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, we introduce the discretely reflected counterpart of these equations. We then provide representation formulae which allow us to obtain new regularity results. We also propose an Euler scheme's type approximation and give new convergence results for both discretely and continuously reflected BSDEs.

Introduction

The main motivation of this paper is the discrete time approximation of Backward Stochastic Differential Equations (BSDEs) with two reflecting barriers, also known as doubly reflected BSDEs:

     Y t = g(X T ) + T t f (X u , Y u , Z u )du - T t (Z u ) dW u + T t dK + u - T t dK - u l(X t ) ≤ Y t ≤ h(X t ) , ∀t ∈ [0, T ] , a.s. (C) T 0 (Y s -l(X s ))dK + s = T 0 (Y s -h(X s ))dK - s = 0 . (1.1)
where f , g are Lipschitz-continuous functions, h, l are smooth functions (say C 2 b ), and the process X is the solution of a forward SDE

X t = X 0 + t 0 b(X s )ds + t 0 σ(X s )dW s ,
with b and σ Lipschitz-continuous. These equations can be considered as extensions of simply reflected BSDEs, which are related to optimal stopping problem (American option in finance), see e.g. [START_REF] Karoui | Reflected Solutions of Backward SDE's, and related obstacle problems for PDE's[END_REF], and whose numerical approximation has been widely studied, see e.g. [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF][START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF][START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF][START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF]. Existence and uniqueness of solutions to (1.1) have been first studied by Cvitanic-Karatzas in [START_REF] Cvitanic | Backward Stochastic Differential Equations with Reflection and Dynkin Games[END_REF]. There has been a lot of contributions on this subject since then, consisting essentially in weakening the assumptions for the existence of (1.1), see e.g. [START_REF] Bahlali | BSDEs with two Reflecting Barriers and Quadratic Growth Coefficient[END_REF] and the references therein. In economics, [START_REF] Cvitanic | Backward Stochastic Differential Equations with Reflection and Dynkin Games[END_REF], among others, shows that these equations are related to stochastic stopping games (Dynkin games) and Ma-Cvitanic [START_REF] Cvitanic | Reflected Forward-Backward SDEs and obstacle problems with boundary condition[END_REF] connects them to the pricing of Game Options (or Israeli Options), introduced in [START_REF] Kifer | Game options[END_REF].

In this Markovian setting, [START_REF] Cvitanic | Reflected Forward-Backward SDEs and obstacle problems with boundary condition[END_REF] shows that the solution of (1.1) is associated to variational inequalities (or obstacles problem) of the type

(u -l) ∧ {(u -h) ∨ -[∂ t u + b∂ x u + 1 2 T r(σσ ∂ xx u) + f (t, x, u, σ∂ x u)]} = 0 u(T, x) = g(x) (1.2)
in the sense that (Y t , Z t ) = (u(t, X t ), ∂ x uσ(t, X t )) for t ∈ [0, T ]. Thus, studying the discrete time approximation of (1.1) offers alternative numerical methods to estimate the solution of (1.2).

While studying the discrete-time approximation of (1.1), it appeared that the techniques we used, can be applied to a multidimensional setting. Namely, Y takes values in R d and each component Y verifies:

Y t = g (X T ) + T t f (X u , Y u , Z u )du - T t (Z u ) dW u + T t dK + u - T t dK - u T 0 (Y s -l (X s ))dK - s = T 0 (Y s -h (X s ))dK - s = 0 , ∈ {1, . . . , d}, (1.3) 
and, almost surely, for all t ≤ T , Y t is constrained to take values in the domain O X t where

O x := {y ∈ R d | ∀ ∈ {1, . . . , d}, l (x) ≤ y ≤ h (x)}.
Following [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF][START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF], we first introduce "discretely reflected" versions of (1.1), meaning that condition (C) is imposed only on a deterministic set of times = {0 =: r 0 < . . . < r κ := T }:

Y T = Y T := g(X T ) ∈ O X T
and, for j ≤ κ -1 and t ∈ [r j , r j+1 ),

Y t = Y r j+1 + r j+1 t f (X s , Y s , Z s )ds - r j+1 t (Z s ) dW s , Y t = Y t 1 {t / ∈ } + P(X t , Y t ) 1 {t∈ } ,
where P(x, y) is the projection of y ∈ R d onto O x .

In the framework of doubly reflected BSDEs, i.e. d = 1, this corresponds to stochastic stopping games, where the stopping is allowed only on \ {T }.

We then focus on the discrete-time approximation of such equations. As in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF][START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF][START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF], we introduce a partition π = {0 =: t 0 < • • • < t n := T } such that ⊂ π and define (Y π , Zπ ) by the backward induction:

       Zπ t i = (t i+1 -t i ) -1 E (W t i+1 -W t i )(Y π t i+1 ) | F t i Y π t i = E Y π t i+1 | F t i + (t i+1 -t i )f (X π t i , Y π t i , Zπ t i ) Y π t i = Y π t i 1 {t i / ∈ } + P(X π t i , Y π t i ) 1 {t i ∈ } , i ≤ n -1 , (1.4) 
with terminal condition (recall that t n = T )

Y π T = Y π T := g(X π T ) .
Here, X π is the Euler scheme associated to X.

As in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF][START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF][START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF], we show that the error induced by this scheme:

max i<n sup t∈[t i ,t i+1 ) E | Y t -Y π t i | 2 + E n-1 i=0 t i+1 t i |Z t -Zπ t i | 2 dt (1.5)
is intimately related to the regularity of the process (Y , Z ), or equivalently ( Y , Z ), through the quantities

max i<n sup t∈[t i ,t i+1 ) E | Y t -Y t i | 2 and E n-1 i=0 t i+1 t i |Z t -Z t i | 2 dt ,
for which we provide new controls in terms of |π|, the modulus of π. This is based on a generalization of the representation of Z derived in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF].

In this paper, we essentially rely on the basic concepts developed in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF], but we face two new difficulties: (i) Contrary to [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF] where O x is of the form {y ∈ R : y ≥ ψ(x)}, we do not have an exact expression of the projected process P(X t , Y t ) and the reflection terms are much more intricate to handle.

(ii) In the one dimensional case, a simple Girsanov transformation allows to get rid of the Malliavin derivatives of Y and Z which enter in the representation formula of Z (see section 3). This is no more possible, in general, in our multidimensional setting.

Yet, in the discretely reflected case, we are able to extend the regularity result of [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF]. This allows to show that the scheme (1.4) has a convergence rate of at least |π| 1 4 . Under stronger regularity conditions on the boundaries and the coefficient of the SDE solved by X, we obtain a convergence rate of at least |π| 1 2 (see section 5.3). Using an approximation argument, we then extend these results to continuously reflected BSDEs. The convergence is obtained under minimal Lipschitz-continuity assumptions with a control of order |π| 1 12 . Under stronger regularity conditions, we extend the one dimensional result of [START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF], but without their uniform ellipticity assumption. Namely, we provide an upper bound of order |π| 1 4 for the approximation error. When the system of BSDEs is decoupled, which is the most important case for financial applications, we improve it to |π| 1 3 .

We would like to conclude this introduction by observing that the scheme (1.4) is obviously not directly implementable since it requires the computation of conditional expectations. The global numerical error is then the sum of the discrete time approximation error (1.5) and the numerical error induced by the approximation of the conditional expectations. However, this approximation problem is well understood and [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF][START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF][START_REF] Gobet | Rate of convergence of empirical regression method for solving generalized BSDE[END_REF] among others propose efficient numerical methods, which can be easily adapted to our framework. This paper being already long, we shall not detail this part here and only focus on the discretization error.

