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Chapitre 1

Complexity and approximation results for
bounded-size paths packing problems

1.1. Introduction

This chapter presents some recent works given by the ayfM@N 07a, MON 07b])
about the complexity and the approximation of several meisl on computing col-
lections of (vertex)-disjoint paths of bounded size.

1.1.1. Bounded-size paths packing problems

A Py, partition of the vertex set of a simple graph= (V, E) is a partition ofl/
into g subsetsd/, - - -, V,, each of sizéV;| = k, such that the subgragh[V;] indu-
ced by anyV; contains a Hamiltonian path. In other words, the partition ..., V;)
describes a collection oV |/k vertex disjoint simple paths of length- 1 (or, equiva-
lently, simple paths ok vertices) onG. The decision problem calléd;, partitioning
problem ®;PARTITION in short) consists, given a simple graph = (V, E) on
k x n vertices, in deciding whethe&¥ admits or not such a partition. The analogous
problem where the subgrajg#{V;] induced byV; is isomorphic taP;, (the chordless
path onk vertices) will be denoted bywDUCED P, PARTITION. These two problems
are NP-complete for anyk > 3, and polynomial otherwise, [GAR 79, KIR 78]. In
fact, they both are a particular case of a more general problledpartition into
isomorphic subgraphdGAR 79]. In [KIR 78], Kirkpatrick and Hell give a neces-
sary and sufficient condition for tiéP-completeness of the partition into isomorphic
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subgraphs problem in general grapRs.PARTITION has been widely studied in the
literature, mainly because of its closeness to two famotisnigation problems, na-
mely : the minimumk-path partition problem (denoted by IN-PATHPARTITION)
and the maximun®,, packing problem (denoted by AX P, PACKING).

On the one hand, Mik-PATHPARTITION can be viewed as an optimization ver-
sion of P, PARTITION where the constrainst on the exact length of the paths isaéla
MINk-PATHPARTITION consists in partitioning the vertex set of a graphk= (V, E)
into the smallest number of paths so that each pathahasostk vertices (for ins-
tance, MN2-PATHPARTITION is equivalent to the maximum matching problem).
The optimal value is usually denoted by_,(G) for any k > 2, by p(G) when
no constraint occurs on the length of the paths (in particpl@z) = 1 iff G has a
Hamiltonian path). NN k-PATHPARTITION has been extensively studied in the litera-
ture, [STE 03, STE 00, YAN 97], and has applications in br@atiog problems (see
for example [YAN 97]).

On the other hand, if we relax the exact covering constrtiet) we obtain the op-
timization problems Mx P PACKING and MAX INDUCEDP; PACKING which consist,
given a simple graplir = (V, E), in finding a maximum number of vertex-disjoint
(induced)P. When considering the weighted case (denoted B)x WP, PACKING
and MaxWINDUCEDP PACKING, respectively), the input grapl = (V, E) is gi-
ven together with a weight functiom on its edges, and the goal is to find a col-
lectionP = {Pi,...,P,} of vertex-disjoint (inducedP;, that maximizesv(P) =

li]:l ZeGPi w(e)

The special case of MKWP;PACKING where the graph is complete dnx n
vertices is called the weightdel, partition problem PP in short). In this case, each
solution contains exacthy vertex disjoints paths of length- 1. If the goal is to maxi-
mize (MAXP;P), then we seek R, partition of maximum weight, and if the goal is
to minimize (MINP . P), then we seekB;; partition of minimum weight. When consi-
dering the minimization version, it is more often assumed the instance is metric,
i.e., that the weight function satisfies the triangle indipa w(z,y) < w(zx,z) +
w(z,y),Vz,y, z; MINMETRICP P will refer to this restriction. Note that this latter
version of the problem is closely related to the vehicleirmuproblem when restric-
ting the route of each vehicle to at mdsintermediate stops, [ARK 06, FRE 78]. Fi-
nally, we also will consider the special case of metric ins&s where the weight func-
tion is either 1 or 2; the corresponding problems will be deddy Max PP, » and
MINPP; > (P,P1,2 when the goal is not specified). Such a restriction makessens
since it provides an alternative relaxation of the initiatision problen®P; Partition ;
moreover, MNP P; 5 and MINk-PATHPARTITION are strongly connected.

All theses problems are very closed one to each other. licpkat, P, PARTITION
NP-completeness implies théP-hardness of both Mik-PATHPARTITION andPP
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(even when restricting t8,P; 2) ; converselyP; PARTITION is polynomial-time de-
cidable on instance families wherelNk-PATHPARTITION or MAX P, PACKING are
polynomial-time computable.

1.1.2. Complexity and approximability status

The minimumk-path partition problem is obviousNP-complete in general graphs
[GAR 79], and remains intractable in comparability graglss,E 03], in cographs,
[STE 00], and in bipartite chordal graphs, [STE 03] (wlide part of the input). Note
that most of the proofs dfiP-completeness actually establish tfie-completeness of
P PARTITION. Nevertheless, the problem turns out to be polynomial-Soteable in
trees, [YAN 97], in cographs whehis fixed, [STE 00] and in bipartite permutation
graphs, [STE 03]. Note that one can also find in the literagexeral results about the
problem that consists in partitioning the graph into disigipaths of length at least 2,
[WAN 94, KAN 03].

This chapter proposes new complexity and inapproximahiisults for (NDU-
CED) P;PARTITION, MINk-PATHPARTITION and MAX (W) (INDUCED) P, PACKING,
mostly in the case of bipartite graphs, discussing the gnagotimum degree. Namely,
we study the case of bipartite graphs of maximum degree 3t; fivase problems
are NP-complete for anyk > 3 (and this even if the graph is planar, for= 3);
second, there is nBTAS for MAX (INDUCED)PPACKING or, more precisely, there
is a constant; > 0 such that it iSNP-hard to decide whether a maximum (induced)
P-packing is of size: or of size upper bounded kY — ¢, )n. On the opposite side,
all these problems trivially become polynomial-time conglalle both in graphs of
maximum degree 2 and in forests.

Where these problems are intractable, what about theioappation level ? We
recall that a given problem is said to bapproximable if it admits an algorithm that
polynomially computes on any instance a solution that igast (if maximizing, at
most if minimizing)e times the optimum value. To our knowledge, there is no specifi
approximation result for neither Mk-PATHPARTITION, nor MAX WP, PACKING,
in general graphs. Nevertheless, one can find some appriiamrasults for thek-
path partition problem where the objective consists in mezing the number of
edges of the paths that participate to the solution (see §2]Sor the general case,
[CSA 02] for dense graphs). ConcerningaMW P PACKING, using approximation
results for the maximum weightédpacking problem (mainly based on local search
techniques), [ARK 98], one can obtain(%i—1 — ¢)-approximation; in particular,
MAXWP3PACKING is (% — g)-approximable.

In the case of complete graphs,AMP P is standard-approximable for aky
[HAS 97]. In particular, Max P3P and Max P, P are respectivelys/67—c, [HAS 06]
and3/4, [HAS 97] approximable. Note that fdr = 2, a R-partition is a perfect
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matching and hence, MP,P and MaxP,P both are polynomial-time computable.
The minimum case is trickier : from the fact thBf, PARTITION is NP-complete in
general graphs, it islP-hard to approximate MiP ;P within 27(") for any polyno-
mial p, for any k& > 3. Nevertheless, one could expect that the metric instanees a
constant-approximable, even though no approximation (tateur knowledge) has
been established so far forINMETRICP, P.

Here, we provide new approximation results fom\-PATH PARTITION, MAX W-
P3PackING and P, P. Concerning the two former problems, we proposg/2-
approximation for MN3-PATHPARTITION in general graphs andla3 (resp, al/2)-
approximation for Mx WP3PACKING in general fesp, bipartite) graphs of maxi-
mum degree 3. But we more focus P, and more specifically oR4P, by ana-
lyzing the performance of a specific algorithm proposed bgditaand Rubinstein,
[HAS 97], under different assumptions on the input. Doingwe put to the fore the
effectiveness of this algorithm by proving that it provideswv approximation ratios
for both standard and differential measures, for both medtion and minimization
versions of the problem. But, before going so far, we brieflgatl the basis of ap-
proximation theory, introduce some notations and thenthigsoutline of the chapter.

1.1.3. Theoritical framework, notations and organization

Consider an instanckof anNP-hard optimization probleril and a polynomial-
time algorithma that computes feasible solutions fdr Denote byapx;(7) the value
of a solution computed by on I, by opt;(I) the value of an optimal solution and
by worr(I) the value of a worst solution (that corresponds to the optinvalue
when reversing the optimization goal). The qualityfofs expressed by means of
approximation ratios that somehow compare the approxivalte to the optimum
one. So far, two measures stand out from the literature sténedardratio [AUS 99]
(the most widely used) and tlkfferentialratio [AUS 80, BEL 95, DEM 96, HAS 01].
The standard ratio is defined byi (7, A) = apxp(I)/opty (1) if IT is @ maximization
problem, bypri (I, A) = opty(I)/apxy (I) otherwise, whereas the differential ratio is
defined byon (1, A)= (worr (1) — apx([))/(worn(I) — opty(I)). In other words,
the standard ratio divides the approximate value by thearapti one, whereas the
differential ratio divides the distance from a worst salatio the approximate value
by the instance diameter.

Within the worst case analysis framework and given a unalersnstant < 1
(resp, € > 1), an algorithmA is said to be ar-standard approximation for a maxi-
mization fesp.a minimization) problendI if pr ., (1) > ¢ VI (resp, pa,(I) < €
VI). With respect to differential approximatiohjs said to bes=-differential approxi-
mate forIl if 6,,(I) > ¢, VI, for a universal constant < 1. Equivalently, seing
any solution value as a convex combination of the two vatues;(I) andopty (1),
an approximate solution valugx; (1) will be e-differential approximate if for any
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instancel, apxp; (1) > e x opty(I) + (1 —€) x worr (I) (for the maximization case ;
reverse the sense of the inequality when minimizing). Fah boeasures, a given
problemll is said to be constant approximable if there exists a polyabktime algo-
rithm A and a universal constantsuch that is ane- approximation fodl. The class
of problems that are standardegp, differential-) constant-approximable is denoted
by APX (resp, by DAPX). If II admits a polynomial-time approximation scheme,
that is, a whole algorithm faminAE)(s) such that\. is e-approximate for any (note
that the time-complexity of. may be exponential ih/|1 — ¢|), thenII belongs to the
classPTAS (resp, DPTAS).

