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Abstract

“Kernel logistic PLS” (KL-PLS) is a new tool for supervised nonlinear dimensionality reduction and binary classification. The 
principles of KL-PLS are based on both PLS latent variables construction and learning with kernels. The KL-PLS algorithm can be 
seen as a supervised dimensionality reduction (complexity control step) followed by a classification based on logistic regression. 
The algorithm is applied to 11 benchmark data sets for binary classification and to three medical problems. In all cases, KL-PLS 
proved its competitiveness with other state-of-the-art classification methods such as support vector machines. Moreover, due to 
successions of regressions and logistic regressions carried out on only a small number of uncorrelated variables, KL-PLS allows 
handling high-dimensional data. The proposed approach is simple and easy to implement. It provides an efficient complexity 
control by dimensionality reduction and allows the visual inspection of data segmentation.

Keywords: Classification; Kernel; PLS regression; Logistic regression; Dimensionality reduction

1. Introduction

In this paper, we revisit the classification problem by focusing on kernel-based methods such as support vector ma-

chines (SVM) (Vapnik, 1998; Burges, 1998; Boser et al., 1992), kernel logistic regression (KLR) (Zhu and Hastie, 2005)

and others such as kernel partial least squares (KPLS) regression (Rosipal and Trejo, 2001; Rosipal et al., 2003; Bennett

and Embrechts, 2003). In kernel-based methods, a complexity control step is usually performed. Vapnik–Chervonenkis

(VC) theory provides a general framework for complexity control called structural risk minimization (SRM). VC theory

relies on a nested set of models of increasing complexity (called a structure). In this context, the choice of a suitable

structure is a decisive step. This paper proposes a novel way to build such a nested structure based on the partial least

squares (PLS) regression. The PLS algorithm is especially convenient when handling high-dimensional and highly

∗ Corresponding author. U678 INSERM, CHU Pitié-Salpétrière, 91 bd de l’hôpital, 75634 Paris, France. Tel.: +33 1 53 82 84 07;
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correlated data (Wold, 1983; Tenenhaus, 1998), which is the very issue addressed when using kernels. This dual aspect

(complexity control procedure and explicit linear model designed for high-dimensional and highly correlated data)

makes the association of kernel theory with PLS regression (PLS-R) a clearly fruitful approach that has already given

rise to many developments. For instance, Rosipal and Trejo (2001) have proposed a nonlinear PLS algorithm via kernel:

the KPLS regression.

PLS-R was not originally designed for classification. However, based on the algorithmic structure of PLS-R, two new

linear approaches have been proposed: the PLS logistic regression (Tenenhaus, 2002; Bastien et al., 2005; Tenenhaus

et al., 2005) and the PLS for discrimination (Barker and Rayens, 2003). Rosipal et al. have also suggested a kernelized

version of the PLS for discrimination (Rosipal et al., 2003).

Based on Bennett and Embrechts’s (2003) work, we present a nonlinear extension of the PLS logistic regression

based on the factorization of the kernel matrix: the Kernel Logistic PLS (KL-PLS).

The paper is organized as follows: in Section 2, we briefly review some principles of SRM and PLS-R. In Section

3, we focus on PLS for classification. In Section 4, we review some nonlinear extensions of PLS-R. In Section 5, we

propose the KL-PLS algorithm and present numerical and graphical results in Section 6.

2. Partial least squares regression and structural risk minimization

2.1. Structural risk minimization (SRM)

Given a set of examples (x1, y1), . . . , (xn, yn), xi ∈ Rp, yi ∈ R, drawn from an unknown distribution P(x, y),

expected risk minimization is achieved by finding a function fopt ∈ F� = {f�, � ∈ �}, which provides the smallest

possible expected risk:

R(�) =

∫

V (y, f�(x))P (x, y) dx dy, (1)

where each function f� in F� is uniquely labeled by the adjustable parameter � and V defines a cost function measuring

the discrepancy between the y and f�(x).

Usually, the probability distribution P(x, y) is unknown, preventing minimizing expected risk. However, a sampling

of P(x, y) is available from which the empirical risk can be minimized:

Remp(�) =
1

n

n
∑

i=1

V (yi, f�(xi)). (2)

Vapnik and Chervonenkis have provided an inequality connecting expected risk with empirical risk, with a probability

of 1 − �:

R(�)�Remp(�) +

√

h(log(2n/h) + 1) − log(�/4)

n
∀� ∈ �, (3)

where h is the VC-dimension of F� (Vapnik, 1998). The right-hand side of the inequality (3) is called the “structural

risk”. It is clear from inequality (3) that a small value of the empirical risk does not necessarily imply a small value

of the expected risk. In order to make the expected risk small, both the empirical risk and the VC-dimension should

be minimized at the same time. In the context of SRM, a set of possible models F� = {f�(x) : � ∈ �} is decomposed

into a nested structure of subsets Fk = {f�(x) : � ∈ �k} of increasing complexity (or flexibility to fit the data), so that

F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ . . ., and the (finite) VC-dimension hk of Fk verifies h1 �h2 � · · · �hk . . .. Thus, a model can

be chosen among the nested sequence based on the smallest value of the upper bound of (3).

Application of SRM, in practice, depends on a chosen structure. An example of generic structure is a dictionary

representation where the set of approximating functions is

fm(x, c, w) =

m
∑

i=1

cib(x, wi), (4)

where b(x, wi) is a set of basis functions with adjustable parameters wi and ci are linear coefficients (Cherkassky

et al., 1999). Both wi and ci are estimated from the training data. Representation (4) defines a structure, since f1 ⊂
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f2 ⊂ · · · ⊂ fk ⊂ . . .. Hence the number of terms m in (4) specifies a particular fi of the structure. We formulate, in

the next section, a practical way to build such a nested structure based on the PLS-R.

