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Introduction

The paper deals with the modeling of the in-cylinder residual gas fraction in Spark Ignition (SI) engine with Variable Camshaft Timing (VCT) for engine control.

In this context, experimental measurements are complex and costly to obtain. On the other hand, a simulator built from physical knowledge can be available but cannot be embedded in a real time controller.

In engine control design (modeling, simulation, control synthesis, implementation and test), two types of models are commonly used:

• Low frequency models or Mean Value Engine Models (MVEM) with average parameters on the engine cycle. These models are often used in real time engine control [START_REF] Chevalier | On the validity of mean value engine models during transient operation[END_REF][START_REF] Guzzella | Introduction to Modeling and control of Internal Combustion Engine Systems[END_REF]. However, they must be calibrated on experiments in sufficiently large number in order to be representative.

• High frequency simulation models that can simulate the evolution of the variables during the engine cycle [START_REF] Heywood | Internal Combustion Engines Fundamentals[END_REF]. These models, of various complexity from zero-dimensional to three-dimensional models, are mostly based on fewer parameters with physical meaning. However, they cannot be embedded in real time controllers.

The idea is thus to build an embeddable black box model by taking into account a prior simulation model, which is representative but possibly biased, in order to limit the number of required measurements. This problem amounts to a regression problem in which prior knowledge is available in the form of simulation data.

In non-linear function approximation, kernel methods, and more particularly Support Vector Regression (SVR) [START_REF] Vapnik | The nature of statistical learning theory[END_REF], have proved to be able to give excellent performances in various applications [START_REF] Müller | Predicting time series with support vector machines[END_REF][START_REF] Stitson | Support vector regression with ANOVA decomposition kernels[END_REF][START_REF] Mattera | Support vector machines for dynamic reconstruction of a chaotic system[END_REF]. SVR originally consists in finding the function that has at most a deviation ε from the training samples with the smallest complexity [START_REF] Smola | A tutorial on support vector regression[END_REF]. Thus, SVR amounts to solve a constrained optimization problem, in which the complexity, measured by the norm of the parameters, is minimized. Allowing for the cases where the constraints can not all be satisfied (some points have larger deviation than ε) leads to minimize an ε-insensitive loss function, which yields a zero loss for a point with error less than ε and corresponds to an absolute loss for the others. The SVR algorithm can thus be written as a quadratic programming (QP) problem, where both the ℓ 1 -norm of the errors larger than ε and the ℓ 2 -norm of the parameters are minimized. To deal with non-linear tasks, SVR uses kernel functions, such as the Radial Basis Function (RBF) kernel, which allow to extend linear methods to non-linear problems via an implicit mapping in a higher dimensional feature space. Compared to neural networks, SVR has the following advantages: automatic selection and sparsity of RBF centers, intrinsic regularization, no local minima (convex problem with a unique solution), and good generalization ability from a limited amount of samples.

Other formulations of the SVR problem minimizing the ℓ 1 -norm of the parameters can be derived to yield linear programs (LP) [START_REF] Weston | Support vector density estimation[END_REF][START_REF] Bennett | Combining support vector and mathematical programming methods for classification[END_REF][START_REF] Smola | Linear programs for automatic accuracy control in regression[END_REF][START_REF] Mangasarian | Large scale kernel regression via linear programming[END_REF]. Some advantages of this latter approach can be noticed compared to the QP formulation such as an increased sparsity of support vectors [START_REF] Weston | Support vector density estimation[END_REF][START_REF] Bennett | Combining support vector and mathematical programming methods for classification[END_REF][START_REF] Smola | Linear programs for automatic accuracy control in regression[END_REF] or the ability to use more general kernels [START_REF] Mangasarian | Generalized support vector machines[END_REF]. The remaining of the paper will thus focus on the LP formulation of SVR (LP-SVR). Support Vector Regression aims at learning an unknown function based only on a training set of N input-output pairs (x i , y i ) in a black box modeling approach. Incorporating prior knowledge into support vector learning is not trivial and is still a partially open issue. After a presentation of the LP-SVR problem (section 2), the paper proposes to extend it with additional constraints, that are linear in the parameters, in order to include prior knowledge in the learning (section 3). Three methods are exposed respectively for the inclusion of knowledge on the output values (section 3.1), on the derivatives of the model (section 3.2) and the combination of both (section 3.3). Section 4 discusses the various ways of incorporating prior knowledge in the form of simulation data with these techniques. Finally, the methods are tested on the in-cylinder residual gas fraction data in section 5.

