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Asynchronous games:
innocence without alternation

Paul-André Melliés and Samuel Mimram

Abstract. The notion of innocent strategy was introduced by Hyland @nd
in order to capture the interactive behaviourdeferms and PCF programs. An
innocent strategy is defined as an alternating strategy pattial memory, in
which the strategy plays according to its view. Extending diefinition to non-
alternating strategies is problematic, because the imaditdefinition of views is
based on the hypothesis that Opponent and Proponent atelmang the inter-
action. Here, we take advantage of the diagrammatic refiation of alternating
innocence in asynchronous games, in order to provide atieni@efinition of
innocence in non-alternating games. The task is inteigséind far from easy.
It requires the combination of true concurrency and gameaséios in a clean
and organic way, clarifying the relationship between akyoleous games and
concurrent games in the sense of Abramsky and Melliés.dtralguires an inter-
active reformulation of the usual acyclicity criterion @fear logic, as well as a
directed variant, as a scheduling criterion.

1 Introduction

Thealternating origins of game semantics. Game semantics was invented (or reinvented) at the
beginning of the 1990s in order to describe the dynamics abfgrand programs. It proceeds
according to the principles of trace semantics in concugréheory: every program and proof
is interpreted by the sequences of interactions, calagls that it can have with its environ-
ment. The novelty of game semantics is that this set of plafiees sstrategywhich reflects the
interactive behaviour of the program inside tf@mespecified by the type of the program.

Game semantics was originally influenced by a pioneering<vagr Joyal [16] building a
category of games (called Conway games) and alternatiatggtes. In this setting, a game is
defined as a decision tree (or more precisely, a dag) in whiehyeedge, calleanove has a
polarity indicating whether it is played by the program/edIProponent, or by the environment,
called Opponent. A play is alternating when Proponent angoDent alternate strictly — that is,
when neither of them plays two moves in a row. A strategy israliting when it contains only
alternating plays.

The category of alternating strategies introduced by Jogallater refined by Abramsky and
Jagadeesan [2] in order to characterize the dynamic balvavigroofs in (multiplicative) linear
logic. The key idea is that the tensor product of linear lpgated®, may be distinguished from
its dual, noted”, by enforcing aswitching policyon plays — ensuring for instance that a strategy
of A ® B reacts to an Opponent move played in the subgarbg playing a Proponent move in
the same subgamé.

* This work has been supported by the ANR Invariants algébggles systemes informatiques
(INVAL). Physical address: Equipe PPS, CNRS and UniveRiés 7, 2 place Jussieu, case
7017, 75251 Paris cedex 05, France. Email addressdd: i es@ps. j ussi eu. fr and
sm nr am@ps. j ussi eu. fr.



The notion ofpointer gamewas then introduced by Hyland and Ong, and independently by
Nickau, in order to characterize the dynamic behaviour ofpams in the programming language
PCF — a simply-typed-calculus extended with recursion, conditional branclsing arithmetical
constants. The programs of PCF are characterized dyndyrasgbarticular kinds of strategy with
partial memory — callethnocentbecause they react to Opponent moves according to their own
view of the play. This view is itself a play, extracted from theremt play by removing all its
“invisible” or “inessential” moves. This extraction is ff@ermed by induction on the length of
the play, using the pointer structure of the play, and theothgsis that Proponent and Opponent
alternate strictly.

This seminal work on pointer games led to the first generatfogame semantics for pro-
gramming languages. The research programme — mainly ginigekbramsky and his collab-
orators — was extraordinarily successful: by relaxing inows ways the innocence constraint
on strategies, it suddenly became possible to charactigzimteractive behaviour of programs
written in PCF (or in a call-by-value variant) extended witiperative features like states, refer-
ences, etc. However, because Proponent and Opponenysilietnate in the original definition
of pointer games, these game semantics focus on sequemggldges like Algol or ML, rather
than on concurrent languages.

Concurrent games. This convinced a little community of researchers to worklmnfoundations
of non-alternating games —where Proponent and Opponetitieallowed to play several moves
in a row at any point of the interaction. Abramsky and Mel[@sntroduced a new kind of game
semantics to that purpose, basedconcurrent games see also [1]. In that setting, games are
defined as partial orders (or more precisely, completectd]}i of positions and strategies as
closure operator®n these partial orders. Recall that a closure operator a partial ordeD is
afunctiono : D — D satisfying the following properties:

(1) oisincreasing: Vz € D, z < o(x),
(2) oisidempotent: Vz € D, o(z) =o(o(x)),
(3) oismonotone: Vz,y € D, r<y=o(zx) <oy).

The order on positions < y reflects the intuition that the positigncontains more information
than the positiorx. Typically, one should think of a positian as a set of moves in a game, and
x < y as set inclusion: C y. Now, Property (1) expresses that a strategyhich transports
the positionz to the positiorno (z) increases the amount of information. Property (2) refldats t
intuition that the strategy delivers all its information when it transports the positioto the po-
sition o (x), and thus transports the positieifz) to itself. Property (3) is both fundamental and
intuitively right, but also more subtle to justify. Note tithe interaction induced by such a strat-
egyo is possibly non-alternating, since the strategy transpbe positionr to the positiors ()

by “playing in one go” all the moves appearingdiiz) but not inz.

