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come    

Adaptive estimation of the conditional density in

presence of censoring.

Introduction

Consider an i.i.d. sample (X i , Y i ) 1≤i≤n of couples of random variables with common probability density function (pdf) f (X,Y ) . The marginal density of the X i 's is also denoted by f X . Now, define the conditional density function of Y i given X i = x, for all real y and x such that f X (x) > 0, by π(x, y) = f (X,Y ) (x, y) f X (x) .

The aim of the paper is to provide a statistical strategy to recover π from the observations. A Nadaraya-Watson strategy building an estimator as the ratio of an estimator of f (X,Y ) divided by an estimator of f X is conceivable. But estimators resulting of such methods have the drawback of precisely involving a ratio, with a denominator which can be small. This is the reason why we provide rather a regression-type strategy based on a mean square contrast. Using tools developed for standard regression by [START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF], or for transition density estimation by [START_REF] Lacour | Adaptive estimation of the transition density of a markov chain[END_REF] in the Markov chain setting, we propose a simple adaptive strategy: we both build a collection of projection estimators on finite dimensional spaces and select, by penalization of the mean square contrast, the adequate space. Then we prove that the usual squared-bias/variance compromise is achieved, in a data driven way. It is worth mentioning that the projection spaces need not be the same in both x and y-directions, and thus, it allows to estimate functions π belonging to possibly anisotropic Besov spaces.
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We consider moreover the case of positive censored variables Y i 's, which is often encountered when survival times are under study. Let (C i ) 1≤i≤n be an i.i.d. sequence of positive censoring variables, with cumulative distribution function (cdf) G, independent of (X i , Y i ) 1≤i≤n . In this context, the observations are

(X i , Z i , δ i ) 1≤i≤n , Z i = inf(Y i , C i ), δ i = 1 {Y i ≤C i } .
Then, we can provide both modified contrast and penalty following the transformation device proposed by [START_REF] Fan | Censored regression: local linear approximations and their applications[END_REF] and also using tools for censoring correction taking advantage of [START_REF] Bitouzé | A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator[END_REF]'s results as developed by [START_REF] Brunel | Penalized contrast estimation of density and hazard rate with censored data[END_REF].

Kernel strategies involving local polynomials have been studied in the uncensored framework by De [START_REF] De Gooijer | On conditional density estimation[END_REF] and [START_REF] Fan | Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems[END_REF], see also [START_REF] Hyndman | Nonparametric estimation and symmetry tests for conditional density functions[END_REF], with possible dependence between the variables of a given sequence. In the context of a censored heteroscedastic regression model, [START_REF] Van Keilegom | Density and hazard estimation in censored regression models[END_REF] propose an estimation procedure to avoid the drawbacks of purely nonparametric kernel estimators. Indeed, its local building produces a bad behavior whenever the censoring is heavy in neighborhood of x. All these works have the pointwise feature of kernel estimators when we are in position to control a global integrated risk only. However, they require regularity conditions on the functions to be estimated much more restrictive than our flexible estimation tool. Moreover, the theoretical study of bandwidth selection is often omitted and the practical bandwidth chosen by empirical considerations, whereas we have at our disposal mathematical methods to prove the good theoretical properties of our adaptive estimator.

The plan of the paper is the following. First we describe in Section 2 the assumptions and the model collection. Then the estimators in both uncensored and censored contexts are defined and discussed in Section 3. The results are stated in Section 4, illustrated via simulations and examples in Section 5 and proved in Section 6.

Model and Assumptions

2.1. Model. To sum up, we consider two different frameworks. In both cases, the (X i , Y i ), i = 1, . . . n are independent and identically distributed couples of variables. We estimate π on a given compact set A = A 1 × A 2 only. Moreover, we distinguish:

• the uncensored framework, where the variables (X i , Y i ), i = 1 . . . , n are directly observed; • the censored framework, where the censoring variables C i are independent and identically distributed, with c.d.f. G and the sequences (X i , Y i ) and (C i ), i = 1 . . . , n are independent. In this context, we observe either (X i , Z i , δ i ) where

Z i = Y i ∧ C i and δ i = 1 {Y i ≤C i } .
Only positive variables Y i and C i , i = 1 . . . , n are considered. The aim of the paper is to estimate the conditional density π(x, y) of Y i given X i = x and to evaluate the price to pay from uncensored to censored case. Roughly speaking, what kind of additional constraint would we set to extend the results to censored data.

2.2. Assumptions on the variables. In all cases, we set the following usual assumptions

[A1 ] The conditional density π belongs to the space of bounded and square integrable functions on

A = A 1 × A 2 denoted by L ∞ ∩ L 2 (A) [A2 ] The density f X verifies f X ∞ := sup x∈A 1 |f X (x)| < ∞
and there exists a positive real f 0 such that, for all x in A 1 , f X (x) ≥ f 0 . Moreover, in the censored case, we suppose:

[A3 ] For all y ∈ A 2 , 1 -G(y) ≥ c G > 0. Note that the lower bound condition [A3] is required only on the compact set A 2 , which is a very mild assumption.

2.3. Assumptions on the models. In order to estimate π, we need to introduce a collection {S m , m ∈ M n } of projection spaces, that we call models. For each m = (m 1 , m 2 ), S m is a space of functions with support in A defined by using two spaces:

F m 1 and H m 2 which are subspaces of (L 2 ∩ L ∞ )(R) respectively spanned by two orthonormal bases (ϕ m j ) j∈Jm with |J m | = D m 1 and (ψ m k ) k∈Km with |K m | = D m 2 .
For all j and all k, the supports of ϕ m j and ψ m k are respectively included in A 1 and A 2 . Here j and k are not necessarily integers, it can be couples of integers as in the case of a piecewise polynomial space see Section 2.4. Then, we define

S m = F m 1 ⊗ H m 2 = {t, t(x, y) = j∈Jm k∈Km a m j,k ϕ m j (x)ψ m k (y)}
The assumptions on the models are the following:

[M1 ] For all m 2 , D m 2 ≤ n 1/2 and D n := max m∈Mn D m 1 ≤ n 1/2 / log(n) [M2 ] There exist positive reals φ 1 , φ 2 such that, for all u in F m 1 , u 2 ∞ ≤ φ 1 D m 1 u 2 , and for all v in H m 2 , sup x∈A 2 |v(x)| 2 ≤ φ 2 D m 2 v 2 . By letting φ 0 = √ φ 1 φ 2 , that leads to (1) ∀t ∈ S m t ∞ ≤ φ 0 D m 1 D m 2 t
where t 2 = t 2 (x, y)dxdy and

t ∞ = sup (x,y)∈A 1 ×A 2 |t(x, y)|. [M3 ]D m 1 ≤ D m 1 ⇒ F m 1 ⊂ F m 1 and D m 2 ≤ D m 2 ⇒ H m 2 ⊂ H m 2
The first assumption guarantees that dim S m = D m 1 D m 2 ≤ n where n is the number of observations. The condition [M2] implies a useful link between the L 2 norm and the infinite norm. The third assumption ensures that, for m and

m in M n , S m + S m is included in a model (since S m + S m ⊂ S m with D m 1 = max(D m 1 , D m 1 ) and D m 2 = max(D m 2 , D m 2 )).
We denote by S the space with maximal dimension among the (S m ) m∈Mn . Thus for all m in M n , S m ⊂ S.

