
HAL Id: hal-00153086
https://hal.science/hal-00153086

Submitted on 8 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of Multimode digital signal processing systems
Caaliph Andriamisaina, Emmanuel Casseau, Philippe Coussy

To cite this version:
Caaliph Andriamisaina, Emmanuel Casseau, Philippe Coussy. Synthesis of Multimode digital signal
processing systems. NASA/ESA Conference on Adaptive Hardware and Systems, 2007, Edinburgh,
United Kingdom. pp.7. �hal-00153086�

https://hal.science/hal-00153086
https://hal.archives-ouvertes.fr

Synthesis of Multimode digital signal processing systems

Caaliph Andriamisaina*, Emmanuel Casseau**, Philippe Coussy*
* LESTER Lab.- FRE CNRS 2734, Université de Bretagne Sud, France

** R2D2 - IRISA Lab. - UMR CNRS 6074, Université de Rennes1, France

Abstract

In this paper, we propose a design methodology for
implementing a multimode (or multi-configuration)
and multi-throughput system into a single hardware
architecture. The inputs of the design flow are the data
flow graphs (DFGs), representing the different modes
(i.e. the different applications to be implemented), with
their respective throughput constraints. While
traditional approaches merge DFGs together before
the synthesis process, we propose to use ad-hoc
scheduling and binding steps during the synthesis of
each DFG. The scheduling, which assigns operations
to specific time steps, maximizes the similarity between
the control steps and thus decreases the controller
complexity. The binding process, which assigns
operations to specific functional units and data to
specific storage elements, maximizes the similarity
between datapaths and thus minimizes steering logic
and register overhead. First results show the interest
of the proposed synthesis flow.

Keywords: Flexible devices, high-level synthesis,
multimode systems.

1. Introduction

The increasing demand for high performance and
reconfigurability of embedded systems has led to the
research on efficient hardware devices to adapt rapidly
to changing environments. Field programmable gate
arrays (FPGAs) provide partial reconfiguration at
runtime but they have a weakness for performance.
Furthermore, FPGAs require too long reconfiguration
times to rapidly changing applications.

Multimode or multi-configuration cores are
specifically designed for a set of time-wise mutually
exclusive user-specified applications and target
conventional hardware technologies. Multimode
architectures are typically dedicated to multi-standard
applications, for example applications implementing
one algorithm which parameters can be changed like in
a mobile system a Viterbi decoder for the channel
decoding part whose constraint length and code rate
may be changed from one communication standard to
another one.
 In this paper, we propose a methodology to
implement multimode systems based on high-level
synthesis. The starting point of the design flow is a set

of behavioural level time-wise mutually exclusive
specifications. From the set of data flow graphs
representing the different modes, a single hardware
architecture implementing these specifications is
generated using high-level synthesis.
 The paper is organized as follows: section 2
presents related work around high-level synthesis and
multimode system design. Section 3 focuses on the
problem formulation and section 4 presents our design
flow. Experimental results based on illustrative
examples are presented in section 5.

2. Related work

In order to design a multimode architecture, a
designer, thanks to its own knowledge and experience,
can identify similar properties and computation
patterns between each mode and handcrafts multi-
mode architectures. Such efficient flexible design
examples can be found in [1-3].

To automate the process, methodologies that
generate hardware architectures from behavioral
specifications have to be used. High level synthesis
(HLS) is analogous to software compilation transposed
to the hardware domain [4, 5]. HLS tools automate the
design process that generates a register transfer level
architecture from an algorithmic behaviour of the
specification. Single mode HLS design experiments
can be found in [6, 7]. It is worth noticing that HLS
basics were developed 15 years ago but HLS tools
were not mature enough. HLS tools are being used in
practice only at present time.

Applying HLS basics to generate multimode
architectures seems natural. Four kinds of approaches
(figure 1) can be identified: graph merging, datapath
merging, inter-mode resource sharing during the
binding process and joint scheduling.

