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ALMOST SURE CONVERGENCE OF RANDOMLY TRUNCATED

STOCHASTIC ALGORITHMS UNDER VERIFIABLE CONDITIONS

JÉRÔME LELONG

Abstract. In this paper, we are interested in the almost sure convergence of randomly
truncated stochastic algorithms. In their pioneer work, Chen and Zhu (1986) required that
the family of the noise terms is summable to ensure the convergence. In our paper, we present
a new convergence theorem which extends the already known results by making vanish this
condition on the noise terms — a condition which is quite hard to check in practice. The aim
of this work is to prove an almost sure convergence result of randomly truncated stochastic
algorithms under easily verifiable conditions (see Theorem 1).

Key words. stochastic approximation, randomly truncated algorithms, almost sure conver-
gence.

1. Introduction

The localisation of the zeros of a function u is a quite complicated problem for which
many techniques have already been developed. The use of stochastic algorithms is widely
spread for solving such problems. Stochastic algorithms are particularly well suited where
some on-line parameter estimation is needed. Such algorithms go back to the pioneer work
of Robbins and Monro (1951). They proposed to consider the following recurrence relation

Xn+1 = Xn − γn+1u(Xn) − γn+1δMn+1,

where γn is a decreasing gain sequence and ∆mn the measurement error. Under certain
conditions on the growth of the L2−norm of the error, Xn converges almost surely to the
unique root of u. Since their work, much attention has been drawn to the study of the theory
of such recursive approximations. The first works were dealing with independent measurement
error on the observations. A great effort was made in this direction to weaken the conditions
imposed on both the regressive function and the noise term. Using the ordinary differential
equation technique, Kushner and Clark (1978) proved a convergence result for a wider range
of measurement noises and in particular for martingale increments.

One major drawback of these algorithms is that their convergence can only be established
if the function u does not grow too quickly, namely a sub-linear behaviour is required. This
is a dramatic restriction for practical applications. Chen and Zhu (1986) have found a way to
get round the restriction by considering stochastic algorithms truncated at randomly varying
bounds. Their algorithm can be written

Xn+1 = Xn − γn+1u(Xn) − γn+1δMn+1 − γn+1pn+1, (1)

where pn is a truncation term.
In this paper, we are concerned with the convergence of the truncated algorithm (1). Several

results already exist but the hypotheses considered differ quite significantly. The first result
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concerning the almost sure convergence is due to Chen and Zhu (1986). The convergence
was also studied by Delyon (1996) and Delyon et al. (1999). The robustness of the procedure
was established by Chen et al. (1988) under global hypotheses on the measurement error.
Namely, they require that the series

∑

n γnδMn converges almost surely. Delyon (1996) has
also studied the almost sure convergence under local hypotheses on the measurement noise.
Here, we give a self-contained proof of the convergence under local hypotheses, that is we
only assume that

∑

n γnδMn1{Xn∈K} converges almost surely for any compact set K. We do
not impose any condition on the truncation term pn.

First, we define the general framework and explain the algorithm developed by
Chen and Zhu (1986). Our main result is stated in Theorem 2 in a very general way. For
practical purposes, we give in Theorem 1 an easily verifiable condition under which our main
result holds. This theorem is extremely valuable and dramatically extends the range of ap-
plications of randomly truncated stochastic algorithms. Finally, Section 4 is devoted to the
proof of the general convergence theorem.

2. General framework

Let us consider a general problem consisting in finding the root of a continuous function
u : X ∈ Rd 7−→ u(X) ∈ Rd, defined as an expectation on a probability space (Ω,A,P).

u(X) = E(U(X,Z)), (2)

where Z is a random variable in Rm and U a measurable function defined on Rd×Rm into Rd.
We assume that x −→ E(‖U(x,Z)‖2) grow faster that ‖x‖2, so that the convergence of the
standard Robbins Monro algorithm is not guarantied. Instead, we consider the alternative
procedure proposed by Chen and Zhu (1986), on which we concentrate in this work.

The technique consists in forcing the algorithm to remain in an increasing sequence of
compact sets. Somehow, it prevents the algorithm from blowing up during the ”first” steps.