The rest of the paper is organized as follows. In Section 2, we define BSDEs which are discretely reflected in a convex domain O x of the above form. In Section 3, we provide different representations of Z and use them to study the regularity of (Y , Y , Z ) in Section 4. In Section 5, we propose an Euler scheme type approximation of discretely reflected BSDEs and give our main convergence results. Finally, in Section 6, we provide extensions to the continuously reflected case. The Appendix contains the proofs of a priori estimates which are used several times in the paper.

Notations: M n,m is the set of matrix with dimension n×m, we simply write M d if m = n = d. For z ∈ M n,m , z ij denotes the (ij) component of z, z i. the i-th row of z, z .j the j-th column and z its transposed matrix. The space L p , for p ≥ 1, is the set of random variables X satisfying

||X|| L p := E[|X| p ] 1 p < ∞. The norm |.
| represents the canonic norm on R d or on M d and ., . denotes the usual scalar product on R d . For a function f ∈ C 1 , ∇ x f denotes the Jacobian Matrix of f with respect to x. Finally, for ease of notations, we shall sometimes write

E s [.] for E [. | F s ], s ∈ [0, T ].

Discretely reflected BSDE

Definition

Let T > 0 be a finite time horizon and (Ω, F, P) be a stochastic basis supporting a d-dimensional Brownian motion W . We assume that the filtration F = (F t ) t≤T generated by W satisfies the usual assumptions and that F T = F.

Let X be the solution on [0, T ] of

X t = X 0 + t 0 b(X u )du + t 0 σ(X u )dW u (2.1)
where Remark 2.1. Observe that, as in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF] and contrary to [START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF], we make no uniform ellipticity condition on σ. In particular, the standard results of the PDE literature cannot be used to derive strong regularity properties on the solution of the PDE of the form 1.2 associated to 1.3.

X 0 ∈ R d
Under (Hx1), we clearly have that X ∈ S 2 (R d ), where for p ≥ 1 and

E = R d or E = M d , S p (E) is the set of E-valued progressively measurable processes U such that ||U || S p := || sup t∈[0,T ] U t || L p < ∞. In particular, ||X|| S 2 ≤ C L , ( 2.2) 
where, from now on, C L denotes a generic constant, whose value may change from line to line, but which only depends on L, T , X 0 and d (we write C p L if it also depends on some extra parameter p ≥ 1).

We then introduce a family of closed convex domains (O x ) x∈R d :

O x := {y ∈ R d | ∀ ∈ {1, . . . , d}, l (x) ≤ y ≤ h (x)} , ( 2.3) 
where the maps h, l : R d → R d satisfy one of the following regularity assumptions:

• (Hb1): h and l are L-Lipschitz continuous.

• (Hb2): for each ∈ {1, . . . , d}, h and l verify for some (ρ 1 , ρ 2 ) :

R d → R d ×R d , ρ 3 : R d → R + , |ρ 1 (x)| + |ρ 2 (x)| + |ρ 3 (x)| ≤ L(1 + |x| L ) l (x) -l (y) ≤ ρ 1 (x) (y -x) + ρ 3 (x)|x -y| 2 , ∀ x, y ∈ R d . h (y) -h (x) ≤ ρ 2 (x) (y -x) + ρ 3 (x)|x -y| 2 , ∀ x, y ∈ R d .
This assumption is slightly weaker than the semi-convexity assumption of Definition 1 in [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF].

• (Hb3): h and l are C 2 b with L-Lipschitz continuous first and second derivatives bounded by L and there is ∈ (L -1 , ∞) such that h > l + , for each ∈ {1, . . . , d}.

Observe that (Hb3) ⇒ (Hb2) ⇒ (Hb1).

Given a set of reflection times

:= {0 =: r 0 < r 1 < • • • < r κ-1 < r κ := T } , κ ≥ 1 , the solution of the discretely reflected BSDE is a triplet (Y , Y , Z ) satisfying Y T = Y T := g(X T ) ∈ O X T
and, for j ≤ κ -1 and t ∈ [r j , r j+1 ),

Y t = Y r j+1 + r j+1 t f (Θ u )du - r j+1 t (Z u ) dW u , Y t = R t , X t , Y t , ( 2.4) 
with Θ = (X, Y , Z ).

Here, g :

R d → R d , f : R d × R d × M d → R d are L-Lipschitz continuous and R (t, x, y) := y + ([l (x) -y ] + -[y -h (x)] + )1 {t∈ } , for (t, x, y) ∈ [0, T ] × R d × R, ∈ {1, . . . , d}.
Observe that

Y t = Y t , for t / ∈ \ {T } . (2.5)
Remark 2.2. Under (Hx1)-(Hb1), such a solution can be defined by backward induction. At each step the existence and uniqueness in S 2 (R d ) × H 2 (M d ) follow from e.g. [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]. Here, for p ≥ 1 and

E = M d or E = M d 2 ,d , H p (E) is the set of progressively measurable E-valued processes V satisfying ||V || H p := T 0 |V r | 2 dr 1 2 L p < ∞ .
Remark 2.3. The case where (Y , X) takes values in R n × R d with n = d can be treated in our framework. Indeed, if d < n, we can set X i := 0, i.e. b i = 0, σ i. = 0 and X i 0 = 0, for i > d. Recall that we make no ellipticity assumption. If d > n, we can set g i = f i := 0 which implies Y i = 0, for i > n, and work with

O x × [-, ] d-n , > 0, x ∈ R d .
We provide in the Appendix useful a priori estimates for "reflected" BSDEs in a somehow abstract setting. In our framework, they read as follows.

Proposition 2.1. Under (Hx1)-(Hb1), the following holds

sup t∈[0,T ] E | Y t | 2 + |Y t | 2 + ||Z || 2 H 2 ≤ C L κ .
Moreover, if (Hf ): f depends on z .i only for i = (i.e. ∇ z .i f

1 {i = } = 0, if f ∈ C 1 ), holds, then sup t∈[0,T ] E | Y t | 2 + |Y t | 2 ≤ C L .
Proof. It suffices to apply Proposition 7.1 in the Appendix, with

η r = |X r | and ξ r = |h(X r )| ∨ |l(X r )|, r ∈ , recall (2.2). 2 

Dependence on the parameters

We now present some estimates on the variation in the solution of (2.4) induced by a variation in the data. Later on, this will allow us to work with smooth parameters (f , g, etc.) before turning to the general case by an approximation argument (see e.g. Proposition 4.2).

In the rest of this section, we consider two discretely reflected BSDEs constructed as follows.

For i ∈ {1, 2}, let X i be an element of S 2 (R d ), f i , g i be L-Lipschitz continuous functions and h i , l i boundaries satisfying (Hb1). We denote by (Y ,i , Y ,i , Z ,i ) the solutions of the discretely reflected BSDE associated to these two sets of data and

Θ ,i := (X i , Y ,i , Z ,i ). We then define δY := Y ,1 -Y ,2 , δ Y := Y ,1 -Y ,2 , δZ := Z ,1 -Z ,2 and δX := X 1 -X 2 , δf := f 1 (Θ ,1 ) -f 2 (Θ ,1 ), δg := g 1 (X 1 ) - g 2 (X 1 ), δh := h 1 (X 1 ) -h 2 (X 1
) and δl := l 1 (X 1 ) -l 2 (X 1 ).

Proposition 2.2. Under (Hx1)-(Hb1), the following holds

sup t∈[0,T ] E |δY t | 2 +||δZ|| 2 H 2 ≤ C L κE max r∈ (|δX r | 2 + |δh r | 2 + |δl r | 2 ) +||δf || 2 H 2 + δg T 2 L 2 .
The proof of this result requires the following Lemma whose proof uses a key argument which will be very important below when studying the convergence of Euler scheme's type approximation of (2.4).

