pair(u, v) of nodes within distance≤ 2 are assigned two distinct colors. This color-
ing algorithm suggests a natural scheduling of all the communications in our protocols.
This specific algorithm and some others are calledPREPARATION protocols.

Next, the divide-and-conquerprinciple is applied. We cluster the graph (withCLUSTERING),
with a specific node called thecluster headin each cluster. Every cluster is then locally
initialized (withLOCAL INITIALIZATION).

Finally, the global initialization step (GLOBAL INITIALIZATION) is carried out over
the graph of clusters. All communications are realized via the specific paths constructed
between neighboring clusters (by swapping over from one path to another). A gossiping
algorithm between all cluster heads just followed by a ranking algorithm complete this
last step.

In light of the previous Sections, we know thatN satisfies the following main char-
acteristics with high probability.
• There exist two constantscℓ andCℓ such that the degreedv of any nodev meets the
condition

cℓ logn ≤ dv ≤ Cℓ logn.

• N is (cℓ logn)-connected.
• The hop-diameter (or diameter) ofN meets the conditionD = 2 (logn).

5.1. Clustering

The aim of this step is to design a randomized algorithm that partitions the set of nodes
into disjoint groups. The hop-diameter of each group rangesbetweenk and 2k, wherek is
a parameter that will be fixed later in the analysis of the algorithm. In each cluster, there
is a specific node called thecluster head(CH for short). The principle of the clustering
algorithm is simple and intuitive.



At first, each node becomes a candidate cluster head with a certain probability. If
two or more candidate cluster heads are too close from each other (viz. they are within
distance less thank-hops ), all of them must be eliminated but one, which is consid-
ered the true cluster head. This can be done by choosing the candidate with the biggest
TEMPID amongst all others; eliminated candidates become normalnodes.

In the end of the algorithm, we have to collect allorphannodes, that is all the nodes
which are not within ak-hop neighborhood of the newly marked out CH. The orphans
choose the nearest CH among all the possible cluster heads in their respective 2k-hop
neighborhood. During the clustering protocol, every communication is mainly performed
by using the 2-hop coloration algorithm mentioned above.
This partitioning process is a key ingredient of our initialization algorithm. After the
execution of the clustering protocol, each cluster can be initialized locally.

5.2. Local initialization

In order to initialize each cluster locally, the protocolGOSSIP is used. The idea is very
similar to those in [34]. The local initialization protocolis executed distributively by all
the stations in all the clusters. Every node inN transmits its TEMPID to all other sta-
tions. The gossiping protocol uses the collision-free scheduler that the coloration algo-
rithm provides and when a station receives a messagemsg, it appends its TEMPID to
msgand transmits this new message to all its neighbors. Since the coloration algorithm
usesO(logn) colors,afterO(k logn) rounds, all stations know the TEMPIDs of all other
stations in their cluster. Finally, the rank of the TEMPID of a station simply becomes its
local ID (denoted LOCALID).
Upon termination of the local initialization step, each station owns two “IDs”: its tem-
porary ID (TEMPID) and its local ID (LOCALID), according to the cluster it belongs
to.

5.3. Paths between the clusters

In the next step, the paths of communication between each cluster must be constructed.
The idea is as follows. During such communications, all stations are intentionallyasleep
to save their batteries, except the stations on such communication paths. To avoid “energy
holes” (on the most crowded paths), we have to find out as many disjoint paths as possible
and swap over from one path to another.

5.4. Global initialization

The global initialization step is performed by means of a gossiping algorithm between
all cluster heads, just followed by a ranking algorithm. Allcommunications are carried
out via the disjoint paths between clusters, and by skippingfrom one path to the other.

Figures 7 and 8 describe and briefly summarize the main steps of the initialization pro-
tocol.



Figure 7. Division of the graph into disjoint clusters and local initialization of each cluster. In the figure on
the right above, 3 clusters are initialized with integers ranging from 1 to 141, from 1 to 287, and from 1 to 192,
respectively.

Figure 8. After the paths construction between clusters (dashed lines), the global initialization is just executed
by means of the gossiping algorithm performed via these paths.

5.5. Detailed Algorithms and Analysis

In this Subsection, we are concerned with three basic algorithms which are fre-
quently used and discussed throughout the remainder of the paper. First, the protocol
ASSIGNCOLOR is executed (see the design in [34, Section VI]).ASSIGNCOLOR re-
quiresO

(

log(n)4) rounds and usesO (logn) colors. After the execution ofASSIGNCOLOR,
any two stations within 2 hops-distance receive two distinct codes (colors) with high
probability. Once it is well-colored,N is collision-free and we are now ready to design
the protocolBROADCAST. (The pseudo-code is in Fig. 9.)