The notations that will be used are the usual ones accordiggaph theory. Mo-
reover, we exclusively work in undirected simple graphsthis chapter, we often
identify a pathP of lengthk — 1 with P, even if P contains a chord. However, when
dealing withiNnDUCED P PARTITION, the paths that are considered are chordless. Fi-
nally, when no ambiguity occurs on the problem that is comegy we will omit the
reference tdI to denote the valuespx(7), opt(I) andwor(I). For a better unders-
tanding of what follows, we recall some basic concepts oplgrtheory : a simple
graphG = (V, E) is said to be bipartite (or, equivalently, 2-colorable)iéte exists
a partition L, R of its vertex set such thdf is contained inL x R. A graph is pla-
nar if it can be drawn in the plane so that no edges intersepatA fesp, a cycle)
I' = {vj,,...,v;,} € EinG of length at least 2résp, of length at least 4) is chord-
less if there is inE' no other edge than the oneslofinking two vertices ofl". G is
chordal if none of its cycle of length at least 4 is chordl€sss an interval graph if
one can associate to each vertexe V an interval(a;, b;] on the real line such that
two intervalsja;, b;] and|as, b,] intersectif the edgdv,, v,] belongs toF ; note that
interval graphs are special cases of chordal graphs.

This chapter is organized as follows : the two next sectiorsdadicated to the
study of (NDUCED) P;PARTITION, MAX (INDUCED)P;PACKING and MINk-PATH-
PARTITION. Section 1.2 focus on the complexity status of those probliembipartite
graphs, whereas Section 1.3 proposes some approximasiatsror Max WP 3 PAC-
KING and MIN3-PaTHPARTITION. The fourth section is then dedicated to both stan-
dard and differential approximation @;P. Subsection 1.4.1 provides a differen-
tial approximation foP; P while bridging some gap between differential approxima-
tion of TSP and differential approximation & P. Finally, Subsection 1.4.2, which
constitutes the main part of Section 1.4, leads a completlysis of the approxima-
tion level of an algorithm proposed by Hassin and RubingtdihS 97], depending
on the approximation measure that is considered and thadesaistics of the input
weight function.

The two main points of the chapter are, on the one hand, thblestment of new
complexity results concernifig, PARTITION and related problems in bipartite graphs
by means of reductions (section 1.2) and, on the other haadyay the algorithm that
is addressed in section 1.4.2 appears to be robust, in tlse et this latter provides
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i1 0,2 i3
ap a; ay
i1 i1 0,2 0,2 i,3 i,3
as as as as as as
Y o Y

Figure1.1. The gadget! (c;) whene; is a 3-tuple.

good quality solutions (the best known so far), whatevesieer of the problem we
deal with, whatever approximation framework within whick @estimate the approxi-
mate solutions.

1.2. Complexity of PPARTITION and related problemsin bipartite graphs
1.2.1. Negativeresults from the k-dimensional matching problem

1.2.1.1. k-dimensional matching problem

The negative results we present all are based on a trangformfeom the k-
dimensional matching problerhDM, which is known to béNP-complete, [GAR 79].
An instance oftDM consists of a subsét = {c1,...,¢m} € X7 X ... x X}, of
k-tuples, whereXy, ..., X arek pairwise disjoint sets of size. A matchingis a sub-
setM C C such that no two elements i agree in any coordinate, and the purpose
of kDM is to answer the question : does there exist a perfect rimfad onC, that
is, a matching of sizex? In its optimization version, the maximukdimensional
matching problem (Mx kDM) addresses the question of computing a matching that
is of maximal size.

1.2.1.2. Transforming an instance d§DM into an instance ofP; PACKING

LetI = (Xq,...,Xy;C) be an instance dfDM, where|X,| = n, Vg and|C| =

m. We denote byX the union of the element sel§,, . . ., X. Furthermore, for each
elemente; € X, we denote byl its degree, where the degree of an elemegnt
is defined as the number @ftuplesc; € C that containe;. We build an instance
G = (V,E) of INDUCED P;PACKING, whereG is a bipartite graph of maximum
degree 3, by associatingkatuple gadgef (c;) to eachk-tuplec; € C, an element
gadgetH (e;) to each element; € X, and then by linking the two gadget families by
some edges. Our construction (more precisely, the elensggeds) depends on the
parity of k.

1) The element gadgéf (c;). For anyk-tuplec; € C, the gadgefd (¢;) consists of a
collection{ P, ..., Pi*} of k vertex-disjointP;, with P"¢ = {aﬁ"{ o az’q} for

q¢=1,...,k, plus the edgef’?, a2?*'] for ¢ = 1 to k — 1. Hence,H (c;) contains
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Figure1.2. The gadgefi (e;) for k = 3 andd’ = 2.
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Figure1.3. The gadgefi (e;) for k = 4 andd’ = 2.

thek initial pathsP!, ..., P*, plus the additional pattﬁai’l, o ai’k}. Figure 1.1
proposes an illustration of tHetuple gadget wheh = 3.

2) The element gadgéf (¢;). Lete; € X be an element, with degreé. We distin-
guish two cases according to the paritykof
— Odd values of. H(e;) is defined as a cyclt{v{, o ,U{WH,U{} on N7 + 1

vertices, whereV? = k(2d’ — 1). Moreover, forp = 1 to ¢/, we denote by’ the
vertex of index2k(p — 1) + 1. Thus, the element gadget is a cycle on a number of
vertices that is a multiple df plus 1, withd’ remarkable verticel% that will be linked

to thek-tuple gadgets.

— Even values of. In this case[N/ is also even and thus, a cycle i +1 vertices
may not be part of a bipartite graph. In order to fix that probleve defineH (¢;) as

a cycle{v{, o vfw,v{} on N7 vertices, plus an additional edge,, vy, , ,]. The
;k(pfl)ﬂ forp = 1,---,d (note that

li” never matches}'\,j). Figures 1.2 and 1.3 illustraté (e,) for the couple of values
k=3, d =2andk =4, d’ = 2, respectively.

special verticed) still are defined ag) = v

3) Linking element gadgets otuple gadgetsi-or any couplde;, ¢;) such thak; is
the value of; on theg-th coordinate, the two gadgets(c;) andH (e;) are connected

using one of the edgés;“, 17 |, p; € {1,...,d’}. The vertices’ that will be linked
to a given gadget/ (¢;) must be chosen so that each vertekrom any gadgef! (¢;)

will be connected to exactly one gaddé{c; ).
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The described construction obviously leads to a gi@ph (V, E) that is bipartite,
of maximum degree 3, and such that every of Ihg it contains is chordless. Its
number of vertices i | = 3k*>m + (1 — k)kn : consider, on the one hand, that each
gadgetH (c;) is a graph ork? vertices and, on the other hand, t@ﬁzl & = km
(wlog., we may assume that each elemgrdppears at least onced).

1.2.1.3. Analyzing the obtained instance Bf, PACKING

Let us define oy some remarkablP), packings on the vertex subséf$H (c;))
andV (H (e;)).

Py packings oV (H(c;)), fori=1,...,m:
Pl = U’;:lPi*q U {ai’l, ai"Q, cee ai’k} with P4 = a?c’q, e ,aé’q, liyq} Vq
Qf = Uk_ Qb with Q9 = Sal? ... a%9, ai’q} Yq
(wherel; , denotes the vertex from song(e,) that is linked toas )

P, packings orV/ (H(e;)), forj=1,...,kn:
Vp=1,...,d’, Pjis defined as the only possitiR, partition of V(H (e;))\{l/}

Note that these collections are of si#| = k + 1Vi, |Q'| = k Vi and|P]| =
2d7 — 15 Vp € {1,...,d’}. With the help of these packings, we now put to the fore
three properties that will be the key of our further arguraéot.

PROPERTY1.—
(4) For anyi, P* and Q' are the only two possiblB, partitions of V (H(c;)).
(1) Within a P, partition of V, and for anyj = 1,...,kn, the collections
Pi,..., P, are the only possibl®;, partitions of V' (H (e;)).
(#i7) Let P* be a maximun®;, packing onG ; we can always assume the following :
(iii.a) for anyi, P* contains either the packing?, or the packingQ’ ;
(#i3.b) for anyj, P* contains one of the packin@, for somep.

PrROOF— For sake of simplicity, we assume ttiails odd, even though the arguments
also hold for even values &f

For (7). Quite immediate, from the observation that a given vemfg%(may only be
covered by eitheP"? or Q*4.

For (i7). Let P be aP;, partition of V' and consider an elemen} ; since H (e;)
containsN7 = k(2d’ — 1) + 1 vertices, at least one edgeof someP, in P links
H(e;) to a givenH (c;), using anl/ vertex; we deduce from the previous point that

P, is someP"4 path and thus, thdy is the only vertex ofP, that intersectd (e;).
Consider now any two verticelg' andl;,, p < p/, from H(e;); the2k(p’ —p) — 1
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vertices that separatg andlz, might not be covered by any collection Bf,. Hence,
exactly onel’ vertex of H(e;) is covered by somé*? and thus,P contains the
correspondind®y, packinng.

For (i7i.a). Any maximal sizeP;, packing must use (at least) one of the two vertices
ay? andl; ,, for any couple(i, ¢), wherel; , denotes the vertex from sonié(e;)
that is linked toa’?. Suppose the reverse, for sofieq) : then, none of the vertices
lig,ab® ak9, ... a9 may be part of a path fro®* and thus,P"¢ or Q"¢ could be
added toP*, that would contradict the optimality 7. If the edg€la’?, a%] (resp,
[a%?,1; 4] and not[a’?, a’;%]) is used by some patR € P*, thenP can be replaced
in P* by the pathQ™¢ (resp, by P*9). If none of the edgef}?, a5?] and[a3?, l; ,]
are used byP*, replace byP*? (resp, by Q*?) the path frontP* that uses, , (resp,
ai’q and notl; ,). At that point, the collectioP* contains for any:-tuplec; at leastt
pathsP*? and@*? (one for each coordinate= 1, ..., k). Now, each timeP* does
not contain the packing®, we replace these paths by the whole collectiin m

For (ii3.b). Assume the reverse, for some elemgntthat means that at least 2 vertices
13, andld  of H(e;) are used irP* by pathsP™? and P"-¢', with p; < p; (or P*
would not be of maximal size). Chooﬁse”two consecutive suctices, in the sense
thatP* does not use any of the path$ ¢ for lg)i,, such thaty; < p;» < pir. Since
there arek(p; — p;) — 1 vertices ofH (e;) betweeni; andl, ,, we can replacé",
P4 and the paths oP* between verticet, andlj , by P"¢ and2(p; — p;) paths
using vertices betwee) andi] , plusl), . Observe that, in such a case, the packing
P will be replaced inP* by the packingQ’, according to the previous property.
By repeating this procedure, we obtain a maximal $zepacking that fulfills the
requirements of item@ii.a) and(iii.b).