Lemma 2.1. Let (Hx1)-(Hb1) hold. Then for each r ∈ \ {T } and ∈ {1, . . . , d}, there exists S r , Q r in F r such that S r ∩ Q r = ∅ and

|(Y ,1 r ) -(Y ,2 r ) | ≤ |( Y ,1 r ) -( Y ,2 r ) |1 S r + |l 1 (X 1 r ) -l 2 (X 2 r )| + |h 1 (X 1 r ) -h 2 (X 2 r )| 1 Q r .
Proof. For ease of notations, we work with d = 1 and omit the exponent . Appropriate S r and Q r are constructed by considering different disjoint cases, depending on the position of Y ,1 r and Y ,2 r .

1.a On {l 1 (X 1 r ) < Y ,1 r < h 1 (X 1 r )}, three different cases may occur depending on the position of Y ,2 . (i) On {l 2 (X 2 r ) < Y ,2 r < h 2 (X 2 r )}, we have Y ,1 r -Y ,2 r = Y ,1 r -Y ,2 r . (ii) On { Y ,2 r ≤ l 2 (X 2 r )}, we have Y ,2 r = P(X 2 r , Y ,2 r ) = l 2 (X 2 r ). If l 2 (X 2 r ) ≤ Y ,1 r , then 0 ≤ Y ,1 r -Y ,2 r = Y ,1 r -l 2 (X 2 r ) ≤ Y ,1 r -Y ,2 r . If l 2 (X 2 r ) > Y ,1 r , then 0 ≤ l 2 (X 2 r ) -Y ,1 r = Y ,2 r -Y ,1 r ≤ l 2 (X 2 r ) -l 1 (X 1 r ). (iii) On {h 2 (X 2 r ) ≤ Y ,2 r }, similar arguments based on the comparison between h 2 (X 2 r ) and Y ,1 r lead to |Y ,1 r -Y ,2 r | ≤ | Y ,1 r -Y ,2 r | on { Y ,1 r ≤ h 2 (X 2 r )} and |Y ,1 r -Y ,2 r | ≤ |h 2 (X 2 r ) -h 1 (X 1 r )| on {h 2 (X 2 r ) < Y ,1 r }. 1.b We now study the case { Y ,1 r ≤ l 1 (X 1 r )} which implies Y ,1 r = l 1 (X 1 r ). (i) On { Y ,2 r ≤ l 2 (X 2 r )}, we have Y ,1 r -Y ,2 r = l 1 (X 1 r ) -l 2 (X 2 r ). (ii) On {l 2 (X 2 r ) < Y ,2 r < h 2 (X 2 r )}, there are two disjoint cases. On {Y ,2 r < Y ,1 r }, 0 ≤ Y ,1 r -Y ,2 r ≤ l 1 (X 1 r ) -l 2 (X 2 r ). On {Y ,2 r ≥ Y ,1 r }, 0 ≤ Y ,2 r -Y ,1 r ≤ Y ,2 r -Y ,1 r . (iii) Finally on { Y ,2 r ≥ h 2 (X 2 r )}, we also have two disjoint cases. On {h 2 (X 2 r ) > Y ,1 r }, 0 ≤ Y ,2 r -Y ,1 r ≤ Y ,2 r -Y ,1 r . On {h 2 (X 2 r ) ≤ Y ,1 r }, 0 ≤ Y ,1 r -h 2 (X 2 r ) ≤ h 1 (X 1 r ) -h 2 (X 2 r ).
1.c By symmetry, the case

Y ,1 r ≥ h 1 (X 1 r ) is handled similarly. 2
We now provide the proof of Proposition 2.2.

Proof of Proposition 2.2. The proof of this Proposition relies on the abstract results of Proposition 7.1 in the Appendix. For t ∈ [r j , r j+1 ), we have

δ Y t = δY r j+1 + r j+1 t f (u)du - r j+1 t (δZ u ) dW u ,
where

f := δf + f 2 (Θ ,1 ) -f 2 (Θ ,2 ). Since f 2 is L-Lipschitz continuous, we have | fu | 2 ≤ C L (|η u | 2 + |δ Y u | 2 + |δZ u | 2 ) , with η u := |δf u | + |δX| .
Moreover, using Lemma 2.1, we can set ξ := 2L|δX| + |δl| + |δh|, since h 2 and l 2 are L-Lipschitz continuous.

The proof is then concluded by appealing to Proposition 7.1 and observing that

|δY T | ≤ L|δX T | + |δg T |, since g 2 is L-Lipschitz continuous. 2 
3 Representation results for Z

In this section, we provide different representations for Z . The first two ones are stated in terms of the Malliavin derivatives of (X, Y , Z ), the last one is based on their associated "first variation" processes.

In order ensure that (X, Y , Z ) are "smooth" enough, we shall work under the additional assumption:

• (Hr): h, l, f , b and σ are C 1 b .
These representations will allow us to provide regularity results for (Y , Z ) under (Hr). This assumption will then be relieved by using an approximation argument based on Proposition 2.2 above.

Malliavin differentiability of (X, Y , Z )

In the sequel, we denote by D 1,2 the space of random variable F which are differentiable in the Malliavin sense and such that

F 2 L 2 + T 0 D t F 2 L 2 dt < ∞ .
Here, D t F denotes the Malliavin derivative of F at time t ≤ T , see e.g. [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF].

We also consider the space L 1,2 of adapted processes V such that, after possibly passing to a suitable version, V s ∈ D 1,2 for all s ≤ T and

||V || H 2 + T 0 ||D t V || H 2 dt < ∞ .
In the following, we shall always work with a suitable version if necessary.

Under (Hr), X belongs to L 1,2 , see [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF].

It follows that R (r, X, F ) ∈ ID 1,2 whenever F ∈ ID 1,2 and 
D t R (r, X, F ) = D t F +(D t l (X r )-D t F )1 {l (Xr)>F } -(D t F -D t h (X r ))1 {h (Xr)<F } .
(3.1) Indeed, by a direct adaptation of the proof of Proposition 1.2.3 in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] we deduce that, for

G ∈ ID 1,2 , [G] + belongs to ID 1,2 and D t [G] + = α(D t G) where α is a random variable bounded by 1 satisfying 1 {G>0} α = 1 {G>0} . Thus Proposition 1.3.7 in [16] implies that D t [G] + = D t G1 {G>0} , if G ∈ ID 1,2 .
Combining (2.4), (3.1), and Proposition 5.3 in [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF] with an induction argument, we obtain that ( Y , Z ) belongs to L 1,2 and that a version of D t (( Y ) , (Z ) . ) is given by the solution in

S 2 (R d ) × H 2 (M d ) of D t ( Y s ) = D t (Y r j+1 ) + r j+1 s (∇ x f (Θ u )D t X u + ∇ y f (Θ u )D t Y u )du (3.2) + r j+1 s d i=1 ∇ z .i f (Θ u )D t (Z u ) .i du - r j+1 s d k=1 D t (Z u ) k dW k u ,
for s ∈ [r j , r j+1 ), j < κ, with the terminal condition

D t ( Y T ) = ∇g (X T )D t X T .
We conclude this section with some a priori estimates that will be used later on. The first one concerning DX is standard, we therefore omit the proof (see e.g. [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]).