Asynchronous transition systems. Every closure operatar is characterized by the sgk(o) of

its fixpoints, that is, the positionssatisfyingz = o(x). So, a strategy is expressed alternatively
as a set of positions (the set of fixpoints of the closure dperéan concurrent games, and as

a set of alternating plays in pointer games. In order to wtdad how the two formulations of
strategies are related, one should start from an obvious@nwith concurrency theory: pointer
games define aimterleaving semanticbased on sequences of transitions) whereas concurrent
games define tuly concurrent semantiddased on sets of positions, or states) of proofs and pro-
grams. Now, Mazurkiewicz taught us this important lessamnuly concurrent semantics may be
regarded as an interleaving semantics (typically a trams#tystem) equipped withsynchronous



tiles— represented diagrammatically as 2-dimensional tiles
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expressing that the two transitions andn from the stater areindependentand consequently,
that their scheduling does not matter from a truly concurmpemt of view. This additional struc-
ture induces an equivalence relation on transition patikedhomotopy defined as the smallest
congruence relation identifying the two schedulings:-n andn-m for every tile of the form (1).
The wordhomotopyshould be understood mathematically as (directed) horgotoie topolog-
ical presentation of asynchronous transition systems-asbical set15]. This 2-dimensional
refinement of usual 1-dimensional transition systems esablexpress simultaneously the inter-
leaving semantics of a program as the set of transition pegienerates, and its truly concurrent
semantics, as the homotopy classes of these transitios. Wtien the underlying 2-dimensional
transition system is contractible in a suitable sense aéxedl later, these homotopy classes coin-
cide in fact with the positions of the transition system.

Asynchronous games. Guided by these intuitions, Melliés introduced the notibagynchronous
game which unifies in a surprisingly conceptual way the two hegieneous notions of pointer
game and concurrent game. Asynchronous games are playeyiocheonous (2-dimensional)
transition systems, where every transition (or move) isiggzrd with apolarity, expressing
whether it is played by Proponent or by Opponentplay is defined as a path starting from
the root (noted) of the game, and strategyis defined as a well-behaved set of alternating plays,
in accordance with the familiar principles of pointer ganmésw, the difficulty is to understand
how (and when) a strategy defined as a set of plays may be rgifated as a set of positions, in
the spirit of concurrent games.

The first step in the inquiry is to observe that the asynchusntiles (1) offer an alterna-
tive way to describgustification pointersbetween moves. For illustration, consider the boolean
gameB, where Opponent starts by asking a questipand Proponent answers by playing ei-
thertrue or false. The game is represented by the decision tree

*

e
fals(;/ q \true (2)
F \%4
wherex is the root of the game, and the three remaining positionsatedq, F' andV (V for
“Vrai” in French). At this point, since there is no concuregrinvolved, the game may be seen
either as an asynchronous game, or as a pointer game. NogatheB ® B is constructed by
taking two boolean games “in parallel.” It simulates a verye computation device, containing
two boolean memory cells. In a typical interaction, Oppdretarts by asking witlyz, the value
of the left memory cell, and Proponent answetser,; then, Opponent asks widr the value
of the right memory cell, and Proponent answeidser. The play is represented as follows in
pointer games:
VRN V2N
qr - truer - 9r - falsepr
The play contains two justification pointers, each one gmed by an arrow starting from a
move and leading to a previous move. Typically, the justificapointer from the moverue,



to the movey, indicates that the answetue, is necessarily played after the questipn The
same situation is described using 2-dimensional tileseéraynchronous gan® B below:
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The justification pointer between the answetie;, and its questiory;, is replaced here by a
dependencyelation between the two moves, ensuring that the mawe ;, cannot be permuted
before the move . The dependency itself is expressed by a “topological’rolotibn: the lack of
a 2-dimensional tile permuting the transitietue ;, before the transition;, in the asynchronous
gameB ® B.

This basic correspondence between justification pointedsasynchronous tiles allows a
reformulation of the original definition dhnocent strategin pointer games (based on views) in
the language of asynchronous games. Surprisingly, themefation leads to a purely local and
diagrammatic definition of innocence in asynchronous gamkih does not mention the notion
of view any more. This diagrammatic reformulation leadsthe the important discovery that
innocent strategies apositionalin the following sense. Suppose that two alternating plays
x — x with the same target positian are elements of an innocent strategyand thatm is
an Opponent move from positian Suppose moreover that the two playandt are equivalent
modulo homotopy. Then, the innocent strateggxtends the play - m with a Proponent move
if and only if it extends the play - m with the same Proponent mowe Formally:

s-m-n€c and s~t and t€o implies t-m-n€o. (4)

From this follows that every innocent strategys characterized by the set pbsitions(under-
stood here as homotopy classes of plays) reached in thetasyiatis game. This set of positions
defines a closure operator, and thus a strategy in the semamafrrent games. Asynchronous
games offer in this way an elegant and unifying point of viewpminter games and concurrent
games.