The graph merging technique consists in merging
graphs before the main synthesis steps (allocation,
scheduling and binding). In [8], the focus is to merge
several signal flow graphs (SFG) by using a locality
based search algorithm such as simulated annealing or
iterative refinement, in order to generate a
multifunctional data path. In this approach, it is
assumed that the number of multiplexers is
proportional to the number of edges and thereby the
number of edges is used as a measure of the cost of an

operator assignment. Thus, the used algorithm focuses
on minimizing the number of edges by sharing as
many as possible edges in the different SFGs. In [9] an
ILP algorithm is used to merge several graphs. This
approach focuses on maximizing an edge gain, defined
as the difference between the cost of the nodes before
merging and the cost of the resulting node after
merging, as well as an interconnection gain, based on
the multiplexer cost decrease. A multifunctional
datapath is also generated. A similar approach has been
proposed in [10]. However, the graph merging
algorithm is different. This algorithm begins by
constructing a compatibility graph, for a pair of DFGs,
whose nodes are previously weighted by a cost
function similar to the one defined in [9]. Afterwards, a
search of the maximal weighted clique is performed
and finally, the resultant graph is constructed from this
clique. Moreover, the operation commutativity is taken
into account, which allows to increase the number of
compatible operations to be merged and thereby limits
the number of multiplexers to add. In this approach, the
generated structure is a data flow graph (DFG).
Although all these graph-merging algorithms could be
efficient for the area reduction, they cannot be used
when several tasks have to respect different throughput
constraints. The register merging and the datapath
generation are not realized: the architecture cost
(controller, registers…) is thus not taken into account.

In [11] and [12], an approach that consists in
unifying scheduled DFGs during the binding step has
been proposed. In [11], both datapath and controller
generation is presented. The first step consists in
scheduling each DFG under a latency constraint. In the
second step, a control step (c-step) matching across the
scheduled DFGs is performed by using a maximal
weighted matching. This matching allows to maximize
the same-c-step component usage, thus decreasing the
functional difference between the different controllers.
Afterwards, the DFG that lastly updated the resource
allocation is assigned by using a binding algorithm
developed in [13]. Finally, the others DFGs are
assigned trying to minimize hardware resource
overhead. In [12], the methodology begins by the
scheduling of each DFG under the given
timing/resource constraints. Then the scheduled DFGs
are concatenated (chained) into a single DFG. Finally,
the resource binding of the concatenated DFG is
performed using the maximal weighted bipartite
matching algorithm. This technique allows to reduce
the binding complexity. However, the authors did not
take into account the effect of the proposed
methodology on the controller area.

Behavioral
specification

Compilation

Data flow
Graph

Allocation

Scheduling

Binding

RTL generation

Graph merging
approach

Joint scheduling
approach

Sharing during binding
process approach

Datapath merging
approach

Behavioral
specification

Compilation

Data flow
Graph

Allocation

Scheduling

Binding

RTL generation

Graph merging
approach

Joint scheduling
approach

Sharing during binding
process approach

Datapath merging
approach

Figure 1. High-level synthesis flow and multimode

system design approaches

The generation of a multifunction loop accelerator
has been developed in [14]. This method applies the
scheduling and binding process to kernel loops in order
to generate datapaths for each kernel loop. These
datapaths are then merged, using an ILP method, to
provide a multifunction loop accelerator. A datapath
merging method based on the graph merging algorithm
defined in [10] is also developed in [15].

The joint scheduling method of several graphs has
been mentioned in [14] but the authors gave few
details. The proposed approach consists in jointly
scheduling loop bodies by choosing a scheduling
decision that maximizes the hardware resource sharing
across loops. An ILP is used to solve this problem. The
limit of this approach is the combinatorial explosion
that related to the DFG complexity increase. The use of
exact methods like ILP for the joint scheduling is
limited to small size graphs.

