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THURSTON OBSTRUCTIONS AND AHLFORS REGULAR CONFORMAL

DIMENSION

PETER HAÏSSINSKY AND KEVIN M. PILGRIM

Abstract. Let f : S2
→ S2 be a postcritically finite expanding branched covering map of the

sphere to itself. Associated to f is a canonical quasisymmetry class G(f) of Ahlfors regular
metrics on the sphere in which the dynamics is (non-classically) conformal. We find a lower
bound on the Hausdorff dimension of metrics in G(f) in terms of the combinatorics of f .

Soit f : S2
→ S2 un revêtement ramifié de la sphère topologiquement expansif et à ensemble

postcritique fini. On lui associe une famille de métriques Ahlfors-régulières canoniques G(f)
qui rendent f grossièrement conforme. On établit une minoration de la dimension de Hausdorff
de ces métriques en termes combinatoires.
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1. Introduction

A fundamental principle of dynamical systems is that in the presence of sufficient expansion,
topology determines a preferred class G of geometric structures. For example, suppose G X
is an action of a group G on a perfect metrizable compactum X by homeomorphisms. Bowditch
[Bow] showed that if the induced diagonal action on the space of ordered triples of pairwise
distinct points of X is properly discontinuous and cocompact, then G is hyperbolic, and there
is a G-equivariant homeomorphism φ of X onto ∂G. The boundary ∂G carries a preferred
(quasisymmetry) class of metrics in which the group elements act by uniformly quasi-Möbius
maps. Elements of this class of metrics can be transported via φ to X, yielding a class of
metrics G(G  X) canonically associated to the dynamics in which the elements act in a
geometrically special way.

Cannon’s Conjecture is equivalent to the assertion that under the hypotheses of Bowditch’s
theorem, whenever X is homeomorphic to the two-sphere S2, then the standard Euclidean
metric belongs to G(G  X) [BK]. Thus, conjecturally, no “exotic” metrics on the sphere
arise from such group actions. In contrast, the dynamics of certain iterated maps f : S2 → S2

provide a rich source of examples of metrics on the sphere in which the dynamics is (non-
classically) conformal.

We now explain this precisely. The results summarized below are consequences of the general
theory developed in [HP].

Topologically coarse expanding conformal (cxc) dynamics.

Definition 1.1 (Topologically cxc). A continuous, orientation-preserving, branched covering
f : S2 → S2 is called topologically cxc provided there exists a finite open covering U0 of S2 by
connected sets satisfying the following properties:

[Expansion] The mesh of the covering Un tends to zero as n → ∞, where Un denotes
the set of connected components of f−n(U) as U ranges over U0. That is, for any finite
open cover Y of S2 by open sets, there exists N such that for all n ≥ N and all U ∈ Un,
there exists Y ∈ Y with U ⊂ Y .
[Irreducibility] The map f is locally eventually onto: for any x ∈ S2, and any
neighborhood W of x, there is some n with fn(W ) = S2.

[Degree] The set of degrees of maps of the form fk|Ũ : Ũ → U , where U ∈ Un,

Ũ ∈ Un+k, and n and k are arbitrary, has a finite maximum.

We denote by U = ∪n≥0Un.

Note that the definition prohibits periodic or recurrent branch points, i.e.branch points x
for which the orbit x, f(x), f(f(x)), . . . contains or accumulates on x.

Let Ĉ denote the Riemann sphere. A rational map f : Ĉ → Ĉ is a dynamical system which
is conformal in the Riemannian sense. It is called semihyperbolic if it has no parabolic cycles

and no recurrent critical points in its Julia set. A rational map f which is chaotic on all of Ĉ

(that is, has Julia set the whole sphere) is topologically cxc if and only if it is semihyperbolic
[HP, Corollary 4.4.2].

Metric cxc. Now suppose S2 is equipped with a metric d (that is, a distance function)
compatible with its topology.

We first recall the notion of roundness.
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Roundness. Let (X, d) be a metric space. We denote by B(x, r) and B(x, r) respectively
the open and closed ball of radius r about x. Let A be a bounded, proper subset of X with
non-empty interior. Given x ∈ int(A), let

L(A,x) = sup{d(x, b) : b ∈ A}

and
l(A,x) = sup{r : r ≤ L(A,x) and B(x, r) ⊂ A}

denote, respectively, the outradius and inradius of A about x. While the outradius is intrinsic,
the inradius depends on how A sits in X. The condition r ≤ L(A,x) is necessary to guarantee
that the outradius is at least the inradius. The roundness of A about x is defined as

Round(A,x) = L(A,x)/l(A,x) ∈ [1,∞).

A set A is K-almost-round if Round(A,x) ≤ K holds for some x ∈ A, and this implies that for
some s > 0, there exists a ball B(x, s) satisfying

B(x, s) ⊂ A ⊂ B(x,Ks).

