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Third–order cumulants basedmethods for continuous–time

errors–in–variablesmodel identification
⋆

Stéphane Thil a, Hugues Garnier a, Marion Gilson a

aCentre de Recherche en Automatique de Nancy – Nancy-Université, CNRS,
Faculté des Sciences et Techniques, BP 239 – 54506 Vandœuvre-lès-Nancy Cedex – France.

Abstract

In this paper, the problem of identifying stochastic linear continuous-time systems from noisy input/output data is addressed.
The input of the system is assumed to have a skewed probability density function, whereas the noises contaminating the data
are assumed to be symmetrically distributed. The third-order cumulants of the input/output data are then (asymptotically)
insensitive to the noises, that can be colored and/or mutually correlated. Using this noise-cancellation property two computa-
tionally simple estimators are proposed. The usefulness of the proposed algorithms is assessed through a numerical simulation.
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1 Introduction

System identification is an established field in the area
of system analysis and control. It aims at determining
mathematical models for dynamical systems based on
observed inputs and outputs. Many different solutions
have been presented for system identification of linear
dynamic systems from noise-corrupted output measure-
ments (Söderström and Stoica 1989, Ljung 1999). When
the input is also affected by noise, the problem becomes
more difficult and two cases arise: closed-loop system
identification and ‘errors-in-variables’ system identifica-
tion.
The main difficulty in the former case is due to the corre-
lation between the disturbances and the control signal,
induced by the loop. Several alternatives are available
to cope with this problem (Söderström and Stoica 1989,
Ljung 1999). Some particular versions of these methods
have been developed more recently in the area of control-
relevant identification as e.g. the two-stage, the coprime
factor, the dual-Youla, the tailor-made instrumental-
variable methods. An overview of these recent devel-
opments can be found in (Gevers 1993, Forssell and
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Ljung 1999, Van den Hof 1998, Gilson and Van den
Hof 2005).
Models where uncertainties or measurement noises are
present on both input and output observations but not
necessarily linked by a feedback loop are usually called
‘errors-in-variables’ (EIV) models. This type of mod-
els plays an important role when the identification pur-
pose is the determination of the inner laws that describe
the process, rather than the prediction of its future be-
havior. Numerous scientific disciplines use such errors-
in-variables models, including time series modeling, ar-
ray signal processing for direction-of-arrival estimation,
blind channel equalization, multivariate calibration in
analytical chemistry, image processing, or environmen-
tal modeling (Van Huffel 1997, Van Huffel 2002).
Many methods have been proposed to solve the EIV
problem for discrete-time models, see (Söderström 2006)
for an overview. Nonetheless, in many areas of science
and engineering, the identified dynamic models should
be physically meaningful. As a result, there is a need
for modeling approaches that are able to yield directly
from the sampled data efficiently parameterized (parsi-
monious) continuous-time models that have clear phys-
ical interpretations. Although dynamical systems in the
physical world are native to continuous-time (CT) do-
main, the attention in the system identification com-
munity was almost completely focused on the discrete-
time model identification techniques until recently. The
last few years has indeed witnessed considerable devel-
opment in CT approaches to system identification from
sampled data (see e.g. Garnier et al. (2003), Larsson et
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al. (2006), Rao and Unbehauen (2006)). A software pack-
age, the Contsid toolbox for Matlab, including the ma-
jority of the time-domain methods proposed over the last
thirty years, is now available (Garnier et al. 2006, Gar-
nier et al. 2007).
Continuous-time model identification in an EIV frame-
work is a relatively unexplored area. The first at-
tempts have been very recently proposed (Mahata and
Garnier 2006, Söderström et al. 2006), assuming the
noises contaminating the data to be white. The white-
ness of the noises allows not only to simplify the algo-
rithms, but to rule out identifiability problems as well.
Indeed, without any further assumptions on the sig-
nal and noise models, it is well-known that the general
EIV model is not uniquely identifiable from second or-
der statistics (Anderson and Deistler 1984, Agüero and
Goodwin 2006). EIV systems suffer from this lack of
identifiability, and it is thus of interest to study alter-
native approaches based on higher-order statistics. Sev-
eral identification methods using higher-order statistics
have been proposed for discrete-time EIV models (see
e.g. Friedlander and Porat (1990), Tugnait (1992), De-
lopoulos and Giannakis (1994), Tugnait and Ye (1995)).
However, to the authors’ best knowledge, CT EIV sys-
tem identification using higher-order statistics is an un-
broken field.
This paper presents a third-order cumulant based
method for CT system identification in an EIV frame-
work, inspired by the work on discrete-time system iden-
tification of Anderson and Giannakis (1996). Two simple
estimators are proposed. They can be applied in vari-
ous noise situations, including the case of colored and/or
correlated noises on input and output of the system.
The cornerstones of the proposed solution are the use of
third-order cumulants and state-variable filtering.
The paper is organized in the following way. The iden-
tification problem is formulated in Section 2. The main
definitions and properties of higher-order statistics used
in the proposed approach are then recalled in Sec-
tion 3. Two higher-order statistics-based algorithms for
continuous-time EIV models are presented in Section 4.
A numerical study is presented in Section 5 before con-
cluding in Section 6.