In this paper, we focus on digital signal and image
processing applications. These applications have often
as main constraint the throughput to satisfy a real time
constraint. Graph merging approaches are efficient to
decrease area but they cannot support the synthesis
under different throughput constraints. Except [14] and

[15], the approaches described above take into account
only area and latency constraints. Apart from [11]
other works only consider datapath area. Datapath
merging based approaches can be improved taking into
account the functional similarities across the control
steps. In current designs, the cost of the control part is
ever growing. This trend becomes critical for
multimode systems.
In this paper, we propose an approach that aims to
reduce both datapath and controller area of multimode
systems. The approach supports modes with different
throughput constraints. It is based on an ad-hoc
scheduling algorithm that improves the functional
similarities across the c-steps of the DFGs in order to
reduce the controller complexity and steering logic.

3. Problem formulation

Let us consider two tasks represented by their

DFGs: DFG1 in figure 2(a) and DFG2 in figure 2(b).
We assume these tasks are time-wise mutually
exclusive, that is, they can not be executed at the same
time. The executing condition for each task is
determined by the “mode” value.

 (a) (b)

 Figure 2. (a) DFG1, (b) DFG2

Let us schedule DFG1 and DFG2 using a list
scheduling [16] under a throughput constraint. Supose
the adder and the subtractor latency is 1 cycle, the
multiplier latency is 2 cycles. If the throughput
constraints of both DFGs set an output sample every 2
cycles, then 2 pipeline stages delimitated by the bold
lines in figure 3 are required.

 (a) (b)

Figure 3. (a) DFG1 scheduling, (b) DFG2 scheduling

We consider that no multifunction operator is
available. Thereby 2 adders, 1 subtractor and 1
multiplier are required for DFG1 scheduling. At least 1
adder, 1 subtractor and 1 multiplier are required for
DFG2 scheduling. Assuming that no register sharing is
performed during the register allocation of each
scheduled DFG, 9 registers are required for each
architecture. Finally if the both tasks are implemented
in two different hardware architectures, 2 multipliers, 3
adders, 2 subtractors and 18 registers are required for
the datapath.

Using a multimode architecture, the number of
functional unit can be reduced to 1 multiplier, 2 adders,
1 subtractor and the number of register number can be
9. That is to say the architecture area decrease can be
very interesting as well as the power consumption
saving.

However, extra cost is to be considered. Resource
and register sharing between two time-wise mutually
exclusive graphs involve:

1) extra control logic owing to the load commands
of the merged registers,

2) extra steering logic in the datapath basically
owing to the multiplexer generation associated with the
resource sharing (functional unit and registers).

However this extra control logic increase can be
overcome by making a suitable scheduling. In the
examples in figure 3, if O0 and N0 share a single adder
(adder1) and O1 and N1 share another adder (adder2)1,
an efficient design implies the sharing of the left input
register of O0 (respectively O1) and N0 (respectively

1 With the set of functional units allocated for this
multimode architecture, if a single adder is used to
implement DFG2, the control unit and extra steering
logic are more costly.

N1) to a single register R1 (respectively R3) and their
right input registers to R2 (respectively R4) as shown in
figure 4. If we assume that the input variables of O0
(respectively O1) and N0 (respectively N1) come from
the same source, no multiplexer is necessary during the
register allocation.

Figure 4. Partial multimode datapath

The merged register load command is by definition
the OR logic function of the original single mode
register load commands. In our case, the load
command is the combination of the c-step value and
the “mode” value. Examples in figure 3 have 2 states
each other, S0 and S12. Therefore a unique controller
with 2 states (S0 and S1) is enough to control these
two tasks.

Figure 5 represents the register load commands of
both adders. Mode0 (mode) refers to the task
represented by DFG1 and mode1 (not mode) refers to
the one represented by DFG2. Actually ld_R1 and
ld_R2 do not require more logic gates whereas ld_R3
and ld_R4 generate extra logic gates (figure 5c).

ld_R11: S0.mode0
ld_R12: S0.mode0
ld_R13: S0.mode0
ld_R14: S0.mode0

ld_R21: S0.mode1
ld_R22: S0.mode1
ld_R23: S1.mode1
ld_R24: S1.mode1

ld_R1: S0.mode0 + S0.mode1 = S0
ld_R2: S0.mode0 + S0.mode1 = S0
ld_R3: S0.mode0 + S1.mode1
ld_R4: S0.mode0 + S1.mode1