1.2.1.4.NP-completeness antiPX-hardness

THEOREM 1.— P, PARTITION and INDUCED P;PARTITION are NP-complete in bi-
partite graphs of maximum degree 3, for any 3.

As a consequenci®lAX (INDUCED) P, PACKING andMINk-PATHPARTITION areNP-
hard in bipartite graphs with maximum degree 3, for &ny 3.

PROOF— Let] = (X;,...,X};C) andG = (V, E) be an instance ¢fDM and the
graph produced by construction described is Subsectiad.2,2espectively. First,
we recall that any path of length— 1 in G is chordless; thus, the result holds for
bothP; PARTITION andINDUCED P;PARTITION. We claim that there exists a perfect
matchingM C C on [ iff there exists a partitio® of G into Py.

Let P be such a partition ot ; from Property 1 item(z), we know that each gad-
get H(c;) is covered by eitheP® or Q. Moreover, Property 1 itenfii) indicates
that every gadgeti (e;) is covered by somé?g,' collection; those two facts ensure
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i eEM Ci§éM

Figure1.4. A vertex partition of aH (c¢;) gadget into 2-edge paths.

that exactly onef (¢;) gadget for somé-tuple that containg; is covered by &P°
collection and therefore, the séf = {¢; | P* C P} defines a perfect matching dn

Conversely, letM be a perfect matching ofi; we build a packing? applying the
following rule : if a given element; belongs ta), then useP® to coverH (c;) ; use
Q' otherwise (Figure 1.4 illustrates this construction forND Since M is a perfect
matching, exactly one vertdg per gadgef{ (e;) is covered by som&*?. Thus, on

a given cycleH (e;), the N7 = k(2d’ — 1) vertices that remain uncovered can be
covered using the corresponding coIIect’V@i‘n L]

Thus, the construction is a Karp reduction, and from lfecompleteness of
kDM, [GAR 79], we deduce th&lP-completeness ofi{DUCED) P;PARTITION in
bipartite graphs of maximum degree 3. However, by a moreratewbservation, we
actually may obtain a stronger result, foe= 3 ; namely, (NDUCED) P3PARTITION
NP-completeness still holds when restricting ourselvesanat instances. Indeed, on
the one hand, the restriction. BNAR 3DM of 3-dimensional matching to planar ins-
tances still isNP-complete, [DYE 86] ; on the other hand, if the initial instar of
kDM is planar, then the grap also is planar for an appropriate choice of the linking
edgegas?,l; .

THEOREM2.— P3PARTITION andINDUCED P3PARTITION are NP-complete in pla-
nar bipartite graphs with maximum degree 3.

As a consequenci|AX (INDUCED)P3PACKING andMIN3-PATHPARTITION are NP-
hard in planar bipartite graphs with maximum degree 3.

If we now turn to the optimization problems, we can obsenat the construction
described in Subsection 1.2.1.2 also enables to establigtPX-hardness result for
the maximization problems WMxP;PACKING and Max (INDUCED) P;PACKING.
We consider the optimization version DM, denoted by Mx kDM, and the follo-
wing inapproximability result : for any > 3, there is a constant, > 0 such that
VI = (Xy,...,Xx;C) instance oftDM with | X;| = --- = | Xi| = n, itis NP-hard
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to decide betweeopt(I) = n andopt(I) < (1 — ¢}, )n, whereopt(I) is the value of

a maximum matching o@. This result also holds if we restrict ourselves to instance
with bounded degree, namely, to instanéesatisfying :vj = 1,...,kn, & < f(k),
wheref (k) is a constant; we refer to [PET 94] fér= 3 (where the result is proved
with f(3) = 3), to [KAR 06] for other values ok.

THEOREM 3.— For anyk > 3, there is a constant;, > 0, such thatvG = (V, E)
instance ofMAX (INDUCED) P PACKING where( is a bipartite graph of maximum
degree 3, it iNP-hard to decide betweespt(G) = % andopt(G) < (1 — ag)%,
whereopt(G) is the value of a maximum (inducel),-Packing onG.

PROOF— Let] = (X;,...,X;C) be an instance ofDM, with | X,| = n Vq and
IC| = m, such that the degre¢/ of any element; is bounded above by (k).
Consider the graplty = (V, E) produced by the construction described in Subsec-
tion 1.2.1.2; we recall tha/| = 3k*m — k?n + kn. Let (M*, P*) be a couple
of optimal solutions ol and@G, with valuesopt(I) andopt(G), respectively. From
Property 1 itemgiii.a) and(iii.b), we can assume th@&t* satisfies the following :

— for anyi, P* contains either the packirf@’, or the packingQ’ ;

— for anyj, P* contains one of the packing?*{, ceey ij.

Hence, the sed/ = {¢; € C : P € P*} of k-tuplesc; such thatP* containspP’
defines a matching oh; moreover, the valuept(G) of P* can be expressed as :

kn
opt(G) = (km + [M[) + > (2d’ — 1) = 3km — kn + | M|

j=1
From|M| < |M*|, we then deduceapt(G) < opt(I) + 3km — kn.

If opt(I) = n : we know from Theorem 1 that has a perfect matching G admits
a P Partition, that isppt(I) = n iif opt(G) = '—‘2' = 3km — kn + n. Suppose now
thatopt(Z) < (1 — ¢}, )n. Then, necessarilyapt(G) < 3km — kn + (1 — &})n =
(3km — kn + n) — e;n. By settingey, = 55771, We obtainopt(G) < (1 —
ex)(3km—kn+n). Finally, sinced’ < f(k), we deduce thatm < kf(k)n and then,
thater > grpyr—rrrer = O(1). In conclusion, deciding betweemt(G) = [V]/n
andopt(G) < (1 —ex)|V]|/n (oropt(G) < (1 — W%HVVTL)) on G would
enable to decide betweept(I) = n andopt(l) < (1 — &} )nonl. ]

1.2.2. Positive results from the maximum independent set problem

If we decrease the maximum degree of the graph down to 2, weasily prove
that P, PARTITION, INDUCED P, PARTITION, MAXP,PACKING and MINk-PATH-
PARTITION are polynomial-time computable. The same fact holds faxWP ;. PAc-
KING (what remains true in forests), although it is a little bibgalicated : the proof
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consists of a reduction from MKXWP; PACKING in graphs with maximum degree 2
(resp, in a forest) to the problem of computing a maximum weighejpeindent set in
an interval (esp, a chordal) graph, which is known to be polynomial, [FRA 76].

PROPOSITION1.— MAXWP;PACKING is polynomial in graphs with maximum de-
gree 2 and in forests, for arfy > 3.

PROOF— Let] = (G, w) be an instance of Mx WP, PACKING whereG = (V, E) is

a graph with maximum degree 2. Henc¢gjs a collection of disjoint paths or cycles
and thus, each connected component may be separately slessbver, wlog., we
may assume that each connected compoténif G is a path. Otherwise, a given
cycleG* = {v1,...,vn,,v1} might be solved by picking the best solution among the
solutions computed on the instancesG‘\ {[v,v2]}, . .., G\ {[vk, vks1]}. Thus,
let G = {vf,...,v%, } be such a path; we build the instan(@‘, w*) of MAXWIS
where the vertex set dff* corresponds to the paths of lendth- 1 in G : a vertex
v is associated to each paft), with weightw!(v) = w(P,). Moreover, two vertices
u # v are linked inH* iff the corresponding pathB, and P, share at least one
common vertex in the initial graph. We deduce that the sen@épendent sets iH*
corresponds to the set ¥, in G*. Observe thafZ’ is an interval graph (even a unit

interval graph), since each path can be viewed as an intefta¢ line{1,---, N*};
hence,H' is chordal. IfG is a forest, then any of the graph& that correspond to a
tree of G is a chordal graph. L]

1.3. Approximating MAXWP3PACKING and MIN3-PATHPARTITION

We present some approximation results fox MVP 3 PACKING and MIN3-PATH-
PARTITION, that are mainly based on matching and spanning tree hiearist

1.3.1. MAXWP3PACKING in graphs of maximum degree 3

For this problem, the best approximate algorithm known gopfavides a ra-
tio of (% — ¢), within high (but polynomial) time complexity. This algtim is de-
duced from the one proposed in [ARK 98] to approximate theghieid k-set pa-
cking problem for sets of size 3. Furthermore, a simple greled-approximation
of MAXWP,PACKING consists in iteratively picking a path of length- 1 that is of
maximum weight. Fok = 3 and in graphs of maximum degree 3, the time complexity
of this algorithm is betwee®(n log n) andO(n?) (depending on the encoding struc-
ture). Actually, in such graphs, one may reach/8-approximate solution, even in
time O(a(n, m)n), wherex is the inverse Ackerman'’s function and < 3n/2.

THEOREM4.— MAXWP3PACKING is 1/3 approximable withid(a(n, 3n/2)n) time
complexity in graphs of maximum degree 3; this ratio is tifgiitthe algorithm we
analyze.
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Figure 1.5. The main configurations of the algorithabProcess.

PrROOF— The argument uses the following observation : for any sppaytree of maxi-
mum degree 3 containing at least 3 vertices, one can buildex obits edge set into 3
packings ofP3 within linear time. Hence, by computing a maximum-weigtasping
treeT = (V, Er) onG in O(«a(n,3n/2)n) time, [CHA 00], and by picking the best
P3-packing among the cover, we obtain a 1/3 approximate swlwtithin an overall
time complexity dominated b§)(«(n, 3n/2)n).