2 Problem statement

CT system

✐+ ✐+

✲ ✲

❅❅

❄✲ ✲

❅❅

❄ ✲✲

u0(t)

ũ(tk)

y0(t)

u(tk) ỹ(tk) y(tk)

Fig. 1. CT system with noisy input/output data

Consider a CT linear time-invariant system represented
in Figure 1. The noise-free input and output signals are
related by

y0(t) = G0(p)u0(t) =
B0(p)

A0(p)
u0(t) (1)

where p is the differential operator and G0(p) is the
transfer function of the true system. We assume that
u0(t) and y0(t) are sampled at time-instants {tk}

N
k=1,

not necessarily uniformly spaced. The sampled signals
are both contaminated by discrete-time noise sequences,
denoted as ũ(tk) and ỹ(tk) respectively. The measured
input and output signals are therefore given by

u(tk) = u0(tk) + ũ(tk) (2)

y(tk) = y0(tk) + ỹ(tk) (3)

The data-generating CT system is thus characterized by

S :






y0(t) = G0(p)u0(t) = B0(p)
A0(p)u0(t)

u(tk) = u0(tk) + ũ(tk)

y(tk) = y0(tk) + ỹ(tk)

(4)

It is then parameterized as follows

G :






G(p, θ) = B(p, θ)/A(p, θ)

A(p, θ) = a0+a1p + ... + ana−1p
na−1+pna

B(p, θ) = b0+b1p + ... + bnb
pnb

(5)

with θT = [a0 . . . ana−1 b0 . . . bnb
] and na > nb.

In addition to the aforesaid conditions, we assume that

A1. A0(s) 6= 0 for ℜ(s) > 0 and A0(s), B0(s) are coprime
(s is the Laplace variable);

A2. the polynomial degrees na and nb are a priori known;
A3. the noise-free signal u0(tk) is a zero-mean stationary

stochastic process such that its third-order cumulants
are non-zero. Its probability density function (pdf)
cannot therefore be symmetric;

A4. ũ(tk) and ỹ(tk) are stationary, zero-mean random
variables which have a symmetric probability density
function, and are independent of u0(tk) and y0(tk).

Remark 1

Assumption A1 aggregates the traditional assumptions of
stability and observability of the system. We also suppose
that the system (1) has been in operation for a time long
enough so that the output y0 is third-order wide-sense
stationary, i.e. its moments of order up to three are in-
variant to any time shift.
Assumption A2 means that only the system belongs to the
model class, a situation denoted as G0 ∈ G (Ljung 1999).
Assumptions A3 and A4 are linked to properties of
higher-order statistics, and will be justified in the sequel.
Note that, except A4, there is no other assumption on the
noises. They can thus be white or colored, and mutually
correlated or not.
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The identification problem can then be formulated as
follows: given N samples of noisy input/output data

{u(tk), y(tk)}
N
k=1, directly estimate the continuous-time

parameter vector θ.

3 Definition and properties of third-order cu-
mulants

The identification technique developed in this paper is
based on higher-order statistics (HOS) (Brillinger 1981,
Mendel 1991, Lacoume et al. 1997). The main defini-
tions and properties used in the proposed approach are
recalled in this section.
The third-order cumulant of a real-valued, zero-mean
stationary random process x(tk) is defined as

Cxxx(τ1, τ2) = Cum [x(tk), x(tk + τ1), x(tk + τ2)] (6)

= E[x(tk)x(tk + τ1)x(tk + τ2)] (7)

The cumulants of order higher than two have many prop-
erties amongst which we only recall those used in the
proposed estimation scheme.

Let x = [x(t1), . . . , x(tn)]
T

and y = [y(t1), . . . , y(tn)]
T

be two random vectors.

P1. Multilinearity: the cumulants are linear with respect
to each of their arguments. If αi, βj , γk are scalars

Cum




∑

i

αix(ti),
∑

j

βjx(tj),
∑

k

γkx(tk)





=
∑

i,j,k

αiβjγkCum [x(ti), x(tj), x(tk)]

P2. Additivity: if x and y are independent, the cumulant
of their sum equals the sum of their cumulants

Cum [x(t1)+ y(t1), . . . , x(tn)+ y(tn)]

= Cum [x(t1), . . . , x(tn)] + Cum [y(t1), . . . , y(tn)]

P3. The third-order cumulant of a random variable with a
symmetric pdf (consequently including Gaussian dis-
tributions) is equal to zero.

