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Abstract

We study the discrete time approximation of doubly reflected BSDEs in
a multidimensional setting. As in Ma and Zhang (2005) or Bouchard and
Chassagneux (2006), we introduce the discretely reflected counterpart of these
equations. We then provide representation formulae which allow us to obtain
new regularity results. We also propose an Euler scheme’s type approximation
and give new convergence results for both discretely and continuously reflected
BSDEs.
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1 Introduction

The main motivation of this paper is the discrete time approximation of Backward
Stochastic Differential Equations (BSDEs) with two reflecting barriers, also known
as doubly reflected BSDEs:

Yy = g(X7) + [ f(Xu Y, Zo)du — [ (Z,)dW, + [T dE; — [T dE;
(X)) <Y < h(Xy), Vt€[0,T], a.s. (C) (1.1)
Jo (Ve = UX))AEF = [ (Vs — h(X,)dK; =0.

where f, g are Lipschitz-continuous functions, h, [ are smooth functions (say Cg),

and the process X is the solution of a forward SDE

t t
X = Xo +/ b(Xs)ds +/ o(Xs)dWs ,
0 0

with b and o Lipschitz-continuous.

These equations can be considered as extensions of simply reflected BSDEs, which
are related to optimal stopping problem (American option in finance), see e.g. [10],
and whose numerical approximation has been widely studied, see e.g. |2} 3, [5 [15].
Existence and uniqueness of solutions to (ILI]) have been first studied by Cvitanic-
Karatzas in [7]. There has been a lot of contributions on this subject since then,
consisting essentially in weakening the assumptions for the existence of (I.T), see
e.g. [I] and the references therein. In economics, [7], among others, shows that these
equations are related to stochastic stopping games (Dynkin games) and Ma-Cvitanic
[6] connects them to the pricing of Game Options (or Israeli Options), introduced
in [12].

In this Markovian setting, [6] shows that the solution of () is associated to vari-

ational inequalities (or obstacles problem) of the type

{ (w—1) A {(u— h) V —[Bu + bOyu + 1Tr (00" Oppur) + f(t, 2, u, 00,u)]} = 0 12
in the sense that (Yi, Z:) = (u(t, X¢), Oyuo(t, Xt)) for ¢t € [0,7]. Thus, studying
the discrete time approximation of (L)) offers alternative numerical methods to
estimate the solution of (L2]).

While studying the discrete-time approximation of (I.1I), it appeared that the tech-
niques we used, can be applied to a multidimensional setting. Namely, Y takes

values in R% and each component Y verifies:

Y/ = g (Xr) + f) (X Yo Z)du = [ (Z0) AW, + [T dELE = [P AR g
Jo (=X ))AKE T = [ (v - (X ))dK S =0, ee {1, d}, |

S S



and, almost surely, for all t < T, Y; is constrained to take values in the domain Oy,

where

Opi={yeR |V e{l,....d}, I'(x) <y <h(z)}.

Following [3], [15], we first introduce “discretely reflected” versions of (LII), meaning
that condition (C) is imposed only on a deterministic set of times ® = {0 =: rg <
< rg=T}:

YE=YVF = g(Xr) € Ox,
and, for j <k —1and t € [rj,rjq1),

YR o= rj+1+f”“fXS,Y% ZF)ds — [ (Z8)dws
Y;;R = }/t 1{t¢§}e}+lp(Xt7}/t )l{teﬁ}a

where P(z,y) is the projection of y € R? onto O,.

In the framework of doubly reflected BSDEs, i.e. d = 1, this corresponds to stochas-
tic stopping games, where the stopping is allowed only on %\ {T'}.

We then focus on the discrete-time approximation of such equations. As in [3, 5] [15],
we introduce a partition m = {0 =: tp < --- < t, := T’} such that R C 7 and define
(Y™, Z™) by the backward induction:

Zi = (ti —t) " E[(Why, — W) (V) |
Y = B[V, | B+ i - 0O Y 2D) (1.4
YT o= Y7 Lgemy + POXE V) Ljeny , i<n—1,

7

with terminal condition (recall that ¢, = T')
Vi o= Y= g(XP).

Here, X™ is the Euler scheme associated to X.

As in [3, 5 [15], we show that the error induced by this scheme:

i+1
Z / 28— 772t

is intimately related to the regularity of the process (Y%,Z%), or equivalently
(EN/%, Z®), through the quantities

max  sup ]E[|Yt§)(E Yt + E (1.5)

<N telts tign)

max —sup IEJ[[YSCE Y;RW and E
I<T ety tign)

tit1
Z / 28~ 20 a .




for which we provide new controls in terms of ||, the modulus of 7. This is based

on a generalization of the representation of Z% derived in [3].

In this paper, we essentially rely on the basic concepts developed in [3], but we face
two new difficulties:

(i) Contrary to [3] where O, is of the form {y € R : y > ¢(z)}, we do not have
an exact expression of the projected process P (X, fft%) and the reflection terms are
much more intricate to handle.

(ii) In the one dimensional case, a simple Girsanov transformation allows to get rid
of the Malliavin derivatives of Y® and Z® which enter in the representation formula
of Z% (see section [B]). This is no more possible, in general, in our multidimensional
setting.

Yet, in the discretely reflected case, we are able to extend the regularity result of
[3]. This allows to show that the scheme ([4]) has a convergence rate of at least
’7T|i. Under stronger regularity conditions on the boundaries and the coefficient of
the SDE solved by X, we obtain a convergence rate of at least |7T|% (see section B.3).
Using an approximation argument, we then extend these results to continuously
reflected BSDEs. The convergence is obtained under minimal Lipschitz-continuity
assumptions with a control of order |7T|% Under stronger regularity conditions,
we extend the one dimensional result of [I5], but without their uniform ellipticity
assumption. Namely, we provide an upper bound of order ]7r|% for the approximation
error. When the system of BSDEs is decoupled, which is the most important case

. . . . 1
for financial applications, we improve it to |7|3.

We would like to conclude this introduction by observing that the scheme (I.4) is
obviously not directly implementable since it requires the computation of conditional
expectations. The global numerical error is then the sum of the discrete time ap-
proximation error (IL5]) and the numerical error induced by the approximation of the
conditional expectations. However, this approximation problem is well understood
and [2], 5] 9] among others propose efficient numerical methods, which can be easily
adapted to our framework. This paper being already long, we shall not detail this

part here and only focus on the discretization error.

The rest of the paper is organized as follows. In Section 2, we define BSDEs which are
discretely reflected in a convex domain O, of the above form. In Section 3, we provide
different representations of Z% and use them to study the regularity of (Y%, 17%, zZ%)
in Section 4. In Section 5, we propose an Euler scheme type approximation of
discretely reflected BSDEs and give our main convergence results. Finally, in Section
6, we provide extensions to the continuously reflected case. The Appendix contains

the proofs of a priori estimates which are used several times in the paper.



Notations: M™™ is the set of matrix with dimension n x m, we simply write M¢ if
m =mn =d. For z € M™™ 29 denotes the (ij) component of z, 2 the i-th row of z,
27 the j-th column and 2’ its transposed matrix. The space LP, for p > 1, is the set
of random variables X satisfying || X ||z := E{|X|p]% < 00. The norm |.| represents
the canonic norm on R? or on M? and {(.,.) denotes the usual scalar product on R?.
For a function f € C', V,f denotes the Jacobian Matrix of f with respect to .

Finally, for ease of notations, we shall sometimes write EJ.] for E[. | F5], s € [0, T.

2 Discretely reflected BSDE

2.1 Definition

Let T > 0 be a finite time horizon and (€, F,P) be a stochastic basis supporting
a d-dimensional Brownian motion W. We assume that the filtration F = (F;)i<r

generated by W satisfies the usual assumptions and that Fr = F.
Let X be the solution on [0, 7] of

Xy = Xo+ / t b(X,)du + / tJ(Xu)qu (2.1)
0 0

where Xg € R? and b : R? — R o : R? — M satisfy one of the following

assumptions, for some positive constant L:
e (Hzl): b, o are L-Lipschitz continuous.
e (Hx2): b, 0 are Cé with L-Lipschitz continuous first derivative bounded by L.