The construction of the 3 packing®!, P2, P3 is done in the following way : we
start with three empty collectior®', P2, P2 and a tre€l’ rooted atr ; according
to the degree of- and to the degree of its children, we add soRe path P that
containsr to the packingP!, remove the edges a@® from T, and then recursively
repeat this process on the remaining subtrees, alterhaitiveking P2 andP!. This
procedure is formally described in the algorithfa®Process (the recursive process)
andTree-PsPackingCover (the whole process).

Algorithm Tree-PsPackingCover makes aninitial call t§ubProcess, on the whole
treeT, rooted on a vertex that is of degree at most 2 ifi. The stopping criterion
of the recursive procedur@ibProcess are the following : the current tree has no
edge (then stop), or the current tree is a lonely dagg] ; then add{r., z, y} to P3,
wherer, denotes the father af in T'. Concerning the three main configurations of
SubProcess, they are illustrated in Figure 1.5, whefg denotes the subtree 6froo-
ted atv ; the edges in rigid lines represent the path that is adddtetourrent packing,
and the subtrees that are invoked by the recursive callsdiesaited.

Tree-P3PackingCover

Input: T = (Vr, Er) spanning tree of maximum degree 3 containing at least 3
vertices and rooted atsuch thatly(r) < 2.

1SetP! = P2 =P3 =0;
2 CallSubProcess(T}., P!, P2,P3,1);
3 Repair (P, P2, P3);

Output(P!, P2, P3).
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SubProcess(T,, PL,P2,P3, i)
1 If Er, = () thenexit;
Picky a child ofx in T, ;
21t Er, = {{=z,y}}
Pickr, the father ofr in T} ;
2.1 P3— P3U{{rs,z,y}}; exit;
3 If zis of degree 1Y},
Pick z a child ofy in T ;
31 Ple— P U{{z,y,2}};
3.2 CallSubProcess(T,, P, P2,P3,3);
3.3 Ifyis of degree 3 i},
Pickt the second child of in T, ;
3.3.1 CallSubProcess({{y,t}} U T}, P1,P2,P3, 34);
4 Else Ifz is of degree 2 i7,
Pick z the second child of in T, ;
41 P'— PU{{y,z,2}};
4.2 CallSubProcess(Ty,731,772,773,3-1');
4.3 CallSubProcess(T;, P, P2,P3,34);

At the end of the initial call t&ubProcess (that is, when the step 2 Gfree-PsPac-
kingCover has been achievedy! andP? both are packings : one can easily see that
the paths that are added® (wherei = 1 ori = 2) at a given timet and the ones
that are added again ®' at timet + 2 do not share any common vertex. On the other
hand,P3 might not be a packing. Lefr,,z,y} and{r,,,2’,y’} be two paths from
P3 such that{r,, x,y} N {r.,2',y'} # 0; then, either, = r,., orr, = 2'. If the
first case occurdz, .., ¥’} has been added @' (for i = 1 ori = 2), then set P =
Pi\N{{z, 7,2} } U {{rs, z,y}} andP? = P3\{{r,, z, y}}. Otherwiser, is the fa-
ther ofr,, in T;. and we haver,.,r,,z} € P! (fori = 1 ori = 2); then set P =
PN{{rer,re, 2} U {{re, 2’ ¢/} and PP = P3\{{r.,2’,y'}}. These repairing
operations are made by the algoritRapair, during step 3 ofree-PsPackingCover.
Figure 1.6 provides two examples of the constructio®bf P2 andP3. The overalll

time complexity ofTree-P3PackingCover is linear : first, the number of recursive
calls toSubProcess may not exceed/3n and second;P3| is at mostO(log n).
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Figure 1.6. Two examples of the construction of the 3 packiRgsor
i=1,2,3.

Repair (P!, P?,P3)
1 Forany(P = {ry,z,y} # P' = {rp,2',y'}) € Pdstiry =1y
Seti € {1,2} s.t.{z,r,,2'} € P?;
1.1P — PA\{{z,re, 2"} U {re, 2,9} s P2 — PN\ {{re, 2,9} s
2 Forany(P = {ry,z,y} # P' = {ry, 2", y'}) € P3stor, =2’
Seti € {1,2} s.t.{ry/, rs, 2} € P
227" — PA\{{ra a2} UL {ran 0/} PO P\ (s )
Output(P?, P2, P3).

We now can deduce an approximate algoritterwP3;Packing, that consists in com-
puting aP3-packing cover(P!, P2 P3) of a maximum spanning tree @, and

then picking the best collection amofiB!, P2, P3). This algorithm provides a 1/3-
approximation withirD(«(n, 3n/2)n) time complexity (the overall complexity of the
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algorithm is dominated by the one of computing the initiasping tree). Concerning
the approximation level, consider that the weighf") of a maximum spanning tree
T is at least the weight of an optimBl;-packing, since an¥3; packing can be com-
pleted into a spanning tree (if the input graph is connectelt@n the result is trivial

(letP* denote an optimal solution) :

w(P) >1/3 (w(P') + w(P?) + w(P?)) > 1/3w(T) > 1/3w(P*)

The proof of tightness is omitted. L]

1.3.2. MAXWP3PACKING in bipartite graphs of maximum degree 3

If we restrict ourselves to bipartite graphs, we slightlypiwove the ratio 0% — €,
[ARK 98] up to % We then show that, in the unweighted case, this result heids
thout any constraint on the graph maximum degree. The key ligee is to trans-
form the problem of finding &3Packing in the initial bipartite grap® = (L, R; E)
into the problem of finding a maximum matching in two graghs andGr, where
G, (resp, Gr) contains the representative edge of e of the initial graph with
their two extremities in. (resp, in R). Formally, from an instancé = (G, w) of
MAXWP3PACKING, whereG = (L, R; E) is a bipartite graph of maximum degree
3, we build two weighted graph$/., wy,) and(Gr, wg), whereG;, = (L, E,) and
Gr = (R, Er). Two verticest # y from L are linked inGy, iff there exists inG a
pathP, , of length 2 fromz toy : [z,y] € Er iff 32 € R s.t.[z, 2], [2,y] € E. The
weightwy, (z, y) is defined asvy (z, y) = max{w(z, z) + w(z, y)|[z, 2], [z, y] € E}.
The weighted grapiGr,wr) is defined by considering instead ofL. If G is of
maximum degree 3, then the following fact holds :

PROPERTY 2.— From any matching/ on G, (resp, onGr), one can deduce B3
packingPy, of weightw(Pas) = wz (M) (resp, w(Par) = wgr(M)), whereG is of
degree at most 3.

PROOF— Let M be a matching oidr;,, andP;; the correspondin@s collection on
G. Suppose that two patlf3, , # P,/ ,» € Py share a common vertéxBecausel/
is a matching, we haver, y} N {z’, 3’} = 0; hence, the vertexbelongs toR and is
the internal vertex of botl®,. ,» and P,/ -, which contradicts the assumption on the
graph maximum degree. L]

In light of this fact, we propose the algorittimaighted P;-Packingthatconsists
in computing two maximum matchings @fy, andG g, and then picking the best cor-
responding packing id7. The time complexity of this algorithm is mainly the time
complexity of computing a maximum weight matching in graphsaximum degree
9, thatisO(|V|? log |V|), [LOV 86].
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Figure 1.7. Tightness offeighted Pj3-Packing analysis.

Weighted P3-Packing

1 Build the weighted graph&7., wy) and(G g, wg) ;

2 Compute a maximum weight matchidid; (resp, M};) on (G, wr,) (resp, on
(Gr,wRr));

3 Deduce fromM; (resp, from M},) aP3 packingP,, (resp, Pr) according to
Property 2;

4 Output the best packing amongP, andPg.

THEOREMS5.— Weighted Ps-Packingprovides al /2-approximationfoMAXWP -
PACKING in bipartite graphs with maximum degree 3 and this ratio gti

PROOF— LetP* be an optimun®s-packing onl = (G, w), we denote byP; (resp,
by Pj,) the paths ofP* of which the two endpoints belong tb (resp, to R); thus,
opt(l) = w(P;) + w(Py). Forany path? = P, , € P}, [x,y] is an edge fronEy,
of weightwy,(z,y) > w(P,,,). Hence, M, = {[z,y]|P:, € P;} is a matching on
G, that satisfies :

Moreover, sincel/; is a maximum weight matching of;,, we havew (M) <
wy, (M3). Thus, using inequality [1.1] and Property 2 (and by apmyine same ar-
guments orGr), we deduce :

w(Pr) > w(P;), w(Pr) > w(Ph) [1.2]

Finally, the solution output by the algorithm satisfie6P) > 1/2(w(Pr) + w(Pr))
and we directly deduce from inequalities [1.2] the expecesallt. The instancé =
(G, w) that provides the tightness is depicted in Figure 1.7. Isizia of a graph on
12n vertices on which one can easily observe théPr,) = w(Pgr) = 2n(n +2) and
w(P*) = 2n(2n + 2). ]
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Concerning the unweighted case, we may obtain the samerperfice ratio wi-
thout the restriction on the graph maximum degree. The miffierences compared
to the previous algorithm lie in the construction of the twaghsG,, G : starting
from G, we duplicate each vertex € R by adding a new vertex; with the same
neighborhood as; (this operation, often callehultiplication of verticesn the litera-
ture, is used in the characterization of perfect graphs)tiafe add the edde;, r;]. If
R}, denotes the vertex sét;, r;|r; € R}, the following properties hold :

%

PROPERTY3.—

(i) From any matching/ on G, one can deduce a matchidg’ of cardinality
|M'| > |M|onGy that saturatesR ;..

(i4) From any matchind/ on Gy, (resp, onGr) that saturatesk, (resp, L), one
can deduce &3 packingPys on G of size|Py| = |M| — |R)|.

PROOF— For (i). Let M be a matching oid7;, and consider a given vertex € R.
If M contains no edge incident fo-;, v}, then addr;, ;] to M ; if M contains an
edgee incident tor; (resp, to r;), but no edge incident te; (resp, to r;), then set
M = M\{e} U {[ri,ri]}.