Now the relevance of assumptions A3 and A4 is pointed
out: if the third-order cumulant of the available input sig-
nal (2) is considered, using properties P2 and P3 yields

Cuuu(τ1, τ2) = Cu0u0u0
(τ1, τ2) + Cũũũ(τ1, τ2) (8)

= Cu0u0u0
(τ1, τ2) (9)

In the same manner this result is obviously true for
the third-order cumulant of any combination of in-
put/output signals. The use of third-order cumulants
therefore allows to get naturally rid of the noise con-
taminating the input/output data, under assumptions
A3-A4.

4 HOS-based methods for continuous-time
models

Proposition 1

The third-order cross-cumulant between the measured in-
put/output signals satisfies

Cuyu(τ1, τ2) =
B(p, θ)

A(p, θ)
Cuuu(τ1, τ2) (10)

where the differential operator p stands for ∂
∂τ1

.

Proof

See Appendix A.

This result is the starting point of the identification
methods: the differential equation of the system is
also satisfied by the third-order cumulants. If the in-
put/ouput signals are contaminated by noises with sym-
metric pdf, then equation (10) only involves noise-free
terms.
In practice, however, the cumulants are estimated from

N samples of input/output data {u(tk), y(tk)}
N
k=1, re-

placing mathematical expectation by sample averages

Ĉx1x2x3(τ1, τ2)

=
1

N − µ

N−µ∑

k=1

x1(tk)x2(tk+ τ1)x3(tk+ τ2) (11)

where µ = max(τ1, τ2) and for generality purposes xi

represents either u or y. Hence, with the available data
we get

Ĉuyu(τ1, τ2) =
B(p, θ)

A(p, θ)
Ĉuuu(τ1, τ2) + ε(τ1, τ2,θ) (12)

ε(τ1, τ2,θ) =
B(p, θ)

A(p, θ)
C̃uuu(τ1, τ2) − C̃uyu(τ1, τ2) (13)

where C̃x1x2x3
= Cx1x2x3

− Ĉx1x2x3
denotes the estima-

tion error of Cx1x2x3 . Since the cumulant estimates (11)
are unbiased and consistent (see e.g. Porat and Fried-
lander (1989)), it holds that

lim
N→∞

ε(τ1, τ2,θ) = 0 w.p. 1 (14)

4.1 Cumulant-based LS approach

Equation (12) can be rewritten as a linear regression

Ĉ(na)
uyu (τ1, τ2) = Φ̂

T
(τ1, τ2)θ+A(p, θ)ε(τ1, τ2,θ) (15)

where
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Ĉ(j)
uyu(τ1, τ2) ,

∂j

∂τ j
1

Ĉuyu(τ1, τ2) (16)

and the regression vector is given by

Φ̂
T
(τ1, τ2) =

[
−Ĉ(0)

uyu(τ1, τ2) . . . −Ĉ(na−1)
uyu (τ1, τ2)

Ĉ(0)
uuu(τ1, τ2) . . . Ĉ(nb)

uuu (τ1, τ2)
]

(17)

Define then the error function

e(τ1, τ2,θ) = Ĉ(na)
uyu (τ1, τ2) − Φ̂

T
(τ1, τ2)θ (18)

= B(p, θ)C̃uuu(τ1,τ2) − A(p, θ)C̃uyu(τ1, τ2) (19)

Minimizing the following cost function with respect to
the parameter vector θ

V (τ2,θ,M) =
1

M

M−1∑

τ1=0

1

2
e2(τ1, τ2,θ) (20)

leads to the tocls estimator (Third-Order Cumulants
based Least Squares algorithm), namely

θ̂tocls(τ2,M) =

[
1

M

M−1∑

τ1=0

Φ̂(τ1, τ2)Φ̂
T
(τ1, τ2)

]−1

[
1

M

M−1∑

τ1=0

Φ̂(τ1, τ2)Ĉ
(na)
uyu (τ1, τ2)

]
(21)

The ‘noise’ in the right-hand side of the error function
(19) is composed of the estimation errors C̃uuu and C̃uyu

filtered by A and B. It is thus not expected to be white,
and the tocls estimator is in turn not expected to be
unbiased, from a finite data set. However, as N tends
towards infinity, the sample averages (11) tend toward
the third-order cumulants with probability one. Since
(10) only involves noise-free terms and is solved in a least
squares sense under the assumption G0 ∈ G we have

lim
N→∞

θ̂tocls(τ2,M) = θ0 w.p.1 (22)

where θ0 is the ‘true’ parameter vector, i.e. the param-
eter vector such that G(p, θ0) = G0(p).
The role of the user parameter M that appears in the
cost function (20) consists in preventing the estimation
of cumulants with large time-lags. We could indeed cal-
culate that cost function with all the available data, i.e.
setting the upper bound of the sum in (20) to N . How-
ever, the cumulants are estimated by sample averages,
and as the time-lags increase these estimates will be cal-
culated with less data, thus becoming less reliable. Note
that it is required that M > na +nb +1 so that the ma-
trix to be inverted in (21) is non-singular.
The influence of M is illustrated with the help of a nu-
merical example in Section 5.