2.2. Partial least squares regression (PLS-R)

PLS-R (Wold et al., 1983) is a technique for summarizing two data sets X and Y by latent variables (or PLS

components), taking into account that the block Y is a set of responses and the block X is a set of predictors. PLS

components, denoted by t1, . . . , tm are related to X and constrained to be orthogonal, and PLS components, denoted

by u1, . . . , um are related to Y and are not constrained to be orthogonal. Let X0 and Y0 be the centralized versions of

X and Y. Höskuldsson (1988) has shown that the hth PLS components th = Xh−1wh and uh = Yh−1ch, are obtained by

maximizing the Tucker (1958) criterion:

cov2(Xh−1wh, Yh−1ch) = var(Xh−1wh) corr2(Xh−1wh, Yh−1ch) var(Yh−1ch), (5)

subject to the constraints ‖wh‖ = ‖ch‖ = 1. Xh−1 is the residual of the regression of X0 on t1, . . . , th−1 and Yh−1 is

the residual of the regression of Y0 on t1, . . . , th−1. The solution wh (respectively, ch) of this problem is obtained from

the normalized eigenvector of the matrix Xt
h−1Yh−1Y

t
h−1Xh−1 (respectively, Y t

h−1Xh−1X
t
h−1Yh−1) associated with the

largest eigenvalue.

Therefore, PLS creates orthogonal latent variables t1, t2, . . . , tm (PLS components), linear combinations of the p

original variables x1, . . . , xp using Y for their determination. Let us focus on the one-dimensional output case. The PLS

model with m components fits expansion (4) as follows:

fm(x, c, w) =

m
∑

i=1

cib(x, wi) =

m
∑

h=1

chth =

m
∑

h=1

ch

p
∑

j=1

xh−1,jwhj =

m
∑

h=1

ch

p
∑

j=1

xjw
∗
hj , (6)

where wh =arg
wh

max cov(Xh−1wh, y), ch is the regression coefficient of th in the regression of y on t1, . . . , tm and w∗
h is

defined in Section 5.5. It is worth noting that y is integrated in the construction of the nested structure. Subsequently, the

nested structure of fi is built in a supervised way and complexity control is achieved here by supervised dimensionality

reduction.

3. Linear PLS methods for classification

Although PLS was not inherently designed for classification, it is routinely used for this purpose. PLS discriminant

analysis (PLS-DA) is usually defined as a PLS-R of the dummy matrix derived from y on the set of predictors X. Thus

PLS-DA is a technique for modeling linear relation between a set of binary variables Y on the set of predictors X. In

addition, two linear PLS methods have been designed especially for classification: PLS for discrimination and PLS

logistic regression.

3.1. PLS for discrimination (PLS-D)

In this section, we assume that Y is the dummy matrix. Barker and Rayens (2003) suggested to remove the not

meaningful Y-space penalty, var(Yh−1ch), in criterion (5). They have noted that this penalty is, in fact not adequate for

classification and proposed instead to obtain the PLS-D components th = Xh−1wh and uh = Ych, h = 1, . . . , m, by

maximizing criterion:

var(Xh−1wh) corr2(Xh−1wh, Y ch), (7)

subject to the constraints ‖wh‖ = ‖ch‖ = 1. Xh−1 is the residual of the regression of X0 on t1, . . . , th−1. The solution

wh is obtained from the normalized eigenvector of the matrix Xt
h−1Y (Y tY )−1Y tXh−1 associated with the largest

eigenvalue. We may note that th =Xh−1wh is the first principal component of the PCA of the Xh−1 variables projected

onto the Y variable space.

As far as one-dimensional output is concerned, the PLS components extracted from PLS-D and PLS-DA are identical.

This follows from the fact that Y tY is a scalar.
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PLS-DA and PLS-D only extract PLS components and a supervised method (such as the logistic regression) applied

on selected components, provides a classification rule.

3.2. PLS logistic regression (PLS-LR)

When the set of responses Y (=y) is limited to one variable, the algorithm can be simplified because the ranks of the

matrices XtyytX and ytXXty are equal to one. The following results are obtained:

w1 = Xty/‖Xty‖,

t1 = Xw1 = XXty/‖Xty‖.

Garthwaite (1994) has noticed that each coordinate of the weight vector w1 can be written as

w1j = xt
jy/‖Xty‖ = xt

jxj

xt
jy

xt
jxj · ‖Xty‖

∝ s2
j aj

/

√

∑

j

s2
j aj ,

where s2
j is the variance of xj and aj the regression coefficient of xj in the regression of y on xj . Therefore, the weight

vector w1 is obtained by a succession of simple regressions of the dependent variable y on each explanatory variable

xj . This result remains valid for the next components (wh is obtained by a succession of multiple regressions of y on

t1, . . . , th−1 and each residual variable xh−1,j ).

Using the Garthwaite (1994) approach and replacing the successions of simple regressions by simple generalized

linear regressions, Bastien et al. (2005) extended the PLS-R to the PLS generalized linear regression (PLS-GLR).

The PLS-GLR algorithm provides a natural tool for classification through the logistic regression (since binary logis-

tic regression belongs to the generalized linear model family) giving rise to the PLS logistic regression (PLS-LR)

(Tenenhaus, 2002, 2005; Bastien et al., 2005). The PLS-GLR algorithm is described in Appendix A.

The PLS-GLR of a response y on a set of predictors x1, . . . , xp with m components is written as

g(�) =

m
∑

i=1

ch

⎛

⎝

p
∑

j=1

w∗
hjxj

⎞

⎠ , (8)

where the parameter � is the mean of a numerical variable. The link function, g, is chosen by the user according to the

probability distribution of y.