Remark 2.1. Observe that, as in [3] and contrary to [I5], we make no uniform
ellipticity condition on ¢. In particular, the standard results of the PDE literature
cannot be used to derive strong regularity properties on the solution of the PDE of
the form associated to

Under (Hz1), we clearly have that X € S?(R?), where for p > 1 and E = R? or
E = M?, SP(E) is the set of F-valued progressively measurable processes U such
that |[Ul[sr := |[supsep,r) Utl|zr < 0o. In particular,

IXls2 < Cr, (2.2)

where, from now on, Cf, denotes a generic constant, whose value may change from
line to line, but which only depends on L, T', Xy and d (we write Cﬁ if it also

depends on some extra parameter p > 1).
We then introduce a family of closed convex domains (Oy),cpad:
O, = {yeR|VLe{l,... d}, I(z) <y’ <h(2)}, (2:3)

where the maps h,[ : R* — RY satisfy one of the following regularity assumptions:



e (Hb1): h and [ are L-Lipschitz continuous.
e (Hb2): foreach £ € {1,...,d}, h* and I* verify for some (p, p%) : RY — RIxR?,
pg : R - RT,

15 (@)] + [p5(2)| + |ps(x)| < L(1+|z|")
(z) = '(y) < pl(2)(y— )+ ph(a)|z —y|* , Yo,y e R
hi(y) — hf(x) < ph(@) (y —2) + ph(a)|z —y* , Yo,y e RL.

This assumption is slightly weaker than the semi-convexity assumption of De-
finition 1 in [2)].

e (Hb3): h and [ are C? with L-Lipschitz continuous first and second derivatives
bounded by L and there is ¢ € (L', 00) such that A > I* 4+ ¢, for each
te{l,...,d}.

Observe that (Hb3) = (Hb2) = (Hb1).

Given a set of reflection times
R={0=rp<rm<--<rp1<re:=T}, k>1,
the solution of the discretely reflected BSDE is a triplet (Y%, }N/%, Z%) satisfying
YR =Y = g(Xr) € Ox,

and, for j <k —1and t € [rj,rj41),

W= Y P HOddu = [P E AW 2.4
Y?R == R(t, Xt,YVtéR) N
with ©% = (X, YR Z%).
Here, g : R — R%, f : R4 x R? x M? — R? are L-Lipschitz continuous and
Rtz y) =y + () — T = [ = (@) ) Lpeny
for (t,z,y) € [0,T] xR x R, £ € {1,...,d}.
Observe that
v = YR fortg R\ {T}. (2.5)

Remark 2.2. Under (Hzl1)-(Hb1), such a solution can be defined by backward
induction. At each step the existence and uniqueness in S?(R?) x H2(M?) follow
from e.g. [I1]. Here, for p > 1 and E = M? or E = M% 4, ‘HP(E) is the set of

progressively measurable E-valued processes V' satisfying

T 3
Vi = | (/0 |vr|2dr) I < oo



Remark 2.3. The case where (Y%, X) takes values in R” x R? with n # d can be
treated in our framework. Indeed, if d < n, we can set X :=0, i.e. ¥ =0, o =0
and X = 0, for i > d. Recall that we make no ellipticity assumption. If d > n, we
can set g* = f*:= 0 which implies Y? = 0, for i > n, and work with O, x [—¢, €]4™,
e>0, z € R

We provide in the Appendix useful a priori estimates for “reflected” BSDEs in a

somehow abstract setting. In our framework, they read as follows.

Proposition 2.1. Under (Hz1)-(Hb1), the following holds

sup B[R + V2P| +112%Be < Cun.
t€[0,T]
Moreover, if (Hf): f¢ depends on 2z only fori = { (i.e. Vz.if(l{i#} =0,if feC),
holds, then
sup B||VRP + VP <Cp .
te[0,7)

Proof. It suffices to apply Proposition []] in the Appendix, with n, = |X,| and
& = |h(X)| VIUX)], € R, recall (22). O

2.2 Dependence on the parameters

We now present some estimates on the variation in the solution of ([2.4]) induced by
a variation in the data. Later on, this will allow us to work with smooth parameters
(f, g, etc.) before turning to the general case by an approximation argument (see

e.g. Proposition [.2]).

In the rest of this section, we consider two discretely reflected BSDEs constructed
as follows.

For i € {1,2}, let X? be an element of S?(R%), fi, g; be L-Lipschitz continuous
functions and h;, I; boundaries satisfying (Hb1). We denote by (Y%, yRi, Z%%) the
solutions of the discretely reflected BSDE associated to these two sets of data and
O%i .= (Xt YRi Zz%1) We then define Y ® := Y1 — yR2 sy®R .— yR1_ yR2
6Z% .= Z%1 — Z%2 and 6X := X' — X2, 6f 1= f1(O%1) — f,(O™1), §g := g1 (X1) —
go(X1h), 0h == h1(X1) — ho(X1) and 81 := I3 (X1) — Io(X1).

Proposition 2.2. Under (Hz1)-(Hb1), the following holds

sup B[J0Y]+152 1B < OB max 10,2+ 90,2+ 161, 2)| 107112 + 1ogr2s)
t€[0,T reR

The proof of this result requires the following Lemma whose proof uses a key argu-
ment which will be very important below when studying the convergence of Euler

scheme’s type approximation of (2.4]).



Lemma 2.1. Let (Hx1)-(Hb1) hold. Then for eachr € R\{T} and ¢ € {1,...,d},
there exists S&, QL in F, such that SEN QL =0 and

R = (R < (TR - (T2 1
(X = 1) + R () = B (X2)]) 1

Proof. For ease of notations, we work with d = 1 and omit the exponent £. Appro-
priate S, and @, are constructed by considering different disjoint cases, depending
on the position of }N/;R’l and }N/,n%’Z.

l.a On {I;(X}) < Y < hi(X})}, three different cases may occur depending on
the position of yR2,

(i) On {l2(X2) < V% < hy(X2)}, we have V0! — y; b2 — y1 _ y2,

(i) On {¥;02 < I5(X2)}, we have Y72 = P(X2,Y;02) = [5(X2). If Iy(X2) < Y,
then 0 < YV, — v R®2 = v _ 5 (x2) < VR -V R2 18 1,(X2) > VB then

0 < b(XP) =V =V =V < (X7) — (X)),

(iii) On {h2(X2) < ﬁ%’Q}, similar arguments based on the comparison between
ha(X2) and V5! lead to |[V;0! — V792 < V0! — Y2 on {¥M < hyp(X2)} and
V= VP2 < ho(X2) = ha(X1)] on {ha(X?) < V)

1.b We now study the case {ﬁ%’l <13(X})} which implies Yyl = L(XDh.

(i) On {V;? < 15(X2)}, we have V! — V72 = 13 (X)) — Io(X2).

(ii) On {lo(X2) < Y2 < ha(X?2)}, there are two disjoint cases. On {YT%’2 < Yr%’l},
0 <YM - ¥ < n(x)) - b(XD). On (' = ¥} 0 < v -yt <
yR2 _gR1

(iii) Finally on {¥;? > hy(X2)}, we also have two disjoint cases. On {ho(X2) >
YR 0 < V2 v R < TR2 TR On (ho(X2) < YR, 0 < YR hy(X2) <
hi(X}) — ha(X7).

1.c By symmetry, the case Y, 0! > hy (X}!) is handled similarly. O
We now provide the proof of Proposition

Proof of Proposition [2.2l The proof of this Proposition relies on the abstract
results of Proposition [ZI] in the Appendix. For t € [rj,7j11), we have

=R R Tj+1 Tj+1 Ry
YR =62+ /t Fu)du — /t 6ZRyaw, ,

where f :=6f + fo(O%1) — f,(0%2).