Remark 2

Several choices of cost functions are possible; (20) may
notably be replaced by

V2(θ,M1,M2) =
1

M1M2

M1−1∑

τ1=0

M2−1∑

τ2=0

1

2
e2(τ1, τ2,θ) (23)

leading to the estimator

θ̂V2
(M1,M2)=

[
1

M1M2

M1−1∑

τ1=0

M2−1∑

τ2=0

Φ̂(τ1,τ2)Φ̂
T
(τ1,τ2)

]−1

[
1

M1M2

M1−1∑

τ1=0

M2−1∑

τ2=0

Φ̂(τ1, τ2)Ĉ
(na)
uyu (τ1, τ2)

]
(24)

By definition the third-order cumulants are two-
dimensional, in the sense that they depend on two vari-
ables (here τ1 and τ2). From the available data we can
thus derive a matrix constituted of the third-order cumu-
lants calculated at different points. The second estima-

tor θ̂V2(M1,M2) can then be interpreted as the solution
of the minimization of the error function (19) consider-
ing a M1 ×M2 submatrix of the aforementioned matrix,

while the first estimator θ̂tocls(τ2,M) is obtained consid-
ering only a ‘slice’ of that matrix, i.e. a vector; hence the
dependence on τ2. These slices are useful in applications
of cumulants, as they allow a trade-off between accuracy
and computational load. In numerical simulations, the

second estimator θ̂V2(M1,M2) did not give a significant
improvement, while being more time-consuming.
Lastly, the slice should always be chosen in order to maxi-
mize the number of data points from which the cumulants
are estimated, and in the simulation example to follow
we chose to set τ2 = 0.

4.2 Cumulant-based iterative LS approach

Equations (12)-(13) define an output error given by

ε(τ1, τ2,θ) = Ĉuyu(τ1, τ2) −
B(p, θ)

A(p, θ)
Ĉuuu(τ1, τ2) (25)

=
B(p, θ)

A(p, θ)
C̃uuu(τ1, τ2) − C̃uyu(τ1, τ2) (26)

This error is nonlinear in the parameters. A non-linear
optimization scheme can therefore be used to estimate
the parameter vector. However, to keep the algorithm
simple and tractable, a second approach based on an
iterative LS procedure is proposed. This approach has
been previously suggested for discrete-time model iden-
tification in (Anderson and Giannakis 1996), and is ex-
tended here to continuous-time model identification.
The preceding output error (25) can be rewritten as
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ε(τ1, τ2,θ)

=
1

A(p, θ)

(
A(p, θ)Ĉuyu(τ1, τ2)−B(p, θ)Ĉuuu(τ1, τ2)

)

= A(p, θ)Ĉuyu,f (τ1, τ2) − B(p, θ)Ĉuuu,f (τ1, τ2) (27)

where Ĉuuu,f and Ĉuyu,f denote the cumulants filtered
by 1/A(p, θ). An equation error is thus obtained, linear
in the parameters, which can be estimated by the least
squares method.
Since A(p, θ) is unknown, the idea is to proceed in an
iterative fashion to transform the equation error (27)

into the output error (25). Let bθ
i

be the estimate of θ

at the ith iteration. At each iteration, bθ
i+1

is given by
a least squares estimate, using the cumulants filtered
by 1/A(p, bθ

i

). Insomuch as the parameters converge to a
constant value, we have

A(p, θ̂
i+1

)

A(p, θ̂
i
)

−→ 1 and
B(p, θ̂

i+1
)

A(p, θ̂
i
)

−→
B(p, θ̂

i+1
)

A(p, θ̂
i+1

)

Hence, the equation error (27) tends toward the out-
put error (25). The convergence of this algorithm is very
fast: typically a few iterations are enough (Walter and
Pronzato 1997).
The equation error (27) can be rewritten as a linear re-
gression

ε(τ1, τ2,θ) = Ĉ
(na)
uyu,f (τ1, τ2) − Φ̂

T

f (τ1, τ2)θ (28)

where the regression vector is

Φ̂
T

f (τ1, τ2) =
[
−Ĉ

(0)
uyu,f (τ1,τ2) . . . −Ĉ

(na−1)
uyu,f (τ1,τ2)

Ĉ
(0)
uuu,f (τ1,τ2) . . . Ĉ

(nb)
uuu,f (τ1,τ2)

]
(29)

Minimizing the following criterion at each iteration

Vi(τ2,θ,M) =
1

M

M−1∑

τ1=0

1

2
ε2

i (τ1, τ2,θ) (30)

where εi is given by

εi(τ1, τ2,θ)

= A(p, θ)
Ĉuyu(τ1, τ2)

A(p, θi)
− B(p, θ)

Ĉuuu(τ1, τ2)

A(p, θi)
(31)

leads to the tocils estimator (Third-Order Cumulants
based Iterative Least Squares algorithm)

θ̂tocils(τ2,M) =

[
1

M

M−1∑

τ1=0

Φ̂f (τ1, τ2)Φ̂
T

f (τ1, τ2)

]−1

[
1

M

M−1∑

τ1=0

Φ̂f (τ1, τ2)Ĉ
(na)
uyu,f (τ1, τ2)

]
(32)

Remark 3

This iterative method is greatly inspired by the algorithm
of Steiglitz and McBride (1965). There are however a ma-
jor difference: the Steiglitz-McBride algorithm uses the
iterative LS estimator on measured I/O data rather than
on the cumulants, being therefore applicable under quite
restrictive assumptions (white noise on output) as it is
pointed out in (Stoica and Söderström 1981). The pro-
posed method uses that procedure on the third-order cu-
mulants, and since they are insensitive to symmetrically
distributed noises, the same restrictions do not apply.