[M4 ] Nested model collection:

m 1 = m 2 , H m 1 = F m 1 (i.e. S m = F m 1 ⊗ F m 1 ) and D n := max m∈Mn D m 1 = max m∈Mn D m 2 ≤ n 1/4
. This assumption is useful, even if a little restrictive, to deal with censored data.

2.4. Examples of models. We show here that Assumptions [M1]-[M3] are not too restrictive. Indeed, they are verified for the spaces F m 1 (and H m 2 ) spanned by the following bases (see [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]):

• Trigonometric basis: for

A 1 = [0, 1], span(ϕ 0 , . . . , ϕ m 1 -1 ) with ϕ 0 = 1 [0,1] , ϕ 2j (x) = √ 2 cos(2πjx) 1 [0,1] (x), ϕ 2j-1 (x) = √ 2 sin(2πjx)1 [0,1] (x) for j ≥ 1. For this model D m 1 = m 1 and φ 1 = 2 hold. • Histogram basis: for A 1 = [0, 1], span(ϕ 1 , . . . , ϕ 2 m 1 ) with ϕ j = 2 m 1 /2 1 [(j-1)/2 m 1 ,j/2 m 1 [ for j = 1, . . . , 2 m 1 . Here D m 1 = 2 m 1 , φ 1 = 1.
• Regular piecewise polynomial basis: for A 1 = [0, 1], polynomials of degree 0, . . . , r (where r is fixed) on each interval [(l -1)/2 D , l/2 D [, l = 1, . . . , 2 D . In this case,

m 1 = (D, r), J m = {j = (l, d), 1 ≤ l ≤ 2 D , 0 ≤ d ≤ r}, D m 1 = (r + 1)2 D . We can put φ 1 = √ r + 1.
• Regular wavelet basis: span(Ψ lk , l = -1, . . . , m 1 , k ∈ Λ(l)) where Ψ -1,k points out the translates of the father wavelet and Ψ lk (x) = 2 l/2 Ψ(2 l xk) where Ψ is the mother wavelet. We assume that the support of the wavelets is included in A 1 and that Ψ -1 belongs to the Sobolev space W r 2 .

3. Estimation procedure 3.1. Definition of the contrast. If no censoring occurs, the Y i 's are observed and we can choose the following contrast

(2)

γ 0 n (t) = 1 n n i=1 [ R t 2 (X i , y)dy -2t(X i , Y i )].
In fact, it is easy to explain the contrast since

Eγ 0 n (t) = E t 2 (X 1 , y)dy -2 E(t(X 1 , Y 1 )) = t -π 2 f -π 2 f where t 2 f = t 2 (x, y)f (x)dxdy.
Therefore γ n (t) is the empirical counterpart of tπ 2 fπ 2 f and its minimization comes down to minimize tπ f . This contrast is new and its originality actually stands in the links with the regression-type contrasts, as we will see in the next subsection. Now, let us take into account the fact that the Y i 's may be censored. We use a standard transformation of the data (see [START_REF] Fan | Censored regression: local linear approximations and their applications[END_REF]) and introduce an empirical version of the weights (3)

w i =    1 without censoring δ i Ḡ(Z i )
with censoring, where Ḡ = 1 -G is the survival function associated with the censoring variables, by choosing the contrast function

(4) γ n (t) = 1 n n i=1 R t 2 (X i , y)dy -2 ŵi t(X i , Z i ) , ŵi =    1 without censoring δ i Ḡ(Z i ) with censoring.
Here Ĝ is the Kaplan Meier estimator of the c.d.f of the C i 's, modified in the way suggested by [START_REF] Lo | Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator[END_REF], and defined by

(5) Ḡ(y) =

Z (i) ≤y n -i + 1 n -i + 2 1-δ (i)
.

Note that Ḡ is built in order to satisfy the following useful property: Ḡ(y) ≥ 1/(n + 1), ∀y. Moreover, it follows from Lemma 1 in Section 6, that it is a very good estimator of Ḡ on the interval A 2 provided A 2 [0, τ ] where τ = sup{y, G(y) < 1}, which condition is ensured by Assumption [A3]. Therefore, we define where pen is a penalty function to be specified later. Note that γ 0 n (t) and γ n (t) coincide if no censoring happens by definition of the weights ŵi . Then we can define π = π m and compute the empirical mean integrated squared error E ππ 2 n where . n is the empirical norm defined by ( 8)

t n = 1 n n i=1 R t 2 (X i , y)dy 1/2 .
This norm is the natural distance in this problem and we can notice that if t is deterministic with support included in

A 1 × R f 0 t 2 ≤ E t 2 n = t 2 f ≤ f ∞ t 2
and then the mean of this empirical norm is equivalent to the L 2 norm . .

3.2.

About the definition of the estimator. We discuss now the definition of πm given by ( 6). Let t(x, y) = j∈Jm k∈Km a j,k ϕ m j (x)ψ m k (y) a function in S m . Then,

(9) ∂γ n (t) ∂a j 0 ,k 0 = 0 ⇔ j∈Jm a j,k 0 1 n n i=1 ϕ m j (X i )ϕ m j 0 (X i ) = 1 n n i=1 ϕ m j 0 (X i ) ŵi ψ m k 0 (Z i ),
which implies that

∀j 0 ∀k 0 ∂γ n (t) ∂a j 0 ,k 0 = 0 ⇔ G m A m = Υ m ,
where A m denotes the matrix (a j,k ) j∈Jm,k∈Km ,

G m = 1 n n i=1 ϕ m j (X i )ϕ m l (X i ) j,l∈Jm and Υ m = 1 n n i=1 ϕ m j (X i ) ŵi ψ m k (Z i ) j∈Jm,k∈Km
.