Concurrency in game semantics. There is little doubt that a new generation of game semantics
is currently emerging along this foundational work on canent games. We see at least three
converging lines of research. First, authors trained ingaemantics — Ghica, Laird and Mu-
rawski — were able to characterize the interactive behavibuarious concurrent programming
languages like Parallel Algol [12] or an asynchronous vari the w-calculus [17] using di-
rectly (and possibly too directly) the language of pointamgs. Then, authors trained in proof
theory and game semantics — Curien and Faggian — relaxeddherstiality constraints required
by Girard ondesignsin ludics, leading to the notion at-net [9] which lives at the junction of
syntax (expressed as proof nets) and game semantics (mayexdent structures). Finally, and
more recently, authors trained in process calculi, truegemency and game semantics — Varacca
and Yoshida — were able to extend Winskel’s truly concursembantics of CCS, based on event
structures, to a significant fragment of thecalculus, uncovering along the way a series of nice
conceptual properties @bnfusion-freeevent structures [25].



So, a new generation of game semantics for concurrent progitag languages is currently
emerging... but their various computational models atemiorly connected. We would like a
regulating theory here, playing the role of Hyland and Onmpieo games in traditional (that is,
alternating) game semantics. Asynchronous games areéntgrdiagood candidate, because they
combine interleaving semantics and causal semantics imnadméous way. Unfortunately, they
were limited until now to alternating strategies [20]. They/ lcontribution of this paper is thus to
extend the asynchronous framework to non-alternatingesfies in a smooth way.

Asynchronous games without alternation. One particularly simple recipe to construct an asyn-
chronous game is to start frompartial order of events where, in addition, every event has a
polarity, indicating whether it is played by Proponent orpg@pent. This partial ordgiM, <) is
then equipped with @ompatibility relationsatisfying a series of suitable properties — defining
what Winskel calls amvent structureA positionz of the asynchronous game is defined as a set
of compatibleevents (or moves) closed under the “causality” order:

VYm,n € M, m=n and n €ax implies m € z.

Typically, the boolean ganie described in (2) is generated by the event structure

q
PN

true false
whereq is an Opponent move, arfd1se andtrue are twoincompatibleProponent moves, with
the positionsg, V, F' defined as; = {q}, V = {q,true} and F' = {q, false}. The tensor
productB ® B of two boolean games is then generated by putting side byts&léwo event
structures, in the expected way. The resulting asynchgame looks like a flower with four
petals, one of them described in (3). More generally, everyniila of linear logic defines an
event structure — which generates in turn the asynchronaoee gssociated to the formula. For
instance, the event structure induced by the formula

BeB) —B 5)

contains the following partial order of compatible events:
qar ar

| |
true; false falsepr

(6)

which may be seen alternatively as a (maximal) position énatsynchronous game associated to
the formula.

This game implements the interaction between a booleartifum{Proponent) of type (5)
and its two arguments (Opponent). In a typical play, Oppbms¢grts by playing the moveg
asking the value of the boolean output; Proponent reactskipgwithqy, the value of the left
input, and Opponent answetsuey,; then, Proponent asks witlr the value of the right input,
and Opponent answefalser; at this point only, using the knowledge of its two arguments
Proponent answetalse to the initial question:

q-qr -truer - qr - falsepr - false ©)

Of course, Proponent could have explored its two argumartteei other order, from right to left,
this inducing the play
q-qr - falser-qr - truey - false (8)



The two plays start from the empty positierand reach the same position of the asynchronous
game. They may be seen as different linearizations (in theesef order theory) of the partial or-
der (6) provided by the game. Each of these linearizationshmaaepresented by adding causality
(dotted) edges between moves to the original partial o@eir( the following way:

— ™~

aL qar
| |
truer _truegr

q q
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falser false;

false“ ”false

The play (7) is an element of the strategy representindetthémplementation of thetrict con-
junction, whereas the play (8) is an element of the strategy repiiegdtd right implementation.
Both of these strategies are alternating. Now, there isajsarallel implementation, where the
conjunction asks the value of its two arguments at the same fThe associated strategy is not
alternating anymore: it contains the play (7) and the plgy é8d moreover, all the (possibly
non-alternating) linearizations of the following partiater:

q

T T

qL qr
| | (10)

truer falser

.false“

This illustrates an interesting phenomenon, of a purelycament nature: every playof a con-
current strategy coexists with other plays in the strategy, having the same target position
—and in fact, equivalent modulo homotopy. It is possiblegconstruct from this set of plays a
partial order on the events of, refining the partial order on events provided by the gamés Th
partial order describes entirely the strategynder the position:: more precisely, the set of plays
in o reaching the positiom coincides with the set of the linearizations of the partiale.