Proposition 3.1. Let (Hr) hold. Then, for all p ≥ 2 sup s≤u∧t D s X t -D s X u L p + ||(D t X -D u X)1 [t∨u,T ] || S p ≤ C p L |t -u| 1 2 , t, u ≤ T. (3.3)
and

|| sup s≤T |D s X| || S p ≤ C p L . ( 3.4) 
We now turn to the study of (DY , DZ ). For ease of notations, we will from now on denote by β a F T -measurable positive random variable, whose value may change from line to line, but satisfies

E[β p ] ≤ C p L , ∀p ≥ 1 . Proposition 3.2. Let (Hr) hold. Then, for s ≤ t ≤ T , |D s Y t | 2 + |D s Y t | 2 + E t T t d =1 |D s (Z u ) . | 2 du ≤ κE t [β] . (3.5) If (Hf ) holds, then, for p ≥ 2, |D s Y t | p + |D s Y t | p + E t d =1 τ j t |D s (Z u ) . | 2 du ≤ E t [β] , (3.6)
and

|D s Y t | p + |D s Y t | p ≤ E t [β] , (3.7 
)

for j ≤ κ -1, t ∈ [r j , r j+1 ), s ≤ t,
where

τ j = inf{t ∈ | t ≥ r j+1 , ( Y t ) / ∈ [l (X t ), h (X t )]} ∧ T , j ≤ κ -1 , ≤ d . (3.8) Proof. Recall that for F ∈ D 1,2 , DF = (D 1 F, . . . , D d F )
where D i denotes the Malliavin derivatives with respect to W i . Fix q ∈ {1, . . . , d}, by (3.2), we have for all t ≤ s ∈ [r j , r j+1 ) and j < κ

D q t Y s = D q t Y r j+1 - r j+1 s (D q t Z u ) dW u + r j+1 s ∇ x f (Θ u )D q t X u + ∇ y f (Θ u )D q t Y u + ∇ z f (Θ u )D q t Z u du . Since f is C 1 b under (Hr), (7.
2) of the Appendix holds with η = |D q t X|. Clearly (Af ) holds under (Hf ). Moreover, it follows from (3.1), that

(D q t Y , D q t Y ) satisfies (A0) (take S r = {(Y r ) ∈ [l (X r ), h (X r )]}, for r ∈ and ∈ {1 . . .

d}).

The result is then a direct application of Proposition 7.1 and Corollary 7.1.

2

Similar arguments based on Proposition 7.1 also lead to Proposition 3.3. Under (Hr), we have, for all t ≤ T and r, s ≤ t,

|D s Y t -D r Y t | 2 + |D s Y t -D r Y t | 2 + E t T t d =1 |D s (Z u ) . -D r (Z u ) . | 2 du ≤ κE t [β] |s -r| . Under (Hf ), |D s Y t -D r Y t | 2 + |D s Y t -D r Y t | 2 + E t d =1 τ j t |D s (Z u ) . -D r (Z u ) . | 2 du ≤ E t [β] |s -r| , for j ≤ κ -1, t ∈ [r j , r j+1
) and r, s ≤ t.

Representation in terms of Malliavin derivatives of (X, Y , Z )

It follows from [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] and (2.4), viewed in a forward way, that (D t Y t ) t≤T is a version of Z . Hence, (3.2) implies that Z admits a version satisfying

(Z t ) = E t D t Y r j+1 + r j+1 t (∇ x f (Θ u )D t X u + ∇ y f (Θ u )D t Y u + d i=1 ∇ z .i f (Θ u )D t (Z u ) .i )du (3.9) for each j ≤ κ -1 and t ∈ [r j , r j+1 ).
Following the arguments of [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF], we can get rid of the term D t Y r j+1 in the above expression.

Corollary 3.1. Let (Hr) hold. Then, for each ∈ {1, . . . , d}, there is a version of (Z ) . such that, for each j ≤ κ -1 and s ≤ t ∈ [r j , r j+1 ),

((Z t ) . ) = E t ∇φ τ j D t X τ j + τ j t ∇ x f (Θ u )D t X u du (3.10) + τ j t ∇ y f (Θ u )D t Y u + d i=1 ∇ z .i f (Θ u )D t (Z u ) .i du ,
where, for r ∈ ,

∇φ r := ∇g (X r )1 {r=T } + ∇l (X r )1 {l (X r )>( e Y r ) } + ∇h (X r )1 {h (X r )<( e Y r ) } 1 {r<T } .
Proof. For ∈ {1, . . . , d}, q ≤ κ -1, we denote by ξ q the random index such that r ξ q = τ q (recall the definition of τ q in Proposition 3.2). On {τ q = r q+1 }, the result is obvious. On {τ q > r q+1 }, summing up from q to ξ q in (3.2) applied to s = r q+1 and using (3.1) leads to

D t ( Y s ) = ∇φ τ j D t X τ q + τ q s (∇ x f (Θ u )D t χ u + ∇ y f (Θ u )D t Y u )du (3.11) + τ q s d i=1 ∇ z .i f (Θ u )D t (Z u ) .i du - τ q s d k=1 D t (Z u ) k dW k u , for t ≤ s ∈ [r q , r q+1 ). Since (D t ( Y t ) ) t≤T is a version of ((Z t ) .
) t≤T , the required result is obtained by taking the conditional expectation in the above expression. 2

Under (Hf ), we can also get rid of the term D t Z in the expressions (3.9) and (3.10) by arguing as in [START_REF] Zhang | Some fine properties of backward stochastic differential equations[END_REF] and [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF]. Indeed, applying Itô's Lemma to Y Λ with

Λ t := exp t 0 ∇ z . f (Θ u ) dW u - t 0 1 2 |∇ z . f (Θ u )| 2 du , t ≤ T ,
we directly deduce from (3.11) the following alternative representation.

Corollary 3.2. Let (Hr) and (Hf ) hold. Then, there is a version of (Z ) . such that

((Z t ) . ) = (Λ t ) -1 E t ∇φ τ j (Λ D t X) τ j + τ j t ∇ x f (Θ u )(Λ D t X) u + ∇ y f (Θ u )(Λ D t Y ) u du for s ≤ t ∈ [r j , r j+1 ), j ≤ κ -1 and ∈ {1, . . . , d}.
Observe that this simplification is no more possible if f depends of more than one columns of Z .

Remark 3.1. For later use, observe that:

sup s≤t≤T Λ t L p ≤ C p L , (3.12) sup u≤t∧s |Λ t (Λ u ) -1 -Λ s (Λ u ) -1 | L p ≤ C p L |t -s| 1 2 , t, s ≤ T . (3.13)

First variation processes associated to (X, Y , Z )

In Section 3.4 below, we provide a representation of Z in term of the first variation process of (X, Y ). Under (Hr), the first variation process ∇X of X is well defined and solves on [0, T ]

∇X t = I d + t 0 ∇ x b(X r )∇X r dr + t 0 d j=1 ∇ x σ .j (X r )∇X r dW j r
where I d is the identity matrix of M d . Its inverse (∇X) -1 is the solution on [0, T ] of

(∇X) -1 t = I d - t 0 (∇X) -1 r   ∇ x b(X r ) - d j=1 ∇ x σ .j (X r )∇σ .j (X r )   dr - t 0 d j=1 (∇X) -1 r ∇ x σ .j (X r )dW j r .
Recall the well-known relation between ∇X and DX:

D t X s = ∇X s (∇X t ) -1 σ(X t )1 t≤s for all t, s ≤ T . ( 3.14) 
Remark 3.2. The following standard estimates hold:

||∇X|| S p + ||(∇X) -1 || S p ≤ C p L . ( 3.15) 
Let us now consider the processes (∇Y , ∇ Y ) ∈ S 2 (M d ) × S 2 (M d ) and ∇Z ,i ∈ H 2 (M d ), i ∈ {1, . . . , d}, defined as the solutions of the coupled linear discretely "reflected" BSDEs:

∇Y T = ∇ Y T := ∇g(X T )∇X T and, for j ≤ κ -1, t ∈ [r j , r j+1 ), ∈ {1, . . . , d}, (∇ Y ) . t = (∇Y ) . r j+1 + r j+1 t (∇ x f (Θ u )∇X u + ∇ y f (Θ u )∇ Y u + d i=1 ∇ z .i f (Θ u )∇Z ,i u )du - r j+1 t d k=1 (∇Z , u ) k. dW k u (3.16)
where (∇Y ) . is defined through the "pseudo-reflection"