In fact, we cannot define a unique minimizer of the contrast γ n (t), since G m is not necessarily invertible. For example, G m is not invertible if there exists j 0 in J m such that there is no observation in the support of ϕ j 0 (G m has a null column). This phenomenon happens when localized bases (as histogram bases or piecewise polynomial bases) are used. However, the following proposition will still enable us to define an estimator:

Proposition 1. ∀j 0 ∀k 0 ∂γ n (t) ∂a j 0 ,k 0 = 0 ⇔ ∀y (t(X i , y)) 1≤i≤n = P W   k ŵi ψ m k (Z i )ψ m k (y) 1≤i≤n   where P W denotes the orthogonal projection on W = {(t(X i , y)) 1≤i≤n , t ∈ S m } with the euclidian scalar product . R n in R n .
Thus the minimization of γ n (t) leads to a unique vector (π m (X i , y)) 1≤i≤n defined as the projection of ( k ŵi ψ m k (Z i )ψ m k (y)) 1≤i≤n on W. The associated function πm (., .) is not defined uniquely but we can choose a function πm in S m whose values at (X i , y) are fixed according to Proposition 1. For the sake of simplicity, we use the notation (6). The underlying function is a theoretical tool but the estimator is actually the vector (π m (X i , y)) 1≤i≤n .

This remark leads to consider the risk defined with the empirical norm, as given by (8).

3.3. Link with classical regression. Let π m (x, y) be the orthogonal projection of π on

F m 1 ⊗ H m 2 . Then π m (x, y) = k∈Km π Fm 1 k (x)ψ m k (y)
where π

Fm 1 k is the orthogonal projection of π k on F m 1 and π k (x) = E(ψ m k (Y 1 )|X 1 = x)
. Then a natural way to estimate π is to estimate the functional coordinates π Fm 1 k (x), for which a set of regression equations arises by writing

ψ m k (Y i ) = π k (X i ) + ε i,k , where ε i,k = ψ m k (Y i ) -E(ψ m k (Y i )|X i ), i = 1, . . . , n.
If no censoring occurs, the above equalities lead to well-known mean square contrast estimation of

π k via minimization over u ∈ F m 1 of γ (k) n (u) = 1 n n i=1 [(ψ m k (Y i )) 2 -2ψ m k (Y i )u(X i )].
Defining then π(m 1 )

k = arg min u∈Fm 1 γ (k) n (u)
we can propose as an estimator of π:

k∈Km π(m 1 ) k (x)ψ m k (y). Selecting the adequate m = (m 1 , m 2 ) via a penalized criterion is not tractable with such a formula. Noticing that for t ∈ F m 1 ⊗ H m 2 , t(x, y) = k∈Km t k (x)ψ m k (y) where t k (x) = t(x, y)ψ m k (y)dy and   k∈Km t k (X i )ψ k (y)   2 dy = k,k t k (X i )t k (X i ) ψ m k (y)ψ m k (y)dy = k t 2 k (X i ),
we find a link between γ (k) n and our effective general contrast γ n :

γ 0 n (t) = 1 n n i=1     k∈Km t k (X i )ψ m k (y)   2 dy -2 k∈Km t k (X i )ψ m k (Y i )   = k∈Km γ (k) n (t k ).
This shows how γ n globalizes the procedure and allows model selection.

The same considerations hold in the censored case by replacing

ψ m k (Y i ) by W i,k or Ŵi,k where W i,k = w i ψ m k (Z i ), Ŵi,k = ŵi ψ m k (Z i ) for i ∈ {1, . . . , n}.
The regression equation becomes:

(10)

W i,k = π k (X i ) + ε i,k , where ε i,k = w i ψ k (Y i ) -E[w i ψ k (Y i )|X i ],
and

(11) Ŵi,k = W i,k + R i,k = π k (X i ) + ε i,k + R i,k , where R i,k = ψ m k (Z i )( ŵi -w i )
, which is a negligible residual term. Note that the residual is null if there is no censoring.

Main results

4.1. Uncensored case. For a function h and a subspace S, let

d(h, S) = inf g∈S h -g = inf g∈S |h(x, y) -g(x, y)| 2 dxdy 1/2 .
With an inequality of [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], we can prove the following result in the uncensored case.

Theorem 1. We consider the uncensored model described in Section 2.1 satisfying Assumptions [A1]-[A2]. We consider π the estimator of the conditional density π described in Section 3 with models verifying Assumptions [M1]-[M3] and the following penalty:

(12) pen(m) = K 0 π ∞ D m 1 D m 2 n ,
where K 0 is a numerical constant. Then

(13) E π1 A -π 2 n ≤ C inf m∈Mn {d 2 (π1 A , S m ) + pen(m)} + C n where C = max(5 f X ∞ , 6) and C is a constant depending on φ 1 , φ 2 , π ∞ , f 0 , f X ∞ .
The penalty (12) deserves some comments. First, the constant K 0 in the penalty is purely numerical and calibrated via simulations. On the other hand, the term π ∞ is unknown. Note that, as inequality (13) holds for any penalty pen(.) such that pen(m) ≥ K 0 π ∞ D m 1 D m 2 /n, any upper bound on π ∞ gives a good result. In practice, π ∞ is often replaced by an estimator π ∞ where π is an estimator of π. From a theoretical point of view, this makes the penalty random, and the procedure can be proved to give the same result as with the penalty above under some additional regularity constraints, see [START_REF] Birgé | From model selection to adaptive estimation[END_REF] or [START_REF] Comte | Adaptive estimation of the spectrum of a stationary Gaussian sequence[END_REF].

We can deduce from Theorem 1 the rate of convergence of the risk. For that purpose, assume that π restricted to A belongs to the anisotropic Besov space on A with regularity α

= (α 1 , α 2 ). Note that if π belongs to B α 2,∞ (R 2 ), then π restricted to A belongs to B α 2,∞ (A). Let us recall the definition of B α 2,∞ (A)
. Let e 1 and e 2 be the canonical basis vectors in R 2 and for i = 1, 2, A r h,i = {x ∈ R 2 ; x, x + he i , . . . , x

+ rhe i ∈ A}. Next, for x in A r h,i , let ∆ r h,i g(x) = r k=0 (-1) r-k r k g(x + khe i )
the rth difference operator with step h. For t > 0, the directional moduli of smoothness are given by

ω r i ,i (g, t) = sup |h|≤t A r i h,i |∆ r i h,i g(x)| 2 dx 1/2 .
We say that g is in the Besov space

B α 2,∞ (A) if sup t>0 2 i=1 t -α i ω r i ,i (g, t) < ∞ for r i integers larger than α i .
The estimation procedure described in the uncensored case allows an adaptation of the approximation space to each directional regularity. More precisely, assume for example that α 2 > α 1 . Then the proof of Corollary 1 below shows that the estimator chooses a space of dimension

D m 2 = D α 1 /α 2 m 1 < D m 1 .
Corollary 1. Assume that π restricted to A belongs to the anisotropic Besov space B α 2,∞ (A) with regularity α = (α 1 , α 2 ) such that α 1 > 1/2 and α 2 > 1/2. We consider the spaces described in Subsection 2.4 (with the regularity r of the polynomials and the wavelets larger than α i -1). Then, under the assumptions of Theorem 1,

E π1 A -π 2 n = O(n -2 ᾱ 2 ᾱ+2 ).
where ᾱ is the harmonic mean of α 1 and α 2 (i.e. 2/ᾱ = 1/α 1 + 1/α 2 ).