Our definition of innocent strategy will ensure the exiseentsuch an underlying “causality
order” for every positionz reached by the strategy. Every innocent strategy will thefind
an event structure, obtained by putting together all theiéed partial orders. The construction
requires refined tools from the theory of asynchronous itianssystems, and in particular the
fundamental, but perhaps too confidential, notiorutfe property

Ingenuous strategies. We introduce in Section 4 the notion mfgenuousstrategy, defined as a
strategy regulated by an underlying “causality order” orvesofor every reached position, and
satisfying a series of suitable diagrammatic propertiege @ifficulty is that ingenuous strategies
do not compose properly. Consider for instance the ingenstrategys of typeB ® B generated
by the partial order:

ar . qr

| | (12)
truey, falsepr

The strategy answertsruey, to the questionyz,, but answergalser to the questioryr only if
the questiory;, has been already asked. Composing the stratagigh theright implementation



of the strict conjunction pictured on the right handsideQ)fitduces a play - qr stopped by a
deadlockat the position{q, qr }. On the other hand, composing the strategy withléffieor the
parallel implementation is fine, and leads to a complete interaction.

This dynamic phenomenon is better understood by introdytei new binary connectives
and© called “before” and “after”, describing sequential comigios in asynchronous games.
The gameA © B is defined as the 2-dimensional restriction of the gatn®@ B to the playss
such that every move played before a moveliis also inA; or equivalently, every move played
after a moveB is also inB. The gameA © B is simply defined as the gani# © A, where the
componentB thus starts.

Now, the ingenuous strategyin B ® B specializes to a strategy in the subgdbe@ B, which
reflects it, in the sense that every playe o is equivalent modulo homotopy to a playe o
in the subgaméB © B. This is not true anymore when one specializes the stratetyy the
subgameB © B, because the play;, - truey, - qr - falser is an element o& which is not
equivalent modulo homotopy to any playc o in the subgamé® © B. For that reason, we
declare that the strategyis innocent in the gamB © B butnotin the gameB ® B.

Innocent strategies. This leads to an interactive criterion which tests dynafhjioahether an
ingenuous strategy is innocentfor a given formula of linear logic. The criterion is based on
scheduling conditionsvhich recast, in the framework of non-alternating games sthitching
conditionsformulated by Abramsky and Jagadeesan for alternating gd#je The idea is to
switchevery tensor producd of the formula as® or © and to test whether every playin the
strategyo is equivalent modulo homotopy to a playe o in the induced subgame. Every such
switching reflects a choice of scheduling by the countextsgy: an innocent strategy is thus a
strategy flexible enough to adapt éweryscheduling of the tensor products by Opponent. An
ingenuous strategy satisfies the scheduling criteriondfanly if the underlying proof-structure
satisfies a directed (and more liberal) variant of the acigglcriterion introduced by Girard [13]
and reformulated by Danos and Regnier [10]. A refinementdasehe notion of synchronized
clusters of moves enables then to strengthen the scheduitegon, and to make it coincide with
the usual non-directed acyclicity criterion.

We will establish in Section 4 that every ingenuous strategy be seen alternatively as a
closure operator, whose fixpoints are precisely ih#ing positionsof the strategy. This con-
nects (non alternating) asynchronous games to concureeneg However, there is a subtle
mismatch between the interaction of two ingenuous strasegéen as sets of plays, and seen
as sets of positions. Typically, the right implementatidrthe strict conjunction in (9) com-
posed to the strategy in (11) induces two different fixpoints in the concurrent gamodel:
the deadlock positiodq, qr} reached during the asynchronous interaction, and the atenpl
position{q, ar, truer, qr, truer, false} which is never reached interactively. The innocence
assumption is precisely what ensures that this will neveuonche fixpoint computed in the
concurrent game model is unique, and coincides with theipogiventually reached in the asyn-
chronous game model. In particular, innocent strategiegose properly.

Plan of the paper. We did our best to give in this introduction an informal butadled overview

of this demanding work, which combines together ideas fremeral fields: game semantics,
concurrency theory, linear logic, etc. We focus now on theceptual properties of innocent
strategies, expressed in the diagrammatic language oflasymous transition systems. The cube
property is recalled in Section 2. The diagrammatic pragerof positionality are studied in
Section 3. The notion of ingenuous strategy is introduce8ention 4, and reformulated as a
class of well-behaved closure operators in Section 5. Kirthle notion of innocent strategy is
defined in Section 6, by strengthening the notion of ingesbtategy with a scheduling criterion
capturing the essence of the acyclicity criterion of linegic.



2 Thecube property

The cube propertyexpresses a fundamental causality principle in the diagratic language of
asynchronous transition systems [5, 24, 26]. The propertglated to stability in the sense of
Berry [6]. It was first noticed by Nielsen, Plotkin and Winkke[21], then reappeared in [22]
and [14, 18] and was studied thoroughly by Kuske in his PhBithesee [11] for a survey. The
most natural way to express the property is to start from wieatall anasynchronous graph
Recall that agraph G = (V, E, 0o, 1) consists of a st of vertices (orpositiong, a setE of
edges (otransitiong, and two function®),, 91 : E — V called respectively source and target
functions. Anasynchronous grapti’ = (G, ¢) is a graph together with a relation on coinitial
and cofinal transition paths of length 2. Every relationt is represented diagrammatically as a
2-dimensional tile

Y1 Y2 (12)
N
z
wheres = m - p andt = n - ¢. In this diagram, the transition is intuitively the residual
of the transitionm after the transitiomm. One requires the two following properties for every
asynchronous tile:

1. m #nandp # q,
2. the pair of transitiongn, ¢) is uniquely determined by the pair of transitiofts, p), and
conversely.