Notations: all vectors are column vectors written in boldface and lowercase letters whereas matrices are boldface and uppercase, except for the ith column of a matrix A that is denoted A i . The vectors 0 and 1 are vectors of appropriate dimensions with all their components respectively equal to 0 and 1. For A ∈ R d×m and B ∈ R d×n containing d-dimensional sample vectors, the "kernel" K(A, B) maps

R d×m × R d×n in R m×n with K(A, B) i,j = k(A i , B j ),
where k : R d×d → R is the kernel function. In particular, if x ∈ R d is a column vector then K(x, B) is a row vector in R 1×n . The matrix X ∈ R N ×d contains all the training samples x i , i = 1, . . . , N , as rows. The vector y ∈ R N gathers all the target values y i for these samples. The kernel matrix K(X T , X T ) will be written K for short. Uppercase Z is a set containing |Z| vectors that constitute the rows of the matrix Z.

In non-linear regression by kernel methods, the function of input x ∈ R d is approximated by a kernel expansion

f (x) = i α i k(x, x i )+b = K(x, X T )α+b , (1) 
where the α i , contained in the vector α, and b are the parameters of the model and k(., .) is the kernel function. Typical kernel functions are the linear, Gaussian RBF, polynomial and sigmoidal kernels. In this paper, a Gaussian RBF kernel k(x, x i ) = expxx i 2 /2σ 2 is used.

Linear programming (LP)

In kernel regression via linear programming (LP), the ℓ 1 -norm of the parameters α of the kernel expansion is minimized together with the ℓ 1 -norm of the errors

ξ i = y i -f (x i ) by min (α,b) α 1 + C N i=1 |ξ i | , (2) 
where a hyperparameter C is introduced to tune the trade-off between the error minimization and the maximization of the function flatness. Instead of the absolute value |ξ| involved in the ℓ 1 -norm of the errors, the ε-insensitive loss function defined as

|ξ| ε = 0 if |ξ| ≤ ε , |ξ| -ε otherwise, (3) 
can be used to yield Linear Programming Support Vector Regression (LP-SVR). A possible formulation of the corresponding problem involves 4N + 1 variables [START_REF] Smola | Linear programs for automatic accuracy control in regression[END_REF]. In this paper, we will follow the approach of [START_REF] Mangasarian | Large scale kernel regression via linear programming[END_REF] that involves only 3N + 1 variables. Introducing two sets of optimization variables, in two positive slack vectors a and ξ, this problem can be implemented as the linear program solvable by standard optimization softwares such as MATLAB linprog. In this scheme, the LP-SVR problem becomes min (α,b,ξ,a)

1 T a + C1 T ξ s.t. -ξ ≤ Kα + b1 -y ≤ ξ 0 ≤ 1ε ≤ ξ -a ≤ α ≤ a . (4) 
The last set of constraints ensures that 1 T a, which is minimized, bounds α 1 . In practice, sparsity is obtained as a certain number of parameters α i will tend to zero. The input vectors x i for which the corresponding α i are non-zero are called support vectors (SVs).

The parameter ε can also be introduced as a variable in the cost function to be tuned automatically by the algorithm [START_REF] Smola | Linear programs for automatic accuracy control in regression[END_REF][START_REF] Mangasarian | Large scale kernel regression via linear programming[END_REF].

In the LP formulation, only symmetry of the kernel is required [START_REF] Mangasarian | Large scale kernel regression via linear programming[END_REF]. It is not necessary for the kernel to satisfy Mercer's conditions (or positive semidefiniteness) as in the original QP form of the SVR problem [START_REF] Smola | A tutorial on support vector regression[END_REF].

Incorporating prior knowledge

In this section, two different forms of prior knowledge on the function to be approximated are included in the learning. The first one considers a set Z of points x p , p = 1, . . . , |Z|, regrouped in the matrix Z, for which the output values y p , p = 1, . . . , |Z|, regrouped in y p , are provided by a prior model or a simulator. In this setting, the aim is to enforce the equality constraints

f (x p ) = y p , p = 1, . . . |Z| , (5) 
on the model f . The second setting considers the incorporation of prior knowledge on the derivatives of the function, possibly given by a prior model. The combination of both types of prior knowledge is also considered at the end of the section.

