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Low energy scattering amplitudes for two atoms in one- and two-dimensional atomic wave guides
are derived for short range isotropic and resonant interactions in high partial wave channels. Taking
into account the finite width of the resonance which was neglected in previous works is shown to
have important implications for the confinement induced resonances. For spin polarized fermions in
a linear wave guide in the limit of infinitely strong odd-wave scattering length it imposes a strong
constraint on the atomic density for achieving the Fermi Tonks Girardeau gas. For a planar wave
guide, the p- and d-wave scattering resonances are analyzed in terms of the appearance of a low
energy quasi-bound state.

PACS numbers: 03.65.Ge,03.65.Nk,03.75.Ss,05.30.Jp,32.80.Pj,34.10.+x,34.50.-s

Recent experimental progress in degenerate atomic
gases make possible accurate studies of quasi-one (1D)
[1, 2, 3, 4, 5, 6, 7] and quasi-two dimensionnal (2D)
[6, 8, 9] configurations. These systems are interesting
in view of future applications involving coherent manip-
ulation of matter waves [7, 10] and can be used also
for studying generic phenomenona in low dimensions
[1, 9, 10]. One major interest of atomic gases is the pre-
cise knowledge and experimental control of the low en-
ergy interatomic collisions: the effective two-body inter-
action can be tuned with a Feshbach resonance [11] by ap-
plying an external magnetic field and/or with a Confined
Induced Resonance (CIR) by varying the extension of the
trap in the tight transverse direction [10, 12, 13, 14].
These techniques open possibilities for achieving new
types of strongly correlated quantum systems. For ex-
ample, thanks to s-wave collisional properties in quasi-1D
wave guides [12], it has been possible to observe the so-
called Tonks Girardeau (TG) gas [15] where 1D hard-core
bosons can be mapped onto a system of non interacting
fermions [3, 4]. For quasi-1D spin polarized fermions an
analogous regime: the Fermionic Tonks Girardeau (FTG)
gas is subject to intensive studies [16, 17, 18]. In this
case, as a consequence of the Pauli exclusion principle,
atoms interact predominantly in the p-wave channel and
it has been predicted that the strongly interacting 1D po-
larized Fermi gas can be mapped onto a non interacting
Bose gas.

In this letter, it is shown that the finite width of the
high partial waves resonances is an essential feature in
the properties of the corresponding CIR. Consequently,
the resonant fully polarized Fermi gas in quasi-1D trap
can reach the FTG regime only in specific configurations
and is more generally described by a narrow BEC-BCS
crossover. Violation of the fermion-boson mapping theo-
rem [19] opens relevant issues on the quasi-1D resonant
polarized Fermi gas such as the equation of state and
the shift and damping of the collective modes which are
only known at the FTG limit [18]. In quasi-2D atomic
wave guides, the p- and d-wave resonant scattering ampli-
tudes are derived. The effective range parameter which

were neglected in Ref.[20] appears essential for the de-
termination of the resonant collisional energy and of the
resonance width. These results open the possibility of
achieving BEC-BCS crossover in 2D geometries for high
partial waves resonances.

In the following, the true interatomic forces are sup-
posed to be short range and isotropic. Moreover, they are
considered in the neighborhood of a resonance. The 3D
low energy collisional properties of two atoms are then
parametrized in each partial wave (l ≥ 0) by the follow-
ing phase shift δl(q):

q2l+1 cot δl(q) = − 1

wl
− αlq

2 +O(q4), (1)

in Eq.(1) q is the relative momentum of the two colliding
atoms, and the resonant regime in the l-partial wave is
achieved for |wl| ≫ R2l+1, where R is the characteristic
radius of the pairwise potential (in the standard termi-
nology, w0 is the usual scattering length and w1 is the
scattering volume). The effective range parameter αl is
linked to the width of the resonance: a large (small) value
of αlR

2l−1 corresponds to a narrow (relatively broad) res-
onance. In the neighborhood of the resonance and for
l ≥ 1 it has been shown recently that for a finite range
potential [21, 22, 23]:

αlR
2l−1 & (2l− 3)!!(2l − 1)!! . (2)