The main difference with the asynchronous tile (1) occgrimthe asynchronous transition sys-
tems defined in [26, 23] is that the transitions are not |&loelly events: so, the 2-dimensional
structure is purely “geometric” and not deduced from an frashelence relation on events. What
matters is that the 2-dimensional structure enables onefineda homotopy relatiorn on paths

in exactly the same way. Moreover, every homotopy class dcith = m - - - my, coincides
with the set of linearizations of a partial order on its titioas if, and only if, the asynchronous
graph satisfies the followingube property

Cube propertya hexagonal diagram induced by two coinitial and cofinal pathn.-o :

x —» yandp-q-r : x —» yisfilled by 2-dimensional tiles as pictured in the lefthand
side of the diagram below, if and only it is filled by 2-dimemsal tiles as pictured in
the righthand side of the diagram:

x—p>x2 x—p>x2
m m
e s o~z
Z1 ~ q Ty —> Y3 q
~ — ~
n r3 — Y1 n ~ Y1
Lo~ g e
sz>y sz>y

The cube property is for instance satisfied by every asymcu® transition system and every
transition system with independence in the sense of [26,T#8 correspondence between ho-
motopy classes and sets of linearizations of a partial adapts, in our setting, a standard result
on pomsets and asynchronous transition systems with dgnantépendence due to Bracho,
Droste and Kuske [7].



Every asynchronous gragh equipped with a distinguished initial position (notgdnduces
an asynchronous graft¥] whose positions are the homotopy classes of paths starongthe
position«, and whose edges : [s] — [t] between the homotopy classes of the paths —»

x andt : x —» y are the edges: : + — y such that-m ~ t. When the original asynchronous
graphG satisfies the cube property, the resulting asynchronoyhdid is “contractible” in the
sense that every two coinitial and cofinal paths are equival®dulo homotopy.

So, we will suppose from now on that all our asynchronouslggaatisfy the cube property
and are therefore contractible. The resulting frameworleiy similar to the domain of config-
urations of an event structure. Indeed, every contractibigchronous graph defines a partial
order on its set of positions, defined by reachability< y whenxz —» y. Moreover, this
order specializes to a finite distributive lattice underrgygositionz, rephrasing — by Birkhoff
representation theorem — the fact already mentioned thatdamotopy class of a path— «
coincides with the linearizations of a partial order oniigasitions. Finally, every transition may
be labelled by an “event” representing the transition moduizig-zag” relation, identifying the
movesm andgq in every asynchronous tile (12). The idea of “zig-zag” ikfote: it appears for
instance in [23] in order to translate a transition systetiwidependence into a labelled event
structure.

3 Positionality in asynchronous games

Before considering 2-Player games, we express the notienpafsitional strategy in 1-Player
games. A 1-Player game, x) is simply defined as an asynchronous graptogether with a
distinguished initial positior. A play is defined as a path starting fremand a strategy is defined
as a set of plays of the 1-Player game, closed under prefixategyo is calledpositionalwhen
for every three paths, ¢t : * —» z andu : x —» y, we have

scru€oc and s~t and t€ o implies t-u € o. (13)

This adapts the definition of (4) to a non-polarized setting axtends to the non-alternating
setting. Note that a positional strategy is the same thirgsatograph of the 1-Player game, where
every position is reachable frominside the subgraph. This subgraph inherits a 2-dimenkiona
structure from the underlying 1-Player game; it thus defareasynchronous graph, denoteg.

The advantage of considering asynchronous graphs insteagent structures appears at
this point: the “event” associated to a transition is dedutem the 2-dimensional geometry of
the graph. So, the “event” associated to a transitiom the graphG, describes the “causality
cascade” leading the strategy to play the transition whereas the “event” associated to the
same transitiom: in the 1-Player gamé&' is simply the move of the game. This subtle difference
is precisely what underlies the distinction between thenfda (5) and the various strategies (9)
and (10). For instance, there are three “events” assodiated output movéalse in the parallel
implementation of the strict conjunction, each one comesing to a particular pair of inputs
(true,false), (false,false), and (false, true). This phenomenon is an avatar of Berry
stability, already noticed in [19].

From now on, we only consider positional strategies satigfjwo additional properties:

1. forward compatibility preservation: every asynchrantle of the shape (12) in the 1-Player
gameG belongs to the subgrapf, of the strategys when its two coinitial transitions
m:x — y1 andn : © — yo are transitions in the subgragh, . Diagrammatically,

x T
oom neo oom neo
V2N o 2N
yioo~ Y2 implies Yyr o~ Y2
p . £q 0'917\ 5 /qecr



where the dotted edges indicate edge&’in

2. backward compatibility preservation: dually, every radyronous tile of the shape (12) in
the 1-Player gamé& belongs to the subgrapfi, of the strategys when its two cofinal
transitionsp : y1 — z andgq : y» — z are transitions in the subgragh,.