(∇Y ) . t := (∇ Y ) . t + (∇l (X t )∇X t -(∇ Y ) . t )1 {l (X t )≥( e Y t ) } -((∇ Y ) . t -∇h (X t )∇X t )1 {h (X t )≤( e Y t ) } 1 {t∈ } . (3.17)
Observe that the system of coupled BSDEs (3.16) can be rewritten as:

U t = U r j+1 + r j+1 t F (∇X u , U u , V u )du - r j+1 t V u dW u , t ∈ [r j , r j+1 ) , (3.18)
where F is a linear operator with random coefficient and values in

R d 2 , (U , U , V ) takes value in R d 2 × R d 2 × M d 2 ,d and (U ) = [(∇Y ) 1. , . . . , (∇Y ) d. ], ( U ) = [(∇ Y ) 1. , . . . , (∇ Y ) d. ], (V ) = [∇Z ,1 , . . . , ∇Z ,d ].
Thus, existence and uniqueness in 

S 2 (R d 2 )×S 2 (R d 2 )×H 2 (M d 2 ,
(∇Y ∇X -1 t σ(X t ), ∇ Y ∇X -1 t σ(X t ), (∇Z , ∇X -1 t σ(X t )) ∈{1,.
..,d} ) verify the same equation of type (3.18). By uniqueness of the solution, this implies that

D t ( Y s ) = (∇ Y ) . s ∇X -1 t σ(X t ), D t (Y s ) = (∇Y ) . s ∇X -1 t σ(X t ), D t (Z s ) . = ∇Z , s ∇X -1 t σ(X t ),
for ∈ {1, . . . , d}, t ≤ s ≤ T .

Remark 3.4. By using the same arguments as in proof of Proposition 3.2, we easily deduce that, under (Hr) and (Hf ), 

|∇ Y t | p + |∇Y t | p ≤ E t [β p ] , ( 3 
((Z t ) . ) = (Λ t ) -1 E t ∇φ τ j (Λ ∇X) τ j + τ j t ∇ x f (Θ u )(Λ ∇X) u + ∇ y f (Θ u )(Λ ∇ Y ) u du ∇X -1 t σ(X t ), for s ≤ t ∈ [r j , r j+1 ), j ≤ κ -1.

Regularity results

Based on the representations of the previous section and the stability result of Proposition 2.2, we can now provide one of the main results of this paper which concerns the regularity of (Y , Y , Z ). Namely, we study the quantities

|| Y -D π Y || H 2 and ||Z -P π Z || H 2 , ( 4.1) 
where π = {0 =: t 0 < t 1 < . . . < t n := T } is a partition of the time interval [0, T ] with modulus |π| and such that ⊂ π, D π is the usual piecewise approximation operator defined on H 2 (R d ) by

D π V := n-1 i=0 V t i 1 [t i ,t i+1 ) + V T 1 {T } ,
and P π is defined on H 2 (M d ) by

P π V := n-1 i=0 V π t i 1 [t i ,t i+1 ) with V π t i := 1 t i+1 -t i E t i+1 t i V s ds | F t i . (4.2) Remark 4.1. P π V is the best L 2 (Ω × [0, T ])-approximation of V by adapted processes which are constant on each interval [t i , t i+1 ).
As shown in [START_REF] Bouchard | Discrete time approximation of decoupled Forward-Backward SDE with jumps[END_REF], [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF], [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF] and [START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF], the control of such quantities plays a central role in the study of Euler scheme's type approximations of BSDEs and it will be used in the next sections. 

Regularity of Y

E | Y t -(D π Y ) t | 2 ≤ C L α(κ)|π| .
Proof. Noting that, for j < κ and t

∈ [t i , t i+1 ) ⊂ [r j , r j+1 ], | Y t -Y t i | 2 ≤ 2 t i+1 t i |f (X u , Y u , Z u )| 2 du + sup t∈[t i ,t i+1 ] | t i+1 t (Z u ) dW u | 2 ,
it follows directly from Proposition 2.1, Proposition 4.2 below and Burkholder-Davis-Gundy inequality, that

E | Y t -Y t i | 2 ≤ C L α(κ)|π| ,
which concludes the proof. 2

The following immediate Corollary provides an estimate of the first term of (4.1). 

|| Y -D π Y || 2 H 2 ≤ C L α(κ)|π| .
We now state the Proposition which was used in the proof of Proposition 4.1. Observe that it provides a "weak" bound on Z . There is a version of Z such that 1. For s ≤ t ≤ T , we have

E t s |Z u | 2 du ≤ C L α(κ)|t -s| .
2. If (Hr) holds, then there is a version of Z such that

E sup t∈[0,T ] |Z t | 2 ≤ C L α(κ) .
Proof. 1. Assume that (Hr) holds. Since (D t Y t ) t≤T is a version of (Z t ) t≤T , the second claim is a straightforward consequence of Proposition 3.2 and Burkholder-Davis-Gundy inequality. This implies the first one under (Hr).

2. We now assume that only (Hx1) holds for X i.e. b and σ are L-Lipschitz continuous and (Hb1) for h and l. Recall that g, f are also L-Lipschitz continuous. Let (f n ) n≥0 be the sequence of smooth functions defined by

f n (x, y, z) = R d(d+2) φ n (x -ξ, y -υ, z -ζ)f (ξ, υ, ζ)dξdυdζ ,
with φ n (x, y, z) = n d(d+2) φ(n(x, y, z)) and φ a compactly supported smooth probability density function on R d(d+2) . Since f is L-Lipschitz continuous, we have

||f -f n || ∞ ≤ C L n .
Let g n resp. σ n and b n be defined similarly with g resp. σ and b in place of f , so that

||g -g n || ∞ + ||b -b n || ∞ + ||σ -σ n || ∞ ≤ C L n .
Let X n be the diffusion associated to b n and σ n , and (Y ,n , Z ,n ) be the solution of (2.4) associated to f n , g n and X n . Since by step 1. and (Hx1)

E t s |Z ,n u | 2 du ≤ C L α(κ)|t -s| ,
for all s, t ≤ T and n ≥ 0, the required result follows from step 1 and Proposition 2.2. 2

Regularity of Z

The estimate for the second term of (4.1) is a bit more involved. We shall adapt the proof of Proposition 5.2 in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF] to our framework.

We first prove a result for the general case. The difficulty, which does not appear in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF], comes from the fact that DZ is in the expression of Z and can be eliminated only when (Hf ) holds. It is overcome using the a priori estimates of the previous section. 

||Z -P π Z || 2 H 2 ≤ C L α(κ)(κ|π| + |π| 1 2 ).
Proof. 1. First observe that a similar approximation argument as the one used in step 2. of the proof of Proposition 4.2 allows to reduce our study to the case where (Hr) holds. We shall therefore assume from now on that (Hr) holds. Since, by Remark 4.1,

||Z -P π Z || H 2 ≤ ||Z -D π Z || H 2 ,
it suffices to show that the last term is bounded by

C L α(κ)(κ|π| + |π| 1 2
). For each ∈ {1, . . . , d} and s ≤ t ∈ [t i , t i+1 ) ⊂ [r j , r j+1 ], we define V ,j s,t by

E t ∇φ τ j (D s X) τ j + τ j s ∇ x f (Θ u )D s X u +∇ y f (Θ u )D s Y u + d k=1 ∇ z .i f (Θ u )D s (Z u ) .k du .
After possibly passing to a suitable version of Z , we observe that

|(Z t ) . -(Z t i ) . | ≤ |V ,j t,t -V ,j t i ,t | + |V ,j t i ,t -V ,j t i ,t i | , ( 4.3) 
recall Corollary 3.1. Defining i j through t i j = r j , j ≤ κ, we shall prove the following controls