Definition 1.2 (Metric cxc). A continuous, orientation-preserving branched covering f :
(S2, d) → (S2, d) is called metric cxc provided it is topologically cxc with respect to some
covering U0 such that there exist

• continuous, increasing embeddings ρ± : [1,∞) → [1,∞), the forward and backward
roundness distortion functions, and

• increasing homeomorphisms δ± : [0, 1] → [0, 1], the forward and backward relative
diameter distortion functions

satisfying the following axioms:

[Roundness distortion] For all n, k ∈ N and for all

U ∈ Un, Ũ ∈ Un+k, x̃ ∈ Ũ , x ∈ U

if

fk(Ũ) = U, fk(x̃) = x

then the backward roundness bound

(1) Round(Ũ , x̃) ≤ ρ−(Round(U, x))

and the forward roundness bound

(2) Round(U, x) ≤ ρ+(Round(Ũ , x̃)).

hold.
In other words: for a given element of U, iterates of f both forward and backward

distorts its roundness by an amount independent of the iterate.
[Diameter distortion] For all n0, n1, k ∈ N and for all

U ∈ Un0
, U ′ ∈ Un1

, Ũ ∈ Un0+k, Ũ ′ ∈ Un1+k, Ũ ′ ⊂ Ũ , U ′ ⊂ U

if

fk(Ũ ) = U, fk(Ũ ′) = U ′

then
diamŨ ′

diamŨ
≤ δ−

(
diamU ′

diamU

)

and
diamU ′

diamU
≤ δ+

(
diamŨ ′

diamŨ

)
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hold.
In other words: given two nested elements of U, iterates of f both forward and

backward distort their relative sizes by an amount independent of the iterate.

A homeomorphism h : X → Y between metric spaces is called quasisymmetric provided
there exists a homeomorphism η : [0,∞) → [0,∞) such that dX(x, a) ≤ tdX(x, b) implies
dY (f(x), f(a)) ≤ η(t)dY (f(x), f(b)) for all triples of points x, a, b ∈ X and all t ≥ 0. Loosely:
h distorts ratios of distances, and the roundness of balls, by controlled amounts.

An orientation-preserving branched covering map f : S
2 → S

2 from the standard Euclidean
sphere to itself is metric cxc if and only if it is quasisymmetrically conjugate to a semihyperbolic
rational map with Julia set the whole sphere [HP, Theorems 4.2.4 and 4.2.7]. The class of
metric cxc dynamical systems is closed under quasisymmetric conjugation, and a topological
conjugacy between metric cxc maps is quasisymmetric [HP, Theorem 2.8.2].

Conformal gauges. The conformal gauge of a metric space X is the set of all metric spaces
quasisymmetrically equivalent to X. A metric space X is Ahlfors regular of dimension Q
provided there is a Radon measure µ and a constant C ≥ 1 such that for any x ∈ X and
r ∈ (0,diamX],

1

C
rQ ≤ µ(B(x, r)) ≤ CrQ .

The Hausdorff dimension H.dim(X) of an Ahlfors Q-regular metric space X is equal to Q.

Suppose now that f : S2 → S2 is topologically cxc. By [HP, Corollary 3.5.4] we have

Theorem 1.3 (Canonical gauge). Given a topologically cxc dynamical system f : S2 → S2,
there exists an Ahlfors regular metric d on S2, unique up to quasisymmetry, such that f :
(S2, d) → (S2, d) is metrically cxc.

It follows that the set G(f) of all Ahlfors regular metric spaces Y quasisymmetrically equiv-
alent to (S2, d) is an invariant, called the Ahlfors regular conformal gauge, of the topological
conjugacy class of f . Therefore, the Ahlfors regular conformal dimension

confdimAR(f) := inf
Y ∈G(f)

H.dim(Y )

is a numerical topological dynamical invariant as well; it is distinct from the entropy. Moreover,
this invariant almost characterizes rational maps among topologically cxc maps on the sphere.
In [HP, Theorem 4.2.11] the following theorem is proved.

Theorem 1.4 (Characterization of rational maps). A topologically cxc map f : S2 → S2

is topologically conjugate to a semihyperbolic rational map if and only if the Ahlfors regular
conformal dimension confdimAR(f) is equal to 2, and is achieved by an Ahlfors regular metric.

There are many examples of topologically cxc maps which are not topologically conjugate
to rational maps. The following are well-known combinatorial obstructions.

Thurston obstructions. Let f : S2 → S2 be an orientation-preserving branched covering.
The Riemann-Hurwitz formula implies that the cardinality of the set Cf of branch points at
which f fails to be locally injective is equal to 2 deg(f) − 2, counted with multiplicity, where

deg(f) is the degree of f . The postcritical set is defined as Pf = ∪n>0fn(Cf ). Under the
assumption that the postcritical set is finite, Thurston characterized when f is equivalent to a
rational map R in the following sense: h0 ◦ f = R ◦ h1 for orientation-preserving homeomor-
phisms h0, h1 which are homotopic through homeomorphisms fixing Pf pointwise; see [DH].
The obstructions which arise are of the following nature.
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A multicurve Γ ⊂ S2 − Pf is a finite set of simple, closed, unoriented curves

Γ = {γ1, γ2, . . . , γm}

in S2 −Pf satisfying the following properties: (i) they are disjoint and pairwise distinct, up to
free homotopy in S2 −Pf , and (ii) each curve γj is non-peripheral—that is, each component of
S2 − γj contains at least two elements of Pf . A multicurve Γ is invariant if for each γj ∈ Γ,
every connected component δ of f−1(γj) is either homotopic in S2 − Pf to an element γi ∈ Γ,
or else is peripheral. If α and β are unoriented curves in S2 − Pf , we write α ∼ β if they are
freely homotopic in S2 − Pf .

Let Γ be an arbitrary multicurve and Q ≥ 1. Let R
Γ denote the real vector space with basis

Γ; thus γj is identified with the jth standard basis vector of R
#Γ. Define

fΓ,Q : R
Γ → R

Γ

by

fΓ,Q(γj) =
∑

γi∈Γ

∑

δ∼γi

|deg(f : δ → γj)|
1−Qγi.