Since fa is L-Lipschitz continuous, we have
[ful? < Culnal® + 0YRP + 1827 ) , with ny = [6fu] +[5X] .

Moreover, using Lemma [2T] we can set & := 2L|0.X |+ |dl| + |0h|, since he and Iy are

L-Lipschitz continuous.



The proof is then concluded by appealing to Proposition [ and observing that
0YVE| < L|6X7| + |dg7|, since go is L-Lipschitz continuous. 0

3 Representation results for Z%

In this section, we provide different representations for Z®. The first two ones are
stated in terms of the Malliavin derivatives of (X, Y™®, Z®), the last one is based on
their associated “first variation” processes.

In order ensure that (X, YR ZéR) are “smooth” enough, we shall work under the

additional assumption:

e (Hr): h,l, f,band o are Cl}.

These representations will allow us to provide regularity results for (Y%, Z%) under
(Hr). This assumption will then be relieved by using an approximation argument
based on Proposition above.

3.1 Malliavin differentiability of (X, Y, Z%)

In the sequel, we denote by D2 the space of random variable F which are differen-

tiable in the Malliavin sense and such that
T
Hﬂ@+/nmﬂ@m<m.
0

Here, D, F denotes the Malliavin derivative of F' at time ¢ < T, see e.g. [16].
We also consider the space LL1'? of adapted processes V such that, after possibly

passing to a suitable version, V, € D2 for all s < T and

T
V]| 72 —|—/ || D¢V || 2dt < o0 .
0

In the following, we shall always work with a suitable version if necessary.

Under (Hr), X belongs to 12, see [16]. It follows that R(r, X, F') € ID*? whenever
F e DY? and

DR (r, X, F) =Dy FHDyl" (X, )-DiF)1 e x,)5 ey~ De F=Deh' (X0)) 1 e (x,) < ey -

(3.1)
Indeed, by a direct adaptation of the proof of Proposition 1.2.3 in [16] we deduce
that, for G € IDM?, [G]* belongs to IDY? and D,[G]T = a(D;G) where «a is a random
variable bounded by 1 satisfying 1{g-0y@ = 1{g>0}. Thus Proposition 1.3.7 in [16]
implies that Dy[G]" = D;G1(g=0y, if G € D2



Combining (24), (3)), and Proposition 5.3 in [II] with an induction argument, we
obtain that (Y®, Z®) belongs to .12 and that a version of Dy((Y®)¢, (Z®)4) is given
by the solution in S?(R?) x H2(M9) of

DR = DR )+ [ AODDX  NAODDT N (32)

Tj+1
rip1 & . rit1 4
[ ez - [y Dz,
s i=1 s k=1
for s € [rj,rj+1), j < K, with the terminal condition

DY) = V' (Xp)Di X1 .

We conclude this section with some a prior: estimates that will be used later on.

The first one concerning DX is standard, we therefore omit the proof (see e.g. [16]).

Proposition 3.1. Let (Hr) hold. Then, for all p > 2

sup || Ds Xy — DXyl + ||(DeX — Do X)Ly 1llsr < CF |t — u|% , tou < T.(3.3)

s<uAt

and
I sup|DX| ls» < CJ. (3.4
s<T
We now turn to the study of (DY™®, DZ%®). For ease of notations, we will from now

on denote by 8 a Fr-measurable positive random variable, whose value may change

from line to line, but satisfies
P < C7,v¥p>1.

Proposition 3.2. Let (Hr) hold. Then, for s <t <T,

DY + | DY) + B < kE{5] . (3.5)

T d
Z ]DS(ZEE)'ZPdu
(=1

t

If (Hf) holds, then, for p > 2,

U

DY + DY+ Ey

)> /tTjK\Ds<Z??>~‘Pdu] Y

(=1

and
DY+ DY P < B (3.7)
forj <k—1,terjris1), s <t, where

h=inf{t e R |t >rj1, N ¢ (X)W (X)IAT, j<k—1,0<d. (3.8)

10



Proof. Recall that for F € D2, DF = (D'F,..., D?F) where D’ denotes the
Malliavin derivatives with respect to W*. Fix ¢ € {1,...,d}, by [8.2), we have for
allt <se€rj,r41)and j <k

Ti+1

DIY® = DIy® — / (D{Z®Yaw,

toTi4 i
Tt -
+ [ (RHONDEX, + N AODITE + V(O DIZE) du.
Since f is C} under (Hr), (Z.2) of the Appendix holds with n = |[DfX|. Clearly
(Af) holds under (Hf).
Moreover, it follows from (BI), that (D{Y® DIYR®) satisfies (A0) (take S¢ =

{(Y™)E € 14(X,), (X))}, for r € Rand £ € {1...d}).
The result is then a direct application of Proposition [[.Il and Corollary [7.1] O

Similar arguments based on Proposition [Z.1] also lead to

Proposition 3.3. Under (Hr), we have, for allt <T andr,s <t,
|Ds§7;t§R - Dr‘f/tm|2 + ‘DSY?‘\: - DTYER‘Q

T d
+ Eq / > D28 = Dp(Z)) Pdu| < KE{B] |s — ] .
=1

Under (Hf),
|Dsi~/tSCE - D?”Y/tm2 + |D8Yt - DrYt|2

+ E;

d
J
2/ |Ds(Z)* = Dr(Zf)ledU] < E{f][s —r],
=171
forj<k—1,telrjrjq) andr,s <t.

3.2 Representation in terms of Malliavin derivatives of (X, Y%, Z%)

It follows from [I6] and (Z), viewed in a forward way, that (D;Y;%);<7 is a version
of Z®. Hence, (3.2)) implies that Z® admits a version satisfying
R S oR Ry R LN R R .0
DR+ [ (rO0DX, + Y AODDITE +Y VO D20 du
¢ i=1

(Z1Y =E,

(3.9)
for each j <k —1 and t € [rj,741).

Following the arguments of [3], we can get rid of the term DtY;f];‘\zr , in the above

expression.

11



Corollary 3.1. Let (Hr) hold. Then, for each ¢ € {1,...,d}, there is a version of
(Z%)* such that, for each j <k —1 and s <t € [rj,7j11),

.

t
£

7 d
o [ (wrennrs S fenn ) ul.

i=1
where, forr € R,
V(ﬁﬁ = ng(Xr)l{r:T} + (VZZ(XT)I{I‘Z(XT)>()~/§R)Z} + vhf(Xr)l{hf(XT)<(1~/T§R)£}) 1{r<T} .
Proof. For ¢ € {1,...,d}, ¢ < k — 1, we denote by 55 the random index such that

ree = 7¢ (recall the definition of 7} in Proposition B2). On {7} = r441}, the result

is obvious. On {75 > rg41}, summing up from ¢ to 55 in (B:2) applied to s = rg41
and using ([B.J)) leads to

Te .
DT = VDX + [ (s OD Do + 5 O DT (1)
o d ) o d
+ [Nz - [ Dy aw
S =1 S k=1

for t <s € rg,rgs1).
Since (Dt(f/t%)e)th is a version of ((Z}%)*)i<r, the required result is obtained by

taking the conditional expectation in the above expression. O

Under (Hf), we can also get rid of the term D;Z® in the expressions ([3.9) and
(BI0) by arguing as in [I7] and [3]. Indeed, applying It6’s Lemma to Y®A? with

t t 1
8 = enf [wfelyaw, - [ S febpa} o<t
0 0
we directly deduce from (BI1) the following alternative representation.

Corollary 3.2. Let (Hr) and (Hf) hold. Then, there is a version of (Z%)* such
that

(Z)") = (A)'Ee

wig(AthX)Tﬁ/ (A ONA DX+ O DI, du]

fors<telrj,riz1), j<k—1andle{l,...,d}.

Observe that this simplification is no more possible if f¢ depends of more than one

columns of Z%.