5 Handling of the cumulant time-derivatives:
the SVF approach

The time-derivatives of the cumulants are needed to
build up the regression vectors (17), (29). These can be
obtained e.g. by using the traditional state variable fil-
tering (SVF) approach, whose basics are quickly recalled
in the sequel.
The SVF approach allows to reconstruct the time-
derivatives of a signal by passing it into the following
filter bank (Young 1964, Young 1981)

Fn(p) = pn

(
λ

p + λ

)na

, 0 6 n 6 na (33)

where λ is a user parameter accounting for the filter cut-
off frequency. Intuitively, it can be chosen in order to
emphasize the frequency band of interest and generally,
it should be chosen close to, or larger than the bandwidth
of the system to be identified.
The filter bank outputs provide the time-derivatives of
the signal in the bandwidth of interest

x
(n)
f (t) = Fn(p)x(t) = [fn ⋆ x] (t) (34)

where ⋆ stands for the convolution operator and fn(t)
denotes the impulse response of the linear time-invariant
filter Fn(p)

fn(t) = L−1 [Fn(s)] (35)

with L symbolizing the Laplace transform.
The time-derivatives of the cumulants are now computed
using this SVF approach. As a result of their multilinear-
ity property, a formula for cumulant filtering can be de-
rived (Lacoume et al. 1997, Nikias and Petropulu 1993)

C
(n)
xxx,f (τ1, τ2) = Fn(p)Cxxx(τ1, τ2) (36)

=

∫

R

fn(τ)E[x(t)x(t+ τ1− τ)x(t+ τ2)] dτ

= E

[
x(t)

(∫

R

fn(τ)x(t+ τ1− τ)dτ

)
x(t+ τ2)

]

= E
[
x(t)x

(n)
f (t+ τ1)x(t+ τ2)

]
(37)
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We thus obtain

C
(n)
xxx,f (τ1, τ2) = C

xx
(n)

f
x
(τ1, τ2) (38)

Consequently, the use of the SVF approach, that is the
application on both sides of equation (10) of the fil-
ters {Fn(s)}na

n=0, allows to transfer the cumulant time-
derivative estimation problem to an input/output signal
time-derivative estimation problem, which constitutes a
well-known task in continuous-time model identification
(Garnier et al. 2003).
In the tocls algorithm, the basic filter bank (33) is ap-
plied to the input/output signals. Their time-derivatives
in the bandwidth of interest are therefore obtained, from
which the cumulants time-derivatives are computed. In
the tocils algorithm however, the basic filter bank (33)
is applied to the input/output signals only at the ini-
tialization stage (or equivalently: the tocils algorithm is
initialized with the tocls estimate). In the subsequent

iterations, as an estimate bθ
i

tocils(τ2, M) is available, the
following filter bank is used

Fn(p) =
pn

A
(
p, θ̂

i

tocils(τ2,M)
) , 0 6 n 6 na (39)

Note that this filter bank allows to realize both the filter-
ing by 1/A(p, bθ

i

tocils(τ2, M)) and the differentiation in one
step only.
The main steps of both algorithms are given below.

The tocls algorithm

The tocls estimation approach can be summarized by
the following algorithm

(1) Design a bank of na-order SVF filters

Fn(p) = pn

(
λ

p + λ

)na

, 0 6 n 6 na

Generate the time-derivatives u
(n)
f (tk) and y

(n)
f (tk) of

both observed input and output signals as
{

u
(n)
f (tk) = Fn(p)u(tk)

y
(n)
f (tk) = Fn(p)y(tk)

, 0 6 n 6 na

(2) Calculate the third-order cumulants and their time-
derivatives for 0 6 n 6 na

Ĉ
(n)
uuu,f (τ1, τ2)

=
1

N − µ

N−µ∑

k=1

u(tk)u
(n)
f (tk + τ1)u(tk + τ2)

Ĉ
(n)
uyu,f (τ1, τ2)

=
1

N − µ

N−µ∑

k=1

u(tk)y
(n)
f (tk + τ1)u(tk + τ2)

where µ = max(τ1, τ2);

(3) Build up the regression vector as

Φ̂
T

f(τ1, τ2)=
[
−Ĉ

(0)
uyu,f (τ1,τ2) . . . −Ĉ

(na−1)
uyu,f (τ1,τ2)

Ĉ
(0)
uuu,f (τ1,τ2) . . . Ĉ

(nb)
uuu,f (τ1,τ2)

]

Calculate the tocls estimator (21)

θ̂tocls(τ2,M) =

[
1

M

M−1∑

τ1=0

Φ̂f (τ1, τ2)Φ̂
T

f (τ1, τ2)

]−1

[
1

M

M−1∑

τ1=0

Φ̂f (τ1, τ2)Ĉ
(na)
uyu,f (τ1, τ2)

]

The tocils algorithm

Only the major steps of the algorithm are given below.