For (i7). Let M be a matching o7, that saturated?;,, we respectively denote by
J the set of vertices; € R such thatlr;,r]] € M and byp = |J| its cardinality.
We consider the matchindy/’ deduced from\/ by deleting the edg€s;, /] ; hence,
|M'| = |M| — p. From the fact thaf\/ saturatesRk;, we first deduce thatM/| =
|RL| — p = 2|R| — p; we then observe that, for any vertex¢ .J, there exists two
edgedl}, r;] and[i?,7/i] in M’, that define th&@ 3 P, = {I},r;,(?} of the initial graph
G. The collectionPy; = U, ¢ ;{P;} obviously is aP3 packing of siz¢M’|/2 on G.
One just has to obverse that'’| = 2|R| — 2p = 2(|M| — |R]) in order to concludea

P3-Packing
1 Build the graphG, (resp, Gr) obtained fromG by multiplication of vertices
onR (resp,onl);

2 Compute a maximum size matchidd;, (resp, Mg) on G(resp, on Gg);
According to Property 3 itenti), deduce from\/;, (resp, from Mpg) a maximum size
matchingM; (resp, M},) that saturate®;, (resp, Lr);

3 According to Property 3 itenfii), deduce fromM} (resp, from A};) a Ps
packingP, (resp, Pr) of size|M;| — |R| (resp, |Mf| — |L]);

4 Output the best packing amongP; andPx.

The approximate algorith®s -Packing works as previously, except that we com-
pute a maximum (size) matchidd; (resp.,My) onGy, (resp, Gr) that saturate®,
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(resp, L) in step 2, and that th®3; packing?;, (resp, Pr) is obtained from\M;
(resp, M7};) by deleting the edg€s;, ;] (resp, [I;,[;]) in step 3.

THEOREM 6.— P3-Packing provides al/2-approximation forMAXP3PACKING
in bipartite graphs and this ratio is tight. The time comgtgof this algorithm is

PROOF—LetP; = {P,-- -, P,} be the set of paths from the optimal solution having
their two endpoints ir ; P; can easily be converted a#;, into a matchingd/ of
size|M| = 2qg + (|R| — ¢) = |Pj| + |R|. From the optimality ofA/; on G, we
deduce thatM ;| > | M| and hence, thg®,| > |P;|. The same obviously holds for
Py, and the result is immediate. The time complexity of the uiglvid version of the
algorithm still is dominated by the one of computing a maxim(gize) matching, that
is O(m+/n), [LOV 86]. The proof of tightness is omitted. [

1.3.3. MIN3-PATHPARTITION in general graphs

To our knowledge, the approximability of Mk-PATHPARTITION (or MINPA-
THPARTITION) has not been studied so far. Here, we propo8¢2aapproximation
for MIN3-PATHPARTITION. Although this problem can be viewed as an instance of
3-set cover (view the set of all paths of length 0, 1 or Ziras sets oiV), MIN3-
PATHPARTITION and the minimum 3-set cover problem are different. For msta
consider a staf; o, ; the optimum value of the corresponding 3-set cover inganc
is n, whereas the optimum value of the 3-path partitioRris— 1. Note that, concer-
ning MINPATHPARTITION (that is, the approximation ¢f(G)), we can trivially see
that it is not(2 — ¢)-approximable, from the fact that deciding whethé6) = 1
or p(G) > 2 is NP-complete. Actually, we can more generally establish f{at)
is not in APX : otherwise, we could obtain BTAS for the traveling salesman pro-
blem with weight 1 and 2 wheapt(I) = n, which is not possible, unles3=NP.
The algorithmMinimum 3Path Partition we propose runs in two phases : first, it
computes a maximum matchidd; on the input grapléz = (V, E) ; then, it matches
throughM3 a maximum number of edges frofd;" to vertices fromV/\ M. Those
two matchings define thB; and theP, of the approximate solution.

THEOREM7.— Minimum 3Path Partitionprovides & /2-approximationfoMInN3-
PATHPARTITION in general graphs withirO(nm + n?logn) time and this ratio is
tight.

PROOF— Let G = (V,E) be an instance of Mi3-PATHPARTITION. Let P* =
(P53, Py, Ps) andP’ = (P,, P, P)) respectively be an optimal solution and the ap-
proximate3-path partition on, whereP; andP; denote for; = 0,1, 2 the set of
paths of lengthi. By construction of the approximate solution, we have :

apx(I) = V] — |M| — [ My (1.3]
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Let Vo = (VAV(M7)) \ P, we consider a subgraght, = (L, R’; FY) of G2, where
R’ andE}, are defined asR’ = {r, € R|v € V,} andE}, contains the edgg., r,] €

E! iff there is an edge d®P* that linksv to an endpoint oé. By definition of ;, we
deduce thatig, (r,) > 1 foranyv € Vo (Vo is an independent set 6f). Moreover,
we havedg, (l) < 2 foranye € My (M7 is an optimal matching). Thus, we get :

|M3| > 1/2|R| =1/2([V| = 2|M7| = |P5]) [1.4]
From relations [1.3] and [1.4], we deduce :
apx(I) = [V[ — [M{] — [M3] <1/2 (V] +[Pg]) [1.5]

Now, consider the optimal solution. Frof¥| = 3|P;| + 2|P5| + |P;|, we trivially
have :

opt(I) = [P3[ + [Pr] + [P5| = 1/3(IV] + [P5]) [1.6]

Thus, we obtain the expected result. The proof of tightreesiitted. Concerning the
time complexity, we refer again to [LOV 86]. m

Minimum 3Path Partition

1 Compute a maximum matching; onG;

2 Build a bipartite graphz, = (L, R; E2) whereL = {l.le € M;}, R =
{rolv € V\ V(M7)}, and[le,r,] € E, iff the corresponding isolated vertex¢
V(M7) is adjacent inG to the edge € M7 ;

3 Compute a maximum matching; onGs;

4 OutputP’ the 3-paths partition deduced frab;, M, andV \ V(M7 U M3).
Precisely, ifM] C Mj is the set of edges adjacentié;, then the paths of length 2

are given byM{ U M3, the paths of length 1 are given By; \ M/, and the paths of
length O (that is, the isolated vertices) are givervby V (M; U My).

1.4. Standard and differential approximation of PP

From now, we will exclusively deal with the approximabiliof MAXP ;P and
MINP, P, from both standard and differential points of view. Weatkthat PP is
the special case of M\X WP, PACKING where the graph is complete é&n vertices.
We first discuss the differential approximability Bf. P, for any constant value, by
connection to the differential approximability of the teding salesman problem. The
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Figure 1.8. An example of the 4 solutiof3,, .. ., P

second part of this Section then focus on the special caseewhe 4, in the aim of
extensively analysing the approximate algorithm propdsedassin and Rubinstein,
which is described in Paragraph 1.4.2.1. We first considernsthe one hand, general
and metric instances for the standard ratio (ParagrapB.2)&and, on the other hand,
general instances for the differential ratio (Paragragh?13). We then switch to bi-
valuated instances, namelyL, 2}-instances for the standard ratio (Paragraph 1.4.2.4)
and{a, b}-instances for the differential ratio (Paragraph 1.4.2.5)

1.4.1. Differential approximation of PP from the traveling salesman problem

A common technique in order to obtain an approximate satutiy MAXP ;P
from a Hamiltonian cycle is called th#eleting and turning aroundnethod, see for
instance [HAS 97, HAS 06, FRE 78]. Starting from a tour, thistihod builds: solu-
tions of MAX PP and picks the best among them, whereithesolution is obtained
by deleting every:;th edge from the input cycle, starting from itk edge. The quality
of the outputP’ obviously depends on the quality of the initial tour ; in thiay, it is
proven in [HAS 97, HAS 06], that any-standard approximation for MK TSP pro-
vides a%s-standard approximation for Nk P, P. From a differential point of view,
things are less optimistic : even fbr= 4, there exists an instance famil;, ),,>: that
verifiesapx(I,) = 0ptyaxp,p(In) + 3Wormaxp,p(I5). This instance family is de-
fined asl,, = (Ks,,w) for n > 1, where the vertex sét (K, ) may be partitioned
into two setsL. = {¢1,...,¢4,} @ndR = {rq, ..., r4,} SO that the associated weight
functionw isOonL x L,20onR x R and 1 onL x R. Thus, for anyn > 1, the
following property holds :

PROPERTY4.— apx(1,,) = 61, optyaxp,p(In) = 81, Wormaxp,p(In) = 4n.

PROOF-— If the initial tour is described d5 = {ey, ..., e,, e1}, then thedeleting and
turning aroundmethod produces 4 solutior3, ..., P, whereP; = Ug?;ol{{ejﬂ,
€jt+i+1,€j4it2ffori =1,...,4 (indices are considered mag. Figure 1.8 provides

an illustration of this process (the dashed lines corredpothe edges frorfi \ P;).

Observe that any optimal todt on I,, has total weighBn (consider that any tour
contains as many edges with their two endpoints &s edges with their two endpoints
in R). Hence, starting from the optimal cyd& = [r1,...,74n,l1,. .., l4n, 1], ANY
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Figure 1.9. A worst solution and an optimal solution when= 1

of the four solutionsPy, . .., P, output by the algorithm (see Figure 1.8) has value
w(P;) = 6n, while an optimal solutiorP* and a worst solutiof?, are of total weight
respectively8n and4n (see Figure 1.9). Indeed, because &naypartitionP is a2n
edge cut down tour, we get, on the one hamshy . rsp(L) > w(P) and, on the
other handw(P) > 8n — 4n = 4n, which concludes this argument. [

Nevertheless, the deleting and turning around method leatle following weaker
differential approximation relation :

LEMMA 1.— From ane-differential approximation ofMAX TSP, one can polyno-
mially compute ar -differential approximation ofMAxPP. In particular, we de-
duce from [HAS 01, MON 02b] thafl AXP P is %-diﬁerential approximable.