Remark 3.1. For later use, observe that:

| sup Al < C. (3.12)
s<t<T
1
| sup [ANAL) T~ ALAD) M lle < CRlE—slF ts<T.  (3.13)

u<tAs

12



3.3 First variation processes associated to (X,Y¥® Z%)

In Section B4 below, we provide a representation of Z® in term of the first variation
process of (X, )7%)
Under (Hr), the first variation process VX of X is well defined and solves on [0, T']

t
X, = I+ / V.b(X,)VX,dr + / vaa VX, dW7
0

where I, is the identity matrix of M?. Its inverse (VX)~! is the solution on [0, 7]
of

t d
(VX); ! = Ii- / (VX), ! | Vab(X,) = ) Va0 ! (X,) Vo (X,) | dr
0 =

/ZVX )7Vl (X, ) AW

Recall the well-known relation between VX and DX:
DiX, = VX, (VX)) lo(Xi)1l<s forallt,s<T. (3.14)

Remark 3.2. The following standard estimates hold:
IVXlse + 1(VX)Hls» < CF. (3.15)
Let us now consider the processes (VY® VY®) € 82(M?) x S2(M9) and VZ%i

€ H*(M9), i € {1,...,d}, defined as the solutions of the coupled linear discretely
"reflected" BSDEs:

VYR =VYE = Vg(Xp)VXr

and, for j <k —1,t € [rj,rj11), L€ {1,...,d},

~ Ti+1 ~ d .
(VIR = (VYR 4 / VLI ONTX, + VO VYR + 3 WL O V2R du
=1
T"+1 d
- / TS (VAR kAW (3.16)
t k=1

where (VY ®)% is defined through the “pseudo-reflection”
(VYR = (VYR + (VX)X = (VPR sy

(VR - th(Xt)VXt)1{hZ(Xt)§(f/t%)£}) Lieny- (3.17)
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Observe that the system of coupled BSDEs (B.10) can be rewritten as:

~ Tj+1 ~ Tj+1
U =UR +/ F(vxu,Uf,vj‘*)du—/ VEAW, , t € [rj,ri1), (3.18)
t

s
Jj+1
t

where F is a linear operator with random coefficient and values in RdZ, (U™, UR, 780!
takes value in RY x R¥ x M4 and

(U%), = [(vyé)%)l.’ SRR (Vyﬁ)d']v
O = (VY (VYR
Vh = [vz® . vz,

Thus, existence and uniqueness in S2(R%") x S2(R?) x H2(M?*4) follows casily from

a simple induction argument.

Remark 3.3. Using (3.2) and (314, we observe that (D,Y®, D,Y®, (Dt(Z%)’é)ge{lr

and (VYRVX;lo(Xy), VYRVX o (Xy), (VZMV X 0(X))reqr,.ay) verify the

same equation of type (BI8). By uniqueness of the solution, this implies that
Di(Y])" = (VYHIVXlo(X)),

(VYo v X lo(Xe),

= VIRV X e (Xy),

A~

<

s
[

S
Dy(Z%

s

~—

for 0 e{l,...,d}, t<s<T.

Remark 3.4. By using the same arguments as in proof of Proposition [3.2] we easily
deduce that, under (Hr) and (Hf),

IVYEP+ | VYEP < R, (3.19)

for t <T, p > 2. Recall that 3 denotes a Fpr-measurable positive random variable,
whose value may change from line to line, but satisfies H5P| < C’f for all p > 1.

3.4 Representation in terms of (V.X, V?%)

Combining Corollary B:2, (8.14)) and Remark B.3] we deduce this last representation
for (Z%)*.

Corollary 3.3. Let (Hr) and (Hf) hold. Then, for each £ € {1,...,d}, there is a
version of (Z®)* such that

(ZD)) = ()T B Vel (AT X),,
+ / Tj(vxff(@?f)(A“vx)u +V, ﬂ(@ﬁ)wvf/%)u) du] VX o(X)),

fors <telrj,riz1), j <k—1
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4 Regularity results

Based on the representations of the previous section and the stability result of Propo-
sition 2.2] we can now provide one of the main results of this paper which concerns
the regularity of (Y%, YR 7z ®). Namely, we study the quantities

YR —D"Y®||,e  and  ||Z2% = P7Z%| |32 , (4.1)

where m = {0 =: 9 < t; < ... <ty := T} is a partition of the time interval [0, T]
with modulus |7| and such that ® C 7, D™ is the usual piecewise approximation
operator defined on H2(R?) by

n—1

DﬂV = Z ‘/til[ti,ti+1) + VTl{T} ’
=0

and P™ is defined on H?(M¢9) by

1 tit1
E{ Vsds|]-‘ti} L (42)
t

with V;" =
ot — b

titit1)

n—1
PV =Y VI
=0

Remark 4.1. P™V is the best L?(Q2 x [0,T])-approximation of V by adapted

processes which are constant on each interval [¢;,¢;11).

As shown in [4], [3], [5] and [I5], the control of such quantities plays a central role
in the study of Euler scheme’s type approximations of BSDEs and it will be used in

the next sections.

4.1 Regularity of Y®

Proposition 4.1. Set a(k) = k under (Hzl)-(Hbl) and a(k) = 1 under (Hf)-
(Hz1)-(Hb1), then the following holds

sup E||V;? — (D"Y™)i2] < Cra(w)l| .
t€[0,T

Proof. Noting that, for j < k and t € [t;, tiy1) C [rj, 7j41),
SR UR|2 i SR RY|2 RPNy 2
FE-TE < 2 [T TR ZDPdus sw | [ lyam ) |
t; tE[ti,tH_l] t

it follows directly from Proposition 2.1l Proposition4.2] below and Burkholder-Davis-
Gundy inequality, that

B[R - V2P < Cra(winl
which concludes the proof. O

The following immediate Corollary provides an estimate of the first term of (4.]).

15



Corollary 4.1. Set a(k) = Kk under (Hz1)-(Hbl) and a(k) = 1 under (Hf)-(Hz1)-
(Hb1), then the following holds

YR D Y®|2, < Cra(k)|r] .

We now state the Proposition which was used in the proof of Proposition L1l Ob-

serve that it provides a “weak” bound on Z%.

Proposition 4.2. Set «(k) = k under (Hxl)-(Hbl) and a(x) = 1 under (Hf)-
(Hz1)-(Hb1). There is a version of Z% such that

1. For s <t <T, we have
t
E[/ |Zg%\2du} < Cra(r)|t —s|.
S
2. If (Hr) holds, then there is a version of Z% such that

]E[ sup |ZF2| < Cra(k).

t€[0,T]

Proof. 1. Assume that (Hr) holds. Since (D;Y®);<r is a version of (Z});<r, the
second claim is a straightforward consequence of Proposition and Burkholder-
Davis-Gundy inequality. This implies the first one under (Hr).

2. We now assume that only (Hzl) holds for X i.e. b and o are L-Lipschitz
continuous and (Hb1) for h and [. Recall that g, f are also L-Lipschitz continuous.
Let (fn)n>0 be the sequence of smooth functions defined by

fuwns) = [ o= €= vz = Q6 v, Oddua

with ¢y, (z,y, 2) = nHH2p(n(z,y, 2)) and ¢ a compactly supported smooth proba-
bility density function on R%4+2) Since f is L-Lipschitz continuous, we have

CrL

n
Let g, resp. o, and b, be defined similarly with g resp. ¢ and b in place of f, so
that

Cr
19 = gnlloo + 110 = bulloc + |lo = onllc < n

Let X™ be the diffusion associated to b, and o,, and (Y Z%") be the solution
of (24) associated to f,, g, and X™. Since by step 1. and (Hz1)

t
EU |Z§?ﬂ|2du] < Cra(r)|t—s|,
S

for all s,t < T and n > 0, the required result follows from step 1 and Proposition
O

16



4.2 Regularity of Z%

The estimate for the second term of (4.1]) is a bit more involved. We shall adapt the

proof of Proposition 5.2 in [3] to our framework.