κ-1 j=0 i j+1 -1 k=i j t k+1 t k E |V ,j t,t -V ,j t k ,t | 2 dt ≤ C L α(κ)|π| (4.4) and κ-1 j=0 i j+1 -1 k=i j t k+1 t k E |V ,j t k ,t -V ,j t k ,t k | 2 dt ≤ C L α(κ)(κ|π| + |π| 1 2 ) . (4.5)
2.a We first study (4.4). We have for t

∈ [t i , t i+1 ) ⊂ [r j , r j+1 ] V ,j t,t -V ,j t i ,t ≤ C L E t τ j t |D t X u -D t i X u |+|D t Y u -D t i Y u |+ d k=1 |D t (Z u ) .k -D t i (Z u ) .k |du + t t i |D t i X u |+|D t i Y u |+ d k=1 |D t i (Z u ) .k | du + ∇φ τ j (D t X) τ j -∇φ τ j (D t i X) τ j (4.6)
Observing that, by Cauchy-Schwartz inequality,

E t t i (|D t i X u | + |D t i Y u | + d i=1 |D t i (Z u ) .i |)du 2   ≤ C L |π|E t t i (|D t i X u | 2 + |D t i Y u | 2 + d k=1 |D t i (Z u ) .k | 2 )du ,
it follows from Proposition 3.2, Proposition 3.3, (3.3) and (Hr) that

E |V ,j t,t -V ,j t i ,t | 2 ≤ C L α(κ)|π| . (4.7)
2.b We now prove (4.5). Using the martingale property of (V ,j t i ,t ) t≤T on [t i , t i+1 ], we obtain

E |V ,j t i ,t -V ,j t i ,t i | 2 ≤ E |V ,j t i ,t i+1 | 2 -|V ,j t i ,t i | 2 ≤ E |V ,j t i+1 ,t i+1 | 2 -|V ,j t i ,t i | 2 +|V ,j t i+1 ,t i+1 -V ,j t i ,t i+1 | |V ,j t i+1 ,t i+1 +V ,j t i ,t i+1 | ,
which by Proposition 3.3, (Hr) and Cauchy-Schwartz inequality leads to

E |V ,j t i ,t -V ,j t i ,t i | 2 ≤ E |V ,j t i+1 ,t i+1 | 2 -|V ,j t i ,t i | 2 + C L α(κ)|π| 1 2 . (4.8)
To conclude the proof of (4.5), it remains to study the first term in the right-hand side of (4.8):

Σ := κ-1 j=0 i j+1 -1 k=i j E |V ,j t k+1 ,t k+1 | 2 -|V ,j t k ,t k | 2 =   E |V ,κ-1 T,T | 2 -|V ,0 0,0 | 2 + κ-1 j=1 E |V ,j-1 r j ,r j | 2 -|V ,j r j ,r j | 2   ,
so that, by Proposition 3.2,

E Σ ≤ C L κα(κ) .
This implies (4.5). 2

As in the simply reflected case studied by [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF], the estimate of Proposition 4.3 can be improved if we impose more regularity on the forward process and the boundaries.

The main new difficulty due to our multidimensional setting is that the projection of (Y ) is not well known: it could be equal to the upper or the lower boundary. This is overcome by appealing to the following Lemma which is proved at the end of this section.

Lemma 4.1. Recall the definitions of ∇φ and τ j in Proposition 3.2. Under (Hf )-( Hx2)-(Hb3), the following holds

|E r j ∇φ τ j-1 Λ τ j-1 ∇X τ j-1 -∇φ τ j Λ τ j ∇X τ j | ≤ E r j β1 τ j-1 <τ j =T + E r j β(τ j -τ j-1 ) 1 2 , for j < κ.
This allows us to prove that Proposition 4.4. If (Hf ), ( Hx2) and (Hb3) hold, then

||Z -P π Z || 2 H 2 ≤ C L κ 1 2 |π| .
Proof. 1. A similar approximation argument as the one used in step 2. of the proof of Proposition 4.2 allows to reduce our study to the case where (Hr) and

• σ and b are C 2 b (smooth version of (Hx2)).

• h and l are C 3 b (smooth version of (Hb3)).

2. Under (Hf ), Remark 3.3 implies that,

V ,j s,t = η s E t A ,j s , ∈ {1, . . . , d} , s ≤ t ∈ [t i , t i+1 ) ⊂ [r j , r j+1 ] ,
where

η s := (Λ s ∇X s ) -1 σ(X s ) A ,j s := ∇φ τ j Λ τ j ∇X τ j + τ j s ∇ x f (Θ u )Λ u ∇X u +∇ y f (Θ u )Λ u ∇ Y u du.
Recall (4.3) in the proof of Proposition 4.3. We then have to study the quantities

κ-1 j=0 i j+1 -1 k=i j t k+1 t k E |V ,j t,t -V ,j t k ,t | 2 dt and κ-1 j=0 i j+1 -1 k=i j t k+1 t k E |V ,j t k ,t -V ,j t k ,t k | 2 dt. (4.9)
By (4.7) in the proof of Proposition 4.3 applied under (Hf ) (i.e. α(κ) = 1), we first obtain that

κ-1 j=0 i j+1 -1 k=i j t k+1 t k E |V ,j t,t -V ,j t k ,t | 2 dt ≤ C L |π| .
To control the second term, we can reproduce line by line the arguments used in the proof of Proposition 5.2 in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF] to obtain

κ-1 j=0 i j+1 -1 k=i j t k+1 t k E |V ,j t k ,t -V ,j t k ,t k | 2 dt ≤ C L |π|(1 + Σ + ( Σ ) 1 
2 ) (4.10)

where

Σ := κ-1 j=1 E |V ,j-1 r j ,r j | 2 -|V ,j r j ,r j | 2 and Σ := κ-1 j=1 E |A ,j-1 r j | 4 -|A ,j r j | 4 .
3. We now study Σ and Σ . Using (3.12), (3.15) and (3.19), we first get that

|V ,j-1 r j ,r j | 2 -|V ,j r j ,r j | 2 ≤ β |E r j τ j -τ j-1 | + |E r j ∇φ τ j-1 Λ τ j-1 ∇X τ j-1 -∇φ τ j Λ τ j ∇X τ j | ,
which, by Lemma 4.1, implies

Σ ≤ C L κ 1 2 .
Similar arguments lead to

Σ ≤ C L κ 1 2 .
We conclude the proof by plugging these estimates in (4.10). 2

Proof of Lemma 4.1. 1. For all ∈ {1 . . . d}, j < κ, we introduce:

∆φ j := ∇φ τ j-1 Λ τ j-1 ∇X τ j-1 -∇φ τ j Λ τ j ∇X τ j , ∆h j := ∇h (X τ j-1 ) τ j-1 Λ τ j-1 ∇X τ j-1 -∇h (X τ j )Λ τ j ∇X τ j , ∆l j := ∇l (X τ j-1 ) τ j-1 Λ τ j-1 ∇X τ j-1 -∇l (X τ j )Λ τ j ∇X τ j , Since ∇φ τ j-1 Λ τ j-1 ∇X τ j-1 -∇φ τ j Λ τ j ∇X τ j = ∆φ j 1 {τ j-1 <τ j <T } + 1 {τ j-1 <τ j =T } ,
it follows from (3.15) and (3.12) that

|E r j ∆φ j | ≤ E r j β1 {τ j-1 <τ j =T } + E r j |∆φ j |1 {τ j-1 <τ j <T } . ( 4.11) 
2. We now fix a coordinate ∈ {1, . . . , d} and set U j := {τ j-1 < τ j < T },

∆Y j = |( Y τ j-1 ) -(Y τ j ) | and ∆X j = |X τ j-1 -X τ j | .
Using the same arguments as in the proof of Proposition 4.1, we obtain