It is easily seen that such an algorithm requiresO(k logn) rounds, under the condi-
tion that the randomized coloring algorithm succeeds with probability 1 (i.e, it errs with
probability 0).

One can design a gossip algorithm based uponBROADCAST. In the gossiping problem,
the task is to sped out the information contained in each station to all others. Such a
protocol can be derived from the broadcasting one by changing a few lines, as described
in Fig. 10.

Since there areO(logn) colors andk steps, the execution time ofGOSSIP(k) is the same
asBROADCAST(k): O(k logn).



1 ProcedureBROADCAST(msg: message,k : integer )
2 Begin
3 Repeat(100× k × logn) times
4 For a nodeu colored withcu, upon receiving a message of the form〈msg, k〉 Do
5 If (T I M E mod cu) ≡ 0 andk > 0 Then
6 BROADCAST(msg, k − 1) EndIf
7 EndRepeat
8 End

Figure 9. The BROADCASTING protocol.

1 ProcedureGOSSIP(k : integer)
2 Begin
3 Repeat(100× k × logn) times
4 For each stationu with initial messagemsg(u) and coloredcu,

upon receiving any message of the form〈msg, k〉 Do
5 If (T I M E mod cu) ≡ 0 andk > 0 Then
6 msg= append(msg, msg(u));
7 TRANSMIT(msg);
8 GOSSIP(k − 1) EndIf ;
9 EndRepeat

10 End

Figure 10. The GOSSIPING protocol.

5.6. Random clustering

In order to apply a divide-and-conqueralgorithm, we designthe protocolCLUSTERING,
which works as follows.
At first, each station chooses to be a candidate cluster head (CH) with a certain probabil-
ity (to be specified later in the analysis). The protocol meets the following specifications:

(i) each cluster has a CH;
(ii) each node knows its CH, which is at most within 2k-hops distance;
(iii) any two CHs are at a distance of at leastk + 1 hops from each other.

Therefore, there exist randomly chosen candidates in the support areaX. In order to
satisfy specification(iii) , a few candidates which are too close from each other must be
eliminated.

By using a broadcasting algorithm at a distancek (with BROADCAST), each candi-
date CH can detect whether there exist some other candidates in itsk-hop neighborhood.
The candidate with the biggest TEMPID becomes a true CH and all others are eliminated.
Finally, the orphans (nodes without a CH) are collected as follows (withCOLLECT).
Every CH executes a protocol, with a specific message that enables each orphan to choose
the nearest CH in its 2k-neighborhood.



1 ProcedureCOLLECT( j : integer)

2 Begin
3 For each nodeu Do

4 If u is a cluster headThen

5 Repeat(100× j × logn) times

6 If (T I M E mod cu) ≡ 0 Then
7 TRANSMIT(TEMPID,1)

8 EndRepeat

9 Else

10 CLUSTER(u) := NIL, distance :=∞;

11 Upon receiving a message of the form〈TEMPID, radius〉
12 EndIf

13 If distance> radiusThen

14 CLUSTER(u) := TEMPID, distance := radius;

15 Repeat(100× j × logn) times

16 If (T I M E mod cu) ≡ 0 Then

17 TRANSMIT(CLUSTER(u),distance+1);

18 EndRepeat
19 EndIf

20 EndElse

21 End

1 ProcedureCLUSTERING(k : integer,p : float)

2 Begin

3 Step 1:Each station chooses to be a CANDIDATE cluster head with probability
p;

4 Step 2:For each CANDIDATE station runBROADCAST(TEMPID,k);

5 Step 3: Upon receiving a broadcasting message, eliminate the candidates which
TEMPID is smaller than the ID(s) of some other(s) candidate(s).

6 Step 4:The remaining candidates are now cluster heads and broadcast their TEM-
PID by means ofCOLLECT(TEMPID,2k), to inform the stations at 2k-hop dis-
tance of their presence and status.

7 Step 5:For each nodeu, CLUSTER(u) is set to the nearest cluster head among the
nodes that invocated the protocolCOLLECT.

8 End

From Section 3, we derive the following result.

Theorem 14CLUSTERING(k,P) requiresO
(

max
(

k logn, log(n)4)) rounds. After the
execution of the protocolCLUSTERING, w.h.p. any station belongs to a specified cluster
and knows its cluster head, which is at a distance of at most2k hops.



Proof. By choosingP
def= 9/(k2(1 + ℓ) log(n)), we make sure that the disks with radius

kr that are centered at the candidate stations achieve a full coverage of the support areaX.
More precisely, letξ be the random variable counting the number of candidate stations.
The average number of candidate stations is given byE(ξ) = nP.