We first prove a result for the general case. The difficulty, which does not appear in
[3], comes from the fact that DZ% is in the expression of Z® and can be eliminated
only when (Hf) holds. It is overcome using the a priori estimates of the previous

section.
Proposition 4.3. Set a(k) = k under (Hz1)-(Hb1) and a(k) = 1 under (Hf)-
(Hz1)-(Hb1), then the following holds

127~ P" 2%, < Cra(s)(sln| + |]2).

Proof. 1. First observe that a similar approximation argument as the one used in
step 2. of the proof of Proposition allows to reduce our study to the case where
(Hr) holds. We shall therefore assume from now on that (Hr) holds.

Since, by Remark 1]

127 = P"Z%|lz < ||1Z% = D" Z%lpe2

it suffices to show that the last term is bounded by Cra(k) (k|| + \7r|%)
For each £ € {1,...,d} and s <t € [t;,ti11) C [rj,7j+1], we define Vsli;fj by

- d
Tl (0.) 4+ [ J(fo“(@?f)Dqu+Vyf{(®f)Dsl7f+Z vﬂﬂem(zw) du] |

k=1

E

After possibly passing to a suitable version of Z®, we observe that

(28 = (2D < IVid = Vil + Vit = Vil (43)
recall Corollary Bl Defining 4; through t;, = r;, j < , we shall prove the following
controls

k—1%j41— ‘
S % / B[V~ Vi P] di < Cra(n)ln] (1.4)
Jj=0 k=i,
and
k—1%j+1— i
>y / B[[Ved - Vi P] dt < Ca(elal + 8. (@5)
J=0 k=i,

2.a We first study ([@4). We have for t € [t;, tiy1) C [rj,7j41)
d
}mﬁf—vt ‘<CLEtV|DtX — D, Xu| +| DY~ Dy YR | DAZR)* — Do (Z2)*|du
k=1

/(\DtX Dy, Y§R|+Z|Dt Zé}a)ﬂ) du+’V¢£ (DX )Tf—v¢£4(DtiX)Tf
ti j

|

(4.6)
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Observing that, by Cauchy-Schwartz inequality,

t _ d ' 2
EH / (DXl + DL TR + 3 Dy (28 dul | <
t;

i=1

t _ d
/ (D6 Xul? + DL TR + 3 [Diy (22 2)du
ti k=1

Cr|m|E

it follows from Proposition 3.2 Proposition B3] (B3] and (Hr) that
BV~ Vil < Crae)ial . (4.7)

2.b We now prove ([A3]). Using the martingale property of (Vt t)t<T on [t;, ti11], we

obtain

4,5 4,512 2
E["/tiat_‘/;hti :| E[ V;fz,tz+1| _| tut :|

K, £7
< B[V, 1 P VL P41V Vi, et Vit

| t7,+17 z+1| tit1,tit1 tzyt'ﬂrl tiv1,tit1

which by Proposition B3l (Hr) and Cauchy-Schwartz inequality leads to

E|lVied - Vil P < BV

tit1,tit1 ‘

; 1
— Vit IP| + Cra(w)in|? . (4.8)

To conclude the proof of (43H]), it remains to study the first term in the right-hand

side of (H.8):

k—1%j4+1—1
= 3 > EVid P Vi, P
Jj=0 k=i;
Kk—1
= | BIVER - P+ SUEIVEL P -1V, )
j=1

so that, by Proposition 3.2
E{Eq < Crra(k) .

This implies ([4.3]). O

As in the simply reflected case studied by [3], the estimate of Proposition [4.3] can be
improved if we impose more regularity on the forward process and the boundaries.
The main new difficulty due to our multidimensional setting is that the projection
of (Y®)¢ is not well known: it could be equal to the upper or the lower boundary.
This is overcome by appealing to the following Lemma which is proved at the end

of this section.
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Lemma 4.1. Recall the definitions of V¢ and Tf in Proposition[32. Under (Hf)-
(Hx2)-(Hb3), the following holds

yuzm[vgzsf] AL VXL - VLA VX, 4 | <E, [m arte T} +Er][ﬁ(f — 7t n]é :
for j < k.

This allows us to prove that

Proposition 4.4. If (Hf), (Hz2) and (Hb3) hold, then
1Z2% - P22, < Curilx|.

Proof. 1. A similar approximation argument as the one used in step 2. of the proof

of Proposition allows to reduce our study to the case where (Hr) and
e o and b are C? (smooth version of (Hz2)).
e hand [ are C} (smooth version of (Hb3)).

2. Under (Hf), Remark B3] implies that,

v = nSIEt[Aﬁ’j] CCe{l,...,d}, s <LE [t tip1) C [rgyrisa]
where
ns = (AVX)o(X)
AY = VALV, + / Tf(%ﬂ(@f}AfLVXu+%ﬂ(@f)/\ﬁvf/f) du.

Recall (43) in the proof of Proposition .3l We then have to study the quantities

k—1%j+1— k—1%j4+1—
S v v e 53 [l v s o
Jj=0 k=i, J=0 k=i,

By (7)) in the proof of Proposition A3 applied under (Hf) (i.e. a(k) = 1), we first
obtain that

k—1%j41—

»
3 Z/ B[V ViR < Cyln.

Jj=0 k=i,

To control the second term, we can reproduce line by line the arguments used in the

proof of Proposition 5.2 in [3] to obtain

k—1%j41—

> Z/ |v; ktk\]dt < Crlr|(1+24+(592)  (4.10)

J=0 k=i;
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where

k—1 k—1
¢ ::ZE[H/;‘;?T;HQ—|ijvfrj|2} and ¢ = ZE[\A@?‘H”‘—]A,@;? 4}.
j=1 j=1

3. We now study ¢ and %¢. Using (312), (3I5) and ([BI9), we first get that
VI = VA2 < B (1Bn|7f = 7]+ Bry [ Vele AL VX, — Vel ALVX]I).

which, by Lemma BTl implies

» < ¢ K3
Similar arguments lead to
» < (Cp /1% .
We conclude the proof by plugging these estimates in (£.10). O

Proof of Lemma [4.1] 1. For all £ € {1...d}, j < k, we introduce:

Agh = Vet A, VX —VeLALVX .,
Ti-1 Tj—1 i1 T J
ARG = VRY(X. ). AL, VX = VKX, )ALVX .,
j—17"5-1 Tj j—1 J Tj J

AlS = VINX e ) AL VXTf_l—vzf(XT;)Aﬁfvfo,

j—17"5-1 Tj_1

Since

Vet, AL,
J

j—1

it follows from (B.15) and (BI12) that

By, [A0] | < B [Blpe ooy +En[IAGT e ey - @1D)

0 Al 4
VXop = VOALTX = A (L coreny 1y crtmy )

2. We now fix a coordinate ¢ € {1,...,d} and set Uf = {Tf_l < Tf < T},

AY) = ’(Yr?,

)4 R\
1) - (er) | and AX; = ]XT;;_I _er’ :
Using the same arguments as in the proof of Proposition 1], we obtain

E,,[|AYS +AX,1] < B lB(r = 75-1)]. (4.12)

Since h* and ¢ are L-Lipschitz continuous and h¢ > I 4+ €, we can find i > 0 and
¢! > 0 such that for all 21,29 € R%:

|21 — | < ' = h(x1) — l(z2) > €. (4.13)
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Observe that by choosing L large enough we can assume that % < L so that n—le + 6%, <
Cr.
We then introduce the three following disjoint sets of Fr

Al = {jaYf| < 1AX| <0} nUS
B = {JAY}| <€ |AX ] >0 nU!
{ 14 L 14
C; = HIAY]|>€ernU;

Clearly, ASU Bf U Ct = UY.
3.a On AS N {(V]) = hY(X¢)}, we have (Y])* —14(X > ¢, by [@I3). But on
Tj j Tj —

Aﬁ, we also have |(YT§?)Z - (?T?il)ﬂ < €, thus (YT?I)K = hZ(XT]g_l). Using the same
arguments on A? N {(Y:}})K = I%(X )}, we obtain (Y% )¢ = (X ). And, since
F] J J

ijl

<A§ N {(YT?}?)K = hf(XT]g)}> U ((A§ N {(YT?)f = ZE(XT;;)}> = A, we have

J

g»j\

By, [0 101 | <Ep,[ (18R] + |ALD Ly | + B |AG51] (s +100).  (414)
Using (Hb3), we have
¢ ¢ L
Er, [ (AR| + 1AL Lye | < B fB(r; = 75-1)]2

and, by Tchebytchev’s inequality and (£12]),

NI

Ey,|1865]] (Lps +1cs) < Er (7 —7-1)]
Using ({.14), this leads to
¢ 1
E,,[[A0[15¢] < ErlB(7; - 75-1)]7 |

which concludes the proof. O

5 Discrete time approximation of discretely RBSDEs

As an application of the regularity results stated in the last section, we now study
the convergence of an Euler scheme approximation method for discretely reflected
BSDEs. Using an approximation argument, we will then propose an extension of

this method to continuously reflected BSDEs in the next section.