PROOF.— Let us show that the following inequality holds for anytarscel = (Kj,,, w)
of MAXP.P :

1
oPtyaxtsp(f) > mOPtMAkaP(U + wormaxp,p(1) [1.7]

Let P* be an optimal solution of MxP;P, then arbitrarily add some edgesRd

in order to obtain a touf'. From this latter, we can deduée— 1 solutionsP; for

i1 =1,...,k — 1, by applying the deleting and turning around method in sualaga
that any of the solution®; contains(I" \ P*). Thus, we getk — 1)wormaxp,p(I) <
Zf;ll w(P;) = (k = 1w(T') — optyaxp,p(I). Hence, consider that we also have
w(T") < optyaxtsp(l) and the result follows. By applying again the deleting and
turning around method, but this time from a worst tour, we mlaink approximate
solutions of Max P, P, which allows us to deduce :

k
1W0rMAkaP(I) [1-8]

wormaxtsp({) > k
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Finally, letT" be ane-differential approximation of MX TSP, we deduce frorh’
k approximate solutions of MxP.P. If P’ is set to the best one, we gef{P’) >

=w(I") and thus :

k k
> ——w() >
apx(l) 2 7= w(l’) 2 —

(eoptpaxtsp(Z)+ (1 —&)wormaxtsp(1))[1.9]

Using inequalities [1.7], [1.8] and [1.9], we gebx(I) > foptyaxp,p(I) + (1 —
£ )wormaxp,p({) and the proof is complete. n

To conclude with the relationship betweBpP and TSP with respect to their approxi-
mability, observe that the minimization case with respecitandard approximation
also is trickier. Notably, if we consider MMETRICP4P, then the instance family
I = (Ksp,w') built as the same aB, with a distinct weight function defined as
w (i, 0;) = w'(ri,r;) = 1 andw (¢;,r;) = n? + 1 for anys, 7, then we have :
optrsp(1),) = 2n* + 8n whereasptp,p(I},) = 6n.

1.4.2. Approximating P4P by means of optimal matchings

Here starts the analysis, from both a standard and a ditiatgroint of view,
of an algorithm proposed by Hassin and Rubinstein in [HAS @Here the authors
show that the approximate solution is a 3/4-standard apmeation for MAXP 4 P. We
prove that, with respect to the standard ratio, this algoriprovides new approxima-
tion ratios for METRICP 4P, namely : the approximate solution respectively achieves
a 3/2,a 7/6 and a 9/10-standard approximation fanMeTRICP4+P, MINP4P; 5 and
MAXxP4P; 2. As a corollary of a more general result, we also obtain agrmaditive
proof of the result of [HAS 97]. We then prove that, under eliéntial ratio, the ap-
proximate solution is a 1/2-approximation for gendPglP and a 2/3-approximation
for P4P, . In addition to the new approximation bounds that they pieyihe ob-
tained results establish the robustness of the algorittahishaddressed here, since
this latter provides good quality solutions, whatever i@rof the problem we deal
with, whatever approximation framework within which weiggite the approximate
solutions.

Note that the gap between differential and standard appration levels that might
be reached for a maximization problem comes from the fattwhitnin the differential
framework, the approximate value is located within theteégimtervaljwor(I), opt(7)],
instead of[0, opt(I)] for the standard measure. That is the aim of differential ap-
proximation : the reference it does #@r(/) makes this measure both more precise
(relevant with respect to the notion of guaranteed perfagapand more robust (in
the sense that minimizing and maximizing turn to be equivad@d, more generally,
differential ratio is invariant under affine transformatiof the objective function).
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1.4.2.1. Description of the algorithm

The algorithm proposed in [HAS 97] runs in two stages : fitstpmputes an op-
timum weight perfect matching/ on I = (K4,,w); then, it builds on the edges
of M a second optimum weight perfect matchiRgin order to complete the solu-
tion (note that “optimum weight” signifiesfiaximum weiglitif the goal is to maxi-
mize, “minimum weiglitif the goal is to minimize). Precisely, we define the instanc
I' = (Ka,,w") (having a vertex, in Ks,, for each edge € M), where the weight
functionw’ is defined as follows : for any edde., , v, ] onI’, w’'(ve, , ve, ) IS Set to
the weight of the heaviest edge that linksandes in I, that is, ife; = [z1,y1] and
€2 = [x27 yQ]' thenw/(vel ) ’082) = max {w(xlv xQ)v ’LU(Il, ,1/2), w(yla IQ)a w(ylv yQ)}
(when dealing with the minimization version of the problesat the weight to the
lightest). We thus build oK, w’) an optimum weight matching, which is then
transposed to the initial grag,,,, w) by selecting orfy,, the edges that realizes the
same weight. Since the computation of an optimum weightgérhatching is poly-
nomial, the whole algorithm runs in polynomial time, whettree goal is to minimize
or to maximize.

1.4.2.2. GeneralP 4P within the standard framework

For any solutionP, we denote respectively by/» and Rp the set of the end
edges and the set of the middle edges of its paths. Furthermverconsider for any
pathP = {z,y, z,t} of the solution the edgg, =] that completed’ into a cycle. If
Rp denotes the set of these edges, we observetpatR» forms a perfect matching.
Finally, for any edge: € P, we will denote byPr(e) the P4 from the solution that
contains and byC»(e) the 4-edge cycle that contaifi® (e).

LEMMA 2.— For any instancel = (Ky,,w) with optimal solution”* and for any
perfect matching\/, there exist four pairwise disjoint edge sets B, C and D that
verify :

(i) AUB =P*andC U D = Rp-.

(14) AU C and B U D both are perfect matchings dn

(#i1) AU C U M is a perfect 2-matching of whose cycles are of length a multiple
of 4.

PROOF— LetP* = Mp« U Rp~ be an optimal solution, we apply tl@®mbining
perfect matchings process. At the initialization stage, the connected coraptm
of the partial graph induced il UC' U M) are either cycles that alternate edges from
(AU C) and M, or isolated edges from/»- N M. During step2, at each iteration,
the process merges together two connected compone6tsiofo a single cycle that
still alternates edges frofd U C) and M (an illustration of this merging process
is provided in Figure 1.10). Note that all along the procéss,sets4, B, C and D
define a partition o* U Rp- and thus, remain pairwise disjoint.
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Combining perfect matchings
1A<—Mp*,B<—RP*,C<—@,D<—RP*;
SetG’ = (V, AU M) (consider the simple graph) ;
2 While 3 e € Rp- that links two connected components®f, do :
A — A\ (Cp-(e) N Mp-), B«— BU (Cp-(e) N Mp-);
2.1|B «— B\ (C’p* (6) N Rp*), A— AU (C’p* (6) n R"p*) ;
D — D\ (Cp* (e) ﬂ}_fp*), C—CU (Cp*(E) ﬂ}_fp*) ;
22G — (V;AUCUM);
3 OutputA, B, C andD.

e For (i) : Immediate from definition of the process (edges frBinare moved from
A to B, from B to A, but never out ofA U B ; the same holds foR»- and the two
setsC and D).

e For (ii) : At the initialization stageA U C and B U D respectively coincide with
Mp- andRp- U Rp-, each a perfect matching. More precisely, for any gath P*,
if C'(P) denotes the associated 4-edge cycle, tHen C and B U D respectively
contain the perfect matching(P) N Mp- andC(P) N (Rp- U Rp-) onV(P). Now,
at each iteration, the algorithm swaps the perfect matchingt are used i U C or
in BU D in order to cover the vertices of a given pdthand thus, botd U C and
B U D remain perfect matchings.

e For (iii) : At the end of the process, the stopping criterion ensur@sthu C') N
M = § and thus, as the union of two perfect matchinds,) C U M is a perfect
2-matching. Now, consider a cycle of G’ = (V, AU C U M) ; by definition of
step2, any edgee from Rp- that is incident tol' has its two endpoints i (T"),
which means thdt contains either the two edges@h- (e) N Mp-, or the two edges
of Cp«(e) N (Rp~ U Rp-). In other words, if any vertex from any pathP € P*
belongs toV (T"), then the whole vertex séf(P) actually is a subset of (T') and
therefore, we deduce thgt (T')| = 4¢, whereg is the number of path® € P* such
thatT" containsV’'(P). L]

THEOREM 8.— The solutionP’ provided by the algorithm achieves a 3/2-standard
approximation forMINMETRICP 4P and this ratio is tight.

PROOF— LetP* be an optimal solution o = (K4, w). Using Lemma 2 with the
perfect matching/p. of the solutiorP’, we obtain four pairwise disjoint sets, B,

C and D. According to propertyiii), we can splitA U C into two sets4; and A
so thatA; U Mp: (i = 1,2) is a P4-partition (see Figure 1.11 for an illustration).
Hence,A; constitutes an alternative solution fBf, and because this latter is optimal
onl’" = (Ks,,w'), we obtain :

2w(Rp) < w(A) + w(C) [1.10]
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Figure 1.10. The construction of setd andC'
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Figure 1.11. Two possiblé?, partitions deduced froml U C U Mp/

Moreover, item(ii) of Lemma 2 states thd® U D is a perfect matching; sinck/p-
is a minimum weight perfect matching, we deduce :

w(Mp:) < w(B) + w(D) [1.11]

Hence, summing up inequalities [1.10] and [1.11] (and alses@lering item(i) of
Lemma 2), we get :
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Inequality [1.12], combined with the observation thatRr-) < w(P*) (which is
true from the assumption thatsatisfies the triangle inequality), leads to the following
new inequality :

w(Mpr) + 2w(Rpr) < 20Dtynmerrice, p(]) [1.13]

Relation [1.13] together withw(Mp:/) < w(Mp-) < w(P*) complete the proof.
Finally, the tightness is provided by the instance fanijly= (Ks,,w) that has been
described in Property 4. L]

Concerning the maximization case and using Lemma 2, one Isaroatain an
alternative proof of the result given in [HAS 97].

THEOREM 9.— The solutionP’ provided by the algorithm achieves a 3/4-standard
approximation forM AXP4P.

PROOF.— The inequality [1.12] becomes
w(Mpr) + 2w(Rpr) > optyaxp,p(l) +w(Rp-) [1.14]

SinceMp: is @ maximum weight perfect matching, the approximate vatmgously
satisfie® x w(Mp:) > optyaxp,p(l)+w(Rp-) ; hence, we deducexyp,p(f) >

% (OptMAxP4P(I) + w(ﬁp*)) .

1.4.2.3. GeneralP 4P within the differential framework

When dealing with the differential ratio, MP 4P, MINMETRICP 4P, and MaxP 4P
are equivalent to approximate, sirlegP problems belong to the claB&NPQ, [MON 02a].
Note that such an equivalence is more generally true for anple of problems that
only differ by an affine transformation of their objectivenfttion.