Consequently, αl|wl| ≫ R2, and −~
2/(2µαlwl) is a low

energy scale in the system which is, for large and positive
values of wl, nothing but the shallow bound state energy
(and the quasi-bound state energy for large and nega-
tive wl). Hence, unlike s-wave broad resonances where
α0 ≡ O(R) can be neglected in the low energy limit, for
l > 0 the parameter αl which depends on the specific
resonance considered, cannot be set arbitrarily to zero.
For example, in experiments the resonant regime can be
achieved by using a Feshbach resonance [11] on the spin
degree of freedom. An external magnetic field B modi-
fies the detuning between an open and a closed channel of
the two-body system, and in the vicinity of the resonance
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in the partial wave l, w−1
l ∝ −(B −B0) (where B ∼ B0)

while the parameter αl is almost constant. In the subse-
quent analysis, the pairwise interaction is modeled by a
zero range interatomic potential (it is assumed that the
smallest characteristic length of the trapping potential is
≫ R). In this approximation, for non vanishing relative
coordinates (r 6= 0), the wave function is solution of the
free Schrödinger equation (this is an exact assumption for
r > R). The interatomic potential is replaced by a source
term of vanishing range ǫ→ 0 and for each partial wave a
contact condition is imposed on the wave function, such
that without external potential the phase shifts obtained
in this approach coincide exactly with the first two terms
in the right hand side of Eq.(1) [21]. In other words, the
effect of interatomic forces for r > R are obtained by
imposing a formal singular behavior of the wave function
in the region r < R. The trapping potentials considered
in this letter are always harmonic, so that the center of
mass and relative coordinates are decoupled each from
the other. For a binary collision in the center of mass
frame at energy E = ~

2q2/µ (µ is the reduced mass), the
wave function |Ψ〉 verifies the Lippman-Schwinger equa-
tion:

|Ψ〉 = |Ψ0〉 +
2π~

2

µ

∑

l≥0

∫

d3k

(2π)3
klδǫ(k) [Rl ·Sl,k]

H0 − E − i0+
|k〉, (3)

where H0 is the free Hamiltonian which includes the ex-
ternal potential, and |Ψ0〉 belongs to the kernel of H0−E.
In Eq.(3), the source term is introduced in the momen-
tum representation: δǫ(k) = exp(−k2ǫ2/4) is the Fourier
transform of a normalized Gaussian weight having a van-
ishing range ǫ [24], Rl and Sl,k are Symmetric Trace Free
(STF) tensors of rank l, and the notation [Rl ·Sl,k] means
a contraction between the two tensors. The tensors Rl

characterize the behavior of the wave function at short
interatomic distance, and the tensors Sl,k are reminis-
cent of a standard multipolar expansion; they are defined

by [21]: S [αβ... ]
l,k = (−1)lkl+1

(

∂kα
∂kβ

. . .
)

k−1/(2l−1)!!,

where {kα} are the Cartesian components of the vector
k (α ∈ {x, y, z}). In the momentum representation, the
contact condition can be written as [26]:

Reg
ǫ→0

∫

d3k

(2π)3
kl〈k|Ψ〉Sl,k = − l!Rl

al(q)(2l + 1)! !
, (4)

where a−1
l (q) = (w−1

l + αlq
2). In Eq.(4), Regǫ→0 means

the regular part of the integral obtained when the formal
range ǫ is set to zero. This way, the source term in Eq.(3)
is itself a functional of |Ψ〉, and a closed equation for Rl is
obtained by combination of Eqs.(3,4). In the next parts,
the scattering problem for p- or d-wave channels is solved
successively in 1D and 2D harmonic wave guides.