5.1 Discrete time approximation of the forward process

As in the previous section, we consider a grid m = {0 =:tg <1 < ... <t,:=T} of
the time interval [0, 7] with modulus |7|, such that R C =.
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As usual, X is approximated by its Euler scheme X7 defined by:

Xr = X
X7, = XTAH0X[)(tir —ti) +o(XT) Wy, —We,) ,i<n—1,

and for t € [t;, tit1), i <n—1,
XF = X7+ b(XT)(t— )+ o(XT)(W, — W)
Under (Hz1), b and o are L-Lipschitz continuous, thus we have (see e.g. [13])

oy oy D%

t I . >~ 5 = . .

[ sup | Xt — X{'| |zr +max || sup |Xy—X[||» < Cf Im[2,p>1. (5.1)
t<T P teftistig]

5.2 Euler Scheme for discretely reflected BSDEs
We now introduce a discrete-time approximation scheme for the discretely reflected
BSDE of the form
ZF = (tip—t) 7" Eti[(Wti+1 - Wti)(mrﬂ)/}
vy = Eti[ytll} + (tis — 1) f (X, Y/, Z7) (5.2)
YT = R, X[, Y7),i<n—1,

with terminal condition
Vi o= YE = g(X7).

This kind of backward scheme has been already considered when no reflection occurs,

see e.g. [9], and in the simply reflected case, see e.g. [3,[15] and the references therein.

Combining an induction argument with the Lispchitz-continuity of g, f and the
projection operator, one easily checks that the above processes are square integrable

and that the conditional expectations are well defined at each step of the algorithm.

For later use, we introduce the continuous time scheme associated to (Y™, Z™). By

the martingale representation theorem, there exists Z™ € H?(M?) such that

tit1
Y/ :Eti[Yf }Jr/ (zHaw,, , i<n-—1.
t;

141 41

We then define Y™ on [t;, t;41) by

. . B tit1
L A SR AR RCH LA CE)
and set

Y[ = R(XTYT), for t<T.

Remark that, by the It6 isometry,

7" = P"7™, (5.4)
where P7™ is defined in (4.2).
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5.3 Convergence results
We first provide estimates on the difference between (Y%, Z%) and (Y™, Z7).

Proposition 5.1. Assume that (Hz1)-(Hb1) hold, then

sup B[S —¥7P] +112° = 27l < Cu (|77 =DV e +112 - P2V
te(0,T

+ /ﬁ;E[maX|XT - X;r|2} +1]|X - D”X”Hi‘g) .
refR
Moreover, if f* depends on (y, z) only through (y¢, z'*), we have

sup B[Y2 Y7 < Cp (PR =D VMBe +112% - P 2% Be + 1X - D"X7|1%:)
te[0,T

Before providing the proof of this result, let us observe that combining it with
Proposition [ Proposition 1.3, Proposition 14 and (5.1J), we obtain an upper
bound on the approximation error between the Euler scheme (5.2]) and the discretely
reflected BSDE (2.4]).

Theorem 5.1. Set (a(k),v(k)) = (K2, k) under (Hx1)-(Hb1), (a(k),v(k)) = (k,1)
(Hf)-(Hz1)-(Hbl) and (a(k),vy(k)) = (k,0) under (Hf)-(Hx2)-(Hb3) then the
following holds

~ ~ = 1
sup E||V? — (DY) +112% - 27| < Co (a(w)lm] + 5 ()]
t€[0,T]

Moreover if (Hz2)-(Hb3) hold and f* depends on (y,z) only through (y¢, z'%), then

we have

sup E|:D~/;‘,§R - (Dﬂfm)tﬂ < Cpriln|.
te[0,7)

Remark 5.1. The estimates above are stated in a fairly general setting. They can

be improved in some particular cases.

1. If X = X" onm,ie. X is“perfectly simulated”, then the term E[maxrem | X, — XﬂQ] =
0 disappears in the estimate of Proposition 5.1l In particular, if (Hz2)-(Hb3) hold

and f* depends on (y, z) only through (3¢, 2%, then we have

12 = 27| < Crmal.
2. If f does not depend on z, then

sup E||VR— (DY) < Culnl.
t€[0,T]

This follows from the fact that, in this case, the term ftiz_l (1ZX=Z [*)du in E6)

below disappears.
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The proof of Proposition B.1] relies on the following Remark.

Remark 5.2. Under (Hb1), for t € m and each £ € {1,...,d}, there exists S{, Q¢
in F; such that SY N Q¢ = () and

VR = ()2 < (TR — (F7) L + CulXe — X7 1y
This is shown by arguing as in the proof of Lemma 2.1

Moreover, for ¢ € [0,T] \ R, we have |(Y})! — (V)| = |(VR)! — (Y;)!] and for
tem\ R, we can set Sf = Q and QY = (.

Proof of Proposition 5.3l We adapt the proof of Theorem 3.1 in [5] to our
context.

laWeset Y = YR Y™ Y = YR V™ 67 = 2% - Z7 and 6X = X — X™.
Observe that, by (5.4) and Jensen’s inequality,

B _ tit1
EUZ?CB - thﬂ < (tig1 — tz’)l/t E[\Z?f - ZZ”Z] du,

where Z% = p7Z%,
Applying It&’s formula to [6Y|2 on [t;, tir1) C [75,7j4+1), using the last inequality
and standard arguments (see e.g. step 1. of Proposition [(.1] in the Appendix), we
obtain for all s < ¢;

< tit1 ) ) tiv1 9
}Es[léiﬂ +/ |02y du] < Es|:|5Y;ti+1| +a/ |0Yy|“du + CpBit1
t t

C . titr1
2 (1= tlloTi P+ [ oz Pau) | 69

t;

where o > 1 is to be chosen later on and for i € {1,...,n}
t; ~ ~ _
B = / (1Xu— X P+|TR-FR 24|28 28 Pydu.  (5.6)
ti—1

By Gronwall’s Lemma, we deduce that, for all ¢ € [t;,t;41),

. ’ , C . tiv1
Es[wmﬂ < eo‘cﬂt”l“ES[MEM\Q—FCLBHH—O[L(|ti+1—t,~H5Y}i\2+/ léZulzdu)} (5.7)

ti
Combining the last equation with (5.3), choosing « such that Cr,/a < 1/4 and then

working with |7| small enough such that a|r|e“2el™ < 2a|r| < 1, we compute that

1 tit1 9 Crltis:—ti| 2
/ 6Zu2du| < CHnHIEJIY, 2 4 CiBi] . (5.8)

BT+ 3
t

L.b For j < k, we define i; through t;, = r;. Since [0Y}| = 16| for all t € 7\ R, we

deduce from (B5.8)) and an induction argument that, for i € [i;,4;41),

ti+1
E[Wtﬂ < Crlm=tiglisy, (2+Cp Y By . (5.9)
k=i;+1
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Summing up over ¢ in (5.8]), we also obtain

Tj41 Tj41
E[ / 02, du| < CLE|18X, P+, P 10T, 41l D 1070, P+ Be
T k=ij+1 k=ij+1
Summing up over j, this leads to
[/ 102, lzdu] < CLsupIE 0Y,)? +ZB +/<cmaxEU5X 7] . (5.10)
0 =1

Using Remark [0.2] (5.9) and an induction argument we then obtain

k—1 ig+1
[|5Y 2+ [0V, |2 } < CLE|6Xr [ + xmax 0X, P+ > Bi| L j<n,
q=0 k=iq+1

which combined with (5.9]) leads to

n
5X,|? B;| . 5.11
Hrfeaﬁd 7’| ‘1'; i ( )

sup]E[|5}7ti|2 n |(5Yti]2] < COLE

<n

The proof is then concluded by plugging (5.11)) in (5.10) and then combining (5.7)
with (5.10) and (E.IT).