(1) Initialization stage.

The first estimate θ̂
1

tocils
(τ2,M) is given by the tocls

algorithm

θ̂
1

tocils
(τ2,M)) = θ̂tocls(τ2,M)

(2) (i+1)th step. As an estimate θ̂
i

tocils
(τ2,M) is available,

execute the same steps as in the tocls algorithm with

Fn(p) =
pn

Âi(p, θ̂
i

tocils
(τ2,M))

to get θ̂
i+1

tocils
(τ2,M).

(3) Go back to step 2 above until the difference between
two successive estimates becomes small enough.

Remark 4

The general EIV model is not identifiable from second
order statistics. Approaches based on them thus require
additional assumptions on the noise models and/or the
system to provide consistent parameter estimates. The
algorithms presented above also require an additional as-
sumption, on the noise-free input: it must have a skewed
distribution. The advantage of the proposed methods is
that, without any change, they can handle white or col-
ored noise affecting the system (as long as they are sym-
metrically distributed, which is a natural assumption).
Assuming the noise-free input to have a skewed distri-
bution is certainly restrictive. However, indications on
the ‘applicability’ of the methods can be obtained, such
as the magnitude third-order cumulants calculated from
the noisy data, or the conditioning of the matrix to be
inverted in (21).
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6 Numerical example

This section is divided into three parts, where some as-
pects of the algorithms are studied with the help of
Monte Carlo simulations of nmc = 100 runs.
In the first part, the performance of the proposed al-
gorithms are analyzed and compared to those obtained
with the srivc and ivsvf 1 methods (Young 1970, Young
and Jakeman 1980, Young et al. 2007), both available in
the Contsid toolbox 2 . In the second part, the influence
of the user parameter M on the quality of the estimates
is assessed. In the final part, the influence of the SVF
cut-off frequency on the proposed methods is studied.
In each part, the following system is considered

G0(p) =
p − 1

p2 + 2p + 1
(40)

The noise-free input signal u0 is obtained as the output
of the filter (q stands for the shift operator)

H(q) = 1 − 0.2q−1 + 0.3q−2 (41)

driven by a zero-mean chi-square distributed (with two
degrees of freedom) independent identically distributed
sequence. The noises contaminating the input/output
signals are defined as

ũ(tk) =
(
1 + 2q−1 − q−2

)
e(tk) (42)

ỹ(tk) =
α

1 + 0.8q−1
ũ(tk) (43)

where e(tk) is a zero-mean uniformly distributed white
noise and α is a constant. The variance of e(t) and α are
then adjusted so that the signal-to-noise ratio (SNR) is
equal to 5 dB on both input and output, with

SNR = 10 log10 (Px0/Px̃) (44)

where Px̃ represents the average power of the zero-mean
additive noise while Px0

denotes the average power of
the noise-free signal fluctuations.
The noises are thus colored and mutually correlated.

6.1 Performance analysis

We first focus on the performance of the proposed algo-
rithms and compare them with the performance of ivsvf
and srivc. Although these two methods are not specifi-
cally developed for EIV model identification, they show
a robustness (to some degree) to the input noise. This
phenomenon can be explained by the filtering inherent
to these methods, since applying a linear transformation
to the data has been shown to have a regularization ef-
fect (Moussaoui et al. 2005).

1 The acronyms stand for Simplified Refined Instrumental
Variable for Continuous-time models and Instrumental Vari-
able based State Variable Filter.
2 Available at http://www.uhp-nancy.fr/contsid/.

HOS-based methods are known to require a large num-
ber of data to achieve a good accuracy (Mendel 1991).
To assess the influence of the data length, the algorithms
have been applied for N = 1000 and N = 5000.
Table 1 contains the mean and standard deviation of the
estimates, as well as the normalized root mean square
error, defined as