Linear atomic wave guide. — Two atoms are confined
in a two-dimensional harmonic trap while they move
freely along the third direction (z). In the center of mass
frame, the non interacting Hamiltonian is:

H0 = − ~
2

2µ
∆r +

1

2
µω2

⊥ρ
2 − ~ω⊥, (5)

where r = z êz + ρ are the relative coordinates. For a
scattering process at energy E = ~

2q2/2µ, the state |Ψ0〉
in Eq.(3) is: 〈k|Ψ0〉 = (2π)δ(kz − q) 〈k2D|φ00〉, where
|φ00〉 is the ground state of the 2D harmonic oscillator
in Eq.(5), and k = k2D + kzêz. Hereafter, the system is
in the monomode regime (E < 2~ω⊥). At large distances

|z| ≫ a⊥ (where a⊥ =
√

~/µω⊥ ≫ R), the wave function
factorizes as 〈r|Ψ〉 ≃ 〈ρ|φ00〉ψ1D(z), and for E > 0:

ψ1D(z) = exp(iqz) + exp(iq|z|)
[

f even + sign(z)fodd

]

.(6)

In this situation, the system which is frozen along the
transverse direction, can be considered as quasi-1D. The
even (odd) scattering amplitude f even (fodd) results from
the asymptotic contributions (z ≫ a⊥) in the different
even (odd) 3D partial waves. Quasi-1D scattering in the
s-wave channel has been thoroughly studied [10, 12] and
in the following we consider quasi-1D scattering of two
spin polarized fermions in the vicinity of a p-wave reso-
nance. Thus, one can restrict the source term in Eq.(3) to
the l = 1 contribution, where S1,k = k/k, and the choice
|Ψ0〉 imposes that R1 = P1D êz. Computation of P1D

from Eq.(4) is much simpler in the domain of negative
energy E < 0 and using Eq.(3) one can show that:

P1D =
−3qφ00(0)

1

a1(q)
+

6√
πa3

⊥

P.f.

∫ ∞

0

du

u3/2

exp(τu)

1 − exp(−u)

. (7)

where τ = E/2~ω⊥ < 0 and P.f. denotes the “partie
finie de Hadamard” of the integral [28]. Interest-
ingly, one recognizes the Riemann-Hurwitz Zeta func-
tion ζH(−1/2,−τ) in the regularized integral of Eq.(7).
Hence, by analytic continuation in the domain τ > 0, one
obtains a simple expression of the scattering amplitude,
and in the low energy limit qa⊥ ≪ 1:

fodd
p = 2iπP1Dφ

∗
00(0) ≃ −iq

(

1

lp
+ iq + q2ξp

)−1

, (8)

with the odd-wave scattering length lp and the effective
range ξp given respectively by:

lp = 6a⊥

[

a3
⊥

w1
− 12 ζ(−1

2
)

]−1

and ξp =
α1a

2
⊥

6
. (9)

Expression of lp in Eq.(9) coincides with the result found
using the K-matrix formulation [14]. Eq.(9) shows also
that the effective range ξp is in general not negligible

for all q ≪ a−1
⊥ and crucially depends on the width of

the Feshbach resonance and of the axial frequency. In-
deed, the inequality ξp ≫ a⊥ is likely to occur as a con-
sequence of Eq.(2) (α1R & 1) and also from the condi-
tion a⊥ ≫ R which is needed from the hypothesis that
scattering processes are studied at collisional energies
≪ ~

2/µR2. The regime ξp ∼ a⊥ can be reached only
for an extreme axial confinement (a⊥ ∼ 10R) and for
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the broadest p-wave resonances with α1R ∼ 1. In ac-
tual experiments, two p-wave resonances are used: the
resonance for 6Li atoms (R ≃ 2.8 nm) at B0 ≃ 215 G
with α1R ≃ 5.5 [29] and the one at B0 ≃ 198.8 G for 40K
atoms (R ≃ 6.8 nm) where α1R ≃ 2.8 [30]. For lp > 0 the
scattering amplitude in Eq.(8) has a pole at q = iκ with

κ = (−1 +
√

1 + 4ξp/lp)/2ξp > 0 giving a shallow bound
state energy at (−~

2κ2/2µ). For large and positive values
of lp ≫ ξp, κ = l−1

p and the bound state has a vanishing
energy (i.e. ≪ ~ω⊥) [31]. The scattering amplitude in
Eq.(8) can be obtained from a 1D effective theory where
the wave function ψ1D in Eq.(6) solves the non inter-
acting Schrödinger equation and satisfies the following
contact condition:

lim
z→0+

(

1

lp
+ ∂z − ξp∂

2
z

)