These two properties ensure that the asynchronous grapb contractible and satisfies the cube
property. Contractibility means that every two cofinal glayt : « —» « of the strategy
are equivalent modulo homotojysidethe asynchronous graph, — that is, every intermediate
play in the homotopy relation is an elementcofMoreover, there is a simple reformulation as a
set of plays of a positional strategy satisfying the two erestion properties: it is (essentially)
a set of plays satisfying (1) a suitable cube property andh@)s - m € o ands-n € o
impliess-m -p € o ands - n - ¢ € o whenm andn are the coinitial moves of a tile (12).
This characterization enables us to regard a positionalesty either as a set of plays, or as an
asynchronous subgraph of the game.

4 Ingenuous strategies in asynchronous games

A 2-Player gam€G, *, A) is defined as an asynchronous graph= (V, E, ¢) together with a

distinguished initial positior, and a functiom\ : E — {—1, +1} which associates jgolarity to

every transition (or move) of the graph. Moreover, the eitjgal\(m) = A(¢) andA(n) = A\(p)

are required to hold in every asynchronous tile (12) of tlymelsronous graph’. The convention

is that a moven is played byProponentwhen\(m) = 41 and byOpponenwhenA(m) = —1.
A strategyo is calledingenuousvhen it satisfies the following properties:

1. itis positional and satisfies the backward and forward compatibility pred®n properties
of Section 3,

2. itisdeterministicin the following concurrent sense: every pair of coiniti@vesm : © —
y1 andn : x — y- in the strategy where the moven is played by Proponent, induces an
asynchronous tile (12) in the strategyDiagrammatically,

o x o oom z neo
NS o ¥ O\
Y1 Y2 implies oo~ Y2

UBP\ qeoT

z

3. it is courteous in the following sense: every asynchronous tile (12) whbestwo moves
m :x — y andp : y1 — z are in the strategy, and wheren is a Proponent move, is
an asynchronous tile in the strategyDiagrammatically,

oarr}/ x An . . oam/ z \nEU
Yoo~ Y2 implies Yyr o~ Y2
USP\Z/’...Q 091’\Z/QEU

wheni(m) = +1.

Note that, for simplicity, we express this series of comtlisi on strategies seen as asynchronous
subgraphs. However, the conditions may be reformulatedsinagghtforward fashion on strate-
gies defined as sets of plays. The forward and backward cdriippaipreservation properties of
Section 3 ensure that the set of plays of the strategyaching the same positianis regulated
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by a “causality order” on the moves occurring in these playghich refines the “justification
order” on moves (in the sense of pointer games) provided dyaslynchronous game.

Our concurrent notion of determinism is not exactly the sasm¢he usual notion of deter-
minism in sequential games: in particular, a strategy may peveral Proponent moves from a
given position, as long as it converges later. Courtesyresdhat a strategy which accepts an
Opponent move after playing an independent Proponent mowg is ready to delay its own
action, and to accept the mougbeforeplaying the moven. Together with the receptivity prop-
erty introduced in Section 6, this ensures that the “catysafider” on moves induced by such
a strategy refines the underlying “justification order” o fjame, by adding only order depen-
denciesm =< n wherem is an Opponent move andis a Proponent move. This adapts to the
non-alternating setting the fact that, in alternating gantiee causality ordes < ¢ provided by
the view of an innocent strategy coincides with the justifwaorder wherp is Proponent ang
is Opponent.

The experienced reader will notice that an ingenuous (ahdewessarily receptive) strategy
may add order dependencies< n between two Opponent movesandn. In the next Section,
we will see that this reflects an unexpected property of coratistrategies expressed as closure
operators.

5 Ingenuous strategiesin concurrent games

In this section, we reformulate ingenuous strategies imaspnous games as strategies in con-
current games. The assumption that our 2-Player gamesaredobn contractible asynchronous
graphs induces a partial order on the set of positions, dkfayereachability:z < y when

x — 3. The concurrent game associated to an asynchronous Gais@efined as the ideal
completion of the partial order of positions reachable (iim&e number of steps) from the roet
So, the positions in the concurrent game are eitinite when they are reachable from the root,
or infinite when they are defined as an infinite directed subset of finiséipns. The complete
lattice D is then obtained by adding a top elem@nto the ideal completion. Considering infinite
as well as finite positions introduces technicalities thatmust confront in order to cope with
infinite interactions, and to establish the functorialitgjperty at the end of Section 6.

Now, we will reformulate ingenuous strategies in the asyoebus game&= ascontinuous
closure operators on the complete lattide By continuous, we mean that the closure operator
preserves joins of directed subsets. Every closure oparabm a complete latticd induces a
set of fixpoints:

fix(e) = {2z€D | o)==z} (14)

closed under arbitrary meets. Moreover, when the closueeatqro is continuous, the séix (o)
is closed under joins of directed subsets. ConverselyyeudrsetX of the complete latticd)
closed under arbitrary meets defines a closure operator

0:x»—>/\{y€X|x§y} (15)

which is continuous when the subsgtis closed under joins of directed subsets. Moreover, the
two translations (14) and (15) are inverse operations.