E r j |∆Y j | 2 + |∆X j | 2 ≤ E r j [β(τ j -τ j-1 )] . ( 4.12) 
Since h and l are L-Lipschitz continuous and h ≥ l + , we can find η > 0 and > 0 such that for all x 1 , x 2 ∈ R d :

|x 1 -x 2 | ≤ η =⇒ h(x 1 ) -l(x 2 ) > . ( 4.13) 
Observe that by choosing L large enough we can assume that 1 ≤ L so that 1 η + 1 ≤ C L . We then introduce the three following disjoint sets of

F T      A j = {|∆Y j | ≤ , |∆X j | ≤ η } ∩ U j B j = {|∆Y j | ≤ , |∆X j | > η } ∩ U j C j = {|∆Y j | > } ∩ U j Clearly, A j ∪ B j ∪ C j = U j . 3.a On A j ∩ {(Y τ j ) = h (X τ j )}, we have (Y τ j ) -l (X τ j-1
) > , by (4.13). But on

A j , we also have |(Y τ j ) -( Y τ j-1 ) | ≤ , thus (Y τ j-1 ) = h (X τ j-1
). Using the same

arguments on A j ∩ {(Y τ j ) = l (X τ j )}, we obtain (Y τ j-1 ) = l (X τ j ).
And, since

A j ∩ {(Y τ j ) = h (X τ j )} ∪ (A j ∩ {(Y τ j ) = l (X τ j )} = A j , we have E r j |∆φ j |1 U j ≤ E r j (|∆h j | + |∆l j |)1 A j + E r j |∆φ j | (1 B j + 1 C j ). (4.14) 
Using (Hb3), we have

E r j (|∆h j | + |∆l j |)1 A j ≤ E r j [β(τ j -τ j-1 )] 1 2
and, by Tchebytchev's inequality and (4.12),

E r j |∆φ j | (1 B j + 1 C j ) ≤ E r j [β(τ j -τ j-1 )] 1 2 .
Using (4.14), this leads to

E r j |∆φ j |1 U j ≤ E r j [β(τ j -τ j-1 )] 1 2 ,
which concludes the proof. 2

Discrete time approximation of discretely RBSDEs

As an application of the regularity results stated in the last section, we now study the convergence of an Euler scheme approximation method for discretely reflected BSDEs. Using an approximation argument, we will then propose an extension of this method to continuously reflected BSDEs in the next section.

Discrete time approximation of the forward process

As in the previous section, we consider a grid π = {0 =:

t 0 < t 1 < . . . < t n := T } of the time interval [0, T ] with modulus |π|, such that ⊂ π.
As usual, X is approximated by its Euler scheme X π defined by:

X π 0 = X 0 X π t i+1 = X π t i + b(X π t i )(t i+1 -t i ) + σ(X π t i )(W t i+1 -W t i ) , i ≤ n -1 , and for t ∈ [t i , t i+1 ) , i ≤ n -1 , X π t = X π t i + b(X π t i )(t -t i ) + σ(X π t i )(W t -W t i ) .
Under (Hx1), b and σ are L-Lipschitz continuous, thus we have (see e.g. [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF])

sup t≤T |X t -X π t | L p + max i<n sup t∈[t i ,t i+1 ] |X t -X π t i | L p ≤ C p L |π| 1 2 , p ≥ 1 . (5.1)

Euler Scheme for discretely reflected BSDEs

We now introduce a discrete-time approximation scheme for the discretely reflected BSDE of the form

       Zπ t i = (t i+1 -t i ) -1 E t i (W t i+1 -W t i )(Y π t i+1 ) Y π t i = E t i Y π t i+1 + (t i+1 -t i )f (X π t i , Y π t i , Zπ t i ) Y π t i = R(t i , X π t i , Y π t i ) , i ≤ n -1 , (5.2) 
with terminal condition

Y π T = Y π T := g(X π T ) .
This kind of backward scheme has been already considered when no reflection occurs, see e.g. [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF], and in the simply reflected case, see e.g. [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF][START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF] and the references therein.

Combining an induction argument with the Lispchitz-continuity of g, f and the projection operator, one easily checks that the above processes are square integrable and that the conditional expectations are well defined at each step of the algorithm.

For later use, we introduce the continuous time scheme associated to (Y π , Zπ ). By the martingale representation theorem, there exists

Z π ∈ H 2 (M d ) such that Y π t i+1 = E t i Y π t i+1 + t i+1 t i (Z π u ) dW u , i ≤ n -1 .
We then define Y π on [t i , t i+1 ) by

Y π t = Y π t i+1 + (t i+1 -t)f (X π t i , Y π t i , Zπ t i ) - t i+1 t (Z π u ) dW u , (5.3) 
and set

Y π t := R(t, X π t , Y π t ) , for t ≤ T .
Remark that, by the Itô isometry,

Zπ = P π Z π , ( 5.4) 
where P π is defined in (4.2).

Convergence results

We first provide estimates on the difference between (Y , Z ) and (Y π , Zπ ).

Proposition 5.1. Assume that (Hx1)-(Hb1) hold, then

sup t∈[0,T ] E |Y t -Y π t | 2 + ||Z -Zπ || 2 H 2 ≤ C L || Y -D π Y || 2 H 2 + ||Z -P π Z || 2 H 2 + κE max r∈ |X r -X π r | 2 + ||X -D π X π || 2 S 2
.

Moreover, if f depends on (y, z) only through (y , z . ), we have

sup t∈[0,T ] E |Y t -Y π t | 2 ≤ C L || Y -D π Y || 2 H 2 + ||Z -P π Z || 2 H 2 + ||X -D π X π || 2 S 2 .
Before providing the proof of this result, let us observe that combining it with Proposition 4.1, Proposition 4.3, Proposition 4.4 and (5.1), we obtain an upper bound on the approximation error between the Euler scheme (5.2) and the discretely reflected BSDE (2.4). 

E | Y t -(D π Y π ) t | 2 + ||Z -Zπ || 2 H 2 ≤ C L α(κ)|π| + γ(κ)|π| 1 2
.

Moreover if (Hx2)-(Hb3) hold and f depends on (y, z) only through (y , z . ), then we have

sup t∈[0,T ] E | Y t -(D π Y π ) t | 2 ≤ C L κ 1 2 |π| .
Remark 5.1. The estimates above are stated in a fairly general setting. They can be improved in some particular cases. 1. If X = X π on π, i.e. X is "perfectly simulated", then the term E max r∈ |X r -X π r | 2 = 0 disappears in the estimate of Proposition 5.1. In particular, if (Hx2)-(Hb3) hold and f depends on (y, z) only through (y , z . ), then we have

||Z -Zπ || 2 H 2 ≤ C L κ 1 2 |π|.
2. If f does not depend on z, then

sup t∈[0,T ] E | Y t -(D π Y π ) t | 2 ≤ C L |π| .
This follows from the fact that, in this case, the term

t i t i-1 (|Z u -Z t i-1 | 2 )du in (5.6) below disappears.
The proof of Proposition 5.1 relies on the following Remark.

Remark 5.2. Under (Hb1), for t ∈ π and each ∈ {1, . . . , d}, there exists

S t , Q t in F t such that S t ∩ Q t = ∅ and |(Y t ) -(Y π t ) | 2 ≤ |( Y t ) -( Y π t ) | 2 1 S t + C L |X t -X π t | 2 1 Q t .
This is shown by arguing as in the proof of Lemma 2.1. Moreover, for t ∈ [0, T ] \ , we have

|(Y t ) -(Y π t ) | = |( Y t ) -( Y π t )
| and for t ∈ π \ , we can set S t = Ω and Q t = ∅.