Below are quoted four important properties of PLS-LR:

(i) Contrary to many data analysis methods, it needs only to compute the inverse of small-dimensional matrices (size

equal to the number of PLS-LR components). The number of components is generally small and usually chosen

by cross-validation.

(ii) It allows handling data with more variables than observations.

(iii) It allows handling highly correlated variables.

(iv) Eqs. (8) and (4) have a similar expansion so that PLS-LR (as well as PLS-R) fits the SRM paradigm.

PLS-DA, PLS-D and PLS-LR are designed to operate with high-dimensional and highly correlated data. The ability of

these methods to do inference in high-dimensional space makes them ideal candidates for a nonlinear analysis of data

based on an increase of their dimension.

4. Nonlinear PLS methods

Several methods are devoted to the extension of the linear PLS methods to the nonlinear case. Focusing here on

binary classification we briefly review pros and cons of some of them, in order to precisely substantiate our contribution.
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4.1. The simplest approach

One simple way of introducing nonlinearity in the model is to increase the dimension of the input matrix X by using

higher order and cross terms of the original input variables, and then to use this new matrix X in the PLS algorithm

(Wold et al., 1989). However, such an increase is workable only if p is originally very small. It is worth noting that the

interpretability of the final model (coefficients and variables) is preserved.

4.2. The Wold’s approach

Without discarding PLS as a tool for dimensionality reduction, the linear inner relation

ŷ =

m
∑

h=1

ch

p
∑

j=1

w∗
hjxj =

m
∑

h=1

chth, (9)

may be replaced with a nonlinear relation yielding the following general form of ŷ:

ŷ =

m
∑

h=1

gh

⎛

⎝

p
∑

j=1

w∗
hjxj

⎞

⎠ =

m
∑

h=1

gh(th), (10)

where gh’s are smooth nonlinear functions. This was first proposed by Wold using quadratic polynomials without cross

terms (Wold et al., 1989) and further developed with smooth functions approximated by splines (Wold, 1992) or neural

networks (Baffi et al., 1999).

The initial PLS dimension reduction is particularly useful when a set of variables with no discriminant information

jeopardizes data segmentation. However, if the discriminant information relies on nonlinear relationships between

variables and target, the initial PLS dimension reduction may have a disastrous effect.

4.3. KPLS approach

Kernel-based learning algorithms (Cortes and Vapnik, 1995; Schölkopf and Smola, 2002; Shawe-Taylor and

Cristianini, 2004) proceed by mapping original data X into a (possibly high-dimensional) Hilbert space F, usually

called feature space, and then by using linear pattern analysis to detect relations in the feature space. Mapping is per-

formed by specifying the inner product between each pair of data rather than by explicitly calculating their coordinates

(the so-called “kernel trick”). This approach has several advantages, the most important being that the inner product

in the feature space is often much more easily computed than the coordinates of the points (notably when the dimen-

sionality of the feature space is high). Given an input space X and a feature space F, we consider a function �: X → F.

Given two points u ∈ X and v ∈ X, the kernel function returns the inner product between their images mapped by �.

The choice of the kernel function (and associated parameter(s)) defines the relative position of the data in the feature

space. The linear kernel (k(u, v) = 〈u, v〉) and the Gaussian kernel (k(u, v) = exp(−‖u − v‖2/2�2)) are two of the

most popular kernel functions.

The nonlinear KPLS regression method is based on the mapping of the original input data X into a high-dimensional

feature space F. The objective is to construct a linear PLS-R in F or equivalently a nonlinear PLS-R model in X. Rosipal

and Trejo developed a nonlinear form of the PLS-R based on the kernel trick, the so-called KPLS regression (Rosipal

and Trejo, 2001). In the case of one-dimensional output, the first PLS component tPLS
1 is proportional to XXty and

thus, PLS can be rigorously adapted to the kernel approach, giving rise to the KPLS.

Denote � the matrix of mapped input data into the feature space F.

tKPLS
1 ∝ ��ty. (11)

Instead of an explicit nonlinear mapping, the kernel trick can be used.

tKPLS
1 ∝ ��ty = Ky, (12)

where K is the n × n kernel matrix (see Section 5.1).
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In Section 2.2, we assumed a centralized PLS-R problem. To centralize the mapped data in a feature space F we can

apply (13) (Schölkopf et al., 1998; Rosipal and Trejo, 2001):

K0 =

(

In −
1

n
1n1t

n

)

K

(

In −
1

n
1n1t

n

)

, (13)

where In is an n × n identity matrix and 1n represents a n × 1 vector of ones.

Like PLS, KPLS is an iterative process. After extraction of the unit norm tKPLS
h−1 , the (h − 1)th KPLS component, the

algorithm is reiterated using the following deflated matrix:

h�2, Kh−1 = (I − tKPLS
h−1 tKPLSt

h−1 )Kh−2(I − tKPLS
h−1 tKPLSt

h−1 ). (14)

Eq. (14) is based on the fact that �h−1 is deflated as

h�2, �h−1 = �h−2 − tKPLS
h−1 tKPLSt

h−1 �h−2, (15)

and the hth unit norm KPLS component is defined by

tKPLS
h = Kh−1y. (16)

Like PLS, KPLS is not designed for classification purposes. Therefore, Rosipal et al. (2003) have suggested a kernelized

version of the PLS for discrimination (KPLS-D). As it is for the linear framework, KPLS-D and KPLS-DA for binary

classification are equivalent. However, KPLS-D provides an appealing solution for the multiclass classification (Rosipal

et al., 2003) and should be preferred to KPLS-DA.