In words: the (i, j)-matrix coefficient (fΓ,Q)i,j is obtained by considering the connected preim-
ages δ of f−1(γj) homotopic to γi in S2 − Pf ; recording the positive degree of the restriction
f |δ : δ → γ, raised to the power (1 − Q); and summing these numbers together. If there are
no such curves δ, the coefficient is defined to be zero. Note that in the definition, we do not
require invariance.

Since fΓ,Q is represented by a non-negative matrix, one can apply the structure theory for
such matrices, summarized at the beginning of Appendix A. This theory implies the following
results.

The matrix (fΓ,Q) has a real non-negative Perron-Frobenius eigenvalue λ(fΓ,Q) equal to
its spectral radius and a corresponding non-negative eigenvector v(fΓ,Q). A multicurve Γ is
called irreducible if given any γi, γj ∈ Γ there exists an iterate q ≥ 1 such that the corresponding
coefficient (f q

Γ,Q)i,j is positive; this property is independent of Q. For an irreducible multicurve,
the Perron-Frobenius eigenvalue is positive, has geometric multiplicity one, and is strictly larger
than the norm of all other eigenvalues; the corresponding eigenvector is also strictly positive.

A Thurston obstruction is defined as a multicurve Γ = {γ1, . . . , γm} for which the inequal-
ity λ(fΓ,2) ≥ 1 holds. An obstruction always contains an irreducible obstruction with the
same Perron-Frobenius eigenvalue (cf. Appendix A). By a theorem of McMullen [McM], a
semihyperbolic rational map has no obstructions unless it is extremely special (see below).

The reason these form obstructions to (classical Riemannian) conformality is roughly the

following; see [DH] for details. Suppose a semihyperbolic rational map f : Ĉ → Ĉ had an
obstruction. Then one could find a collection of disjoint annular neighborhoods Aj of γj such
that the vector of classical moduli (mod(A1), . . . ,mod(Am)) is a scalar multiple of a Perron-
Frobenius eigenvector v. Classical moduli are subadditive and monotone: the sharp Grötzsch
inequality implies that if A(δk), k = 1, . . . , l are disjoint essential open subannuli of Ai, then∑l

k=1 mod(A(δk)) ≤ mod(Ai); equality holds if and only if each A(δk) is a right Euclidean
subannulus in a conformally equivalent Euclidean metric on Ai, and the union of their closures
contains Ai. If f : A(δk) → Aj is a degree d covering, then mod(A(δk)) = mod(Aj)/d. It
follows by induction that for fixed j ∈ {1, . . . ,m} and for all n ∈ N, the j-th coordinate of the
vector fn

Γ,2(v) is a lower bound for the maximum modulus of an annulus homotopic in P
1 −Pf

to Aj . It follows that such a rational map cannot have an obstruction unless it is extremely
special—a so-called integral Lattès example [DH]. In this case, #Pf = 4, (fΓ,2) = (1), and f
lifts under a twofold covering ramified at Pf to an unbranched covering map of the complex
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torus given by z 7→ dz in the group law, where d = deg(f). Summarizing, we say that branched
covering f is obstructed if (i) it is not topologically conjugate to an integral Lattès example,
and (ii) it has an obstruction.

Suppose that the map f : S2 → S2 is topologically cxc. Since the property of being
obstructed is invariant under topological conjugacy, Theorem 1.4 yields

f obstructed ⇒ confdimAR(f) is either

{
2, but not realized, or

> 2.

Our main result, which was inspired by discussions with M. Bonk and L. Geyer, quantifies
the influence of obstructions on the Ahlfors regular conformal gauge G(f).

Let Γ be a multicurve. If Γ contains an irreducible multicurve, then there is a unique value
Q(Γ) ≥ 1 such that λ(fΓ,Q(Γ)) = 1 (Lemma A.2). Otherwise, we set Q(Γ) = 0. Define

Q(f) = sup{Q(Γ) : Γ is a multicurve}.

We note that:

• If f is obstructed, then Q(f) ≥ 2 and is a rough numerical measurement of the extent
to which f is obstructed.

• If #Pf < ∞, then there are only finitely many possible irreducible matrices fΓ,2, and
the supremum is achieved by some multicurve.

• If f is not conjugate to a Lattès example, and if Γ is not an obstruction, then Q(Γ) < 2,
by Lemma A.2.

We prove:

Theorem 1.5. Suppose f : S2 → S2 is topologically cxc. Then

confdimAR(f) ≥ Q(f).

The finite subdivision rules of Cannon, Floyd, and Parry [CFP] provide a wealth of examples
of topologically cxc maps on the sphere [HP, § 4.3]. As a special case of the above theorem, we
have the following.

Corollary 1.6. Suppose R is a finite subdivision rule with bounded valence, mesh going to
zero, underlying surface the two-sphere, and whose subdivision map f : S2 → S2 is orientation-
preserving. Then confdimAR(f) ≥ Q(f).

In [Bon, Conjecture 6.4] it is guessed that for obstructed maps induced by such finite sub-
division rules, equality actually holds. The preceding corollary establishes one direction of this
conjecture. Our methods are in spirit similar to those sketched above for the classical case
Q = 2. Instead of classical analytic moduli, combinatorial moduli are used. The outline of
our argument is the same as the brief sketch in [Bon]. However, Theorem 1.5 applies to maps
which need not be postcritically finite and hence need not arise from finite subdivision rules.
A key ingredient is the construction of a suitable metric on S2 in which the coverings Un have
the geometric regularity property of being a family of uniform quasipackings. Also, our proof
makes use of a succinct comparison relation (Proposition 3.2 below) between combinatorial
and analytic moduli articulated by the first author in [Häı].