We consider an increasing sequence of compact sets (Kj)j

∞
⋃

j=0

Kj = Rd and ∀j, Kj  int(Kj+1) . (3)

We also introduce (Zn)n an independent and identically distributed sequence of random vari-
ables following the law of Z and (γn)n a decreasing sequence of positive real numbers. γn

is often called the gain sequence. For any deterministic X0 ∈ K0 and σ0 = 0, we define the
sequences of random variables (Xn)n and (σn)n.















Xn+ 1
2

= Xn − γn+1U(Xn, Zn+1),

if Xn+ 1
2
∈ Kσn Xn+1 = Xn+ 1

2
and σn+1 = σn,

if Xn+ 1
2

/∈ Kσn Xn+1 = X0 and σn+1 = σn + 1.

(4)

Remark 1. When Xn+ 1
2

/∈ Kσn , one can set Xn+1 to any measurable function of (X0, . . . ,Xn)

with values in a given compact set. This existence of such a compact set is definitely essential
to prove the a.s. convergence of (Xn)n.

Remark 2. Xn+ 1
2

represents the iterate of the Robbins Monro algorithm at step n + 1.
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We introduce Fn = σ(Zk; k ≤ n) the σ-field generated by the random vectors Zk, for k ≤ n.
Note that Xn is Fn−measurable since X0 is deterministic and U measurable. We can write
u(Xn) = E[U(Xn, Zn+1)|Fn].

It is often more convenient to rewrite (4) as follows

Xn+1 = Xn − γn+1u(Xn) − γn+1δMn+1 + γn+1pn+1 (5)

where

δMn+1 = U(Xn, Zn+1) − u(Xn), (6)

and pn+1 =

{

u(Xn) + δMn+1 + 1
γn+1

(X0 − Xn) if Xn+ 1
2

/∈ Kσn ,

0 otherwise.
(7)

Remark 3. δMn is a martingale increment. The case of the standard Robbins Monro algo-
rithm corresponds to pn = 0.

3. Almost sure convergence

In this section, we present a new convergence theorem that improves the result of
Chen and Zhu (1986) who proved the almost sure convergence under global hypotheses on the
series

∑

n γn+1δMn+1 whereas we can manage the proof under local hypotheses only, namely

we only assume that the function x 7−→ E(‖U(x,Z)‖2) is bounded on all compact sets. Such
a local hypothesis is much easier to satisfy in practical applications.

Theorem 1. We assume that

(A1) There exists a unique x⋆ s.t. u(x⋆) = 0 and ∀x 6= x⋆, (u(x)|(x − x⋆)) > 0.

(A2)
∑

n γn = ∞ and
∑

n γ2
n < ∞.

(A3) The function x 7−→ E(‖U(x,Z)‖2) is bounded on any compact sets.

Then, the sequence (Xn)n converges a.s. to x⋆ for any sequence of compact sets satisfying (3)
and moreover the sequence (σn)n is a.s. finite (i.e. for n large enough pn = 0 a.s.).

We will not prove Theorem 1 directly as it actually derives from a more general result.

Theorem 2. Under Hypothesis (A1) and if

(A4)
∑

n γn = ∞.

(A5) For all q > 0, the series
∑

n γn+1δMn+11{‖Xn−x⋆‖≤q} converges almost surely.

Then, the sequence (Xn)n converges a.s. to x⋆ and moreover the sequence (σn)n is a.s. finite
(i.e. for n large enough pn = 0 a.s.).

Remark 4. In the case where u derives from a potential V (i.e. u = ∇V ), Hypothesis (A1)
is satisfied as soon as V is strictly convex.

Proof of Theorem 1. It is sufficient to prove that the hypotheses of Theorem 1 imply the
ones of Theorem 2. Consider Mn =

∑n
i=1 γiδMi1{‖Xi−1−x⋆‖≤q}, (Mn)n is a martingale. By

computing its angle bracket, we find 〈M〉n =
∑n

i=1 γ2
i E(δMiδM

′
i |Fi−1)1{‖Xi−1−x⋆‖≤q}. As

the series
∑

i γ2
i converges and the function x 7−→ E(‖U(x,Z)‖2) is bounded on all compact

sets, the almost sure convergence of 〈M〉n ensues from the Strong Law for square integrable
martingales. Hence, we can apply Theorem 2, and the conclusion yields. �
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4. Proof of Theorem 2

The proof of Theorem 2 is based on the following lemma which establishes a condition for
the sequence (Xn)n to be a.s. compact.