Now, every ingenuous strategydefines a sdialting(o) of halting positionsWe say that a
finite positionz is halting when (1) the position is reached by the strateggnd (2) there is no
Proponent moven : + — y in the strategyr. The definition of a halting position can be ex-
tended to infinite positions by ideal completion: infinitesfimns are thus defined as downward-
closed directed subsetsof finite positions. We do not provide the details here foklatspace.
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It can be shown that the set of halting positions of an ingesigirategy is closed under ar-
bitrary meets, and under joins of directed subsets. It tlefinels a continuous closure operator,
noteds®, defined by (15). The closure operatdt satisfies a series of additional properties:

1. The domairdom(c°) is closed under (arbitrary) compatible joins,
2. For every pair of positions, y € dom(c°) such thatr < y, eithero®(z) = ¢°(y) or there
exists an Opponent move : ¢°(z) — z such that: <p ¢°(z) ando®(z) < o°(y).

Here, thedomaindom(o°) of the closure operatar® is defined as the set of positiomse D
such thaw°(z) # T; and the Proponent reachability ordép refines the reachability ordet
by declaring that: <p y means, for two finite positions andy, that there exists a path— y
containing only Proponent moves; and then, by extendingléfimition of <p to all positions
(either finite or infinite) inD by ideal completion.

Conversely, every continuous closure operatarich satisfies the two additional properties
mentioned above induces an ingenuous strate@y the following way. Thedynamic domain
of the closure operator is defined as the set of positiomse dom(7) such thatr <p 7(x).
So, a positionz is in the dynamic domain of when the closure operator increases it in the
proper way, that is, without using any Opponent move. Therimgus strategy induced by
the closure operator is then defined as the set of plays whose intermediate pasitice all
in the dynamic domain of. This defines an inverse to the operation— o° from ingenuous
strategies to continuous closure operators satisfyingditional properties 1. and 2. This pair
of constructions thus provides a one-to-one correspordeeiveen the ingenuous strategies and
continuous closure operators satisfying the additionaperties 1. and 2.

6 Innocent strategies

Despite the one-to-one correspondence between ingentratsgges and concurrent strategies
described in Section 5, there is a subtle mismatch betwesetwith notions — which fortunately
disappears when ingenuity is refined into innocence. Ontleehand, it is possible to construct
a categonyg of asynchronous games and ingenuous strategies, wherestitiop is defined by
“parallel composition+hiding” on strategies seen as skdays. On the other hand, it is possible
to construct a categorg of concurrent games and concurrent strategies, defined,invf@re
composition coincides with relational composition on teésof fixpoints of closure operators.
Unfortunately — and here comes the mismatch — the translgtie~ C described in Section 5
is not functorial, in the sense that it does not preserve ositipn of strategies. This is nicely
illustrated by the example of the ingenuous strategy (11Jseftomposition with the right imple-
mentation of the strict conjunction (9) induces a deadldt@re conceptually, this phenomenon
comes from the fact that the categ@iys compact closed: the tensor produgcts identified with
its dualT".

This motivates a strengthening ingenuous strategiesdmhaduling criteriorwhich distin-
guishes the tensor product from its dual, and plays the moléhe non-alternating setting, of
the switching conditionsntroduced by Abramsky and Jagadeesan for alternating g§2herhe
criterion is sufficient to ensure that strategies do not ke&dduring composition. In order to
explain it here, we limit ourselves, for simplicity, to foutas of multiplicative linear logic (thus
constructed using andT" and their unitsl and 1) extended with the two lifting modalities
and |. The tensor product, as well as its dual, are interpretechbyekpected “asynchronous
product” of asynchronous graphs: in particular, every playf A ® B may be seen as a pair
of plays(sa, ss) of A and B modulo homotopy. The two connectivesandI’ are then dis-
tinguished by attaching a label or I' to every asynchronous tile (12) appearing in the game.
Typically, an asynchronous tile (12) between a maven A and a moven in B is labelled
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by ® in the asynchronous gamé ® B and labelled by" in the asynchronous gaméT" B.
The lifting modality T (resp.]) is then interpreted as the operation of “lifting” a gamehnéin
initial Opponent (resp. Proponent) move. Note that theaedse-to-one relationship between the
lifting modalities T and | appearing in the formula, and the moves of the asynchronaoe ¢
which denotes the formula. A nice aspect of our asynchroagppsoach is that we are able to
formulate our scheduling criterion in two alternative bgtizalent ways, each of them capturing
a particular point of view on the correctness of proofs aratsgies:

1. a scheduling criterion based on a switching as “befor& or “after” © of every tensor
product® in the underlying formula of linear logic. As explained iretmtroduction, the
scheduling criterion requires that every patim the strategy is equivalent modulo homo-
topy to a patht in the strategyr which respects the scheduling indicated by the switching.
This is captured diagrammatically by orienting evepytile as© or © according to the
switching, and by requiring that every playe o normalizesto a 2-dimensional normal
formt € o w.r.t. these semi-commutations [8] or standardizatiastjlL8].

2. adirected acyclicity criterion which reformulates the previous scheduling criterion glon
the lines of Girard’s long trip criterion [13] and Danos-Rég’s acyclicity criterion [10].
Every positionz reached by an ingenuous strateginduces a partial ordex on the moves
appearing in the position. Every relationm = n of the partial order induces jamp
between the lifting modalities associated to the maxemndn in the formula. The acyclicity
criterion then requires that every switching of fheonnectives as “Left” or “Right” (that
is, in the sense of Girard) induces a graph withdirectedcycles.