Knowledge on output values

Prior knowledge on the function to approximate is assumed to take the form of |Z| particular points x p in Z for which the output values y p are known. However, applying constraints such as [START_REF] Giansetti | Residual gas fraction measurement and computation[END_REF] to the problem (4) would lead to an exact fit to these points, which may not be advised if these are given by a simulator possibly biased. Moreover, all these constraints may lead to an unfeasible problem if they cannot all be satisfied simultaneously. To deal with this case, the equalities (5) can rather be included as soft constraints by introducing a vector z = [z 1 . . . z p . . . z |Z| ] T of positive slack variables bounding the error on (5) as

|y p -f (x p )| ≤ z p , p = 1, . . . |Z| . (6) 
The ℓ 1 -norm of the slack vector z is then added to the criterion of ( 4), with a trade-off parameter λ, in order to be minimized. The trade-off parameter λ allows to tune the influence of the prior knowledge on the model and thus incorporate approximate knowledge.

It is also possible to include almost exact or biased knowledge by authorizing violations of the equality constraints (5) that are less than a threshold. Using the ε-insensitive loss function (3) on the prior knowledge errors z p with a threshold ε p , different than the one, ε, used for the training set, leads to the following linear program min (α,b,ξ,a,z)

1 T a + C1 T ξ + λ1 T z s.t. -ξ ≤ Kα + b1 -y ≤ ξ 0 ≤ 1ε ≤ ξ -a ≤ α ≤ a -z ≤ K(Z T , X T )α + b1 -y p ≤ z 0 ≤ 1ε p ≤ z , (7) 
where the two last sets of |Z| constraints stand for the inclusion of prior knowledge.

Knowledge on the derivatives

Knowledge on the derivatives allows to include information on local maxima or minima, saddle-points and so on. In some applications, one may also wish to retain certain properties of a prior model such as the shape or the roughness at some specific points x p in Z. This problem corresponds to learn a new model while constraining certain of its derivatives to equal those of the prior model at these particular points.

Consider that prior knowledge on the derivative of the function f with respect to the jth component

x j of x ∈ R d is available as ∂f (x) ∂x j xp = y ′ p , ∀x p ∈ Z . (8) 
This prior knowledge can be enforced in the training by noticing that the kernel expansion ( 1) is linear in the parameters α, which allows to write the derivative of the model output with respect to x j as ∂f (x)

∂x j = i α i ∂k(x, x i ) ∂x j = r j (x) T α , (9) 
where 9) is linear in α. In fact, the form of the kernel expansion implies that the derivatives of any order with respect to any component are linear in α. The prior knowledge (8) can thus be included by defining R = r j (x 1 ) . . . r j (x p ) . . .

r j (x) = [∂ x j k(x, x 1 ) . . . ∂ x j k(x, x i . . . ∂ x j k(x, x N )] T is of dimension N . The derivative (
r j (x |Z| ) T of dimension |Z|×N , y ′ p = [y ′ 1 . . . y ′ p . . . y ′ |Z| ] T and solving the problem min (α,b,ξ,a,z) 1 T a + C1 T ξ + λ1 T z s.t. -ξ ≤ Kα + b1 -y ≤ ξ 0 ≤ 1ε ≤ ξ -a ≤ α ≤ a -z ≤ Rα -y ′ p ≤ z . ( 10 
)
The extension to any order of derivative is straightforward. Thus, this method allows to incorporate prior knowledge on any derivative for any set of points possibly different for each derivative. In comparison, the methods described in [START_REF] Lázaro | Support vector regression for the simultaneous learning of a multivariate function and its derivatives[END_REF] and [START_REF] Lázaro | Learning a function and its derivative forcing the support vector expansion[END_REF] requires the prior derivative values on all the training points and these points only.

Combining both forms of constraints

In the case where the training data do not cover the whole input space, extrapolation occurs, which can become a problem when using local kernels such as the RBF kernel. To avoid this problem, the points x p can be introduced in the training set as potential support vectors (or RBF centers). Instead of simply adding them in the training set, it is proposed to use a loss function with a different insensitivity width ε p for these points. This method considers the case where the information on y p is less accurate than on y ′ p . In other words, the available prior model is accurate in shape but biased.