It is worth pointing out that KPLS allows avoiding drawbacks of the two first nonlinear PLS methods described

above. Indeed, PLS component in the feature space allows capturing nonlinear relation between X and y. Moreover,

it is “only” necessary to handle a n × n kernel matrix and KPLS limitations are much more related to the number of

observations (n) than to the number of variables (p). However, the interpretability of the model is lost.

4.4. Direct kernel PLS (DK-PLS)

Bennett and Embrechts (2003) introduced the DK-PLS regression. They suggested applying PLS-R of y on K0

in order to obtain a low rank approximation of the kernel matrix (suitable for regression), used to obtain the final

linear model. DK-PLS setting is based on the so-called “empirical kernel map” (also called “direct kernel mapping”)

(Schölkopf and Smola, 2002; Webb, 1996). Columns of the kernel matrix are the new input variables. It is worth noting

that DK-PLS is a particular case of the first approach (Section 4.1). In addition, when using the kernel matrix, DK-PLS

allows avoiding drawbacks of the two first approaches (cf. Sections 4.1 and 4.2). However, limitation of the third

approach (cf. Section 4.3) related to the number of observations is not avoided, although combining empirical kernel

map with sampling of the columns of K may help escaping it. We highlight here the flexibility of the empirical kernel

map. Finally, like KPLS, interpretability of the model is lost.

In the case of a one-dimensional output, the first DK-PLS component tDKPLS
1 , is proportional to K0K

t
0y and K0

being symmetric:

tDKPLS
1 = K2

0 y. (17)

In a similar way, the hth DKPLS component is defined by

tDKPLS
h = K2

h−1y, (18)

where Kh−1 is the deflated matrix obtained by the following procedure:

Kh = Kh−1 − tDKPLS
h tDKPLSt

h Kh−1. (19)
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KPLS and DK-PLS are strongly related. In fact, for one-dimensional output response, it is easy to show that the PLS-R

of y on � (KPLS) is the PLS-R of y on K1/2 (DK-PLS).

5. Kernel logistic PLS ( KL-PLS )

Noting that KPLS and DKPLS are competitive with other kernel-based classifiers, we propose a nonlinear classi-

fication algorithm that combines the flexibility of the empirical kernel map with the supervised properties of the PLS

logistic regression: the KL-PLS. KL-PLS can be viewed as a low-rank approximation of the kernel matrix oriented

for classification. The main idea of KL-PLS is to look for a discriminant space spanned by the KL-PLS components

(t1, . . . , tm), where a simple model, such as the logistic regression may become efficient for classification. We use the

kernel matrix to map the data into a higher-dimensional space where the probability of finding the hyperplane increases

with the dimension of the space.

Therefore, KL-PLS computes orthogonal latent variables in the space induced by the kernel matrix before performing

logistic regression in the derived feature space.

KL-PLS is consequently a 3-step algorithm:

Step 1: Computation of the kernel matrix.

Step 2: Computation of the KL-PLS components.

Step 3: Logistic regression of Y on the m retained KL-PLS components.

5.1. Construction of the kernel matrix

Let X be an n × p matrix representing n observations on p explanatory variables xk , k = 1, . . . , p and y ∈ {0, 1} a

binary variable (the target) observed on the n units. Let K be a kernel matrix associated with X. K may be generated by

the kernel function given in Section 4.3. The dimension of the kernel matrix is n × n. Each cell kij is an inner product

between the individuals i and j (holds a measure of similarity) in the feature space F. Each column kj , j = 1, . . . , n of

K, measures similarities between individual j and the whole data set.

5.2. Construction of the first KL-PLS component

The first KL-PLS component t1 provides the first discriminant axis. This component is built by performing a suc-

cession of n simple logistic regressions:

Step 1: Computation of the coefficients a1j of kj in the binary logistic regression of y on each kj , j = 1, . . . , n.

Step 2: Normalization of the column vector a1 made by a1j ’s: w1 = a1/‖a1‖.

Step 3: Computation of the first KL-PLS component as t1 = Kw1.

Consequently, there is no matrix inversion during the computation of the first KL-PLS component.

5.3. Deflation procedure

Let us assume that the KL-PLS components t1, . . . , th−1 are already computed. This step is designed to obtain

components orthogonal to t1, . . . , th−1, holding residual information on y. The hth KL-PLS component is subsequently

computed from the residual of the regression of each kj , j = 1, . . . , n on t1, . . . , th−1.

Step 1: Computation of the residual kh−1,1, . . . , kh−1,n from the multiple regression of each kj , j = 1, . . . , n on

t1, . . . , th−1. Let Kh−1 = [kh−1,1, . . . , kh−1,n] be the residual matrix.

The residual matrix (or the deflated matrix) is performed by computing a succession of n regressions on a small

number of uncorrelated variables.

5.4. Computation of the hth KL-PLS component

The hth KL-PLS component has to capture the discriminant information not available in the h − 1 previous ones.

We compute the hth KL-PLS component by performing n logistic regressions on h uncorrelated variables.

Step 1: Computation of the coefficients ahj of kh−1,j in the binary logistic regression of y on t1, . . . , th−1 and each

kh−1,j , j = 1, . . . , n.
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Step 2: Normalization of the column vector ah made by ahj ’s: wh = ah/‖ah‖.

Step 3: Computation of the hth KL-PLS component as th = Kh−1wh.

Step 4: Expression of the component th in terms of K as th = Kw∗
h.

Consequently, during the construction of the hth KL-PLS component, we only compute the inverse of n

h-dimensional matrices.

5.5. Expression of KL-PLS components in terms of original variables

Expression of KL-PLS components, in terms of original variables, is a fundamental step to analyze new data. Let

Ktest be the new data set. The product Ttest = Ktest × W ∗ allows to compute the values of the KL-PLS components

for the new data set.

Computation of w∗
h:

(a) The first KL-PLS component is already expressed in terms of original variables: t1 = Kw1 and w∗
1 = w1.