Thus we obtain the rate of convergence n -2 ᾱ 2 ᾱ+2 , which is optimal in the minimax sense (see [START_REF] Lacour | Adaptive estimation of the transition density of a markov chain[END_REF] for the lower bound).

Remark 1. The empirical norm is the more natural in this problem, but if we were interested in a L 2 control of the risk, we may modify the estimation procedure as follows:

(14) π * = π if π ≤ k n 0 else with k n = n 2/3
. We may prove in this framework a result similar to Theorem 1 but bounding E π * -π1 A 2 instead of its empirical version, see [START_REF] Lacour | Adaptive estimation of the transition density of a markov chain[END_REF].

4.2. Censored case. In the censored case, the penalty coming out under the same assumptions as previously is

(15) pen(m) = K 0 ( π ∞ /c G )(D m 1 D m 2 /n),
but c G is a quantity that cannot be easily estimated. Therefore, we use more restrictive assumptions to prove:

Theorem 2. We consider the censored model described in Section 2. 

(16) pen(m) = K 0 φ 2 0 f 0 E δ 1 Ḡ2 (Z 1 ) D m 1 D m 2 n ,
where K 0 is a numerical constant. Then

E π1 A -π 2 n ≤ C inf m∈Mn {d 2 (π1 A , S m ) + pen(m)} + C n where C = max(5 f X ∞ , 6) and C is a constant depending on φ 1 , φ 2 , π ∞ , f 0 , f X ∞ .
Here the penalty involves two quantities that should be estimated: f 0 , the lower bound of f X the density of the X i 's on the interval A 1 and the expectation E(δ 1 / Ḡ2 (Z 1 )), see Section 5 for practical implementation.

simulations and examples

5.1. Simulation. We study the estimation procedure by generating samples (X i , Y i ) following four models:

• Example 1. Let Y i = b(X i ) + ε i , with ε i i.i.d. N (0, 1), X i i.i.d. uniform U([0, 1]), b(x) = 2x + 5. We take A = [0, 1] × [3, 9.5]. • Example 2. Let Y i = b(X i ) + ε i , with ε i i.i.d. Γ(4, 1), X i i.i.d. uniform U([0, 1]), b(x) = 2x + 5. We take A = [0, 1] × [4, 15]. • Example 3. Let Y i = b(X i ) + σ(X i )ε i , with ε i i.i.d. Γ(4, 1), X i i.i.d. uniform U([0, 1]), b(x) = 2x 2 + 5, σ(x) = 1.3 -|x|. We take A = [0, 1] × [6, 14]. • Example 4. Given X i = x, let Y i follow the distribution 0.5N (8-4x, 1)+0.5N (8+ 4x, 1). The X i 's are i.i.d. U([0, 1]). We take A = [0, 1] × [2, 14].
The sets A = A 1 × A 2 are fixed intervals, roughly calibrated with respect to each distribution. In the first three cases, the conditional density π is given by The penalty is chosen as follows:

π(x, y) = f ε ((y -b(x))/σ(x))/σ(x), with b(x) = 2x+5 (examples 1,2) or b(x) = 2x
(17) 0.5 π ∞ 1 n n i=1 δ i Ĝ2 (Z i ) D m 1 D m 2 n ,
where π ∞ is preliminary estimated. We replace π ∞ by a bound equal to 0.4 in Examples 1, 3 and 4 and to 0.3 in Example 2. We mentioned in Section 4.1 that an upper bound on π could suit. If the data are uncensored, we recover the empirical version of (12) with constant K 0 calibrated as 0.5. Indeed, the term (1/n) n i=1 δ i / Ĝ2 (Z i ) is equal to 1 and thus vanishes. In the case of censored data, this term stands for the empirical version of E(δ 1 / Ḡ2 (Z 1 )) (see also [START_REF] Brunel | Penalized contrast estimation of density and hazard rate with censored data[END_REF]). Then, we should follow formula (16) and estimate f 0 . But, looking at (15) and for sake of robustness of the formula from uncensored to censored case, we make a compromise by keeping the factor π ∞ . We compute the empirical MISE (Mean Integrated Squared Error) over N = 500 replications of the samples, by averaging over the paths i = 1, . . . , N , the quantities

(A 1 ) (A 2 ) K 2 K k=1 (π (i) (x k , y k ) -π(x k , y k )) 2 ,
where (A i ) is the length of the interval A i , i = 1, 2, (x k ) 1≤k≤K , (y k ) 1≤k≤K are subdivisions of A 1 and A 2 respectively, and π(i) is the estimate associated to the ith sample path. Note that we compute L 2 -type errors in both x-and y-directions instead of using the empirical norm in the x-direction: this is to allow comparison with other methods. When censoring occurs, the C i 's are generated as exponential random variables E(c) with parameter c empirically adjusted to reach a given censoring rate (20% or 40%), namely c = 6.97 for Example 1 (40%), c = 11.11 for Example 2 (40%), c = 10.25 for Example 3 (40%), c = 11.65 for Example 4 (20%). Figures 1 and2 illustrate the appearance of our estimates.

We experimented our method using histogram and trigonometric bases for all our examples, see Tables 1 and2. We cannot pretend that one basis is much better than the others since the performances of the estimator depend on the example: sometimes, the fact that the histogram basis is localized is most useful to detect a change of modality, e.g. for Example 4; besides, the smoothness of the trigonometric basis gives better results. Example 3 checks that heteroscedasticity in the model is correctly handled, and Example 4 mimicks the real data illustration of Section 5.2 (change in modality). In all examples, censoring degrades the results. This is why only 20% of censoring is studied for example 4.