(a) (b)

(c)

ld_R11: S0.mode0
ld_R12: S0.mode0
ld_R13: S0.mode0
ld_R14: S0.mode0

ld_R21: S0.mode1
ld_R22: S0.mode1
ld_R23: S1.mode1
ld_R24: S1.mode1

ld_R1: S0.mode0 + S0.mode1 = S0
ld_R2: S0.mode0 + S0.mode1 = S0
ld_R3: S0.mode0 + S1.mode1
ld_R4: S0.mode0 + S1.mode1

(a) (b)

(c)
Figure 5. (a) Original register load commands with
mode0, (b) Original register load commands with
mode1, (c) Merged register load commands

2 In these cases, two pipeline stages execute in parallel.
Final state Si is thus the combination of the sub-states
Si associated with each pipeline stage.

Let us now consider another approach. DFG1 is still
scheduled using a list scheduling as shown in figure
3(a). DFG2 is now scheduled considering the number
of each type of operations per c-steps in DFG1 and
trying to maximize the similarity between compatible
operations3 per c-steps in DFG1 and DFG2. Thereby
operation N1 in DFG2 is scheduled in c-step S0 rather
than in c-step S1. Figure 6 shows the register load
commands if the functional unit and register sharing is
the same as the one described in figure 4. In that case
no extra logic gate is required for the merged register
load commands (figure 5e).

These two basic examples show that the complexity
of a multimode architecture does not only depend on
the number of functional and memorization units but
also on the scheduling that drives the complexity of the
extra control cost. Ad-hoc scheduling, based on c-steps
similarity, is of major interest.

ld_R11: S0.mode0
ld_R12: S0.mode0
ld_R13: S0.mode0
ld_R14: S0.mode0

ld_R21: S0.mode1
ld_R22: S0.mode1
ld_R23: S0.mode1
ld_R24: S0.mode1

ld_R1: S0.mode0 + S0.mode1 = S0
ld_R2: S0.mode0 + S0.mode1 = S0
ld_R3: S0.mode0 + S0.mode1 = S0
ld_R4: S0.mode0 + S0.mode1 = S0

(a) (b)

(c)

ld_R11: S0.mode0
ld_R12: S0.mode0
ld_R13: S0.mode0
ld_R14: S0.mode0

ld_R21: S0.mode1
ld_R22: S0.mode1
ld_R23: S0.mode1
ld_R24: S0.mode1

ld_R1: S0.mode0 + S0.mode1 = S0
ld_R2: S0.mode0 + S0.mode1 = S0
ld_R3: S0.mode0 + S0.mode1 = S0
ld_R4: S0.mode0 + S0.mode1 = S0

(a) (b)

(c)
Figure 6. (a) Original register load commands with
mode0, (b) Original register load commands with
mode1, (c) Merged register load commands

4. Design flow

The proposed design flow is presented in figure 7.
The starting point is the several DFGs with their
respective throughput constraints. The first step aims to
identify the “main” DFG. First for each DFG the
number of compatible operations is computed. The
DFG which has the greatest ratio between its number
of compatible operations and its throughput constraint
is considered as the main DFG. The same rule is
applied for ordering the other DGFs (secondary

3 Compatible operations are operations that can be
executed using the same type of operator (example 1:
additions are compatible each other because they can
be executed by an adder; example 2: additions and
subtractions are compatible if adder/subtractor
multifunction operators are allocated).

+ +

R R R R

V11/V21 V12/V22 V13/V23 V14/V24

O0/N0 O1/N1

DFGs)4. The main DFG is scheduled first by using a
list scheduling under a throughput constraint. A
resource reservation table is obtained from this
scheduling. For each c-step, this table states if an
operator has been used. The scheduling of the next
DFGs, ordering according to their own ratio, takes into
account the throughput constraint and the resource
reservation table of the main DFG (respectively the
updated resource reservation table that comes from the
previously scheduled DFGs). Appendix details the
scheduling algorithm. Using the resource reservation
table as a constraint aims to benefit from the
similarities between the c-steps of the DFGs. It permits
to decrease, as discussed in section 3, extra control
logic.