THEOREM 10.—The solutior?’ provided by the algorithm achieves a 1/2-differential
approximation forP,P and this ratio is tight.

PrROOF— We consider the maximization version. First, observé f_h;ai is ann-
cardinality matching. Lef/ be any perfect matching dfsuch that\ U Rp- forms
aP4-partition, we have :

w(M) + w(Rp+) > wormaxp,p(1) [1.15]
Adding inequalities [1.14] and [1.15], and sineéMp.) > w(M), we conclude that :

2apxyaxp,p(l) = 2 (W(Mpr) + w(Rpr)) > wormaxp,p(I) + oDPtyaxp,p(])

apXMAXP4P(I) — wormaxp,p(/)
oPtmaxp,p(I) — Wormaxe,p(1)

>1/2

In order to establish the tightness of this ratio, we refaim¢p Property 4. m
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1.4.2.4.Bi-valued metridP 4P with weights 1 & 2 within the standard framework

As it has been recently done forIMTSP in [BER 06, BI05] and because such
an analysis enables a keener comprehension of a giventalgosve now focus on
instances where any edge weight is either 1 or 2. Note thate gheP,-partition
problem isNP-complete, the problems MP,P; » and MINP4P;  still are NP-
hard.

Let us first introduce some more notation. For a given ingdne (K4, w) of
P4P; 2 with w(e) € {1,2}, we denote byMp: ; (resp, by Rp ;) the set of edges
from Mp: (resp, from Rp/) that are of weight. If we aim at maximizing, themp
(resp, ¢) indicates the cardinality af/p- o (resp, of Rp/ 2); otherwise, it indicates
the quantity Mp: 1| (resp, |Rp- 1]). In any casep andgq respectively count the num-
ber of “optimum weight edgé the setsMp. and Rp-. With respect to the optimal
solution, we define the sefgp- ;, Rp- ; for i = 1,2 and the cardinalitieg*, ¢* as
the same. Wlog., we may assume that the following propevtsyd holds forP* :

PROPERTY5.— For any 3-edge patl® € P*,
|P N Mp-« 2| > |PN Rp-~ 9| if the goal is to maximize,
|P N Mp«1| > |PN Rp- 1] if the goal is to minimize.

PROOF— Assume that the goal is to maximize|H N Mp- 2| < |P N Rp~ 2|, then
P* would contain a pattP? = {[z,y], [y, 2], [z, ]} with w(z,y) = w(z,t) = 1 and
w(y, z) = 2, thus, by swappind@ for P’ = {[y, z], [z, t], [t, z]} within P*, one could
generate an alternative optimal solution. L]

LEMMA 3.— For any instancd = (K4,,w), if P’ is a feasible solution an®* is an
optimal solution, then there exists an edge 4¢hat verifies :

(i) A C Mp+ U Rp- o (resp, A C Mp- 1 U Rp+ 1) and|A| = ¢* if the goal is to
maximize (esp, to minimize) ;

(i) G' = (V, Mp, U A) is a simple graph made of pairwise disjoint paths.

PROOF— We only prove the maximization case. We now consifethe multi-graph
induced byMp: U Rp- o (the edges fromMp: N Rp« o appear twice). This graph
consists of elementary cycles and paths : its cycles aleredges fromM/p, and
Rp- o (in particular, the 2-edge cycles correspond to the edges fRp- o N Mp/);
its paths (that may be of length 1) also alternate edges fefynand Rp- o, with the
particularity that their end edges all belongitfy. .

LetT be a cycle orG’ ande be an edge fronh' N Rp-« 2. If Pp«(e) = {x,vy, 2, t}
denotes the path from the optimal solution that contajiikene = [y, z]. The initial
vertexz of the pathPp-(e) necessarily is the endpoint of some path fr6fn other-
wise, the edgér, y] from Pp«(e) N Mp- would be incident to 2 distinct edges from
Rp+, which would contradict the fact th&* is aP, partition. The same obviously
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Figure 1.12. The construction of set

holds fort. W.l.o.g., we may assume from Property 5 thaty] € Mp- 2. In light of
these remarks and in order to build an edgesttat fulfills the requirements) and
(i1), we proceed as follows :

Combining matchings
1 SetA = Rp-« 2; SetG' = (V, AU Mp/) (consider the multi-graph);
2 While there exists a cyclE in G', do :
Picke fromI' N Rp- 2}
2.1 |Pick f from Pp-(e) N Mp= 2 ;
A— A\{e} U{f};
22G — (V,AUMp:);
3 OutputA.

By construction, the sefl output by the algorithm is of cardinality* and contains
exclusively edges of weight 2. Furthermore, each iteratibstep2 merges a cycle

and a path ofA U Mp into a path (an illustration of this merging operation is\pded

by Figure 1.12). Hence, the stopping criterion ensures ttathe end of this step,

G' = (V,AU Mp) is a simple graph whose connected components are elementary
paths. Finally, the existence of edfiat step2.1 directly comes from Property 5. m

THEOREM 11.— The solutiorP’ provided by the algorithm achieves a 9/10-standard
approximation forMAXP4P; » and a 7/6-standard approximation foMINP 4P .
These ratios are tight.

PROOF.— Let considerd the edge subset of the optimal solution that may be deduced
from the application of Lemma 3 to the approximate solutiéa.arbitrarily complete

A by means of an edge sBtso thatA U B U Mp: constitutes a perfect 2-matching.
As we did while proving Theorem 8, we split the edge det) B into two setsA;

and A in order to obtain twdP4-partitions Mp: U A; and Mp: U Az of V(Kyy,).

As both A; and A, completeMp: into aPy-partition and becausBp is optimal,
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we deduce tha#l; does not contain moreoptimum weight edgéshan Rp/, that is :
q > |{e € A; : w(e) = 2}| if the goal is to maximizeq > |{e € A; : w(e) = 1}
otherwise. Sincel C A; U A and|A| = ¢*, we immediately deduce :

q>q"/2 [1.16]
On the other hand, by the optimality 815 :

p = max{p®, ¢"} [1.17]
Moreover, the quantities* andg* structurally verify :

n > max{p*/2,q"} [1.18]
Finally, we can express the value of any solutjpas :

w(P) = 3n+ (p + q) (if goal = max), 6n — (p + ¢) (if goal = min) [1.19]

The claimed results can now be obtained from inequalitiesg[1[1.17], [1.18] and
[1.19]:

1oapXMAxP4P1,2(I) = 10 (3n+p+q)
= 93n) + 3n 4+ 9 + p + 10¢
> 9(3n) + 3¢° + 9* + ¢ + 5¢°
= 9B3n+p* +q°) = 9oPtyaxp,p, , (1)
6apXMINP4P1,2(I) = 6(671 )
= 6(6n) - 6p — 6q
< 6(6n) — 6p* — 3¢"
< 6(6n) — 6p* — 3¢* + (2n—p*)+4(n—q)
< 7(6n p —q)—70ptM|NP4P1,2(I)

The tightness for MxP4P;  is established in the instanée= (K5, w) depicted in
Figure 1.13, where the edges of weight 2 are drawn in contisline, and the edges
of weight 1 onP* andP’ are drawn in dotted line (the other edges are not drawn).
One can easily seeoptyap,p, ,(I) = 10 andapxyayp,p, , (I) = 9. Concerning
the minimization case, the ratio is tight on the instadce- (K5, w) that verifies :
opt(J) = w(P*) = 6 andapx(J) = w(P’') = 7. J = (Ks,w) is depicted in Figure
1.14 (the 1-weight edges are drawn in continuous line an@-tveight edges of®*
andP’ are drawn in dotted line). m
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L
[

I=(Ks,w) P* P’

Figure1.13. Instancel = (K3, w) that establishes the tightness for
MAXP,4 P172

J = (Ks,w) P* P’

Figure1.14. Instancel = (K3, w) that establishes the tightness for
MINP4 P172

1.4.2.5. Bi-valued metrid?4 P with weightsa andb within the differential framework

As we have already mentioned, the differential measurevariant under affine
transformation ; now, any instance fromaMP 4P, ; or from MINP 4P, ; can be map-
ped into an instance of MxP4P; » by the way of such a transformation. Thus, pro-
ving MAXP4P;  is e-differential approximable actually establishes thani®4P, ;
and MaxP4P, , arec-differential approximable for any couple of real values b.
We demonstrate here that Hassin and Rubinstein algorithie\aes a 2/3-differential
approximation fo®4P; > and hence, foP4P, ;, for any couple of reals < b.

Let] = (K4y,w) be aninstance of MxP4P; . We recall the notation introduced
while proving Theorem 11 p = |Mp/ 2|, p* = |Mp+2|, ¢ = |Rp: 2| andg¢* =
|Rp+ o|. Furthermore, foi = 1,2, 7 will refer to the set of paths fror®’ whose
central edge is of weight Note that the paths fro&! may be of total weight 3, 4 or
5, whereas the paths frof? may be of total weight 5 or 6 (at least one extremal edge
must be of weight 2, oMp: is not an optimum weight matching). We will denote by



32 Les 30 ans du LAMSADE

S

1|
My, 1,

-®
8 & —— -0 <,

Figure 1.15. 1-weight edges o (M3,)

F2 andFZ the paths frons? that are of total weight 5 and 6, respectively. Finally, for
i = 1,2, M}, will refer to the set of edges € Mp: such thatPp:(e) € F* (thatis,e

is element of a path fro®’ whose central edge has weightBy [1.16] and [1.17],
we get :

optMAXp4P1)2(I) < min {3n + p + 2¢,3n + 2p} [1.20]

To obtain a differential approximation, one also has to pogdan efficient bound
for wormaxp,p, , (I). TO do so, we exploit the optimality af/», and Rp: in order to
exhibit some edges of weight 1 that will enable us to appraxéthe worst solution.
We first consider the vertices froli(F?!) : they are €asy to cover by means of 3-
edge paths of total weight 3, since we may immediately dettocethe optimality of
Rp: the following property (an illustration is provided by Figul.15, where dotted
lines indicate edges of weight 1 and dashed lines indicatpeasified weight edges) :

PROPERTY6.— [z,y] # [2/,y'] € M}, = Y(u,v) € {z,y} x{2',y'}, w(u,v) =1

We now consider the vertices froii(F2). Let P = {z,y,2,t} with [z,y] €
Mp: 5 be a path fromFZ, we deduce from the optimality df/»/ thatw(t,z) = 1;
hence, the 3-edge pat = {y, z,t,z} covers the vertice$§z, y, z,t} with a total
weight4. Let us assume that? = (), then we are able to build B, partition of
V(K4,) using3n — | F2| edges of weight 1 andFZ| edges of weight 2 (one edge of
weight 2 is used for each path frafiZ). Hence, a worst solution costs at mdst+ g,
while the approximate solution is of total weighit + p + ¢. Thus, using relation
[1.20], we would be able to conclude thBt is a (2/3)-approximation. Of course,
there is no reason faFZ = 0; nevertheless, this discussion has brought to the fore
the following fact : the difficult point of the proof lies in ¢hpartitioning ofV (FZ)
into “light” 3-edge paths. In order to deal with these vertices, we fiesegwo more
properties that are immediate from the optimalitydéf, and Rp., respectively.