Monte Carlo experiment results are reported in Tables 1 and2. As expected, censoring deteriorates the result, but surprisingly, even in smooth Gaussian cases, histograms seem to work very well and in particular when a change in modality occurs as in Example 4. [START_REF] Hyndman | Nonparametric estimation and symmetry tests for conditional density functions[END_REF]'s, we provide the plot of our estimation results on the Old Faithful Geyser data, available from [START_REF] Azzalini | A look at some data on the old faithful geyser[END_REF]: these are continuously collected data of 299 observations obtained between 1 and 15 August 1985, waiting time between the starts of successive eruptions and duration of the subsequent eruption for the infamous Old Faithful geyser in Yellowstone National Park, Wyoming, getting its name because of its punctuality and predictability. Over the years, the length of the interval has increased, which may be the result of earthquakes affecting subterranean water levels. This have made the earlier mathematical relationship between duration and interval between eruptions inaccurate. Nonparametric estimation of the conditional density of the duration time avoid this problem. The data have been transformed to be centered and with unit variance for comparison with the previous references. Our results are plotted in Figures 3 and4. The estimate is computed using the penalty given by ( 17) with π ∞ estimated by 1 (see the picture to read the upper bound). We can see that our results are in accordance with previous ones: when the waiting time between eruptions is relatively short, the duration of the next eruption is long, whereas for a longer waiting time (longer than round about 70 minutes), the duration of the next eruption is a mixture of long and short durations. This results in a unimodal followed by a bimodal behavior of the conditional density of the duration of eruption given the waiting time between eruptions.

6. Proofs 6.1. Proof of Proposition 1. Equality ( 9) yields, by multiplying by

ψ m k 0 (y), j∈Jm a j,k 0 n i=1 ϕ m j (X i )ψ m k 0 (y)ϕ m j 0 (X i ) = n i=1 ϕ m j 0 (X i ) ŵi ψ m k 0 (Z i )ψ m k 0 (y).
Then, we sum over k 0 in K m :

n i=1 t(X i , y)ϕ m j 0 (X i ) = n i=1 k 0 ∈Km ŵi ψ m k 0 (Z i )ψ m k 0 (y)ϕ m j 0 (X i ).
If we multiply this equality by a j 0 ,k ψ m k (y) and if we sum over k ∈ K m and j 0 ∈ J m , we obtain

n i=1 [t(X i , y) - k 0 ∈Km ŵi ψ m k 0 (Z i )ψ m k 0 (y)] k∈Km j 0 ∈Jm a j 0 ,k ϕ m j 0 (X i )ψ m k (y) = 0 i.e. n i=1 [t(X i , y) - k 0 ∈Km ŵi ψ m k 0 (Z i )ψ m k 0 (y)]u(X i , y) = 0 for all u in S m . So the vector (t(X i , y) -k∈Km ŵi ψ m k (Z i )ψ m k (y))
1≤i≤n is orthogonal to each vector in W. Since t(X i , y) belongs to W, the proposition is proved. 6.2. Proof of Theorem 1 and 2. For ρ a real larger than 1, let

Ω ρ = {∀t ∈ S t 2 f ≤ ρ t 2 n } We denote by π m the orthogonal projection of π on S m . Now, E π -π1 A 2 n = E π -π1 A 2 n 1 Ωρ + E π -π1 A 2 n 1 Ω c ρ (18)
To bound the first term, we observe that for all s, t

γ n (t) -γ n (s) = t -π 2 n -s -π 2 n -2ν n (t -s) -2R n (t -s)
where

ν n (t) = 1 n n i=1 w i t(X i , Z i ) - R t(X i , y)π(X i , y)dy , R n (t) = 1 n n i=1 t(X i , Z i ) [ ŵi -w i ] . Since t -π 2 n = t -π1 A 2 n + π1 A c 2 n , we can write γ n (t) -γ n (s) = t -π1 A 2 n -s -π1 A 2 n -2ν n (t -s) -2R n (t -s).
The definition of m gives, for some fixed m ∈ M n ,

γ n (π) + pen( m) ≤ γ n (π m ) + pen(m) And then π -π1 A 2 n ≤ π m -π1 A 2 n + pen(m) + 2R n (π -π m ) +2ν n (π -π m ) -pen( m) ≤ π m -π1 A 2 n + pen(m) + 2 π -π m f sup t∈B f ( m) R n (t) +2 π -π m f sup t∈B f ( m) ν n (t) -pen( m)
where, for all m , B f (m ) = {t ∈ S m + S m , t f = 1}. Let θ a real larger than 2ρ and p(., .) a function such that 2θp(m, m ) ≤ pen(m) + pen(m ). Then

π -π1 A 2 n 1 Ωρ ≤ π m -π1 A 2 n + 1 θ π -π m 2 f 1 Ωρ + 2pen(m) +2θ m ∈Mn sup t∈B f (m ) ν 2 n (t) -p(m, m ) + 1 Ωρ +2θ m ∈Mn sup t∈B f (m ) R 2 n (t)1 Ωρ (19) But π -π m 2 f 1 Ωρ ≤ ρ π -π m 2 n 1 Ωρ ≤ 2ρ π -π1 A 2 n 1 Ωρ + 2ρ π1 A -π m 2 n . Then, inequality (19) becomes π -π1 A 2 n 1 Ωρ 1 - 2ρ θ ≤ 1 + 2ρ θ π m -π1 A 2 n + 2pen(m) +2θ m ∈Mn sup t∈B f (m ) ν 2 n (t) -p(m, m ) + 1 Ωρ +2θ m ∈Mn sup t∈B f (m ) R 2 n (t)1 Ωρ so E π -π1 A 2 n 1 Ωρ ≤ θ + 2ρ θ -2ρ E π1 A -π m 2 n + 2θ θ -2ρ pen(m) + 2θ 2 θ -2ρ m ∈Mn E sup t∈B f (m ) ν 2 n (t) -p(m, m ) + 1 Ωρ + 2θ 2 θ -2ρ E sup t∈B f ( m) R 2 n (t) + 1 Ωρ (20)
We now use the following proposition: 

(m, m ) = 6(φ 2 0 /f 0 )E(δ 1 / Ḡ2 (Z 1 ))D(m, m )/n, there exists a constant C 1 such that (21) m ∈Mn E sup t∈B f (m ) ν 2 n (t) -p(m, m ) + 1 Ωρ ≤ C 1 n .
Moreover, we can prove that

(22) E sup t∈B f ( m) R 2 n (t)) + 1 Ωρ ≤ E sup t∈B f (n) R 2 n (t)) + 1 Ωρ ≤ C n
where B f (n) is the unit ball of the largest space of the collection (which is nested as R n appears only in the censored case).