The resulting complete problem reads min (α,b,ξ,a,z,v)

1 T a + C1 T ξ + λ 1 1 T z + λ 2 1 T v s.t. -ξ ≤ K(X T , X Z T )α + b1 -y ≤ ξ 0 ≤ 1ε ≤ ξ -a ≤ α ≤ a -z ≤ K(Z T , X Z T )α + b1 -y p ≤ z 0 ≤ 1ε p ≤ z -v ≤ Rα -y ′ p ≤ v , (11) 
where λ 1 and λ 2 are respectively the tradeoff parameters for the knowledge on the output values and on the derivatives. In this problem, the first three sets of constraints correspond to the standard learning (4) on the training set (X, y). The difference is that the samples in Z are added as potential support vectors. The next two sets of constraints include prior knowledge on the output values as in section 3.1. The last set of constraints involving the slack vector v incorporates the information on the derivatives as in [START_REF] Lauer | Incorporating prior knowledge in support vector machines for classification: a review[END_REF]. It must be noted that the number of parameters in the vector α is now N + |Z| and that the dimension of R has increased to |Z| × (N + |Z|).

Best use of simulation data

This section aims at studying the various ways of enhancing the learning with simulation data. Consider the problem of modeling a function based on a limited amount of experimental data (the training set) and a physical simulation model (or simulator). If large regions of the input space are not covered by the experimental data, extrapolation in these areas will be difficult. The simulator can provide data in these regions. The question is: what is the best way of incorporating these data in the learning of the model?

The first and most simple method consists in extending the training set of real data with simulation samples. Then a standard learning algorithm can take into account all the information and hopefully provide a better model. This approach is similar in flavor to the virtual sample approach extensively studied in pattern recognition for the incorporation of transformation-invariance [START_REF] Poggio | Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries[END_REF][START_REF] Schölkopf | Incorporating invariances in support vector learning machines[END_REF][START_REF] Lauer | Incorporating prior knowledge in support vector machines for classification: a review[END_REF]. In this classification framework, virtual samples are generated by known transformations of the training patterns that leave their class labels unchanged and then added to the training set. This approach has been very successful in the pattern recognition field [START_REF] Simard | Best practices for convolutional neural networks applied to visual document analysis[END_REF][START_REF] Lauer | A trainable feature extractor for handwritten digit recognition[END_REF], where the prior knowledge of transformation-invariance is exact, i.e., for example, the statement "the image of a character still represents the same character if translated or rotated by a small amount" holds true. However, in the case considered here, the simulation data can be biased as the physical model may not be fully accurate.

There is therefore a need to control the influence of simulation data on the learning so that the resulting model do not fit exactly to them. The method proposed in section 3.1 uses two different loss functions: one on the training set and another one, possibly less restrictive, on the simulation samples.

In practice, the algorithm ( 7) is used with the parameter ε p set to take into account the possible bias between the simulation and real data.

If the physical model is known to be accurate in shape but biased, another solution consists in constraining the derivatives of the model to fit to the derivatives of the physical model. Doing so, one may expect to retain the overall shape of the physical model while fitting it to the available real data. In the setting of the following experiments (section 5), only the simulation data are available. In practice, a first model is trained by a standard LP-SVR algorithm (4) on the simulation data to yield a prior model. This prior model can then be used to compute the derivatives at these same points. The algorithm (10) of section 3.2 is then applied to build a new model with constrained derivatives.

As noted in section 3.3, the local behavior of RBF kernels may become a serious drawback when reducing the number of training samples. To circumvent this difficulty, the simulation data should be added as potential support vectors. However, if these data are known to be inaccurate, simply adding them to the training set will not lead to a good model. The algorithm [START_REF] Lauer | A trainable feature extractor for handwritten digit recognition[END_REF] allows to take these potential SVs into account without constraining the model to exactly fit to them.

Application

The various ways of incorporating simulation data into the training will now be studied on a real-life application described below.

Estimation of in-cylinder residual gas fraction

The application deals with the estimation of residual gases in the cylinders of Spark Ignition (SI) engines with Variable Camshaft Timing (VCT). VCT allows the timing of the intake and exhaust valves to be changed while the engine is in operation. VCT is used to improve performance in terms of emissions, fuel economy, peak torque, and peak power [START_REF] Jankovic | Transient effects and torque control of engines with variable cam timing[END_REF].