(b) The second KL-PLS component is expressed in terms of residuals in the regression of the original variables on

t1. Let p1j be the regression coefficient of t1 in the regression of kj on t1. From K = t1p
t
1 + K1 and t2 = K1w2

we get

t2 = K1w2 = (K − t1p
t
1)w2 = (K − Kw1p

t
1)w2 = K(I − w1p

t
1)w2 = Kw∗

2.

(c) In a similar way, it can be shown that th is expressed in terms of the original variables as

th = Kh−1wh =

(

K −

h−1
∑

i=1

tip
t
i

)

wh =

(

K −

h−1
∑

i=1

Kw∗
i p

t
i

)

wh = K

(

I −

h−1
∑

i=1

w∗
i p

t
i

)

wh = Kw∗
h.

5.6. Final model

We perform a binary logistic regression of y on the m retained KL-PLS components:

P(y = 1/X = x) =
e	0+

∑m
h=1	hth

1 + e	0+
∑m

h=1	hth
, (20)

where the choice of the dimension m is guided by model selection techniques such as cross validation1.

As mentioned in Section 5.5, the KL-PLS components t1, . . . , th are linear combinations of the columns kj of K.

Thus, Eq. (20) can also be rewritten as

P(y = 1/X = x) =
e	0+

∑m
h=1	hth

1 + e	0+
∑m

h=1	hth
=

e
	0+

∑n
j=1
j kj

1 + e
	0+

∑n
j=1
j kj

. (21)

Consequently, in order to compute P(y = 1/X = xnew), for a new observation xnew, it is worth noting that there is no

need to compute the coordinates of xnew in the space spanned by the KL-PLS components.

5.7. Kernel storage properties

Strategies for improving kernel methods through factorization have been receiving increasing attention (Bach and

Jordan, 2005; Smola and Schölkopf, 2000; Williams and Seeger, 2000). In fact, for example, KPLS requires storing

in memory the full kernel matrix, which is a limiting factor for large training data set. Factorization appears as a very

1 According to Bastien et al. (2005) the computation of the PLS-LR component th may be simplified by setting non-significant regression

coefficients ahj to 0 according to the Wald test. Consequently, only variables that are significantly related to y, contribute to the computation of th.

So, the number m of KL-PLS components to be retained may be chosen by observing that the component tm+1 is not significant because none of

the coefficients am+1,j is significantly different from 0.
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fruitful line of research. Below are some facts that impact kernel storage for KL-PLS:

(i) During the construction of the latent variables, KL-PLS only requires an individual column of the kernel matrix.

(ii) As suggested by Bennett and Embrechts, the introduction of an intercept when constructing the latent variables

(step 1) avoids the kernel centering method proposed by Wu et al. (1997).

(iii) The succession of simple regressions used within KL-PLS algorithm provides an efficient deflation of the kernel

matrix.

Consequently, it is not necessary to store the entire kernel matrix in memory but only columns one at a time. Such

an implementation, however, significantly slows down the algorithm because it is necessary to reevaluate the Gram

Matrix for each KL-PLS component. However, the KL-PLS components may be calculated from a subset of variables

resulting from a sampling of the columns of K when the analysis of large dataset is of concern. Sampling scheme could

be based on the Wald test or the likelihood ratio test: only variables that are significantly related to y in the simple

logistic regression of y on each kj , j = 1, . . . , n, contribute to the construction of K. This approach is not explored in

the current paper.

5.8. Complete separation

Let us investigate three data configurations: complete separation, quasi-complete separation and overlap. According

to Allison (1999), there is a complete separation of data points if a vector w such as

{

wtxj > 0 for yj = 1

wtxj < 0 for yj = 0

exists and quasi-complete separation of data points if a vector w such as

{

wtxj �0 for yj = 1

wtxj �0 for yj = 0

exists. The maximum likelihood estimate exists only in the overlap configuration. Therefore, when applying logistic

regression on the KL-PLS components, it is important to care about the data structure. For a complete or quasi-

complete separation, Linear Discriminant Analysis or the Heinze and Schemper approach (Heinze and Schemper,

2002) consisting of reducing the bias of maximum likelihood using Firth (1993) technique, could be used. The reader

is referred to Allison (1999) and Albert and Anderson (1984) for details on problems arising from (quasi-) complete

data separation in the logistic regression framework.

6. Validation

In this section, we present experimental results for 11 benchmark data sets and three medical classification problems.

6.1. Benchmarks

KL-PLS efficiency is tested on 11 benchmark data sets (two-class discrimination) used in Rätsch et al. (2001) and

available at http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm. Details can be found in Rätsch et al. (2001).

Each data set consists of 100 different training and testing partitions. Dimension of data, training sample size and test

sample size of each benchmark are presented in Table 1.

Different methods have been performed for each data set and each partition. Mean and standard deviation of the test

set error rate of each method have been computed using results of the 100 runs (for KLR, Zhu and Hastie computed

mean and standard deviation using only 20 partitions). These values are reported in Table 2. Rätsch et al. (2001)

performed SVMs. Rosipal et al. (2003) evaluated Kernel PLS-SVC (KPLS-SVC). KPLS-SVC is based on the KPLS

for discrimination as dimensionality reduction method followed by SVM on retained KPLS components for the final

classification. Zhu and Hastie (2005) proposed the KLR.