The scheduling criterion ensures that the operation- ¢° defines dax functor, in the sense
that every fixpoint o°; 7° is also a fixpoint of o; 7)°. Now, an ingenuous strategyis called
asynchronousvhen it additionally satisfies the followingceptivityproperty: for every play :

x —» x and for every moven : t — y,

se€o and A(m)= -1 Iimplies s-m€o.

The categoryA is then defined as follows: its objects are the asynchronaoseg equipped with
®-tiles andT'-tiles, and its morphismsl — B are the asynchronous strategiesAdf— B,
defined asA* I" B, satisfying the scheduling criterion — whe#g is the asynchronous gane
with Opponent and Proponent interchanged. The scheduliterion ensures that the opera-
tion o — o° defines a strong monoidal functgt — C from the categoryA to the category’

of concurrent games and concurrent strategies — thus émtetiee programme of [4, 20] in the
non-alternating setting.

The notion of asynchronous strategy is too liberal to captoe notion of innocent strategy, at
least because there exist asynchronous strategies wiiciotdefinable as the interpretation of a
proof of MLL extended with lifting modalitie$ and|. The reason is that the scheduling criterion
tests only fodirectedcycles, instead of the usual non-directed cycles. On ther didnd, it should
be noted that the directed acyclicity criterion coincidathwhe usual non-directed acyclicity
criterion in the situation treated in [2] — that is, when tleenfiula is purely multiplicative (i.e.
contains no lifting modality), every variablé and X is interpreted as a game with a Proponent
and an Opponent move, and every axiom link is interpreted‘bslaectional” copycat strategy.
The full completeness result in [3] uses a similar directegthcity criterion for MALL. Hence,
directed acyclicity is a fundamental, but somewhat hiddencept of game semantics.

On the other hand, we would like to mirror the usual non-de@dacyclicity criterion in our
asynchronous and interactive framework. This leads us athan stronger scheduling criterion
based on the idea that in every pkaglayed by an asynchronous strategyan Opponent move:
and a Proponent moveappearing in the play, and directly related by the causatitierm < n
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induced bys can be played synchronously. We write= n in that case, and say that two moves
are synchronized im when they lie in the same equivalence class generated b cluster of
movest in the plays = m; ---my is then defined as a path= m; - - - m;4; such that all
the moves appearing ihare synchronized. Every playin the strategy can be reorganized
as a sequence of maximal clusters, using a standardisatchanism [18, 19]. The resulting
clustered play is unique, modulo permutation of clustessed~o p. This relation generalizes
to the non-alternating case the relation p introduced in [20]. This leads to

3. aclustered scheduling criterion based, just as previously, on a switching as “befaedr
“after” © of every tensor producb in the underlying formula of linear logic. The difference
is that we ask that every clustered pkain the strategyr may be reorganized modutoo p
as a clustered play which respects the scheduling indidatéide switching.

An asynchronous strategy is called innocent when it sagisfies stricter scheduling criterion.
Although this tentative definition of innocence is fine cauterlly, we believe that it has to be
supported by further proof-theoretic investigations. Areresting aspect of our scheduling crite-
ria is that they may be formulated in a purely diagrammatit 2swlimensional way: in particular,
the switching conditions are expressed here using the iyimfgtogic MLL with lifting modali-
ties1 and| for clarity only, and may be easily reformulated diagranioly.

7 Conclusion

Extending the framework of asynchronous games to nonraitielg strategies requires an explo-
ration of the fine-grained structure of causality, usingssieal concepts of concurrency theory
like the cube property. Interestingly, it appears that enfg good causality properties on strate-
gies is not sufficient to combine game semantics and conmyriheory in a harmonious way.
Indeed, we uncover a subtle and unexpected mismatch betwegposition performed in asyn-
chronous games and composition performed in concurrenegaiine mismatch is resolved by
strengthening the purely causal notionimjenuous strateginto the more contextual notion of
innocent strategyy imposing ascheduling criteriorwhich reformulates in a purely interactive
and diagrammatic fashion the usual acyclicity criteriotiméar logic. The criterion is sufficient
to ensure the existence of a strong monoidal functor froncébegory of asynchronous games to
the category of concurrent games.

In the near future, we plan to investigate the relationsleippveen asynchronous games and
L-nets. The scheduling criterion should help, since L-iagtsthemselves based on an acyclicity
criterion [9]. We also plan to investigate the relationdgtween asynchronous games and the re-
cent work by Varacca and Yoshida on confusion-free eveatsitres and the-calculus [25]. Our
point of view that every strategy is an asynchronous gragh, embedded in its asynchronous
gamed is certainly a propitious starting point, since it enablesualy of the formal properties of
these embeddings, in the spirit of Nielsen and Winskel [@#lich precisely underlies the con-
struction in [25]. These connections would support oumgléiat asynchronous games provide
indeed a valuable foundation for concurrency in game sdosant
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