The air path control of SI engines is a crucial task because the torque provided by the engine is directly linked to the air mass trapped in the cylinders [START_REF] Colin | Neural control of fast nonlinear systems, Application to a turbocharged SI engine with VCT[END_REF]. When considering new air actuators such as VCT, the estimation of in-cylinder air mass is more involved than for basic SI engines. Indeed, VCT authorizes phenomena such as air scavenging (from intake to exhaust manifolds, with turbocharging) or backflow (from exhaust manifold to cylinders).

In this context, it is important to estimate the residual gas mass fraction

χ res = m res m tot , ( 12 
)
where m tot is the total gas mass trapped in the cylinder and m res is the mass of residual gases, which are burned gases present in the cylinder when the valves are closed before the new combustion and which are due to the dead volumes or the backflow. Knowing this fraction allows to control torque as well as pollutant emissions. The residual gas mass fraction χ res can be expressed as a function of the engine speed N e , the ratio p man /p exh , where p man and p exh are respectively the (intake) manifold pressure and the exhaust pressure, and an overlapping factor OF , which is an image of the time during which the valves are opened together. There exists a corresponding mean value model [START_REF] Fox | A model for predicting residual gas fraction in spark-ignition engines[END_REF], that includes some constants to be identified from experiments on a particular engine. Beside this mean value model, there is no standard sensor to measure this fraction online.

The available data are provided, on one hand, from the modeling and simulation environment Amesim [START_REF] Imagine | Amesim web site[END_REF], which uses a high frequency zero-dimensional thermodynamic model [START_REF] Giansetti | Residual gas fraction measurement and computation[END_REF] and, on the other hand, from off line measurements, which are accurate, but complex and costly to obtain, by direct incylinder sampling [START_REF] Giansetti | Residual gas fraction measurement and computation[END_REF]. The problem is thus as follows. How to obtain a simple, embeddable, black box model with a good accuracy and a large validity range for the real engine, from precise real measurements as less numerous as possible and a representative, but possibly biased, prior simulation model?

The problem thus posed, although particular, is very representative of numerous situations met in engine control, and more generally in engineering, where complex models, more or less accurate, exist and where the experimental data which can be used for calibration are difficult or expensive to obtain.

Experiments and results

Three datasets are built from the available data composed of 26 experimental samples plus 26 simulation samples:

• the training set composed of a limited amount of real data (N samples),

• the test set composed of independent real data (26 -N samples),

• the simulation set composed of data provided by the simulator (26 samples).

Various sizes N of the training set will be considered in order to study the effect of the number of training samples on the model. The test samples are assumed to be unknown during the training and are retained for testing only. The residual gas mass fraction χ res , given in percentages, takes values in the range [START_REF] Giansetti | Residual gas fraction measurement and computation[END_REF]30] The different situations and the various ways of incorporating the simulation data are considered in the following models. 11) is used to train the ODmodel.

These models are evaluated on the basis of three indicators defined below.

• RMSE total: root mean square error on the whole real dataset (26 samples)

• RMSE test: root mean square error on the test set (26 -N samples) that is Before training, the variables are normalized with respect to their mean and standard deviation. When both experimental and simulation data are available, the simulation data are preferred since they are supposed to cover a wider region of the input space. Thus, the mean and standard deviation are determined on the simulation data for all the models except for the experimental model, in which case the training set must be used to determine the normalization parameters.

The different hyperparameters are set according to the following heuristics. One goal of the problem is to obtain a model that is accurate on both the training and test samples (the training points are part of the performance index RMSE total). Thus C is set to a large value (C = 1000) in order to ensure a good approximation of the training points. Accordingly, ε is set to 0.001 in order to approximate the real data well. Since all standard deviations of the inputs equal 1 after normalization, the RBF kernel width σ is set to 1. Besides, when using prior knowledge on output values (model 4) and setting ε p , one has both the real and simulation data at hand. Thus, it is possible to compute an estimate of the maximum absolute error (MAE) obtained by the simulator by looking at the MAE obtained by the prior model on the training set (available real data). ε p is then set accordingly by taking into account the normalization step (ε p = 1.6). For the training of both models 4 and 5, the tradeoff parameter λ is set to 10. For model 6, λ 1 is set to 1 since including the prior knowledge weighted by λ 1 is not the main concern. It is mainly used to add potential support vectors in the training with a large ε p in order not to fit exactly to these points. The information assumed to be more relevant in this case concerns the derivatives. λ 2 is thus set to 10.