Unfortunately our proof is somewhat indirect: apart from the bound on dimension, our
methods shed very little light on the structure of the elements of the gauge G(f).



THURSTON OBSTRUCTIONS AND AHLFORS REGULAR CONFORMAL DIMENSION 7

Outline of paper.

In §2 we develop the machinery of combinatorial Q-moduli of path families associated to
sequences (Sn)n of coverings of surfaces. Much of this material is now standard.

In §3 we state results that relate combinatorial and analytic moduli in Ahlfors regular metric
spaces. These results apply to covering sequences (Sn)n which are quasipackings with mesh
tending to zero.

In §4, we briefly recall the construction in [HP] of the gauge G(f) and its properties. We also
prove that when S2 is equipped with any metric in the gauge G(f), the sequence of coverings
(Un)n defines a uniform sequence of quasipackings.

In §5, we complete the proof of Theorem 1.5.

In Appendix A, we summarize facts about non-negative matrices and prove Lemma A.2.

Acknowledgments. We thank M. Bourdon, A.Chéritat and J.Rivera-Letelier for their com-
ments on an earlier version of this manuscript. We also thank the anonymous referee for
comments that substantially improved the clarity of our exposition. Both authors were par-
tially supported by the project ANR “Cannon” (ANR-06-BLAN-0366). The second author
was supported by NSF grant DMS-0400852.

Notation. For positive quantities a, b, we write a . b (resp. a & b) if there is a universal
constant C > 0 such that a ≤ Cb (resp. a ≥ Cb). The notation a ≍ b will mean a . b and
a & b.

If A is a matrix, the notation A ≥ 0 means the entries of A are non-negative, and A ≥ B
means A − B ≥ 0.

The cardinality of a set A is denoted #A.

2. Combinatorial moduli

Definitions. Let S be a covering of a topological space X, and let Q ≥ 1. Denote by MQ(S)

the set of functions ρ : S → R+ such that 0 <
∑

ρ(s)Q < ∞; elements of MQ(S) we call
admissible metrics. For K ⊂ X we denote by S(K) the set of elements of S which intersect K.
The ρ-length of K is by definition

ℓρ(K) =
∑

s∈S(K)

ρ(s)

and its ρ-volume is

Vρ(K) =
∑

s∈S(K)

ρ(s)Q .

If Γ is a family of curves in X and if ρ ∈ MQ(S), we define

Lρ(Γ,S) = inf
γ∈Γ

ℓρ(γ),

modQ(Γ, ρ,S) =
Vρ(X)

Lρ(Γ,S)Q
,

and the combinatorial modulus by

modQ(Γ,S) = inf
ρ∈MQ(S)

modQ(Γ, ρ,S).
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A metric ρ for which modQ(Γ, ρ,S) = modQ(Γ,S) will be called optimal. We will consider
here only finite coverings; in this case the proof of the existence of optimal metrics is a straight-
forward argument in linear algebra. The following result is the analog of the classical Beurling’s
criterion which characterises optimal metrics.

Proposition 2.1. Let S be a finite cover of a space X, Γ a family of curves and Q > 1.
An admissible metric ρ is optimal if and only if there is a non-empty subfamily Γ0 ⊂ Γ and
non-negative scalars λγ , γ ∈ Γ0, such that

(1) for all γ ∈ Γ0, ℓρ(γ) = Lρ(Γ,S) ;
(2) for any s ∈ S,

Qρ(s)Q−1 =
∑

λγ

where the sum is taken over curves in Γ0 which go through s.

Moreover, an optimal metric is unique up to scale.

For a proof, see Proposition 2.1 and Lemma 2.2 in [Häı].

Monotonicity and subadditivity.

Proposition 2.2. Let S be a locally finite cover of a topological space X and Q ≥ 1.

(1) If Γ1 ⊂ Γ2 then modQ(Γ1,S) ≤ modQ(Γ2,S).
(2) Let Γ1, . . . ,Γn be a set of curve families in X and Q ≥ 1. Then

modQ(∪Γj ,S) ≤
∑

modQ(Γj,S) .

Furthermore, if S(Γi) ∩ S(Γj) = ∅ for i 6= j, then

modQ(∪Γj ,S) =
∑

modQ(Γj,S) .

The proof is the same as the standard one for classical moduli (see for instance [Väi, Thms
6.2 and 6.7]) and so is omitted.

Naturality under coverings.

A closed (resp. open) annulus in a surface X is a subset homeomorphic to [0, 1] × S1 (resp.
(0, 1)× S1). Suppose A is an annulus in a surface X and S is a finite covering of A by subsets
of X. For Q ≥ 1 we define

modQ(A,S) = modQ(Γ,S)

where Γ is the set of closed curves which are contained in A and which separate the boundary
components of A.

Note that modQ(A,S) is an invariant of the triple (X,A,S) and is not purely intrinsic to
A. The following result describes how combinatorial moduli of annuli change under coverings.
Since the elements of S meeting A need not be contained in A, it is necessary to have some
additional space surrounding A on which the covering map is defined.

Proposition 2.3. Suppose A,B,A′, B′ are open annuli such that A ⊂ B, A′ ⊂ B′, A is
essential in B, and A′ is essential in B′. Let f : B′ → B be a covering map of degree d such
that f |A′ : A′ → A is also a covering map of degree d. Let S be a finite cover of A by Jordan
domains s ⊂ B and S ′ be the induced covering of A′, i.e. the covering whose elements s′ are
the components of f−1({s}), s ∈ S. Then, for Q > 1,

modQ(A′,S ′) = d1−Q · modQ(A,S) .
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Proof: Let Γ,Γ′ denote respectively the curve families in A,A′ separating the boundary
components. We note that since f is a covering and each piece of S is a Jordan domain, f−1(s)
has d components each of which is also a Jordan domain.