NRMSE ,

√√√√ 1

nmc

nmc∑

j=1

||θ̂j − θ||2

||θ||2
(45)

where ||.|| is the Euclidian norm and θ̂j is the parame-
ter vector estimate obtained at the jth run of the Monte
Carlo simulation. The other entries of Table 1 are λ, M
and #it, respectively the cut-off frequency of the SVF,
the user parameter of the proposed methods and the
mean of the iteration number.
Table 1 shows as expected that the ivsvf and the srivc
methods give biased estimates. As the number of data
increases, the bias of both methods does not significantly
decrease (and even slightly increases), confirming that
they do not deliver consistent estimates in an EIV con-
text, in contrast to the proposed algorithms. Indeed in
both tocls and tocils the bias is reduced. This reduction
of the bias is made at the expense of a higher variance:
it is well-known that HOS-based estimators deliver a
higher variance than those based on second-order statis-
tics (Delopoulos and Giannakis 1994). This is confirmed
here: although remaining low, the variance is roughly
doubled. When N =1000, the proposed algorithms give
results similar to the srivc method in terms of NRMSE.
However when N =5000 both tocls and tocils give very
good estimates. Finally, when comparing the two pro-
posed algorithms, we see that tocils gives better esti-
mates than tocls in terms of bias (thus indicating that
the error minimized by the tocils method is ‘whiter’ than
the one minimized by the tocls method), but exhibits a
slightly larger variance. The Bode diagrams of the true
and estimated models, plotted in Figure 2, corroborate
this analysis.

λ M N a1 = 2 a0 = 1 b1 = 1 b0 =−1 NRMSE #it

ivsvf 3 −

1000 1.884
±0.100

0.907
±0.088

0.696
±0.024

−0.973
±0.061

14.2% −

5000 1.842
±0.055

0.941
±0.040

0.656
±0.013

−0.971
±0.025

13.8% −

srivc − −

1000 1.807
±0.123

0.973
±0.075

0.773
±0.033

−0.785
±0.065

13.1% 7.1

5000 1.900
±0.072

0.943
±0.034

0.765
±0.018

−0.821
±0.028

11.6% 5.2

tocls 3 50
1000 1.861

±0.191
0.989
±0.124

0.942
±0.055

−0.969
±0.113

10.7% −

5000 1.939
±0.087

0.992
±0.064

0.982
±0.030

−0.987
±0.042

4.8% −

tocils − 50
1000 1.932

±0.219
0.977
±0.139

0.954
±0.068

−0.980
±0.147

11.2% 3.5

5000 1.992
±0.104

0.992
±0.065

0.994
±0.037

−0.999
±0.056

4.9% 2.9

Table 1
Mean and standard deviation of the parameter estimates.
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Fig. 2. Bode diagrams of the true (‘x’) and estimated models
(N = 5000 data points, M = 50).

6.2 Influence of the user parameter M

To study the influence of the user parameter M on the
quality of the estimates, the proposed algorithms have
been applied for different values of M , the number of
available data being N = 5000.
The mean and standard deviation of the parameters es-
timates as a function of M are represented in Fig. 3 for
the tocls method and in Fig. 4 for the tocils method. In
Fig. 5 the normalized root mean square error is plotted
as a function of M . It can be seen that for very small
values of M the estimates are bad, since the cumulants
are then estimated from only a few samples. However,
as M increases they become accurate, resulting in an ac-
curate estimation of the parameter vector. Note that as
M becomes larger a very small bias appears for both the
tocls and tocils methods, the latter seeming more sen-
sitive. The NRMSE plot (Fig. 5) summarizes this phe-
nomenon: it first swiftly decreases, stabilizes, and then
slowly increases for large values of M . The ‘best’ values
of M are dependent on the system and the experimen-
tal conditions in a way that remains to be determined.
However, the two methods are not too sensitive to this
user parameter M , as long as it is not chosen too small.
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(a) Denominator parameters: a1 = 2, a0 = 1
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Fig. 3. tocls algorithm – Mean and standard deviation of the
parameter estimates as a function of the user parameter M .

6.3 Influence of the user parameter λ

In this paragraph the robustness of the algorithms with
respect to the SVF cut-off frequency is studied. The
value of M is set to 50 and the proposed algorithms have
been applied with 0.4 6 λ 6 4.9, the number of avail-
able data being N = 5000. The results of the simulation

8



0 20 40 60 80 100 120
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

M

0 20 40 60 80 100 120
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

M

(a) Denominator parameters: a1 = 2, a0 = 1

!" 2! $! %! &! 1!! 12!
!(%

!()

!(&

!(*

1

1(1

1(2

1(+

1($

,

!" 2! $! %! &! 1!! 12!
!1($

!1(+

!1(2

!1(1

!1

!!(*

!!(&

!!()

!!(%

,

(b) Numerator parameters: b1 = 1, b0 = −1

Fig. 4. tocils algorithm – Mean and standard deviation of the
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Fig. 5. NRMSE as a function of the user parameter M

are given in Table 2.
It can be seen that this parameter affects the perfor-
mance of the tocls method: as may be expected, the
closer the cut-off value of the filter to the one of the sys-
tem, the smaller the NRMSE. As for the tocilsmethod,
since λ is only used for the initialization, it only influ-
ences the number of iterations before convergence. The
closer the initialisation to the true value of the parame-
ters, the quicker the convergence.

7 Conclusion

Continuous-time model identification in an errors-in-
variables framework is a relatively unexplored area, and
this paper presents an attempt to solve this problem.