By Chernov bounds, we know that, since n
k2(1+ℓ) log(n)

→ ∞, ξ = 2
(

n
k2 log(n)

)

w.h.p. Hence, standard calculus yields

P

(

1

3
E(ξ) ≤ ξ ≤ 2E(ξ)

)

≤ 1 − exp
(

− O(E(ξ))
)

. (16)

Next, by virtue of the result in [25, Thm. 3.2], if 1/3E(ξ)k2r 2 > 2.83|X| the disks
generated by the candidate stations ensure a full coverage of the support area|X| w.h.p.
Then, it is easily seen that the elimination of two “colliding” candidate CHs can be
worked out by using theBROADCAST protocol. Similarly, any station which still needs
a cluster head is assigned the closest CH in its 2k-hops neighborhood, by means of the
COLLECT protocol.

Finally,CLUSTERING is made ofASSIGNCOLORandBROADCAST, which require
O
(

log(n)4) (cf. [34]) andO(k logn) rounds, respectively. Hence, the time complexity
of CLUSTERING is clearlyO

(

max
(

k logn, log (n)4)).

5.7. Learning the neighborhood and local initialization

The aim of the protocolTOTALKNOWLEDGE is to allow each station to “learn” the topol-
ogy of its i -hops neighborhood, wherei is a parameter of the procedure. In order to con-
struct the adjacency matrix of its neighbors, a given node executes the local procedure
APPENDTOADJACENCYMATRIX. It works as follows:

• Every nodeu (with degreedu) maintains a local listL(u), initialized to

L(u) = TEMPID(u) → NIL .

• Upon receiving the number of its direct neighborsv1, v2,. . . ,vdu , u updatesL(u)

to

L(u) = TEMPID(u) → v1 · · · vdu → NIL
↓ · · · ↓
NIL · · · NIL .

• Next, every neighborv1, . . . ,vdu sends its respective listL(v1), . . . , L(vdu) thatu
appends to its current list and constructs its own neighborhood adjacency matrix.

Clearly, afteri steps each participating node can build its owni × i adjacency matrix,
which represents itsi -hops neighborhood.
ProcedureTOTALKNOWLEDGE, which runsAPPENDTOADJACENCYMATRIX is as fol-
lows.

1 ProcedureTOTALKNOWLEDGE(i : integer)



2 Begin

3 Each nodeu with TEMPID(u) and coloredcu

maintains a listL(u) = TEMPID(u);

4 t = i ;

5 Repeat(100× i × logn) times

6 If t > 0 and(T I M E mod cu) ≡ 0 Then

7 TRANSMIT(L(u), t);

8 t = t − 1;

9 EndIf

10 Upon receiving a listL Do L(u) =APPENDTOADJACENCYMATRIX(L);

11 EndRepeat

12 End

The local initialization protocolLOCALINIT is the combination of the two protocols
CLUSTERING andTOTALKNOWLEDGE

1 ProcedureLOCALINIT(i : integer)

2 Begin

3 TOTALKNOWLEDGE(i );

4 For each nodeu belonging to CLUSTER(u) LocID(u) = rank ofu

in the sorted array of IDs of all nodes in CLUSTER(u);

5 End

5.8. Paths construction between clusters

Each stationu runsTOTALKNOWLEDGE(4k) independently. After what,u owns the ad-
jacency matrix of all its 4k-hops neighbors. With this information, and the knowledge
of all its neighboring clusters, Bellman-Ford algorithm isexecuted. Every node can thus
deterministically build the same routing table between twoneighboring clusters; more
precisely, between any given pair(s, t) of stations, each within its respective cluster, as
described in Fig. 11.

Therefore, the fact that all involved stations do have the same choice of the pair(s, t)
is important of course. For example, the first pair of stations (s, t) between two adjacent
clusters may be taken as the two smallest stations LOCALIDs in both ones. If such an
(s, t)-path exists, the Bellman-Ford algorithm executed by the participating stations finds
it.
Observe that the latter algorithm is not run distributively. Besides, the choice of the pa-
rameter 4k ensures that all these stations have the right required adjacency submatrix
(which size is at most 2k × 2k).



Figure 11. The choice ofi = 4k as parameter ofTOTALKNOWLEDGE allows the stations to construct all paths
deterministically, one after the other, between any two neighboring clusters.

5.9. Gossiping over clusters and main results

Finally, a gossiping algorithm over disjoint paths of length at most 4k, is performed over
the graph of clusters.