Results. The number N of points retained as training samples is first set to 15, which is about half of the available experimental data. The results in this setting appear at the top of Table 1. These show that the model of the simulator, the prior model, is actually biased and leads a large error when tested on the real data. As a consequence, the mixed model that simply considers simulation data as training samples cannot yield good results from inhomogeneous and contradictory data. However, when the simulation data are incorporated in the O-model by the proposed method of section 3.1, which allows for a certain amount of inaccuracy with respect to these data, better results can be obtained in comparison to the experimental model trained on the limited amount of real data. Interestingly, though including prior knowledge on the derivatives in the D-model does not yield better results, combining both types of prior knowledge on the function values and on the derivatives in the OD-model leads to a notable decrease of the error. This improvement may also be the result of adding the simulation data as potential support vectors. This effect will become more obvious in the following experiments. Now, the effect of reducing the number of training samples N is studied in order to test the limits of the method. Two sets of experiments are performed for N = 6 and N = 3. The results in Table 1 show that models 1 and 3 cannot deal with these cases. Moreover, when the number of training points becomes too small (N = 3), models 4 and 5, that do not incorporate the simulation data as potential support vectors, become almost constant and thus inefficient. This is due to the fact that these models have not enough free parameters (only 3 plus a bias term) and thus cannot accurately model the data. In these cases, the RMSE is irrelevant. On the contrary, the OD-model does not suffer from this problem and can yield good results 

Conclusion

This paper provided simple and effective techniques for the incorporation of prior knowledge into LP-SVR learning. The prior information that can be taken into account may be given in terms of output values as well as derivative values on a set of points. Various methods based on these techniques have been studied for the inclusion of knowledge in the form of simulation data. The proposed methods have been tested on the estimation of in-cylinder residual gas fraction application. In this context, real data are available only in a limited number due to the cost of experimental measurements but additional data can be obtained thanks to a complex physical simulator. The output of the simulator being biased but providing rather good information on the overall shape of the model, the best method constrains the derivatives of the model to fit to the ones of a prior model trained on the simulation data.

  . The ranges of values for the three inputs are: N e (rpm) ∈ {1000, 2000}, p man /p exh ∈ [0.397, 0.910] and OF ( • CA/m) ∈ [0, 2.8255]. The datasets are shown in Figure 1 for N = 3.

Figure 1 .

 1 Figure 1. Residual gas mass fraction χ res in percentages as a function of the ratio p man /p exh for two engine speeds N e and different overlapping factors OF . The 26 experimental data are represented by plus signs (+) with a superposed circle (⊕) for the 3 points retained as training samples. The 26 simulation data appear as asterisks ( * ).
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 102 Figure 2. Errors on the experimental data (training and test samples) for the prior model ( * ) and the OD-model (•) trained with only three samples (N = 3).

Table 1 . Errors on the residual gas mass fraction for various training set sizes

 1 

N.

'-'

appears when the result is irrelevant (model mostly constant).

  compared to the prior model with very few training samples, as shown in Figure2. The performance is still reasonable, though being less than for N = 15, and decreases only slightly when reducing the training set size from 6 to 3. It must be noted that the error of this model is about half of the errors obtained by the prior and mixed models, which correspond to the standard methods to include simulation data.

	N Model	RMSE total RMSE test MAE total
		1 (experimental model) 1.53	2.35	4.10
		2 (prior model)	4.93	5.02	9.74
	15 3 (mixed model)	4.22	5.09	7.80
		4 (O-model)	1.49	2.29	4.05
		5 (D-model)	1.60	2.46	3.93
		6 (OD-model)	0.73	1.12	2.29
		1 (experimental model) 6.00	6.84	15.83
		2 (prior model)	4.93	4.86	9.74
	6	3 (mixed model)	4.88	4.85	9.75
		4 (O-model)	3.38	3.86	9.78
		5 (D-model)	3.50	3.99	10.42
		6 (OD-model)	2.14	2.44	5.94
		1 (experimental model) -	-	-
		2 (prior model)	4.93	4.93	9.74
	3	3 (mixed model)	4.86	4.89	9.75
		4 (O-model)	-	-	-
		5 (D-model)	-	-	-
		6 (OD-model)	2.64	2.81	5.36
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