Let ρ be an optimal metric for modQ(Γ,S). Consider the subfamily Γ0 and the scalars λγ

given by Proposition 2.1. Set Γ′
0 = f−1(Γ0), ρ′ = ρ ◦ f , and for γ′ ∈ Γ′

0 define λγ′ = λf(γ′).

The preimage γ′ of a curve γ in Γ is connected and all the preimages of s ∈ S(γ) belong
to S ′(γ′). Therefore, for γ′ ∈ Γ′

0, one has ℓρ′(γ
′) = dLρ(Γ), and for any other curve, ℓρ′(γ

′) ≥
dLρ(Γ).

Clearly, for any s′ ∈ S ′,

Qρ′(s′)Q−1 =
∑

γ′∈Γ′

0

λγ′

so that Proposition 2.1 implies that ρ′ is optimal.

It follows that

modQ(Γ′,S ′) =
dVQ(ρ)

(dLρ(Γ))Q
= d1−Q · modQ(Γ,S) .

3. Combinatorial moduli and Ahlfors regular conformal dimension

Under suitable conditions, the combinatorial moduli obtained from a sequence (Sn)n of
coverings can be used to approximate analytic moduli on metric measure spaces. Suppose
(X, d, µ) is a metric measure space, Γ is a family of curves in X, and Q ≥ 1. The (analytic)
Q-modulus of Γ is defined by

modQ(Γ) = inf

∫

X
ρQdµ

where the infimum is taken over all measurable functions ρ : X → R+ such that ρ is admissible,
i.e. ∫

γ
ρds ≥ 1

for all γ ∈ Γ which are rectifiable. If Γ contains no rectifiable curves, modQ(Γ) is defined to
be zero. Note that when Γ contains a constant curve, then there are no admissible ρ, so we
set modQΓ = +∞. When X ⊂ C is a domain, µ is Euclidean area, and Q = 2, this definition
coincides with the classical one.

The approximation result we use requires the sequence of coverings (Sn)n to be a uniform
family of quasipackings.

Definition 3.1 (Quasipacking). A quasipacking of a metric space is a locally finite cover S
such that there is some constant K ≥ 1 which satisfies the following property. For any s ∈ S,
there are two balls B(xs, rs) ⊂ s ⊂ B(xs,K · rs) such that the family {B(xs, rs)}s∈S consists
of pairwise disjoint balls. A family (Sn)n of quasipackings is called uniform if the mesh of Sn

tends to zero as n → ∞ and the constant K defined above can be chosen independent of n.

The next result says roughly that for the family consisting of all sufficiently large curves,
analytic and combinatorial moduli are comparable.

Proposition 3.2. Suppose Q > 1, X is an Ahlfors Q-regular compact metric space, and (Sn)n
is a sequence of uniform quasipackings. Fix L > 0, and let ΓL be the family of curves in X of
diameter at least L. Then either
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(1) modQ(ΓL) = 0 and limn→∞ modQ(ΓL,Sn) = 0, or
(2) modQ(ΓL) > 0, and there exists constants C ≥ 1 independent of L and N = N(L) ∈ N

such that for any n > N ,

1

C
modQ(ΓL,Sn) ≤ modQ(ΓL) ≤ CmodQ(ΓL,Sn).

See Proposition B.2 in [Häı].

Corollary 3.3. Under the hypotheses of Proposition 3.2, if Q > confdimAR(X) ≥ 1, and if Γ
is a curve family contained in some ΓL, L > 0, then limn→∞ modQ(Γ,Sn) = 0.

In other words, if there is a curve family Γ each of whose elements has diameter at least
L > 0, and if for some Q > 1 one has

modQ(Γ,Sn) & 1

for all n, then the AR-conformal dimension is at least Q.

The lower bound on the diameter is necessary. If Γ is any family of curves such that, for any
n, there is some γ ∈ Γ contained in an element of Sn, then modQ(Γ,Sn) ≥ 1 for all n. So, for
example, if Γ consists of a countable family of non-constant curves as above, then modQ(Γ) = 0
while modQ(Γ,Sn) ≥ 1 for all n.

Proof: By assumption, there is some metric d in the conformal gauge of X which is Ahlfors
regular of dimension p ∈ (confdimARX,Q), and Γ ⊂ ΓL for some L > 0. Let d′ = dp/Q. Then
the sequence {Sn, n ≥ 0} is again a family of uniform quasipackings. Though d′ is Ahlfors
regular of dimension Q, it has no rectifiable curves. In particular, for the metric d′, we have
modQ(ΓL) = 0. By Proposition 3.2, modQ(ΓL,Sn) → 0 as n → ∞. Since Γ ⊂ ΓL, the
monotonicity of moduli (Proposition 2.2) implies that modQ(Γ,Sn) ≤ modQ(ΓL,Sn) so that
modQ(Γ,Sn) tends to 0 as well.

Remark. Corollary 3.3 takes its origin in the work of Pansu [Pan, Prop. 3.2] where a similar
statement is proved for his modules grossiers. It is also closely related to a theorem of Bonk and
Tyson which asserts that if the Q-modulus of curves in a Q-Ahlfors regular space is positive,
then the Ahlfors regular conformal dimension of that space is Q [Hei, Thm15.10]. In particular,
if a metric is Q-regular for some Q strictly larger than the Ahlfors regular conformal dimension,
then the Q-modulus of any non-trivial family of curves is zero.