To prove ( 22), let us define ( 23)

Ω G = {ω, ∀y ∈ A 2 , Ĝ(y) -G(y) > -c G /2}.
On Ω G , Ĝ(y) > c G /2 and Ĝ(y) ≥ 1/(n + 1). Now we use the following key lemma, useful to control the probability of the uniform deviation of the estimator of the survival distribution function Ĝ:

Lemma 1. For all k ∈ N * , there exists a constant C k depending on k and c G such that

E sup y∈A 2 | Ĝ(y) -Ḡ(y)| 2k ≤ C k n k .
This lemma is proved in [START_REF] Brunel | Penalized contrast estimation of density and hazard rate with censored data[END_REF], see Lemma 6.1. Now write, for (ϕ j , ψ k ) an orthonormal basis of the largest space of the collection,

E sup t∈B f (n) R 2 n (t)) + 1 Ωρ1 Ω c G ≤ 1 f 0 j,k E(R 2 n (ϕ j ψ k )1 Ω c G ) ≤ φ 2 0 D 2 n c 2 G f 0 E 1 n n i=1 ( Ĝ(Y i ) -Ḡ(Y i )) 2 1 A 2 (Y i ) Ĝ2 (Y i ) 1 Ω c G ≤ φ 2 0 D 2 n c 2 G f 0 (n + 1) 2 E( sup y∈A 2 | Ĝ(y) -Ḡ(y)| 2 1 sup y∈A 2 | Ĝ(y)-Ḡ(y)|>c G /2 ) ≤ 2φ 2 0 n 3 c 2 G f 0 (2/c G ) 6 E( sup y∈A 2 | Ĝ(y) -Ḡ(y)| 8 ) ≤ C n .
Next, we need to study R n on Ω G . To this end, we write that:

E sup t∈B f (n) R 2 n (t) + 1 Ωρ1 Ω G ≤ 4 c 4 G E sup y∈A 2 | Ĝ(y) -Ḡ(y)| 2 sup t∈B f (n) 1 n n i=1 t 2 (X i , Y i ) ≤ 4 c 4 G E sup y∈A 2 | Ĝ(y) -Ḡ(y)| 2 sup t∈B f (n) E(t 2 (X 1 , Y 1 )) (24) + 4 c 4 G E 1/2 sup y∈A 2 | Ĝ(y) -Ḡ(y)| 4 E 1/2 sup t∈B f (n) (ν n "(t 2 )) 2 (25)
where

ν n "(t) = 1 n n i=1 [t(X i , Y i ) -E(t(X 1 , Y 1 ))].
As under [A1] and [A2], f (X,Y ) is bounded on A, then sup t∈B f (n) E(t 2 (X 1 , Y 1 )) ≤ F 1 with F 1 = π ∞ f X ∞ , and thus using Lemma 1 gives that ( 24) is of order 1/n. Next, with Schwartz inequalities,

E sup t∈B f (n) (ν n "(t 2 )) 2 ≤ 1 n j,j ,k,k E(ϕ 2 j (X 1 )ϕ 2 j (X 1 ))E(ψ 2 k (Y 1 )ψ 2 k (Y 1 )) ≤ Φ 4 0 D 4 n n .
It follows that this term is bounded if D n ≤ n 1/4 . This implies that ( 25) is also of order 1/n. Gathering both terms (on Ω G and Ω c G ) gives Inequality ( 22). Then, with θ = 3ρ, inequalities ( 20) and ( 21) yield

(26) E π -π1 A 2 n 1 Ωρ ≤ 5 f ∞ π m -π1 A 2 + 6pen(m) + 9ρC 1 n
The penalty term pen(m) has to verify pen(m) + pen(m ) ≥ 36ρAD(m, m )/n i.e. 36ρAdim(S m + S m )/n ≤ pen(m) + pen(m ), where A = π ∞ in the uncensored case and A = (φ 2 0 /f 0 )E(δ 1 / Ḡ(Z 1 )) in the censored case. We choose ρ = 3/2 and so pen(m) = 54A(D m 1 D m 2 )/n.

To bound the second term in (18), we recall (see Section 3) that (π m(X i , y)) 1≤i≤n is the orthogonal projection of ( k Ŵi,k ψ k (y)) 1≤i≤n on W = {(t(X i , y)) 1≤i≤n , t ∈ S m} where ψ k = ψ m k . Thus, since P W denotes the orthogonal projection on W, using ( 10)-( 11) (π m(X i , y))

1≤i≤n = P W (( k Ŵi,k ψ k (y)) 1≤i≤n ) = P W (( k π k (X i )ψ k (y)) 1≤i≤n ) + P W (( k ε i,k ψ k (y)) 1≤i≤n ) + P W (( k R i,k ψ k (y)) 1≤i≤n ) = P W (π1 A (X i , y)) 1≤i≤n ) + P W (( k ε i,k ψ k (y)) 1≤i≤n ) + P W (( k R i,k ψ k (y)) 1≤i≤n )
We denote by . R n the Euclidean norm in R n , by X the vector (X i ) 1≤i≤n , by ε k the vector (ε i,k ) 1≤i≤n and by R k the vector (R i,k ) 1≤i≤n . Thus

π1 A -π m 2 n = 1 n π1 A (X, y) -P W (π1 A (X, y)) -P W ( k ε k ψ k (y)) -P W ( k R k ψ k (y)) 2 R n dy = 1 n π1 A (X, y) -P W (π1 A (X, y)) 2 R n dy + 1 n P W ( k (ε k + R k )ψ k (y)) 2 R n dy ≤ 1 n π1 A (X, y) 2 R n dy + 2 n k ε k ψ k (y) 2 R n dy + 2 n k R k ψ k (y) 2 R n dy ≤ 1 n n i=1 π ∞ π(X i , y)dy + 2 n n i=1 [ k ε i,k ψ k (y)] 2 dy + 2 n n i=1 [ k R i,k ψ k (y)] 2 dy ≤ π ∞ + 2 n n i=1 k ε 2 i,k + 2 n n i=1 k R 2 i,k . But Assumption [M2] implies k∈K m ψ 2 k ∞ ≤ φ 2 D m2 . So, using (11), ε 2 i,k ≤ 2(w i ψ k (Z i )) 2 + 2E[w i ψ k (Z i )|X i ] 2 and k ε 2 i,k ≤ 2 k ψ 2 k (Y i ) Ḡ2 (Z i ) + 2E[ k ψ 2 k (Y i ) Ḡ2 (Z i ) |X i ] ≤ 4 φ 2 D m2 c 2 G On the other hand, k R 2 i,k ≤ k ψ 2 k (Y i ) | Ḡ(Y i ) -Ḡ(Y i )| 2 1 A 2 (Y i ) c 2 G Ḡ2 (Y i ) ≤ φ 2 D m2 c 2 G | Ḡ(Y i ) -Ḡ(Y i )| 2 1 A 2 (Y i ) Ḡ2 (Y i )
.