As shown in Fig. 12, the communication process between two neighboring clus-
ters is then worked out along the constructed disjoint paths. In order to synchronize the
communication between adjacent clusters, we cut up the timeinto “phases” that are 4k
rounds long. Each such phase is actually made of anO(k) communication delay time: it
serves as a kind of frame in the swap-over process from a givenpath to a next disjoint
one. The gossiping algorithm is therefore deterministic, and in each round every station
knows exactly whether sleeping or communicating.

Figure 12. The square of surfaceO
(

k2r 2
)

and itsm regular strips frame, that link two half-covered neigh-

boring clusters for swapping over between the disjoint paths

Lemma 15 Let CLUSTER(u) and CLUSTER(v) be any two adjacent clusters. W.h.p.,
there exist at leastO(k2) disjoint paths betweenCLUSTER(u) andCLUSTER(v).



Proof. (Sketch)
Let c1k andc2k be the hop-radius of two neighboring clusters. Clearly 1≤ c1 ≤ 2 and
1 ≤ c2 ≤ 2. As shown in Fig. 12, there exists a squareS of surface|S| = O

(

k2r 2
)

covering half of each two clusters. SplitS into m regular (rectangular) stripsSi of equal

size|Si | = O

(

k2r 2

m

)

(i ∈ 1, m), and letNi be the number of stations within each strip

Si . If k2r 2/m ≫ 1, E(Ni ) = O
(

k2r 2/m
)

≫ 1.
Now, by Chernov bounds, we know that there exist two constantsνi andµi for each

1 ≤ i ≤ m, such that

P

(

νi
k2r 2

m
≤ Ni ≤ µi

k2r 2

m

)

≥ 1 − exp

(

−O

(

k2r 2

m

))

.

Next, fix i ∈ 1, m and denoterCON, the transmission range required to have a con-
nected graph inside the stripSi . Among other results, Penrose proved in [30] that if
Ni /|Si | = O(1),

lim
Ni →∞

P

(

π
Ni

|Si |
r 2

CON − log(Ni ) ≤ ω

)

= exp
(

− e−ω
)

.

Finally, if we letm = O

(

k2
)

, then

log(Ni ) |Si |
Ni

= O

(

log

(

k2r 2

m

))

= O(log logn). (17)

In the present case, the transmission radius is such thatr 2 = O(logn), and there-
fore, any subgraph withinSi is connected with probability greater than exp

(

−n2(1)
)

.
Since the numberm of strips is at most polynomial inn, it is growing much slower
than the above probability of any subgraph inSi to be connected; and this holds for all
i = 1, 2,. . . ,m. Hence, w.h.p. the number of disjoint paths between CLUSTER(u) and
CLUSTER(v) is at leastO(k2), and we are done.

As an immediate consequence, we have the following main Theorem 16.

Theorem 16 Let n stations be randomly deployed on a support area X with a lin-
ear size|X| = O(n) and assume the radius of transmission of each station to be
r =

√

(1 + ℓ) log(n)|X|/(πn).
For any k≪

√
n/ logn, the initialization of the stations requiresO(k

√
n logn) rounds,

with no station being awake for more thanO
(

max
(√

n logn/k, k logn, log (n)4))

rounds.

Proof. If each cluster is considered as a graph node, the running time of the initialization
protocol isO(kD logn) = O(k

√
n logn) rounds (whereD denotes the hop-diameter of

the graph). Swapping over from (disjoint) path to path between adjacent clusters requires
that each station is used only everyO(k2) rounds, and the result follows.

Corollary 17 Under the assumptions of Theorem 16, there exists a randomized initial-
ization protocol running inO

(

n3/4 log(n)1/4) rounds, with no station being awake for
more thanO

(

n1/4 log(n)3/4) rounds.



6. Conclusion

In the present paper, a performing and energy-efficient algorithm for the initialization
problem is designed and analyzed. Its running time, as well as the awake time per
station are both broadly sublinear. More precisely, the time complexity of our algo-
rithm achievesO

(

n3/4 log(n)1/4) rounds, with no station being awake for more than
O
(

n1/4 log(n)3/4) rounds.

It is also worth to emphasize the fact that choosingk = O(1) yields an almost
time optimal algorithm. In such a case indeed, the running time shrinks toO

(√
n logn

)

,

whereas the easier broadcast problem requires at most�
(
√

n
logn log logn

)

rounds [9,

22]. Hence, our result is at mostO
(

logn
log logn

)

far from optimality.

Finding the lower-bound on the awake time per station for theinitializing stations
in a random radio network is an open challenging problem. Furthermore, an even more
challenging open problem remains of course the design and analysis of an initialization
algorithm which could reach the latter lower-bound while keeping a nearly optimal time
complexity.
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