 Figure 7. Proposed design flow

 When all DFGs have been scheduled, operations
and variables of the main DFG are bounded to
functional units and registers. The next step is the
functional unit and register assignment of the
secondary DFGs using the bipartite weighted matching

4 The more this ratio is important the greater the inter-
mode functional unit sharing

[13]. Compatible operations are first bounded to the
resources required for the previously DFGs trying to
minimize multiplexor cost. Then other operations (non
compatible operations) are bounded to other resources.
The last step consists in generating the register transfer
level (RTL) description of the multimode architecture.

5. First experiments

5.1 Illustrative example

Let us take two basic computations to illustrate the
proposed approach:

1) x=((a+b)*(c-d)+(e*f)-shr(g,h))*(i+j)
represented by DFG1

2) y=((a*b)+(c-d)+(e+f))*((g+h)*(i-j))
represented by DFG2.

 Compatible operations between DFG1 and DFG2
are multiplications, additions and subtractions. DFG1
has 8 compatible operations whereas DFG2 has 9 ones.
Assuming the throughput constraint is the same for
both DFGs. Thus DFG2 is said to be the main DFG.
Hence it is scheduled first using a list scheduling under
a throughput constraint. We assume the adder and the
subtractor latencies are 1 cycle, the multiplier and the
shifter latencies are 2 cycles. Assuming the timing
constraint sets an output sample every 2 cycles, 3
pipeline stages are required with 2 c-steps S0 and S1
(figure 8a). Table 1a depicts the resource reservation
table of DFG2. 3 multipliers are required for S0 c-step
as well as for S1, 2 adders are required for S0 and S1,
and 1 subtractor is required for S0 and S1.

The scheduling of DFG1 is done by respecting its
throughput constraint and DFG2 reservation table.
Assuming the throughput constraint is 2 cycles, 4
pipeline stages with 2 c-steps are required. Inside each
pipeline stage, macro scheduling is performed to
maximize similarities between DFG1 c-steps and
DFG2 c-steps and trying to avoid new resource
allocation. The resulting scheduling is presented in
figure 8b. In this case, except the shifter, i.e. a non
compatible operator, no more functional unit is
required. The resource reservation table is then updated
(table 1b).

After the scheduling, operations of DFG2 are first
bounded to the allocated resources. Then compatible
operations of DFG1 are bounded to the resources used
for DFG2 mapping. Afterwards, other DFG1
operations are then bounded to the other resources.
Finally, the register transfer level (RTL) description of
the multimode architecture is generated.

DFG ordering

main DFG
scheduling

secondary DFG
scheduling

main DFG resource and
register assignment

RTL generation

secondary DFG
resource and register

assignment

Resource
Reservation

Table

DFGs+ Throughput constraints

Figure 8. (a) List scheduling of DFG2, (b) Scheduling
of DFG1

a)

 Resources
States * + -

S0 3 2 1
S1 3 2 1

b)
 Resources
States * + - shr

S0 3 2 1 1
S1 3 2 1 1

Table 1. (a) Resource reservation table of DFG2, (b)
Updated resource reservation table

Equations 1 and 2 have been synthesised to evaluate
our approach. Two different methods were also
completed. The first one consists in implementing the
two tasks in two separate hardware architectures
(single mode architectures) that execute in parallel.
Their areas were then added. The second one consists
in applying the graph merging method before
synthesis. This latter is known to be very efficient for
area optimization.

We used a Xilinx Virtex-II Pro XC2VP100 FPGA
as a target technology and ISE 7.1 logic synthesis tool
from Xilinx. Area results including both datapath and
controller unit are presented in table 2. The area
improvement is 34% compared to the single mode
method. Compared to the less area costly single mode
architecture, the area overhead of the multimode
architecture is 15%. The proposed approach and the
graph merging method are similar.