4. The conformal gauge of a topological cxc map

In this section, we recall from [HP] the construction of the metrics associated to topologically
cxc maps, specialized to the case of maps f : S2 → S2. After summarizing their properties, we
prove that with respect to these metrics, the induced coverings Un obtained by pulling back an
initial covering U0 under iteration form a sequence of uniform quasipackings.

Associated graph Σ. Suppose f : S2 → S2 is topologically cxc with respect to an open
covering U0. Let Σ be the graph whose vertices are elements of ∪nUn, together with a distin-
guished root vertex o = S2 = U−1. The set of edges is defined as a disjoint union of two types
of edges: horizontal edges join elements U1, U2 ∈ Un if and only if U1 ∩ U2 6= ∅, while vertical
edges join elements U ∈ Un, V ∈ Un±1 at consecutive levels if and only if U ∩ V 6= ∅. Note
that there is a natural map F : Σ → Σ which is cellular on the complement of the set of closed
edges meeting U0.
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Associated metrics. Equip Σ temporarily with the length metric d(·, ·) in which edges are
isometric to unit intervals.

Axiom [Expansion] implies that the metric space Σ is hyperbolic in the sense of Gromov
[HP, Theorem 3.3.1]; see [GdlH] for background on hyperbolic metric spaces. One may define
its compactification in the following way.

Fix ε > 0. For ξ ∈ Σ let ̺ε(ξ) = exp(−εd(o, ξ)). Define a new metric dε on Σ by

dε(ξ, ζ) = inf ℓε(γ)

where

ℓε(γ) =

∫

γ
̺ε ds

and where as usual the infimum is over all rectifiable curves in the metric space (Σ, d) joining ξ
to ζ. The resulting metric space Σε = (Σ, dε) is incomplete. Its complement in its completion
defines the boundary ∂εΣ which is an Ahlfors regular metric space of dimension 1

ε log deg(f) by
axiom [Degree] if ε is small enough. The map F is eε-Lipschitz in the dε-metric, so it extends
to ∂εΣ.

If ε is sufficiently small, the boundary ∂εΣ is homeomorphic to the usual Gromov boundary,
and there is a natural homeomorphism φ : S2 → ∂εΣ given as follows. For x ∈ S2 let Un(x)
be any element of Un containing x. We may regard Un(x) as a vertex of Σ and hence as an
element of its completion Σε. The definitions of Σ and of dε imply that

φ(x) = lim
n→∞

Un(x) ∈ ∂εΣ

exists and is independent of the choice of sequence {Un(x)}n. The homeomorphism φ conjugates
f on S2 to the map F on ∂εΣ.

Associated metrics on S2. A priori the boundary ∂εΣ depends on the choice of U0 and
of ε. However, by [HP, Proposition 3.3.12], its quasisymmetry class is independent of such
choices, provided the covering satisfies axiom [Expansion] and the parameter is small enough
to guarantee that φ is a homeomorphism. We remark that balls for such metrics need not be
connected.

The Ahlfors regular conformal gauge G(f) is then defined as the set of all Ahlfors regular
metrics on S2 quasisymmetrically equivalent to a metric of the form φ∗(dε). Elements of G(f)
will be referred to as associated metrics.

It what follows, for convenience we denote by dε the pulled-back metric φ∗(dε) on S2.

Theorem 4.1. Let f : S2 → S2 be a topological cxc dynamical system with respect to an open
covering V0. Then there exists a finite cover U0 of S2 by Jordan domains such that, for any
associated metric, the sequence of coverings {Un, n ≥ 0} is a uniform family of quasipackings.

Proof: It is easily shown that the property of being a uniform quasipacking is preserved under
quasisymmetric changes of metric. Hence, it suffices to show the conclusion for a metric dε as
constructed above.

For convenience, equip S2 with the standard Euclidean spherical metric and denote the
resulting metric space by S

2. Then small spherical balls D(x, r) are Jordan domains. For each
x ∈ S

2, consider an open ball Ux = D(x, rx) centred at x. By expansion, there exists n0 such
that no element of Vn, n ≥ n0, contains more than one critical value of f . By choosing rx

sufficiently small and sufficiently generic, we may arrange so that each Ux (i) is contained in
some element of Vn0

, and (ii) does not contain a critical value of an iterate of f on its boundary.
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A covering of a disk ramified above at most one point is again a disk, by the Riemann-Hurwitz
formula. It follows that every iterated preimage of Ux under f is a Jordan domain.

Let U0 = {Uxj
}j be a finite subcover. From the 5r-covering theorem [Hei, Thm 1.2], we may

assume that the balls {D(xj , rj/5)}j are pairwise disjoint. Since we assumed that each disk
in U0 was contained in an element of Vn0

, it follows that U0 satisfies both axioms [Expansion]
and [Degree]. Furthermore, there is some r0 > 0 such that the collection {Bε(xj , r0)} of balls
in the metric dε is a disjointed family.

The proof is completed by appealing to the axiom [Expansion] and to the fact that with
respect to the metric dε, iterates of f distort elements of U = ∪nUn by controlled amounts.
More precisely, it follows from [HP, Prop. 3.3.2] that there is a constant C ≥ 1 for which the

following property holds. If x̃ ∈ Ũ ∈ Un, fn(x̃) = xj , fn(Ũ ) = Uj , then

Bε(x̃, (r0/C)e−εn) ⊂ Ũ ⊂ Bε(x̃, Ce−εn)

and

fn(Bε(x̃, (r0/C)e−εn)) ⊂ Bε(xj , r0) .