Thus, it follows from the previous study (and in particular from Lemma 1), that the following inequality holds

(27) E 1/2     1 n n i=1 | Ḡ(Y i ) -Ḡ(Y i )| 2 1 A 2 (Y i ) Ḡ2 (Y i )   2   ≤ κ n .
Using ( 27), we obtain

(28) E π1 A -π m 2 n 1 Ω c ρ ≤ ( π ∞ + 8 φ 2 n 1/2 c 2 G )P(Ω c ρ ) + 2κφ 2 c 2 G n 1/2 P 1/2 (Ω c ρ ).
Now we will use the following proposition:

Proposition 3. Let ρ > 1. Then, under the assumptions of Theorem 1, there exists

C 2 > 0 such that P (Ω c ρ ) ≤ C 2 n 3/2 .

This proposition implies that

E π1 A -π m 2 n 1 Ω c ρ ≤ C 3 n .
Now we use ( 26) and we observe that this inequality holds for all m in M n , so

E π -π1 A 2 n ≤ C inf m∈Mn ( π1 A -π m 2 + pen(m)) + C 4 n with C = max(5 f ∞ , 6). 6.3. Proof of Proposition 2. Let Γ i (t) = δ i t(X i , Y i )/ Ḡ(Y i )-t(X i , y)π(X i , y)dy. Then ν n (t) = (1/n) n i=1 Γ i (t).
We use the following lemma: Lemma 2. [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF]) Let U 1 , . . . , U n i.i.d. variables and (ζ t ) t∈B a set of functions and B is a unit ball of a finite dimensional subspace of L

2 (A). Let ν n (t) = (1/n) n i=1 [ζ t (U i ) -E(ζ t (U i ))]. We suppose that (1) sup t∈B ζ t ∞ ≤ M 1 , (2) E(sup t∈B |ν n (t)|) ≤ H, (3) sup t∈B Var[ζ t (U 1 )] ≤ v. Then, there exists K > 0, K 1 > 0, K 2 > 0 such that E sup t∈B ν 2 n (t) -6H 2 + ≤ K v n e -K 1 nH 2 v + M 2 1 n 2 e -K 2 nH M 1
Here ζ t (x, y, δ) = δt(x, y)/ Ḡ(y)t(x, u)π(x, u)du and B = B f (m ). We now compute M 1 , H and v.

(1)We recall that S m +S m is included in the model S m with dimension max

(D m 1 , D m 1 ) max(D m 2 , D m 2 ). sup t∈B ζ t ∞ ≤ sup t∈B t ∞ (1/c G + 1) ≤ φ 0 (1/c G + 1) max(D m 1 , D m 1 ) max(D m 2 , D m 2 ) t ≤ (1/c G + 1)φ 0 f 0 n 1/2 . Then we set M 1 = (1/c G + 1)φ 0 f 0 n 1/2 . (2) Var[ζ t (U 1 )] = E [Γ 1 (t)] 2 ≤ E t 2 (X 1 , Y 1 ) Ḡ(Y 1 ) ≤ 1 c G E t 2 (X 1 , Y 1 ) ≤ π ∞ c G t 2 f . Then v = π ∞ c G .
(3) Let ( φj ⊗ ψ k ) (j,k)∈Λ(m,m ) be an orthonormal basis of (S m + S m , . f ).

E(sup

t∈B |ν 2 n (t)|) ≤ j,k E(ν 2 n ( φj ⊗ ψ k )) = j,k 1 n 2 E   n i=1 Γ i ( φj ⊗ ψ k ) 2   = j,k 1 n E Γ 2 1 ( φj ⊗ ψ k ) .
In the uncensored case, we find

E(sup t∈B |ν 2 n (t)|) ≤ j,k 1 n E φ2 j (X 1 )ψ 2 k (Y 1 ) ≤ π ∞ n j,k φ2 j (x)ψ 2 k (y)f (x)dxdy ≤ π ∞ n D(m, m ).
In the censored case, the assumptions are more restrictive because we need to use the norm connection on S m + S m , that is we need S m + S m to be a space of the collection. Indeed, in the general case above, the bound would be π ∞ D(m, m )/(nc G ) and c G can not be estimated. Whereas under [M4], we find

E(sup t∈B |ν 2 n (t)|) ≤ j,k 1 nf 0 E δ 1 ϕ 2 j (X 1 )ψ 2 k (Z 1 ) Ḡ2 (Z 1 ) ≤ 1 nf 0 E δ 1 j,k ϕ 2 j ψ 2 k ∞ Ḡ2 (Z 1 ) ≤ E δ 1 Ḡ2 (Z 1 ) φ 2 0 f 0 D(m, m ) n .
Then E(sup t∈B ν 2 n (t)) ≤ AD(m, m )/n and H 2 = AD(m, m )/n with A = π ∞ in the uncensored case or A = (φ 2 0 /f 0 )E(δ 1 / Ḡ2 (Z 1 )) in the censored case. According to Lemma 2, there exists K > 0, K 1 > 0, K 2 > 0 such that

E sup t∈B f (m ) ν 2 n (t) -6H 2 + ≤ K 1 n e -K 1 D(m,m ) + 1 n e -K 2 √ D(m,m ) . So, if p(m, m ) = 6H 2 = 6AD(m, m )/n, m ∈Mn E sup t∈B f (m ) ν 2 n (t) -p(m, m ) + ≤ K n   m ∈Mn (e -K 1 D(m,m ) + e -K 2 √ D(m,m ) )   ≤ A 1 n ,
and the result follows.

6.4. Proof of Proposition 3. First we observe that

P (Ω c ρ ) ≤ P sup t∈B |ν n (t 2 )| > 1 -1/ρ where ν n (t) = 1 n n i=1
[t(X i , y) -E(t(X i , y))]dy and B = {t ∈ S, t f = 1}. We denote by (ϕ j , ψ k ) the orthonormal basis of S, the set of maximal dimension of the collection.

But, if t(x, y) = j,k a j,k ϕ j (x)ψ k (y), then Lemma 3. Let B j,l = ϕ j ϕ l ∞ and V j,l = ϕ j ϕ l 2 . Let, for any symmetric matrix (A j,l ) ρ(A) = sup a 2 j =1 j,l |a j a l |A j,l and L(ϕ) = max{ρ 2 (V ), ρ(B)}. Then, if [M2] is satisfied, L(ϕ) ≤ φ 1 D 2 n . This lemma is proved in [START_REF] Baraud | Adaptive estimation in autoregression or β-mixing regression via model selection[END_REF].