[z,y] € Mp/ 1 and[z’,y'] € Mp: o

PROPERTYT.~ { = min{w(z,2), w(y,y')} = min {w(z,y), w(y,2')} =1

PROPERTY 8.— If [z,y] # [2/,y] € M}, and Ppr = {«a,f3,7v,6} € F?, then :
{ max {w(u,v)|(u,v) € {a, B} x {z,y}} =2
) (u,v)

= max{w(u,v)|(u,v) € {v,0} x {2',y'}} =1
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Figure 1.16. 1-weight edges that may be deduced from the optimalify,of

y B ¥ Y’ v 8 ¥ Y

?2—?—’ , *e———o [ ) { ]
1 [ | | 1
Mo 1 Fe | Mps

° ° ® ¢ ° ° ° °

xT « 6 Jf/ xT « 6 .fCl

Figure1.17. AP, partition of (P, e1, e2) € F& x (M3,)? of total weight at
most 7

Anillustration of this latter Property is proposed in Figur.16, where continuous
and dotted lines respectively indicate 2- and 1-weight sedgdereas dashed lines
indicate unspecified weight edges. Properties 7 and 8 géveltle on how to incorpo-
rate the vertices af¢ into a packing of light” P4. The construction of these paths is
formalized in the following Property and illustrated in big 1.17.

PROPERTY9.— Given a pathP € F§ and two edge$r, y| # [2/,y'] € M}, there
exists aP4 partition F = { Py, P,} of (V(P)U{z,y,2’,y'} ) thatis of total weight at
most8. Furthermore, iflz, y] and[z’, y'] both belong ta\/»- 1, then we can decrease
this weight down to (at most)

PROOF— ConsiderP = {«a,f,v,6} € Fg and[z,y] # [2/,y] € Mp,. We set
P, ={a,z,2',0} and P, = {5,y,v’,v}. We know from Property 6 that(x, ') =
w(y,y’) = 1. Thus, if every edge froMa, 3,v,0} x {z,2’,y,y'} is of weight 1,
then P, U P, has a total weight 6. Conversely, if there exists a 2-weiglgeethat
links a vertex from{a, 38,7, } to a vertex from{z, 2/, y,y'}, we may assume that
[3, 9] is such an edge ; we then deduce from Property 8uffétz’) = w(vy,y’) =1
and hence, thaP, U P, is of total weight at most 8. Finally, ifv(z,y) = 1, then
w(a, ) = 1 from Property 7 and thusy(P;) + w(Pz) = 7. [

We now are able to compute an approximate worst solutionpiftatides an effi-
cient upper bound fowormaxp,p, . (1)-
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*———— 0 [ ——— 06— °

Figure 1.18. A partition of P’

LEMMA 4.— Let] = (K4,,w) be an instance oMINP,P; > and letP’ be the
solution provided by Hassin and Rubinstein algorithm/o®ne can compute oha
solutionP, that verifies :

Pt ax < g+ (17 = [p1/2)" + (17| —n+a)F

wherep,, ¢. andp} are defined ap. = |Mp_ 5|, ¢ = |Rp, 2| andp} = |M}, N
Mp 1| (and expressioX T is equivalent tanax { X, 0}).

PROOF.— The proof is algorithmic, based on algorittpproximate Worst P4P.
Note that, even though this has no impact on the rightnedseoptoof, the compu-
tation of P, has a polynomial runtime. This means that the good propeafi¢he
approximate solutio®’ enable to really exhibit an approximate worst solution (and
not only to provide an evaluation of such a solution, as ifisrothe case while stating
differential approximation results).

In order to estimate the value of the approximate worst sniu®,, one has to count
the numbep., + ¢. of 2-weight edges it contains. Lgt refer to| M4, N Mp. ;| for

i = 1,2 (the cardinalityp} enables the expression of the number of iterations during
stepl). Stepsl, 2 and3 respectively put intd,. at most one, two and three 2-weight
edges per iteration. Any path froffig is treated by one of the three steps2 and

3. 1f 2| 72| > pl, only | F¢| — |pl/2] paths fromFZ are treated by one of the steps
2 and3. Finally, if | FZ| > |F!|, only | FZ| — | F!| paths fromF¢ are treated during
step 3. Furthermore, steipputs at mostF?| 2-weight edges int®.. (at most one per
iteration), while step8 and5 do not incorporate any 2-weight edges witfn. Thus,
considering; = | 72| + | 72| and|F!| = n — ¢, we obtain the announced result.m

Let us introduce some more notation. Analogouslyto= 72 U 72, we define a
partition of ! into three subset&}, 7} andF} according to the path total weight.
Note that, since the subse®§ define a partition of>’, we haven = | 73| + |F}| +
| F3| + | F2| + | F2| (see Figure 1.18 for an illustration of this partition ; trdges of
weight 2 are drawn in continuous lines whereas the edges ighwvé are drawn in
dotted lines).
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Approximate Worst P4P
1 While 3{P,e,e2} C P s.t. (Pyer,e2) € Fg x Mp, 1 x Mp,
1.1 ComputeF = {P;, P} onV(P) UV (e1) UV (e2) with w(F) <7
according to Property 9;
1.2P «— 'P\{P,el,eg}, P — P U{Pl,PQ};
2 While 3{P,e1,e2} C P s.t. (P, e1,e2) € Fg x Mp, x Mz,
2.1 ComputeF = {P1, B} onV(P) UV (e1) UV (ez) with w(F) < 8
according to Property 9;
2.2P<—P\{P,€1,€2}, P — Py U{Pl,PQ};
3 While3P C Ps.t. P e F
31P«— P\ P, P. — P.U{P};
4 While3P C P s.t. P e F2
4.1 ComputeF = {P;} onV (P) with w(F) < 4;
42P «— P\ P, P, — P, U{P1};
5 While 3{e1, e} C P s.t. (e1,e2) € Mp, x M},
5.1 ComputeF = {P;} onV (e1) UV (ez) with w(F) = 3;
5.2P<—P\€1,62, P <—P*U{P1};
6 OutputP,.

The following Lemma states three relations between the lesupf quantities
(p,q), (p*,¢*) and(p., ¢.) that determine the value of the approximate solution, the
considered optimal solution and the approximate worsttgsiurespectively.

LEMMA 5.—
p = ¢+ (F-pi/2)7" [1.21]
2¢ > ¢+ (Fe+q—n)T [1.22]
¢ = peta— (7= o120 = (1Fl+q—n)" [1.23]

PROOF.— Inequality [1.21] : Obvious if 72| < [pi/2], sincep > ¢* (inequality
[1.17]). Otherwise, one can writeas the sunp = n + |F2| + |F2| — |Fa|. Then
observe thatF2| — | Fi| is precisely the half of the difference between the number of
2-weight and of 1-weight edges M3, : indeedpl = | F}| + 2|F2| andpi = | F4| +
2|F1| and thusps — pt = 2(|]F2| — | F4|). From this latter equality, we deduce th#ét
andpl have the same parity, or, equivalently, that2) (pi — pl) = |p3/2] — [pi/2].
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We deducep = n+ |F&| + |pi/2] — |p1/2] > n+|FE| — |pt/2]. Just observe that
n > ¢* (inequality [1.18]) in order to conclude.

Inequality [1.22] : Obvious if 73| < n — g, from inequality [1.16]. Otherwise, consi-
derthaty > | 72| (by definition ofg andF2) andn > ¢* (inequality [1.18]) ; therefore,
q > |FE| = |FE1+ (q* —n).

Inequality [1.23] : Immediate from Lemma 5. m

THEOREM 12.— The solutiorP’ provided by the algorithm achieves a 2/3-differential
approximation forP 4P, ; and this ratio is tight.

PROOF— By summing inequalities [1.21] to [1.23], together wiih > 2p*, we obtain
the expected result :

3Bn+p+q)
2n+p* +q°) + Bn+ps +q.)
20Ptmaxp Py, (1) + WOTMaxP, Py, (1)

3apxyaxp,p(l)

v 1l

The tightness is provided by the instarice- (K5, w) that is shown on Figure 1.13;
since this instance contains some ventesuch that any edge fromis of weight 2,
the result follows. [

1.5. Conclusion

Whereas both the complexity and the approximation statb®ohded-size paths
packing problems in bipartite graphs with maximum degreav&lbeen decided here,
there remain some open questions : notably, the complekiiynN@UCED) P PAR-
TITION for & > 4 and theAPX-hardness of MX (INDUCED)P; PACKING for k > 4
in planar bipartite graphs with maximum degree 3. Thosettpresmatter because,
by drawing the precise frontier between “easy” and “hardstamces of those pro-
blems, they participate to a better understanding of wh&enttze problems tractable
or intractable. However, it also matters to obtain bettg@ragpimation bounds; in par-
ticular, concerning MX WP PACKING and MINk-PATHPARTITION : as we have al-
ready mentioned, there are no specific approximation iethdt exploit the specific
structure of these problems. Even the results we propogednerobtained by means
of quite naive algorithms; thus, one could expect bettembswsing more sophisti-
cated algorithms. Finally, an important question concémesapproximation oP; P,
and may be more specifically the one ofWMETRICP P, because of its relations to
the minimum vehicle routing problem. We were here intekdtethe analysis of a
given algorithm, but not really in the improvement of the apg@mation bounds for
P, P. However, one could expect better and moreover, the fallpguestion remains
open : does the problem admiPEZAS?
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