ψodd
1D (z) = 0, (10)

where ψodd
1D (z) = [ψ1D(z)− ψ1D(−z)]/2 is the projection

of the wave function onto its odd component [32]. This
approach can be generalized for few- and many-body sys-
tems by imposing the contact condition in Eq.(10) for
each pair of interacting particles. Without performing
these calculations which are clearly beyond the scope of
this letter, it is of importance to determine the conditions
such that the fully polarized fermionic gas can reach the
FTG regime or equivalently can be mapped onto non in-
teracting 1D bosons [16]. Eq.(10) implies that this map-
ping is possible only at resonance (|lp| = ∞) and also if
the effective range is negligible. The resonant condition
is easily obtained by using a Feshbach resonance. How-
ever, the momentum distribution of the FTG gas has a
large tail given by a Lorentzian of width 4n, where n is
the 1D atomic density [17], thus ξp can be neglected only
in the following dilute limit:

nξp ≪ 1 . (11)

For N atoms trapped in a strongly anisotropic
trap with a weak harmonic confinement along the
z-direction (atomic frequency ωz ≪ ω⊥ and axial

length az =
√

~/µωz ≫ a⊥), in the FTG regime one
has n ∼ N/az and the condition in Eq.(11) gives
N ≪ 6az/(α1a

2
⊥). For example, considering 40K atoms

with typical atomic frequencies ω⊥ = 2π × 70 kHz and
ωz = 2π × 10 Hz, the FTG regime is obtained for
N ≪ 14, which makes sense only for few-body configu-
rations (one can verify that for 6Li atoms with the same
trap parameters, ξp ∼ az and the mapping to a non inter-
acting Bose system is a poor approximation even for the
two-body ground state). Interestingly, if Eq.(11) is not
satisfied, the scale invariance in the linear wave guide is
broken at low energy, hence the time-dependent many-
body ansatz in Ref.[18] is no more an exact solution.
To conclude this part, excepted specific configurations,
Eq.(11) is in general not verified and the density cor-
rections to the FTG properties are important issues for
understanding the resonant gas. More generally, by vary-
ing lp from large and positive values to large and nega-
tive values, the quasi-1D fully polarized gas experiences

a narrow p-wave BEC-BCS crossover, where the compos-
ite bosons in the dilute BEC phase (lp > 0) are dimers
populating the quasi-1D shallow two-body bound state.

Planar atomic wave guide. — High partial wave super-
fluidity in quasi-2D geometries is interesting for its links
with condensed matter physics like for example high-Tc

superconductivity and the possible applications for quan-
tum computing [35, 36]. These studies motivate a close
investigation of quasi-2D scattering properties. In this
geometry, the two colliding atoms are confined in a pla-
nar harmonic trap along the z-direction and move freely
in the (xy) plane. The free Hamiltonian reads:

H0 = − ~
2

2µ
∆r +

1

2
mω2

zz
2 − ~ωz

2
. (12)

The homogeneous solution corresponding to a scat-
tering process at energy E = ~

2q2/2µ is: 〈k|Ψ0〉 =
(2π)2δ(k2D−q) 〈kz |φ0〉, where |φ0〉 is the ground state of
the 1D harmonic oscillator in Eq.(12). In the monomode
regime (E < ~ωz), the system can be considered as quasi-
2D, and for large interparticle separation (ρ ≫ az), the
wave function factorizes: Ψ(r) = φ0(z)ψ2D(ρ). The 2D
partial scattering amplitudes f [m] = f [−m] can be defined
by the following expansion [37]:

ψ2D(ρ) =
ρ≫az

e(iq.ρ) − i

4

m=∞
∑

m=−∞

f [m]H(1)
m (qρ)e(imθ), (13)

where θ = π/2 + ∠(ρ,q) and H
(1)
m is the Hankel’s func-

tion of order m. Using Eqs.(3,4,13) the scattering
amplitude for two atoms interacting in the s-wave
channel is: f [0] = 4π[az

√
π/a0(q) + J0(τ + i0+)]−1, with

τ = E/2~ωz, J0(τ) = ln(−B/(2πτ)) +
∑∞

n=1 ln(n/(n −
τ))(2n− 1)!!/(2n)!! [38], and B ≃ 0.9049 [39] is obtained
from the integral:

ln

(

Beγ

2π

)