2. We now turn to the case where f¢ depends on (y, z) only through (y¢, z%).
In this case (51) and (B.8)) reads

Es|:|(6};t)e|2} < eaCL|ti+1*t¢\Es|:|(61/ti+1)£’2 + CLBi

Cr ez [, e
+ (= tllOYe) 1"+ | 1(0Zu)"["du)| . (5.12)
t;

and
- 1 [ttt
6T+ [ 162, Pau] <ttt [6%;, )P+ €] (519
ti

for t € [ti,ti+1), § <t 1< n.
For each £ € {1,...,d} and i < n — 1, we then introduce the sequences of sets U’
and U’ defined by

14 4 4
{U@ Q and UZ;k Ulh lmswk,
Ui=0 and U, := U+k IOQHk,

for ke [1l,n—1i—1].
Recall the definition of S* and Q° in Remark Since Sf N Qf = ( for each t
of 7, we have U+kﬂU+k = () and UHkﬂUfﬂ =0, for all k € [1,n —i — 1],
j €lk+1,n—1i—1]. Moreover, Ul+k,U+k e F

1+k°
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Using (513]), Remark and an induction argument, we deduce that, for k €
1,n—1i—1],

k
Eo[|(0%0)12] < CoBa | 1(0Vh ) P+ Do (10Xe, PLgs + Bisy)
j=1

In particular, for k =n — ¢ — 1, this leads to
_ n
IE.[ 6Y.“}<CIE. 5X, |2 B;
1670 ] < Com w5+ 3 5

since Y07 150 <1 and [§Y7p| < Cp|dX7|.
it
Combining the last inequality with (5.12), (5.I3]) and using Remark again, we

obtain

n
2 )
IPGaQMXT\ + E 1 B;
=

sup E[|(6V)? + [(0V))'2] < 1
te[0,7

The proof is then concluded by summing up over ¢. O

6 Extensions to continuously reflected BSDEs

We now apply the results of the last section to continuously reflected BSDEs.
We first obtain a regularity results for the solution of such equation in the spirit
of [15]. We then show that the Euler scheme (5.2)) can be used to approximate

continuously reflected BSDE, provided that ® and 7 are conveniently chosen.

In this section, we assume the existence and uniqueness of a strong solution to the
continuously reflected BSDE defined by

Y = gY(X7) + ftT X, Yo, Zy)du — ftT ZLaw, + ftT AR — ftT dK.-
(X)) <Y< hYXy), Ve [0,T], as. (6.1)
STt x,))aktt = [T (v - r(X,)dK: - =0,

S

for each £ € {1,...,d} and where K** K*~ € S%(R) are continuous, increasing and
K{T=K{~=0.

Remark 6.1. 1. Whend =1 and [, h are C’,} with L-Lipschitz continuous derivative
and h > [ + ¢, for some € > 0, existence and uniqueness to the above equations are
well known, see e.g. [7]. Obviously this immediately extends to the case d > 1
whenever f¢ depends on (y, z) through (3¢, 2°) only.

2. When d > 2 and h, [ are constant, existence and uniqueness follow from [§].
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The Proposition below will allow us to extend the results of the last section to
continuously reflected BSDE. Roughly speaking, it means that (Y%, Z%) is a good
approximation for (Y, Z).

Proposition 6.1. Set ¢ = 1 under (Hz1)-(Hbl) and ¢ = 1 under (Hf)-(Hz1)-
(Hb2), then we have

sup BJ[Y; — Y| + sup B[, - VPR + 112 - 2% < Cunit,
te[0,7T] t€[0,T]

where |R| is the modulus of R.
Proof. First, observe that we can consider each coordinate separately. We can then

follow essentially the same arguments as in the proof of Proposition 4.1 in [3]. In

particular, we have to control both

ri1 - Ti+1
[ - MKt [TED - WK e (L),
t t
For all s <T', we have
~ Tj+1 ~
1(X,) - (TR < ES[WXS) )+ rf%Xu,Yf,Z?)rdu] (62)

TR (X)) < Es[M(Xml)—hf(XsH/ ”Tfﬁxu,?f,zf)\du]. (6.3)

S

Under (Hf)-(Hx1)-(Hb2), the control on h and [ given by the assumption and the
Lipschitz-continuity of o, b and f, implies that,

(X)) — (TR < CLE{ [ 0+ 0+ |Xu|2>>du]

seum] [+ 172+ 28 a

It then follows from Cauchy-Schwartz inequality and Propositions 2.1 and that
(X)) - (YD < [RIB.

Similar arguments applied to (6.3) lead to
(V) = n'(Xs) < [RIB.

Under (Hz1)-(Hb1), we use the Lipschitz-continuity of [, to obtain
Ti+

~ 1 ~
(X)) = (VN < CLEs L\Xs—erHIﬂL/ (1l + Y+ 120 du | -

S
It follows then from Proposition 21l Proposition @.2land Cauchy-Schwartz inequality
that

(IR|2 + ~2|R]) 8
R|Z 8.

1(X5) = (V)

IN

IN



Similarly, we have
(V) = h(X) < |26
In both cases, the proof is then concluded by arguing exactly in [3]. O

Combining this Proposition with Proposition Il and Proposition 3] we deduce
the following regularity property for (Y, 7).

Corollary 6.1. Set ¢ = 3 under (Hz1)-(Hbl), ¢ = 3 under (Hf)-(Hz1)-(Hb1)
and ¢ = 1 under (Hf)-(Hx1)-(Hb2), then the following holds

sup E[|Y; — (D"Y),?] < Cplx|?  and  ||Z — P"Z|j3, < Cplnl? .
t€[0,T7]

Moreover, if ¢ = % under (Hf)-(Hz1)-(Hb1) and ¢ = 2 under (Hf)-(H22)-(Hb3),

then we have
1Z = P™Z|[32 < Crlx|? .
Proof. 1. We first study the regularity of Y. Since,

sup EUYt — (D”Y)tﬂ < Cp( sup IE[DZ;R — (D”?%)tﬂ + sup E[|Yt — ?;R\Q]) ,
te[0,7 te[0,7 te[0,7

the bound on sup,cp 1 E[|Y; — (D™Y);[?] is obtained by applying Proposition E.T]
and Proposition [6.1] with  and 7 chosen such that

Cr
K
with a = 2 under (Hz1)-(Hb1), o = 1 under (Hf)-(Hz1)-(Hbl) and o =  under
(Hf)-(Hzl)-(Hb2).

2. We now turn to Z. By Jensens’s inequality, we have

IR < and |R| = O(|x|?), (6.4)

12 =P 2|z < CL(1Z2® = P" 2%+ 112 = 273) -

Thus, choosing ® and 7 as in (64) with « = £ under (Hz1)-(Hb1), o = Z under
(Hf)-(Hz1)-(Hbl), @ = % under (Hf)-(Hz1)-(Hb2), o = % under (Hf)-(Hz2)-
(Hb3), we obtain the required bound by combining Proposition [£.3] with Proposition
0.1 d

We now state the main result of this section which provides an upper bound for the
convergence rate of the Euler scheme (5.2)) to the continuously reflected BSDE (6.1]).