Architecture Single
mode

Graph
merging

Our
approach

Cycle time
(ns) 21 21 21

Area (slices) 748 445 444

Table 2. Synthesis results

5.2 FFT synthesis

With equations 1) and 2), the operation
dependencies between the two graphs are almost
similar. In this section, computations whose
dependencies differ a lot are investigated.

The Discrete Fourier Transform (DFT) is a digital
signal processing basic computation. The following
equation describes the DFT of a N-points sequence
x(n):

∑
−

=
×=

1

0

.)()(
N

n

nk
NWnxkX , k= 0,1, …, N-1

where Nj
N eW /2π−= is called the twiddle factor.

An Fast Fourier Transform (FFT) algorithm is
usually used to reduce the computation complexity of
the DFT which requires N2 operations where N is the
transformation size. FFT algorithms actually reduce the
DFT complexity from N2 to N.log2N.

Two kinds of FFT algorithm can be used. The first
one is called decimation “in time” (DIT) FFT and the
second one is called decimation in frequency (DIF)
FFT.

The synthesis of a multimode architecture that
implements both kinds of FFT algorithms has been
performed to experiment our approach. A 4-points real
FFT was chosen. With this basic FFT, 4 additions, 4
subtractions and 4 multiplications are required no
matter the kind of the FFT algorithm. However, the
dependencies differ completely between these two
kinds of FFT [9].

For our experiments, we have chosen a timing
constraint of 3 cycles and no multifunction resource
has been used. As we did before, a first synthesis was
performed considering the two kinds of FFT separately
(synthesis of 2 single mode architectures). With this
timing constraint, 8 multipliers, 4 adders, 4 subtractors
are allocated considering the combined datapath. The
multimode architecture requires 4 multipliers, 2 adders
and 2 subtractors.

A Xilinx Virtex-II Pro XC2VP100 FPGA as a target
technology and ISE 7.1 logic synthesis tool from
Xilinx were used. Area results including both datapath

and controller unit are presented in table 3. An area
improvement of 36% compared to the single mode
architecture is obtained. The areas of both single mode
architectures are actually almost similar (≅ 740 slices).
Compared to one of this single mode architecture, the
area overhead of the multimode architecture is only
20% whereas both FFT kinds of algorithms can be
considered with the latter.

Architecture Single
Mode Multimode

Timing cycle
(ns) 31 31

Area (Slices) 1472 934

Table 3. FFT DIT-DIF single mode architecture versus
multimode architecture

6. Conclusion and work in progress

We have presented a high-level synthesis based design
flow to automate the design of multimode systems.
The approach is based on an ad-hoc scheduling to limit
extra control logic owning to resource and register
sharing between time-wise mutually exclusive graphs.
Based on a first data flow graph list scheduling, an
Control Similarity Based List Scheduling is performed
for the other DFGs by considering as scheduling
constraints both the user specified throughput
constraint and the resource reservation table of the
previously scheduled DFGs.

First experiments with basic computations give
promising results for graphs with similar operations
dependencies as well as for graphs where dependencies
differ a lot. Work in progress focuses on the synthesis
of more complex DSP computations. Binding
algorithm improvements are also investigated.

7. References

[1] I. Krikidis, J.L. Danger, L. Naviner “An iterative
reconfigurability approach for WCDMA high-data-rate
communications”, IEEE Wireless Communications, June
2006.
[2] E. Piriou, C. Jego, P. Adde, M. Jezequel, “A flexible
architecture for block turbo decoders using bch or reed-
solomon components codes”, ISVLSI, Mars 2006.
[3] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B.
Widdup, G. Zhou, L. M. Davis, G. Woodward, C. Nicol and
R. Yan, “A unified Turbo/Viterbi Channel Decoder for 3GPP
Mobile Wireless in 0.18-µm CMOS”, IEEE Journal of Solid-
State Circuits, 2002, pp. 1555-1564
[4] D. D. Gajski, N. D. Dutt, Allen C-H. Wu, Steve Y-L. Lin,
High-Level Synthesis: Introduction to Chip and System
Design, Kluwer Academic Publishers, Boston, MA, 1992.