This implies that the sequence {Un, n ≥ 0} is a uniform family of quasipackings by Jordan
domains.

We note also that the quasipackings we have just constructed have uniformly bounded overlap
by axiom [Degree].

5. Ahlfors regular conformal dimension and multicurves

Suppose f : S2 → S2 is topologically cxc. By Theorem 4.1, there exists an associated metric
such that the sequence {Un, n ≥ 0} is a family of uniform quasipackings by Jordan domains.
As coverings for the definition of combinatorial moduli, we take Sn = Un.

Proposition 5.1. Let Q > 1, and let Γ be a multicurve with λ(fΓ,Q) ≥ 1. Then, for any n large
enough, modQ([Γ],Un) & 1, where [Γ] denotes the family of all curves in S2 −Pf homotopic to
a curve in Γ.

Proof: Without loss of generality we may assume Γ is irreducible. Write Γ = {γ1, . . . , γm}
and equip R

Γ with the L1-norm | · |1 norm, so that |
∑

j ajγj|1 =
∑

j |aj |. For each 1 ≤ j ≤ m

choose an annulus Bj which is a regular neighborhood of γj and such that Bi ∩ Bj = ∅, i 6= j.

Within each Bj choose a smaller such neighborhood Aj so that γj ⊂ Aj ⊂ Aj ⊂ Bj and each
inclusion is essential. By expansion, there exists a level n0 such that the covering Un0

has the
following properties:

(1) s ∈ Un0
, s ∩ Aj 6= ∅ ⇒ s ⊂ Bj .

(2) modQ(Aj ,Un0
) > 0 for all 1 ≤ j ≤ m.

For n ≥ 1, let Γn denote the finite family of curves γ̃ in [Γ] arising as connected components
of curves of the form f−n(γj), γj ∈ Γ. Given such a curve γ̃ ⊂ f−n(γj), denote by A(γ̃) the
unique component of f−n(Aj) containing γ̃. Note that for fixed n, the resulting collection of
annuli A(γ̃), γ̃ ∈ Γn, are disjoint.

By the monotonicity and additivity of moduli (Proposition 2.2) we have that

modQ([Γ],Un0+n) ≥
∑

γ̃∈Γn

modQ(A(γ̃),Un0+n).
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Let v ∈ R
Γ be the vector of combinatorial moduli at level n0 given by

v = (modQ(A1,Un0
), . . . ,modQ(Am,Un0

)).

Proposition 2.3 implies that if n ≥ 1 and γ̃ ∈ Γn then

modQ(A(γ̃),Un0+n) = deg(f : γ̃ → f(γ̃))1−Q · modQ(A(f(γ̃)),Un0+n−1).

By induction and the fact that degrees multiply under compositions of coverings, for each fixed
n, the j-th entry of the vector fn

Γ,Q(v) is the sum of the moduli {modQ(A(γ̃)),Un0+n)} over

all curves γ̃ ∈ Γn homotopic to γj ∈ Γ. By the monotonicity and subadditivity of moduli
(Proposition 2.2) we conclude that, for any n ≥ 1,

modQ([Γ],Un0+n) ≥ |fn
Γ,Q(v)|1 .

By the Perron-Frobenius theorem, there is a positive vector wQ for which fΓ,Q(wQ) =
λ(fΓ,Q) · wQ. By scaling, we may assume wQ ≤ v. Since the entries of the matrix for fΓ,Q are
non-negative, we have

fn
Γ,Q(v) ≥ fn

Γ,Q(wQ) = λ(fΓ,Q)nwQ ≥ wQ > 0

and so

lim inf
n→∞

|fn
Γ,Q(v)|1 > 0

which completes the proof.

We conclude with the proof of Theorem 1.5.

Proof: By Theorem 4.1, there is an Ahlfors regular metric dε ∈ G(f) on S2 for which the
sequence of coverings {Un, n ≥ 0} is a uniform family of quasipackings. Let Γ be a multicurve
and [Γ] the family of all curves homotopic to an element of Γ. If Γ contains no irreducible
multicurve, then Q(Γ) = 0 ≤ confdimAR(f). Otherwise, by Lemma A.2 and the definition of
Q(Γ), we have λ(fΓ,Q(Γ)) = 1 for some Q(Γ) ≥ 1. By Proposition 5.1 applied with Q = Q(Γ),
modQ(Γ)([Γ],Un) & 1 as n → ∞. Since curves in Γ are non-peripheral, there is a positive
lower bound for the diameter of any curve in the family [Γ]. Thus, Corollary 3.3 implies that
confdimAR(S2, dε) ≥ Q(Γ) and so confdimAR(f) ≥ Q(Γ). Since Γ is an arbitrary multicurve,
we conclude

confdimAR(f) ≥ Q(f) .

Appendix A. Monotonicity of leading eigenvalues

We first recall some facts concerning non-negative square matrices A; see [BP].

• Perron-Frobenius theorem, irreducible version. [BP, Theorem 1.4]. A k-by-k
non-negative matrix A is said to be irreducible if, for any ordered pair (i, j), 1 ≤ i, j ≤ k,
there is some power q > 0 for which (Aq)i,j > 0. If A is irreducible, then there is a
simple eigenvalue λ(A) of A which is larger than the norm of any other eigenvalue,
and up to scale, there is a unique corresponding eigenvector, all of whose entries are
positive.