9

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm


Table 1

Basic information about the benchmark data sets used in the study

Data set Dimension Training sample size Test sample size

Banana 2 400 4600

B. cancer 9 200 77

Diabetes 8 468 300

German 20 700 300

Heart 13 170 100

Ringnorm 20 400 7000

F. solar 9 666 400

Thyroid 5 140 75

Titanic 3 150 2051

Twonorm 20 400 7000

Waveform 21 400 4600

Table 2

Comparison of classification errors (mean ± standard deviation) (test sets) for SVM (Rätsch et al., 2001), KPLS-SVC (Rosipal et al., 2003), KLR

(Zhu and Hastie, 2005) and KL-PLS

Data set SVM KLR KPLS-SVC KL-PLS and parameters

Banana 11.5 ± 0.5∗ 10.3 ± 0.5∗ 10.5 ± 0.4∗ 10.7 ± 0.5 (0.9, 10)

B. cancer 26.0 ± 4.7 25.9 ± 4.8 25.1 ± 4.5∗ 25.8 ± 4.4 (50, 7)

Diabetes 23.5 ± 1.7∗ ? 23.0 ± 1.7 23.0 ± 1.7 (60, 4)

German 23.6 ± 2.1 23.5 ± 2.5 23.5 ± 1.6 23.2 ± 2.1 (20, 3)

Heart 16.0 ± 3.3 15.8 ± 3.5 16.5 ± 3.6 16.1 ± 3.2 (200, 2)

Ringnorm 1.66 ± 0.12∗ 1.97 ± 0.29∗ 1.43 ± 0.10 1.44 ± 0.09 (12, 1)

F. solar 32.4 ± 1.8∗ 33.7 ± 1.6 32.4 ± 1.8∗ 32.7 ± 1.8 (20, 2)

Thyroid 4.80 ± 2.19 5.00 ± 3.02 4.39 ± 2.1 4.36 ± 1.99 (15, 6)

Titanic 22.4 ± 1.0 22.4 ± 1.0 22.4 ± 1.1 22.4 ± 0.4 (300, 2)

Twonorm 2.96 ± 0.23∗ 2.45 ± 0.15 2.34 ± 0.11∗ 2.37 ± 0.10 (40, 1)

Waveform 9.88 ± 0.43∗ 10.13 ± 0.47∗ 9.58 ± 0.36∗ 9.74 ± 0.46 (13, 4)

Mean rank 3.1 2.9 1.9 1.9

The last column provides the width of the Gaussian kernel and the number of retained KL-PLS components. For each data set, the methods were

ordered from rank 1 to rank 4 according to their performances; the last row of the table provides the mean rank for SVM, KLR, KPLS-SVC and

KL-PLS. The star indicates that results of the concerned method and KL-PLS are statistically different (p < 0.05) (pairwise T-test for all comparisons

except for KLR (two-sample T-test)).

The methods presented above are compared to KL-PLS. Gaussian kernel is used throughout this study because of its

flexibility. Thus, KL-PLS efficiency relies on the value of width of the Gaussian and the number of retained KL-PLS

components. These values have been selected based on the minimum classification error observed after cross validation

on the first five training sets.

A pairwise T-test is used to compare KL-PLS to the other classifiers for each data set, except for KLR. A less

powerful two-sample T-test is used instead, since individual classification errors are not available for that classifier.

The significance level for all tests has been set to 	 = 0.05.

KL-PLS vs. SVM: The classification error rate of KL-PLS is lower for 10 data sets out of 11. The null hypothesis is

rejected for five of these data sets (banana, diabetes, ringnorm, twonorm, and waveform). Conversely, the classification

errors rate of SVM is lower for one data set (flare-solar) and the null hypothesis is rejected in this case.

KL-PLS vs. KPLS-SVC: The classification error rate of KL-PLS is lower for four data sets out of 11. However, the

null hypothesis is never rejected. Conversely, the classification errors rate of KPLS-SVC is lower for six data sets and

the null hypothesis is rejected for banana, breast-cancer, flare-solar, twonorm, waveform.
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The good behavior of KPLS-SVC may be related to the use of the linear SVM model, which provides a boundary

following the maximal margin principle. However, the quality of results relies on a larger set of free parameters (one

additional parameter is required for the SVM step), which may be bothersome in practice.

KL-PLS vs. KLR: The classification error rate of KL-PLS is lower for eight data sets out of 10 and the null hypothesis

is rejected for Ringnorm and Waveform. Conversely, the classification errors rate of KLR is lower for two data sets and

the null hypothesis is rejected for Banana.

Ranks of performances over all data sets offer another way to compare models (Table 2). It seems that models

fall into 2 groups for which the complexity control differs: KPLS-SVC and KL-PLS—which are supervised dimen-

sionality reduction-based models—most often provide the best results as compared to SVM and KLR for which

the complexity control is achieved by Tikhonov regularization (Tikhonov and Arsenin, 1977; Evgeniou et al., 1999;

Wahba, 1999).

It is worth noting that both KLR and KL-PLS are based on the logistic regression model and that the main difference

concerns the complexity control scheme. To what extent difference in performances relies on the complexity control

method remains to be studied.

From these experiments, we can conclude that KL-PLS works at least as well as the other methods. It is remarkable

that best methods achieved very comparable results on the benchmark data sets. In fact, there may be an irreducible

level of error (linked to the data structure) already reached by some of them.

To conclude, the enlarged feature space generated by the use of kernel-based methods gives flexibility, and complexity

control allows good generalization. Results presented on these 11 benchmark datasets highlight the interest of the

supervised dimensionality reduction approach.

6.2. Banana data set

Banana is an artificial 2-dimensional data set with two classes (400 training set, 4600 testing set) allowing a visual

inspection of the data separation in the original space. According to the 2-dimensional representation, it is essen-

tially a nonlinear classification problem. Subsequently, it seems interesting to examine classification results in more

details.

6.2.1. Banana data projection onto the two first components found by KL-PLS

Fig. 1 depicts projection of the original training (left) and testing data (right) onto the two first KL-PLS components

(training data).