λ a1 = 2 a0 = 1 b1 = 1 b0 =−1 NRMSE #it

tocls

0.4 2.010
±0.123

0.999
±0.061

1.004
±0.106

−0.989
±0.062

6.5% −

1.3 1.998
±0.098

0.999
±0.056

0.995
±0.033

−0.990
±0.053

4.6% −

2.2 1.976
±0.093

0.998
±0.056

0.989
±0.027

−0.986
±0.050

4.4% −

3.1 1.940
±0.096

1.000
±0.055

0.981
±0.028

−0.978
±0.050

5.0% −

4.0 1.884
±0.102

1.006
±0.055

0.969
±0.031

−0.964
±0.050

6.4% −

4.9 1.806
±0.110

1.019
±0.056

0.951
±0.035

−0.945
±0.052

8.8% −

tocils

0.4

2.002
±0.102

0.999
±0.057

0.997
±0.040

−0.990
±0.055

4.8%

2.7

1.3 2.3

2.2 2.8

3.1 3.0

4.0 3.1

4.9 3.1

Table 2
Results for M = 50 and 0.4 6 λ 6 4.9.

Two new methods to consistently identify a continuous-
time model in an EIV framework have been presented.
They are based on the use of third-order cumulants and
their noise-cancellation property. The system is assumed
to be excited by an input with a skewed distribution and
contaminated by symmetrically distributed noises. As
no other assumption is made on the measurement noises,
they can be colored and even mutually correlated. That
case cannot be handled by the few existing continuous-
time EIV methods, since the general EIV model is not
identifiable (without further assumptions) by methods
based on second order statistics. Numerical simulations
have illustrated the performance of the proposed meth-
ods in the case of colored noises. Future developments
will investigate the use of fourth-order cumulants, that
allow the use of an excitation signal with a non-skewed
distribution.

A Proof of proposition 1

Let g(t) be the impulse response of the system (5).
As a result of their multilinearity property, a for-
mula for cumulant filtering can be derived (Lacoume et
al. 1997, Nikias and Petropulu 1993). Consider the third-
order cross-cumulant between the measured input and
the measured output u(t) and y(t). Then

Cuyu(τ1, τ2) = Cu0y0u0(τ1, τ2) (A.1)

= E[u0(t)y0(t+ τ1)u0(t+ τ2)] (A.2)

= E

[
u0(t)

(∫

R

g(τ)u0(t+ τ1− τ)dτ

)
u0(t+ τ2)

]
(A.3)

=

∫

R

g(τ)E[u0(t)u0(t+ τ1− τ)u0(t+ τ2)] dτ (A.4)

=

∫

R

g(τ)Cu0u0u0(τ1− τ, τ2)dτ (A.5)

= G(p)Cu0u0u0
(τ1, τ2) (A.6)

= G(p)Cuuu(τ1, τ2) (A.7)
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which completes the proof.
Note that since the integration in (A.5) is made with
respect to the first cumulant argument, the operator p
stands for ∂

∂τ1
in the compact notation of (A.6).
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Stoica, P. and T. Söderström (1981). The Steiglitz-McBride
identification algorithm revisited – convergence analysis and
accuracy aspects. IEEE Transactions on Automatic Control

26(3), 712–717.

Tugnait, J.K. (1992). Stochastic system identification with noisy
input using cumulant statistics. IEEE Transactions on

Automatic Control 37(4), 476–485.

Tugnait, J.K. and Y. Ye (1995). Stochastic system identification
with noisy input-output measurements using polyspectra.
IEEE Transactions on Automatic Control 40(4), 670–683.

Van den Hof, P. (1998). Closed-loop issues in system
identification. Annual Reviews in Control 22, 173–186.

Van Huffel, S. (1997). Recent advances in total least squares

techniques and errors-in-variables modeling. Society for
Industrial and Applied Mathematics.

Van Huffel, S. (2002). Total least squares and errors-in-variables

modeling. Kluwer Academic Publishers.

Walter, E. and L. Pronzato (1997). Identification of Parametric

Models from Experimental Data. Springer.

Young, P.C. (1964). In flight dynamic checkout - a discussion.
IEEE Transactions on Aerospace 2, 1106–1111.

Young, P.C. (1970). An instrumental variable method for real-
time identification of a noisy process. Automatica 6(2), 271–
287.

Young, P.C. (1981). Parameter estimation for continuous–time
models - a survey. Automatica 17(1), 23–39.

Young, P.C. and A.J. Jakeman (1980). Refined instrumental
variable methods of time-series analysis: Part III, extensions.
International Journal of Control 31, 741–764.

Young, P.C., H. Garnier and M. Gilson (2007). Identification of

continuous-time models from sampled data. Chap. Refined
instrumental variable for identifying continuous-time hybrid
Box-Jenkins models. H. Garnier and L. Wang ed.. Springer-
Verlag. To appear.

10