• Perron-Frobenius theorem, general version. [BP, Theorem 1.1]. If A is merely
non-negative, then there exists a non-negative eigenvalue λ(A) equal to its spectral
radius, and any corresponding eigenvector is also non-negative.
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• Monotonicity [BP, Corollary 2.1.5]. The function A 7→ λ(A) satisfies

(3) A ≥ B ⇒ λ(A) ≥ λ(B)

• Irreducible decomposition [BP, pp. 39-40]. Given any non-negative matrix A,
there is a permutation matrix P such that U = PAP−1 has block upper triangular
form, where the diagonal blocks D of U are square and either irreducible or zero. For
some diagonal block D, λ(D) = λ(A).

Definition. Let p ≥ 1 be an integer. A Levy cycle of length p is a multicurve Γ = {γj , j ∈
Z/pZ} such that for each j ∈ Z/pZ, f−1(γj) contains a preimage δ which is homotopic to γj+1,
and such that deg(f : δ → γj) = 1.

Lemma A.1. If f : S2 → S2 is a branched covering satisfying Axiom [Expansion] with respect
to an open covering U0, then f has no Levy cycles.

Proof: Fix a metric on the sphere compatible with its topology. Axiom [Expansion] implies
that there are constants dn ↓ 0 as n → ∞ such that max{diamU |U ∈ Un} ≤ dn.

Suppose f had a Levy cycle Γ of length p, and let γ ∈ Γ. Then g = fp also satisfies Axiom
[Expansion] with respect to U0, and g−1(γ) has a connected component δ homotopic to γ and
satisfying deg(g : δ → γ) = 1. There is an open annulus A ⊂ S2 − Pf containing γ such that
the inclusion map γ →֒ A is essential. By compactness and Axiom [Expansion], there exists
n0 ∈ N such that

Un0
(γ) = {U ∈ Un0

|U ∩ γ 6= ∅} ⊂ A.

Let N = #Un0
(γ). Since deg(g : δ → γ) = 1 and δ is homotopic to γ, it follows by induction

and the construction of the annulus A that for all k ∈ N, there exists a component Ak of
g−k(A) homotopic to A such that deg(gk : Ak → A) = 1, i.e. gk|Ak is a homeomorphism onto
A. Hence, the annulus Ak contains a unique component δk of g−k(γ) which is homotopic to γ,
and δk is covered by N elements of Un0+pk. Thus diamδk ≤ N · dn0+pk → 0 as k → ∞. But
this is impossible: since γ is non-peripheral, there is a positive lower bound on the diameter of
any curve homotopic to γ.

Lemma A.2. Let f : S2 → S2 be a branched covering satisfying Axiom [Expansion], and let
Γ be a multicurve.

(1) If Γ does not contain an irreducible multicurve, then fΓ,Q is nilpotent and λ(fΓ,Q) = 0
for all Q ≥ 1.

(2) If Γ contains an irreducible multicurve, then λ(fΓ,1) ≥ 1, and the function Q 7→ λ(fΓ,Q)
is strictly decreasing on [1,∞) and tends to zero as Q tends to ∞.

Proof: Re-indexing the elements of Γ, we may assume the matrix (fΓ,Q) has block-upper
triangular form for all Q ≥ 1.

Suppose that Γ contains no irreducible multicurve. Then the matrix (fΓ,Q) is upper trian-
gular and has zeros on the diagonal. Hence fΓ,Q is nilpotent and λ(fΓ,Q) = 0.

Suppose now that Γ contains an irreducible multicurve Γ′. It follows that λ(fΓ,1) ≥ λ(fΓ′,1).
Since the matrix (fΓ′,1) is irreducible, non-negative and with positive entries at least 1, there
is some permutation matrix P ′ and a re-indexing such that

fΓ′,1 ≥

(
P ′ 0
0 0

)
.
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We then have by Equation (3)

λ(fΓ,1) ≥ λ(fΓ′,1) ≥ λ(P ′) = 1.

We now prove the second assertion. For convenience, denote by AQ the matrix (fΓ,Q).
If Q1 > Q2 then AQ1

≤ AQ2
entrywise and Equation (3) implies that λ(AQ1

) ≤ λ(AQ2
).

If equality holds for distinct Q1, Q2, then λ(AQ) is constant for all Q2 ≤ Q ≤ Q1. Since
eigenvalues are algebraic functions, this would imply λ(AQ) is constant for all Q. Since λ(A1) ≥
1 by assumption, it suffices to show that λ(AQ) → 0 as Q → ∞.

The definition of fΓ,Q implies that

AQ = BQ + C

where BQ, C are non-negative, BQ → 0, and the entries of C are of the form 11−Q + . . .+11−Q.
Hence C is constant in Q.

In this paragraph, we prove that Cm = 0 where m = #Γ. Suppose D is an irreducible
diagonal block in the decomposition of C. Then (Dq)i,i > 0 for some index i and some power
q > 0. But this implies that Γ contains a Levy cycle, which is impossible by Lemma A.1. Hence
all diagonal blocks are zero, which implies Cm = 0.

Since Cm = 0, every term in the expansion of (BQ +C)m contains BQ as a factor. Therefore

lim
Q→∞

Am
Q = lim

Q→∞
(BQ + C)m = 0

entrywise. Hence λ(Am
Q ) = λ(AQ)m → 0 and so λ(AQ) → 0.
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[Häı] Peter Häıssinsky. Empilement de cercles et modules combinatoires. arXiv:math.MG/0612605, 2006.
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