A nice linear separation of the two classes can be observed in the derived feature space showing that a linear logistic

regression is adequate to achieve an efficient classification.

6.2.2. KL-PLS and probability

KL-PLS offers a natural estimate of the conditional probability, p(x) = P(y = 1/X = x) by using logistic re-

gression as final function. Fig. 2 depicts banana data onto the original space (left) and the two first KL-PLS com-

ponents (right). Colors symbolize conditional probability values p(x) and lines symbolize isoprobability

contours.

Linear decision boundaries in the space induced by the KL-PLS components correspond to complex nonlinear

boundaries in the original space.

6.2.3. Banana test error as a function of the number of KL-PLS components

Fig. 3 shows performances of the KL-PLS model as function of the number of retained KL-PLS components.

For banana data set, we note that even when we consider an important number of KL-PLS components, there is no

overfitting. Moreover, the tuning of KL-PLS is quite easy. In addition to the kernel parameters, there is only one intuitive

parameter (with a small number of discrete values) to adjust as compared to the continuous parameter (C) for SVM for

example.

6.2.4. Kernel logistic PLS and robustness

Robustness is defined here as the quality of the model to tolerate noise. In this experiment, the training variable

y is degraded by flipping the labels of randomly selected observations while preserving class balance. The test set
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Fig. 1. Banana data depicted onto the two first KL-PLS components.
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Fig. 2. Banana depicted onto the original space and the two first KL-PLS components. Colors symbolize conditional probability P(y = 1/X = x).

classification accuracy is then observed as a function of the percentage of noise injected in the target. Fig. 4 shows that

KL-PLS performs as well as SVMlight (Joachims, 1999) in this example.

The test set classification accuracy curves for SVM and KL-PLS have a similar shape. It is remarkable that the

accuracy is almost unchanged up to 30% degradation.
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Fig. 3. Test error as a function of the number of KL-PLS components retained for Banana data. Boxplots show the distribution of the 100 individual

test error rates. The black points represent the means and the horizontal red lines the median.

Fig. 4. Comparison between KL-PLS (m = 10 and sigma = 0.9) and SVM (C = 1 and sigma = 0.9) test set accuracy rate as a function of percentage

of degraded y.
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6.3. KL-PLS and high-dimensional data

The ovarian cancer and the lung cancer datasets from Li and Liu (2002) were chosen to test the efficiency of KL-PLS

for high-dimensional data. Gene expression profiles obtained from DNA micro-arrays are used to classify different

types of tumors. In these situations, there is generally a huge number of variables and a small number of observations:

ovarian (respectively, lung) is a 253 × 15154, (respectively, 181 × 12 533) data set with two classes. The evaluation

Table 3

Comparison of classification errors ( mean ± standard deviation) (test set) for KL-PLS and SVM (Shen and Tan, 2005)

Data set KL-PLS SVM

Ovarian 0.0 ± 0.0* 0.22 ± 0.5

Lung 0.24 ± 0.49* 0.83 ± 0.82

∗p < 0.05.

Fig. 5. Test error rate (respectively, CPU time) of KL-PLS as the function of the number of retained components for ovarian data and lung data (left)

(respectively, (right)). Horizontal lines show the CPU time of SMVlight . Same legend for the boxplots as in Fig. 3.
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Fig. 6. Roc curve of KL-PLS. Mi : Accuracy of dermatologist i in terms of sensitivity and (1-specificity) for the melanoma diagnosis. Ei : Accuracy

of dermatologist i in terms of sensitivity and (1-specificity) for the excision decision.

of KL-PLS on these data sets is designed as follows: sizes of training samples and testing samples are set to 150 and

103 (ovarian) and 100 and 81 (lung). Thirty random partitions are then carried out. Average testing errors with their

standard deviations are then computed.

As it frequently happens for high-dimensional problems (e.g. text mining, genomic), a linear kernel is effective in

performing an efficient discrimination. Therefore, the number of KL-PLS components is the unique parameter to adjust.

Here, its value is based on the minimum classification error observed by cross validation on the first five training sets.

It is set to 19 for ovarian and six for lung. Linear SVM classifier results were obtained by Shen and Tan, 2005. Results

of KL-PLS and SVM are reported in Table 3.

To test whether KL-PLS is statistically more accurate than SVM on ovarian and lung dataset, T-test between the

means of the testing errors of the two classifiers is used. From these experiments, it appears that KL-PLS outperforms

SVM. Nevertheless, we can note that the error rates observed are low for both methods and are always due to a few

observations only.

We may emphasize in these examples that the n>p configuration is particularly convenient for KL-PLS. The

construction of the KL-PLS components is computationally efficient because it is obtained from a “small” n×n kernel

matrix.

Fig. 5 shows the test error rate and the CPU time of KL-PLS as a function of the number of retained KL-PLS

components for ovarian cancer and lung cancer.

Horizontal lines provide the CPU time of SVMlight. For lung cancer, the CPU time of KL-PLS with six components

(Matlab 6.5 implementation) is about five times lower than the CPU time of SVMlight (C implementation). The CPU

time of KL-PLS with 19 components for ovarian cancer is greater than the CPU time of SVMlight. Nevertheless, at

equal error rate (obtained with 14 components), the CPU time of KL-PLS is 30% lower than the CPU time of SVMlight.

6.4. Melanoma detection from digital medical imaging

In this section, we applied KL-PLS to a medical problem based on skin tumor detection (benign lesion vs. melanoma).

From 227 images of pigmented skin lesion provided by dermatology departments of British Hertfort Hospital and
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Louis Mourier Hospital, we have extracted five geometric and 38 colorimetric features. Each lesion is thus charac-

terized by 43 variables. Thirty-two melanoma and 195 benign lesions make up the database. The objective of this

application is to provide a diagnosis based on KL-PLS (melanoma detection) that can be compared with the di-

agnoses of five senior dermatologists. The histology (melanoma lesion or benign lesion) is the variable to predict

(gold standard).