Theorem 6.1. Set g = § under (Hal)-(Hb1), ¢ = § under (Hf)-(Ha1)-(Hb1),
q= % under (Hf)-(Hxz2)-(Hb3), then we have

sup E[Y; — (DY), ] + |2 - 27|} < Culal?.
te[0,T]
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Moreover, if (Hf)-(Hxz2)-(Hb3) hold and X™ = X on w, then

sup E[|Y; — (DY "] + 1|12 - 27| < Culnls .

te[0,T]
Proof. This is a direct consequence of Proposition and Theorem [B.] applied
with % and 7 defined as in ([€4), with o = } under (Hz1)-(Hb1), a = 2 under (Hf)-
(Hz1)-(Hb1), a = § under (Hf)-(Hz2)-(Hb3) and o = 2 under (Hf)-(Hz2)-(Hb3)
and when X™ = X on . O

The results of the last Theorem can be compared to those of Theorem 4.1 in [3],
which gives an upper bound for the rate of convergence in the case of unidimensional
simply reflected BSDEs.

First, observe that (Hbl) is weaker than the assumptions of Theorem 4.1 in [3]
and the price to pay for these fairly mild regularity assumptions is the poor rate of
convergence.

Second, under (Hf)-(Hz2)-(Hb3), we are not able to retrieve the result of [3]. This
can be explained by the structure of f in our multidimensional setting. In particular,
its dependence with respect to all component of y prevents us to get rid of the term

kE[max,cx | X, — X7|?] in the first claim of Proposition 5.1 .

Let us conclude this paper with the following result dealing with the special case
when the system of BSDE is decoupled:

Theorem 6.2. Assume that f* depends on (y, z) only through (y*, 2°) and set ¢ = %

under (Hz1)-(Hb2), ¢ = 2 under (H22)-(Hb3), then we have

sup E[|Y; — (D"Y™)[?] < Cyplnle.
te[0,7)

Proof. This is an immediate consequence of Proposition and the second claim
of Theorem F.1l applied with R and 7 defined as in (64), with o = 1 under (Hz1)-
(Hb2) and o = 2 under (Hz2)-(Hb3). O

Notice that, when d = 1, the last restriction on f trivially holds. In this case, Y
can be interpreted as the price of a Game Option (see e.g. [6]). This provides an
interesting financial application of our result.

Also, observe that, in Theorem [6.2] we obtain better bounds on the convergence
rate. But, we are not able to retrieve the bounds of [3], due to the presence of two

reflecting boundaries, see Lemma 411

7 Appendix: a priori estimates

In this section we provide a priori estimates for reflected BSDEs in an abstract

framework.
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We consider processes (YR, YR Z%) € S2(RY) x S2(RY) x H2(M?) such that:
~ 5 R Ti+1, Tj+1 Por/ -
Y, :Yrj+1+ f(u)du—/ (ZD)'dWy, , t € [rj,rjz1) i <k, (7.1)
t t
where f is some adapted process satisfying
|1 < Crllnl + YR +|2%)) , for some n € H*(R) . (7.2)
We also assume that
V= I, vee [0, T\ R, (7.3)
and we work under the following assumption
e (A0): Forall ¢ € {1,...,d}, r e R,
(O < 10 s + 1€71ge
with £ € S2(R), S, Q% € Fp, SN QL = () and S% = 0.
Obviously, this implies that

VAP <VRP 6P, reR and VP < gl (7.4)

We shall also make use of the following assumption, which is a particular case of

@2,
- (Af): For each ¢ € {1,...,d} and all u € [0, 7], we have

F @l < Crllmal + 1V + 12D 1) -
In this framework, we can state the following proposition.

Proposition 7.1. For all s < T, the following holds
_ T _ T
sup ES{]Y;RP —i—/ |Zf?\2du} < C’LIES[|Y7§B|2 + rmax |, | +/ |nu]2du] i
te(s,T) t ref 0
When (A f) holds, we have
_ T
sup B[] < Cum maxle P+ [ a5 <,
tels,T] reR 0

and, for all s <t, t € [rj,rj41), j <K,
£

T, T
Es /](de)'e!ZdUI SCLEs[maX\ir!2+/ \nu|2du],
t ref 0

where

=inf{reR|r>rj, 1o #0AT , j<r—1,0<d. (7.5)
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Proof. 1. Since Y® € S2(R?), applying Ito’s formula to [Y®|2 on [, 7j+1), implies

SR 2 " R%2 R 12 EARET
E.| [T +[ |25 2du| = B,||V2| +2/t (VR Flu))dul |

for all s <t e [rj,rj41), j < k.
Fix a > 1 to be chosen later on. Combining Cauchy-Schwartz inequality and (7.2)
with the inequality ab < aa? + b?/a, a > 0 , we compute that, for all s < t,

TR 2 TR R |2 TSR 2
B 720+ [T122P0] < Bfv2 P rac [P
t t
Cr, [T+
+ 8 [ 4

@ Jt

Taking « large enough such that Cf/a < 1/2, we obtain

- 1 [Ti+ Tivl,
B TP+ 5 [ 28R < B P on [T (T ) aul.
t t
Using Gronwall’s Lemma in the last inequality, we then get

Swi2 LT R Crlrssr—t] R 2 AR
E| [V + 5 t 1Z,|"du| < "RV, |7+ O t nu|*du|,  (7.6)

for all s <t € [rj,rjt1).
2. It follows easily from (7.0), (Z3), (A0) and an induction argument that

. . T
sup B[+ VPP] < OB PP + wmaxle P+ [InPa| - (71)
te(s,T) ref s
for all s <T.

Moreover, (ZG)) applied to ¢t = r; and s < r; reads, recall (Z.4]),

Es

SR 2 1 Tj+1 (2
Yol + 5 |Zy1"du| < (1+ CLIR|)E;
T

??R 2 2 C Ea 2d
| Tj+1| + |£7‘j+1| + L |77’U«| uf,
T

J J

for j < k.

Summing up in this inequality and using (7)), we obtain

T _ T
IES[/ !Zg'\:|2du] < CLES[]YI?P—I—Rma%\&F%—/\nu|2du] ,s<t<T,
t re t

which concludes the proof of the first claim.
3. We now turn to the case where (A f) hold. Recalling (7)) and applying Ito’s
formula to |(Y®)¢|2 on [1,7j+1), we get

(VY2 4 / T P = ()P -2 / T IRy aw,
t - t
492 / "R ) du (7.8)
t
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for all s <t € [rj,rjt1), j < k.
Recall the definition of 7. On {rf = rq41}, we obviously have

4

AP+ [ 1D P < e —2 [ TR (2R aw,
t t
R P (wdu
2 [T

On {qu > rg+1}, we denote by 05 the random index such that rp = qu. Summing
up from ¢ to 65 in (IZ8)) applied to t = 7441, we retrieve the last inequality.
Arguing as in step 1, recall (A f), we then obtain

£

L
~ 1 Tq Tqs ~
E{IFM P+ 5 [l Pau| < comlegl + | (\Yﬁuw)du], (79)

for all s <t € [rq,7q41), ¢ < K.

Summing up on ¢ in the last inequality, we get
~ T ~
B[] < Cumaxle P+ (TP + a5 <t 7).
t
Using Gronwall’s Lemma, we then have

_ T
sup ES[IYERF] < CLIES[maX]&F —|—/ |17u\2du} , s <T. (7.10)
tels,T] ref 0

Combining this inequality with (Z.9]), we also get

-
E, / (28 2du
t

T
< CLES[maxw + / \nu|2du} |
7’€§R t

which concludes the proof. O

Corollary 7.1. Fiz p > 2 and assume that £ € SP(R) and n € LP(Q2 x [0,T1]), then
when (A f) holds, we have for allt <T

T
7R < cpEfmaler+ [ nrad
reR 0
Proof. This follows directly from Jensen’s inequality applied to (ZI0) with ¢ = s.
Od
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