Lemma 1. If for all q > 0, the series
∑

n>0 γnδMn1{‖Xn−1−x⋆‖<q} converges a.s. and if
pn1{‖Xn−1−x⋆‖<q} −→ 0, then the sequence (Xn)n remains a.s. in a compact set.

Note that the compact set mentioned in Lemma 1 is random. In particular, this lemma
does not imply that the number of truncations is bounded independently of the randomness ω.

Proof of Theorem 2. The proof is divided in two parts.

• Let q > 0. We define M̄n =
∑n

i=1 γiδMi1{‖Xi−1−x⋆‖≤q}. Thanks to Hypothesis (A5),

M̄n converges almost surely.
Assume that σn −→ ∞. This is in contradiction with the conclusion of Lemma 1,

which implies that the hypothesis according to which pn1{‖Xn−1−x⋆‖<q} tends to 0
does not hold. So,

∃ η > 0, q > 0, ∀N > 0, ∃n > N 1{‖Xn−x⋆‖≤q} ‖pn+1‖ > η.

Let ε > 0. There exists a subsequence Xφ(n) such that for all n > 0,1{‖Xφ(n)−x⋆‖≤q}

∥

∥pφ(n)+1

∥

∥ 6= 0 and
∥

∥γφ(n)+1δMφ(n)+1

∥

∥ ≤ ε.

So,
∥

∥Xφ(n) − x⋆
∥

∥ ≤ q and however the new potential iterate Xφ(n)+ 1
2

= Xφ(n) −
γφ(n)+1(u(Xφ(n))+δMφ(n)+1) is not in Kσφ(n)

. Since u is continuous,
∥

∥γφ(n)+1u(Xφ(n))
∥

∥

can be made smaller than ε. As
∥

∥γφ(n)+1δMφ(n)+1

∥

∥ ≤ ε, a proper choice of ε enables
to write

∥

∥Xφ(n) − x⋆ − γφ(n)+1(u(Xφ(n)) + δMφ(n)+1)
∥

∥ ≤ q + 1.

Let l be the smallest integer s.t. B(x⋆, q + 1) ⊂ Kl (such an integer exists thanks to
(3)), then σφ(n) < l for all n. Since the sequence (σn)n is increasing, this proves that
lim supn σn < ∞ a.s..

• According to the previous item lim supn σn < ∞ a.s.. So, the sequence (Xn)n is almost
surely compact. Consequently, we can in fact set q = ∞ in Hypothesis (A5) and say
that

∑

i γiδMi converges almost surely. Let us consider

X ′
n = Xn −

∞
∑

i=n+1

γiδMi.

Since the series
∑

i>0 γiδMi converges a.s. and Xn remains in a compact set, X ′
n also

remains in a compact set. Let C be this compact set. We define ū = supx∈C ‖u(x)‖.

X ′
n+1 = X ′

n − γn+1u(X ′
n) + γn+1εn,

where εn = u(X ′
n)− u(Xn). Since ‖X ′

n − Xn‖ −→ 0 and u is continuous, ‖εn‖ −→ 0.

∥

∥X ′
n+1 − x⋆

∥

∥

2 ≤
∥

∥X ′
n − x⋆

∥

∥

2 −2γn+1(X
′
n − x⋆ | u(X ′

n))

+ γ2
n+1(ε

2
n + ū2) − 2γn+1(X

′
n − x⋆ | εn).

We can rewrite the inequality introducing a new sequence ε′n −→ 0.
∥

∥X ′
n+1 − x⋆

∥

∥

2 ≤
∥

∥X ′
n − x⋆

∥

∥

2 −2γn+1(X
′
n − x⋆ | u(X ′

n)) + γn+1ε
′
n. (8)
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Let δ > 0. If ‖X ′
n − x⋆‖2 > δ, then (X ′

n − x⋆ , u(X ′
n)) > c > 0. Henceforth, for n

large enough Equation (8) becomes
∥

∥X ′
n+1 − x⋆

∥

∥

2 ≤
∥

∥X ′
n − x⋆

∥

∥

2 −γn+1c1{‖X′

n−x⋆‖2>δ} + γn+1(c̄ + ε′n)1{‖X′

n−x⋆‖2≤δ},

where c̄ = sup‖x−x⋆‖2≤δ(x − x⋆|u(x)). Since
∑

n γn = ∞, each time ‖X ′
n − x⋆‖2 > δ,

the sequence X ′
n is driven back into the ball B̄(x⋆,

√
δ) in a finite number of steps.