In medical diagnosis applications, accuracy is not the main issue. Sensitivity and specificity (or predictive positive

and negative values) are far more relevant because of different misclassification costs. Fig. 6 provides, in addition to

dermatologist’s performances, the ROC curve of KL-PLS. See Hanley (1989) for details on the ROC curve.

Each dermatologist is characterized by two points: the first point (respectively, the second point) Mi (respectively,

Ei) corresponds to the accuracy of diagnosis (respectively, accuracy of excision decision) for dermatologist i (in terms

of sensitivity and 1-specificity). We may observe that KL-PLS reaches performances close to the dermatologist’s

performances in terms of diagnosis and excision decision. Results are obtained by leave-one-out cross validation

technique. We have retained three components with � = 100. KL-PLS provides, for each tested lesion, a probability to

be a melanoma and the ROC curve is built from these probabilities.

We highlight that the output probability is useful here because it gives rise to the possibility to reproduce the

dermatologist’s behavior. Indeed, diagnostic and therapeutic decisions correspond to a modulation of the sensitivity

level. This decision flexibility is very important for the melanoma detection problem because of the unbalanced

misclassification cost: sensitivity is far more important than specificity since disregarding a melanoma is a severe

error.

7. Conclusion

This work demonstrates competitiveness of KL-PLS with other state-of-the art classification methods for 11 bench-

mark discrimination data sets as well as for three medical classification problems. The algorithm is simple to im-

plement since it is mainly composed of ordinary least squares and logistic regressions. The complexity control

achieved by the supervised dimensionality reduction performed by KL-PLS offers a potentially fruitful alterna-

tive to Tikhonov regularization based methods. Indeed, the projection of the high-dimensional data onto a small

number of KL-PLS components allows visual inspection of data layout. It provides clues about data structure and

selection of kernel parameter(s). Visualization of the spatial relationships between classes helps evaluating qual-

ity of classification and feature space; Are classes linearly separables? How well-separated and coherent are they?

Finally, KL-PLS offers an estimate of the conditional probability, often of interest itself, in medical field for

example.

We would like to point out that the direct factorization of the kernel matrix in the framework of KL-PLS presents

two significant advantages:

(i) Rectangular kernels can be factorized by KL-PLS. Derived from the fact that KL-PLS has only to handle a

n × n matrix, the algorithmic limitation is much more connected to the number of observations than to the number of

variables. Therefore, this approach allows management of very high-dimensional data. Large training set size can also

be managed, thanks to the sampling that can be performed within KL-PLS with no modification of the algorithm.

(ii) The requirement of semi-definiteness may rule out the most natural pairwise similarity functions for a given

problem. In the KL-PLS setting, only similarity measures are required and there is no need defining a dot product in

the feature space; the kernel matrix need not verify the Mercer’s conditions (positive definite).

Extension of KL-PLS to the multi-class problem is easy for ordinal output y (see Appendix B) and more complicated

for categorical output (work in progress).Validation of the Kernel Generalized PLS, a nonlinear version of the PLS-GLR

that could be derived from a generalization of DKPLS, is an interesting perspective.
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Appendix A. PLS generalized linear regression algorithm

Algorithm 1. PLS generalized regression (PLS-GLR)

Step 1. Computation of the PLS-GLR components

Computation of the first PLS-GLR component t1
1. Computation of the coefficients a1j for each simple generalized linear

regression of y on xj , j = 1, . . . , p.

2. Normalization of the column vector a1 made by a1j ’s:w1 = a1/‖a1‖.

3. Computation of the first PLS-GLR component as t1 = Xw1.

Computation of the hth PLS-GLR component th
1. Computation of the residual xh−1,1, . . . , xh−1,p from the multiple regression

of xj , j = 1, . . . , p on t1, . . . , th−1. Let Xh−1 = [xh−1,1, . . . , xh−1,p].

2. Computation of the coefficients ahj of xh−1,j in the generalized linear

regression of y on t1, . . . , th−1 and each xh−1,j , j = 1, . . . , p.

3. Normalization of the column vector ah made by ahj ’s: wh = ah/‖ah‖.

4. Computation of the hth PLS-GLR component as th = Xh−1wh.

5. Expression of the component th in terms of X as th = Xw∗
h.

Step 2. Generalized linear regression of y on the m retained PLS-GLR components

Appendix B. Kernel logistic PLS algorithm

Algorithm 2. Kernel Logistic PLS (KL-PLS)

Step 1. Computation of the kernel matrix: K

Step 2. Computation of the KL-PLS components

Computation of the first KL-PLS component t1
1. Logistic regression of y on each kj , j = 1, . . . , n ⇒ a1j .

2. Normalization of a1 made by a1j ’s: w1 = a1/‖a1‖.

3. The first KL-PLS component is t1 = Kw1.

Computation of the hth KL-PLS component th.

1. Regression of each kj , j = 1, . . . , n on t1, . . . , th−1

⇒ Kh−1 = [kh−1,1, . . . , kh−1,n]

2. Logistic regression of y on t1, . . . , th−1 and each kh−1,j , j = 1, . . . , n ⇒ ahj .

3. Normalization of ah made by ahj ’s: wh = ah/‖ah‖.

4. The hth KL-PLS component is th = Kh−1wh.

5. Expression of the component th in terms of K as th = Kw∗
h.

Step 3. Logistic regression of yon the m retained KL-PLS components
By replacing binary logistic regressions by ordinal logistic regressions using proportional odds model, we may note

that the KL-PLS algorithm is still convenient when the response y is ordinal.
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