=

∫ ∞

0

du
u−1

√
1 − e−u

− 1

u3/2
− 1

1 + u
, (14)

where γ is the Euler’s constant. In the p-wave chan-
nel, Eq.(2) implies the existence of a small parame-
ter η1 = (α1az)

−1 ≪ 1 which plays a central role in the
quasi-2D scattering properties. As example, if one con-
siders 40K atoms in a trap with ωz = 2π × 70 kHz, for
the resonance at 198.8 G then η1 ≃ 2.8 × 10−2, while
for 6Li atoms at ∼ 215 G one obtains η1 ≃ 2.3 × 10−3.
For q = qêx, the p-wave regular part in Eq.(3) is re-
lated to the 2D p-wave scattering amplitude f [1] by
R1 = −f [1](q)êx/[2πqφ

∗
0(0)]. Using the contact condi-

tion in Eq.(4) where S1,k = k/k gives:

f [1](q) = 6πq2|φ0(0)|2
[

1

a1(q)
+

6J1(τ + i0+)√
πa3

z

]−1

, (15)

where |φ0(0)|2 = 1/(az
√
π). In the low energy limit

|τ | → 0 then J1(τ) = J1(0) + τ ln(−eB/2πτ) + O(τ2),
where J1(0) ≃ −5.4722 × 10−2 [38], and the logarith-
mic term ensures the unitarity condition in Eq.(15). A
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similar calculation can be done for atoms interacting res-
onantly in the 3D d-wave channel. In this case, the
small parameter related to the width of the resonance is
η2 = α−1

2 a−3
z ≪ 1. For q = qêx, the l = 2 regular part is

given by: k2 [R2 ·S2,k] = S2D(2k2
z −k2

2D)+D2D(k2
x −k2

y),
where S2D contributes to the m = 0 2D partial wave
channel and D2D contributes to the |m| = 2 channel (2D-
d-wave). The scattering amplitude in the |m| = 2 channel
is f [2](q) = −2πq2φ∗0(0)D2D, and using Eq.(4):

f [2](q) =
15πq4|φ0(0)|2

2

[

1

a2(q)
+

60J2(τ + i0+)

a5
z

√
π

]−1

,

(16)
where J2(τ) = J2(0) + τJ1(0) +O(τ2) for τ → 0, and
J2(0) ≃ −2.2752× 10−2 [38].

From Eqs.(15,16), several conclusions can be drawn
on the quasi-2D scattering in m = 1 and m = 2 partial
wave channels: i) At small collisional energy (q → 0),
f [m](q) ∝ q2m/(w−1

m − w⋆−1
m ) where w⋆

1 ≃ 5.39 × a3
z and

w⋆
2 ≃ 1.3 × a5

z . Hence, the 2D confinement in-
duces a shift w⋆

m in the generalized scattering length
wm, which grows as the confinement increases. ii)

By modifying the trap frequency and/or the exter-
nal magnetic field it is possible to drive the sys-
tem from a regime with a 2D m-wave quasi-bound
state (w−1

m < w⋆−1
m ) to a regime with a shallow bound

state (0 < wm . w⋆
m), in both cases the (quasi-) bound

state energy is Eb ∼ −~
2(w−1

m − w⋆−1
m )/(2µαm) [40],

thus having an expression similar to the 3D case:
E3D

b ∼ −~
2/(2µwlαl). iii) Resonance in the scattering

cross section σ = |fm|2/4q occurs at a collisional energy
E ∼ Eb, that is only for positive values of Eb: in pres-
ence of a quasi-bound state. The resonance width is given
by ∆E/Eb ∝ ηm(Eb/~ωz)

m−1 ≪ 1 [41]. iv) These scat-
tering properties open the possibility of observing high
partial waves BEC-BCS crossover in quasi-2D fermionic
gases by varying (w−1

m − w⋆−1
m ) from positive to negative

values: in the channel m = 1 for fully polarized gases and
in the channel m = 2 for two spin-components gases.
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