[5] S. Gupta, R. Gupta, N. Dutt, A. Nicolau, “SPARK : a
parallelizing approach to the high-level synthesis of digital
circuits”, Ed. Springer, 2004, ISBN 1402078374.
[6] E. Casseau, B. Le Gal, P. Bomel, C. Jégo, S. Huet, E.
Martin, “C-based rapid prototyping for digital signal
processing”, Proceedings of the EUSIPCO, 2005
[7] http://deepchip.com/items/else06-08.html
[8] Van der Werf, M.J.H Peek, E.H.L. Aarts, J.L. Van
Meerbergen, P.E.R. Lippens, W.F.J. Verhaegh, “Area
optimization of multi-functional processing units”,
Proceedings of the ICCAD, 1992.
[9] W. Geurts, F. Catthoor and H. De Man, “Quadratic Zero-
One Programming-based synthesis of application-specific
data paths”, Proceedings of the ICCAD, 1993.
[10] N. Moreano, E. Borin, C. de Souza and G. Araujo,
“Efficient datapath merging for partially reconfigurable
architectures”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2005.
[11] V. V. Kumar and J. Lach, “Highly flexible multi-mode
system synthesis”, Proceeding of CODESS+ISSS, 2005
[12] L. Chiou, S. Bhunia and K. Roy, “Synthesis of
Application-Specific Highly Efficient Multi-mode Cores for
Embedded Systems”, ACM Transactions on Embedded
Computing Systems, February 2005
[13] C. Huang, Y. Chen, Y. Lin and Y. Hsu, “Data path
allocation based on bipartite weighted matching”,
Proceedings of the Design Automation Conference, 1990,
499-504.
[14] K. Fan, M. Kudlur, H. Park and S. Mahlke, “Increasing
Hardware Efficiency with Multifunction Loop Accelerators”,
Proceedings of the CODESS+ISSS, October 2006
[15] Z. Huang, S. Malik, N. Moreano and G. Araujo, “The
design of dynamically reconfigurable datapath coprocessors”,
ACM Transactions on Embedded Computing Systems, 2004
[16] G. De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, New York, 1994

Appendix : Control Similarity Based List
Scheduling (CSBLS) algorithm
Definitions

Scheduling delay of operation (δ(Oi)): allowable
delay of operation Oi before its scheduling.
Ready operations of type “type” in state “cstep”
(ROcstep,type): set of operations whose ancestors are
already scheduled.
Time frames of operations Oi (µ(Oi)): difference
between the as soon as possible time of Oi and the
current step “cstep”.
C-step similarity between the previously scheduled
DFGs (pDFG) and the currently scheduled
(secondary) DFG (sDFG)
(CS(type,cstep,pDFG,sDFG)): difference between
the number of resource type “type” at state “cstep”
of the previously DFGs and the secondary DFG.

Algorithm :
 Inputs :

- a secondary DFG (sDFG)
- the timing constraint of the sDFG (Ts)
- the resource reservation table of the

previously scheduled DFGs (pDFG)
 Output :

- a scheduled sDFG

Begin
 cstep=0;
 δ(Oi)=0, ∀ Oi∈O (O: set of operations in the
sDFG);
 repeat until (On is scheduled)
 for each resource type
 Determine ROcstep,type;
 Compute µ(Oj), ∀ Oj∈ROcstep,type;
 Compute CS(type,cstep,pDFG,sDFG);
 while (CS(type,cstep,pDFG,sDFG) > 0 or card
(ROcstep,type) > 0)
 Schedule Oj by increasing time frames;
 end while;
 if (CS(type,cstep,pDFG,sDFG) ≤ 0 and card
(ROcstep,type) > 0) then
 if (δ(Oj) < Ts-1) then
 Delay Oj until (card (ROcstep,type) = 0);
 else
 Schedule Oj;
 end if;
 end if;
 end for;
 cstep++;
 if (cstep=last_step) then cstep=0 end if;
 end repeat;
end;