Hence, for any n large enough
∥

∥X ′
n − x⋆

∥

∥

2
< δ + γφ(n)+1(c̄ + ε′φ(n)),

where φ(n) = sup{p ≤ n;
∥

∥X ′
p − x⋆

∥

∥

2 ≤ δ}. As φ(n) a.s. tends to infinity with n,

lim supn ‖X ′
n − x⋆‖2 ≤ δ for all δ > 0. This proves that X ′

n −→ x⋆. Finally, since the
series

∑

n γn+1δMn+1 converges, this also proves that Xn −→ x⋆.

�

Now, we are going to prove Lemma 1.

Proof of Lemma 1. If σn < ∞ a.s., the conclusion of the Lemma is obvious. Assume that
σn −→ ∞. Since each time σn increases, the sequence Xn is reset to a fixed point of K0, the
existence of a compact set in which the sequence lies infinitely often is straightforward.

Let M > 0, we set C = {x ; ‖x − x⋆‖2 ≤ M}. We can rewrite the Hypotheses of the Lemma
as follows

∀ε > 0, ∃ N > 0 s.t. ∀ n, p ≥ N we have



















∥

∥

∥

∥

∥

p
∑

k=n

γkδMk1{‖Xk−1−x⋆‖2≤M+2}

∥

∥

∥

∥

∥

< ε,

γn < ε,1{‖Xn−1−x⋆‖2≤M+2} ‖pn‖ < ε.

(9)

Let ε > 0 and N > 0 satisfying Condition (9) and s.t. XN ∈ C. We introduce

X ′
n = Xn −

∞
∑

i=n+1

γiδMi1{‖Xi−1−x⋆‖2≤M+2}.

By using Equation (5), we can easily show that X ′
n satisfies the following recurrence relation

X ′
n+1 = X ′

n − γn+1δMn+11{‖Xn−x⋆‖2>M+2} − γn+1(u(Xn) − pn+1). (10)

We will now prove that the sequence (X ′
n)n remains in the set {x; ‖x − x⋆‖2 ≤ M +1} = C′.

The recurrent hypothesis is satisfied for n = N (it is sufficient to choose ε < 1). Assume

that the hypothesis holds for N, . . . , n. Hence, ‖Xn − x⋆‖2 ≤ M + 2. Then, we can deduce
from Equation (10) that

X ′
n+1 = X ′

n − γn+1(u(Xn) − pn+1),
∥

∥X ′
n+1 − x⋆

∥

∥

2 ≤
∥

∥X ′
n − x⋆

∥

∥

2 −2γn+1(X
′
n − x⋆ | u(Xn)) + γn+1c ε,

where c is a positive constant independent of M .

• If ‖X ′
n − x⋆‖2 ≤ M , thanks to the continuity of u, a proper choice of ε ensures that

γn+1 ‖(X ′
n − x⋆ | u(Xn))‖ < 1. Hence,

∥

∥X ′
n+1 − x⋆

∥

∥

2 ≤ M + 1.
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• If M < ‖X ′
n − x⋆‖2 ≤ M + 1, thanks to the continuity of u and thanks to Hypothe-

sis (A1), (Xn − x⋆ | u(Xn)) > δ > 0. Once again, properly choosing ε guaranties that

cε < δ. Consequently,
∥

∥X ′
n+1 − x⋆

∥

∥

2 ≤ M + 1.

We have proved that for all n > N , ‖X ′
n − x⋆‖2 ≤ M + 1. Since ε can be chosen smaller

than 1, the following upper-bound also holds

‖Xn − x⋆‖2 ≤ M + 2, for all n > N.

This achieves to prove that the sequence (Xn)n remains in a compact set and consequently
that lim supn σn is a.s. finite. �

Acknowledgement. I would like to thank Bernard Lapeyre for the fruitful remarks he made
on a previous version of the proof presented above.
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