ν n (t 2 ) = j,j k a j,
Let x = f 2 0 (1 -1/ρ) 2 4 f ∞ L(ϕ)
and ∆ = ∀j∀l |ν n (ϕ j ϕ l )| ≤ 4 B j,l x + V j,l 2 f ∞ x . On ∆:

sup t∈B |ν n (t 2 )| ≤ f -1 0 sup b 2 j =1 j,l b j b l B j,l x + V j,l 2 f ∞ x ≤ f -1 0 ρ(B)x + ρ(V ) 2 f ∞ x ≤ (1 -1/ρ) f 0 (1 -1/ρ) 4 f ∞ ρ(B) L(ϕ) + 1 √ 2 ρ2 (V ) L(ϕ) 1/2 ≤ (1 -1/ρ) 1 4 + 1 √ 2 ≤ (1 -1/ρ). Then P sup t∈B |ν n (t 2 )| > 1 - 1 ρ ≤ P (∆ c ).
To bound P (ν n (ϕ j ϕ l ) ≥ B j,l x + V j,l 2 f ∞ x), we will apply the Bernstein inequality given in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] to the independent variables U j,l i = ϕ j (X i )ϕ l (X i ). We get P (|ν n (ϕ j ϕ l )| ≥ B j,l x + V j,l 2 f ∞ x) ≤ 2e -nx .

Given that P (Ω c ρ ) ≤ P (∆ c ) = j,l P |ν n (ϕ j ϕ l )| > B j,l x + V j,l 2 f ∞ x ,

P (Ω c ρ ) ≤ 2D 2 n exp - nf 2 0 (1 -1/ρ) 2 40 f ∞ L(ϕ) ≤ 2n exp - f 2 0 (1 -1/ρ) 2 40 f ∞ n L(ϕ)
.

But L(ϕ) ≤ φ 1 D 2 n ≤ φ 1 n/ log 2 (n), so (30) P (Ω c ρ ) ≤ 2n exp -

f 2 0 (1 -1/ρ) 2 40 f ∞ φ 1 log 2 (n) ≤ C n 3/2 .
6.5. Proof of Corollary 1. To control the bias term, we state the following lemma proved in [START_REF] Lacour | Adaptive estimation of the transition density of a markov chain[END_REF] and following from [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF] and Nikol skiȋ (1975):

Lemma 4. Let π A belong to B α 2,∞ (A). We consider that S m is one of the following spaces on A:

• a space of piecewise polynomials of degrees bounded by s i > α i -1 (i = 1, 2) based on a partition with rectangles of sidelengthes 1/D m 1 and 1/D m 2 , • a linear span of {φ λ ψ µ , λ ∈ ∪ m 1 0 Λ(j), µ ∈ ∪ m 2 0 M (k)} where {φ λ } and {ψ µ } are orthonormal wavelet bases of respective regularities s 1 > α 1 -1 and s 2 > α 2 -1 (here D m i = 2 m i , i = 1, 2),

• the space of trigonometric polynomials with degree smaller than D m 1 in the first direction and smaller than D m 2 in the second direction. Let π m be the orthogonal projection of π A on S m . Then, there exists a positive constant C 0 such that

A |π A -π m | 2 1/2 ≤ C 0 [D -α 1 m 1 + D -α 2 m 2 ].
If we choose for S m the set of the restrictions to A of the functions of S m and π A the restriction of π to A, we can apply Lemma 4. But π m is also the restriction to A of π m so that In particular, if m * is such that

D m * 1 = n α 2 α 1 +α 2 +2α 1 α 2 and D m * 2 = (D m * 1 ) α 1 α 2 then E π -π1 A 2 n ≤ C    D -2α 1 m * 1 + D 1+α 1 /α 2 m * 1 n    = O n - 2α 1 α 2 α 1 +α 2 +2α 1 α 2 .
But the harmonic mean of α 1 and α 2 is ᾱ = 2α 1 α 2 /(α 1 + α 2 ). Then E π -π1 A

2 n = O(n -2 ᾱ 2 ᾱ+2
). The condition D m 1 ≤ n 1/2 / log(n) allows this choice of m only if α 2 α 1 +α 2 +2α 1 α 2 < 1 2 i.e. if α 1α 2 + 2α 1 α 2 > 0. In the same manner, the condition α 2α 1 + 2α 1 α 2 > 0 must be verified. Both conditions hold if α 1 > 1/2 and α 2 > 1/2.
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 1 Figure 1. Plots of the estimated (top-left) with trigonometric basis and the true (top right) conditional density and y → π(x, y) (full line), π(x, y) (dashed dotted line) for x = 0.15 (bottom-left) and x = 0.90 (bottom-right) with n = 2000 observations in Example 2 and without censoring.

Figure 2 .

 2 Figure 2. Plots of the estimated (top-left) with histogram basis and the true (top right) conditional density and y → π(x, y) (full line), π(x, y) (dashed dotted line) for x = 0.1 (bottom-left) and x = 0.82 (bottom-right), with n = 2000 observations in Example 4 and without censoring.

Figure 3 .

 3 Figure 3. Plots of the Old Faithful geyser data (top right), estimators of the conditional density with x → π(x, y) for y = y 25 = -1.31 (top-right) and y → π(x, y) for x = x 5 = -1.92 (bottom-left) and x = x 75 = 1.39 (bottom-right).

Figure 4 .

 4 Figure 4. Two-dimensional plot of the estimate of the conditional density of eruption duration given the waiting time to the eruption for the Old Faithful geyser data using trigonometric polynomials.

Proposition 2 .

 2 Under the assumptions of Theorem 1, with p(m, m ) = 6 π ∞ D(m, m )/n where D(m, m )denotes the dimension of S m + S m or under the assumptions of Theorem 2, with p

  k a j ,k νn (ϕ j ϕ j X i ) -E(u(X i ))]. Let b j = ( k a 2 j,k ) 1/2 , then |ν n (t 2 )| ≤ j,j b j b j |ν n (ϕ j ϕ j )| and, if t ∈ B, l |ν n (ϕ j ϕ l )|.

  π1 Aπ m ≤ C 0 [D -α 1 m 1 + D -α 2 m 2

Table 1 .

 1 Monte-Carlo results (MISE × 100) for the estimator π, for K = 500 replications and two bases: H for histograms and TP for Trigonometric polynomials. Examples 1 and 2.

			Example 1			Example 2	
	n	200	500	2000	200	500	2000
	Censoring 0% 40 % 0% 40% 0% 40% 0% 40% 0% 40% 0% 40%
	H	4.91 9.40 2.97 5.50 1.55 3.31 1.73 4.11 1.16 2.93 0.65 2.01
	TP	2.70 4.76 2.16 3.19 1.97 2.98 1.43 2.19 1.31 2.17 0.91 1.79
	Section 3 with (nested) models verifying Assumptions [M2]-[M4]. We choose the following
	penalty:						

1 satisfying Assumptions [A1]-[A3].

We consider π the estimator of the conditional density π described in