Proof of Proposition 5.1. We adapt the proof of Theorem 3.1 in [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF] 

to our context. 1.a We set δY = Y -Y π , δ Y = Y -Y π , δZ = Z -Zπ and δX = X -X π .
Observe that, by (5.4) and Jensen's inequality,

E | Z t -Zπ t | 2 ≤ (t i+1 -t i ) -1 t i+1 t i E |Z u -Z π u | 2 du ,
where

Z = P π Z . Applying Itô's formula to |δ Y | 2 on [t i , t i+1 ) ⊂ [r j , r j+1
), using the last inequality and standard arguments (see e.g. step 1. of Proposition 7.1 in the Appendix), we obtain for all s ≤ t i

E s |δ Y t | 2 + t i+1 t |δZ u | 2 du ≤ E s |δY t i+1 | 2 + α t i+1 t |δ Y u | 2 du + C L B i+1 + C L α |t i+1 -t i ||δ Y t i | 2 + t i+1 t i |δZ u | 2 du (5.5)
where α > 1 is to be chosen later on and for i ∈ {1, . . . , n}

B i := t i t i-1 (|X u -X π t i-1 | 2 + | Y u -Y t i-1 | 2 + |Z u -Z t i-1 | 2 )du .
(5.6) By Gronwall's Lemma, we deduce that, for all t ∈ [t i , t i+1 ),

E s |δ Y t | 2 ≤ e αC L |t i+1 -t i | E s |δY t i+1 | 2 +C L B i+1 + C L α (|t i+1 -t i ||δ Y t i | 2 + t i+1 t i |δZ u | 2 du) . (5.7)
Combining the last equation with (5.5), choosing α such that C L /α ≤ 1/4 and then working with |π| small enough such that α|π|e C L α|π| ≤ 2α|π| ≤ 1, we compute that

E s |δ Y t i | 2 + 1 2 t i+1 t i |δZ u | 2 du ≤ e C L |t i+1 -t i | E s |δY t i+1 | 2 + C L B i+1 . (5.8)
1.b For j ≤ κ, we define i j through t i j = r j . Since |δY t | = |δ Y t | for all t ∈ π \ , we deduce from (5.8) and an induction argument that, for i ∈ [i j , i j+1 ),

E |δ Y t i | 2 ≤ e C L |r j+1 -t i | E   |δY r j+1 | 2 + C L i j+1 k=i j +1 B k   .
(5.9)

Summing up over i in (5.8), we also obtain

E r j+1 r j |δZ u | 2 du ≤ C L E   |δX r j+1 | 2 +|δ Y r j+1 | 2 -|δ Y r j | 2 +|π| i j+1 k=i j +1 |δ Y t k | 2 + i j+1 k=i j +1 B k   .
Summing up over j, this leads to

E T 0 |δZ u | 2 du ≤ C L sup t∈π E |δ Y t | 2 + n i=1 B i + κ max r∈ E |δX r | 2 .
(5.10)

Using Remark 5.2, (5.9) and an induction argument we then obtain

E |δ Y r j | 2 + |δY r j | 2 ≤ C L E   |δX T | 2 + κ max r∈ |δX r | 2 + κ-1 q=0 i q+1 k=i q +1 B k   , j < κ ,
which combined with (5.9) leads to

sup i≤n E |δ Y t i | 2 + |δY t i | 2 ≤ C L E κ max r∈ |δX r | 2 + n i=1 B i . (5.11)
The proof is then concluded by plugging (5.11) in (5.10) and then combining (5.7) with (5.10) and (5.11).

2. We now turn to the case where f depends on (y, z) only through (y , z . ). In this case (5.7) and (5.8) reads

E s |(δ Y t ) | 2 ≤ e αC L |t i+1 -t i | E s |(δY t i+1 ) | 2 + C L B i + C L α (|t i+1 -t i ||(δ Y t i ) | 2 + t i+1 t i |(δZ u ) | 2 du) .
(5.12)

and

E s |(δ Y t i ) | 2 + 1 2 t i+1 t i |(δZ u ) | 2 du ≤ e C L |t i+1 -t i | E s |(δY t i+1 ) | 2 + C L B i , (5.13) for t ∈ [t i , t i+1 ), s ≤ t i , i < n.
For each ∈ {1, . . . , d} and i < n -1, we then introduce the sequences of sets U and Ũ defined by

U i := Ω and U i+k := U i+k-1 ∩ S t i+k , Ũ i := ∅ and Ũ i+k := U i+k-1 ∩ Q t i+k , for k ∈ [1, n -i -1]. Recall the definition of S and Q in Remark 5.2. Since S t ∩ Q t = ∅ for each t of π, we have U i+k ∩ Ũ i+k = ∅ and Ũ i+k ∩ Ũ i+j = ∅, for all k ∈ [1, n -i -1], j ∈ [k + 1, n -i -1]. Moreover, U i+k , Ũ i+k ∈ F t i+k .
Using (5.13), Remark 5.2 and an induction argument, we deduce that, for k ∈

[1, n -i -1], E t i |(δ Y t i ) | 2 ≤ C L E t i   |(δ Y t i+k+1 ) | 2 + k j=1 (|δX t i+j | 2 1 Ũ i+j + B i+j )  
In particular, for k = n -i -1, this leads to

E t i |(δ Y t i ) | 2 ≤ C L E t i   max r∈ |δX r | 2 + n j=i+1 B j   since n-j-1 i=1 1 Ũ i+j ≤ 1 and |δY T | ≤ C L |δX T |.
Combining the last inequality with (5.12), (5.13) and using Remark 5.2 again, we obtain

sup t∈[0,T ] E |(δ Y t ) | 2 + |(δY t ) | 2 ≤ C L E max r∈ |δX r | 2 + n i=1 B i .
The proof is then concluded by summing up over . 2

Extensions to continuously reflected BSDEs

We now apply the results of the last section to continuously reflected BSDEs.

We first obtain a regularity results for the solution of such equation in the spirit of [START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF]. We then show that the Euler scheme (5.2) can be used to approximate continuously reflected BSDE, provided that and π are conveniently chosen.

In this section, we assume the existence and uniqueness of a strong solution to the continuously reflected BSDE defined by

     Y t = g (X T ) + T t f (X u , Y u , Z u )du - T t Z u dW u + T t dK + u - T t dK - u l (X t ) ≤ Y t ≤ h (X t ) , ∀t ∈ [0, T ] , a.s. T 0 (Y s -l (X s ))dK + s = T 0 (Y s -h (X s ))dK - s = 0, (6.1) 
for each ∈ {1, . . . , d} and where K + , K -∈ S 2 (R) are continuous, increasing and

K + 0 = K - 0 = 0.
Remark 6.1. 1. When d = 1 and l, h are C 1 b with L-Lipschitz continuous derivative and h ≥ l + , for some > 0, existence and uniqueness to the above equations are well known, see e.g. [START_REF] Cvitanic | Backward Stochastic Differential Equations with Reflection and Dynkin Games[END_REF]. Obviously this immediately extends to the case d > 1 whenever f depends on (y, z) through (y , z ) only. 2. When d ≥ 2 and h, l are constant, existence and uniqueness follow from [START_REF] Gegout-Petit | Equations Différentielles Stochastiques Rétrogrades Réfléchies dans un convexe[END_REF].

The Proposition below will allow us to extend the results of the last section to continuously reflected BSDE. Roughly speaking, it means that (Y , Z ) is a good approximation for (Y, Z). Proposition 6.1. Set q = 1 2 under (Hx1)-(Hb1) and q = 1 under (Hf )-( Hx1)-(Hb2), then we have

sup t∈[0,T ] E |Y t -Y t | 2 + sup t∈[0,T ] E |Y t -Y t | 2 + ||Z -Z || 2 H 2 ≤ C L | | q ,
where | | is the modulus of .

Proof. First, observe that we can consider each coordinate separately. We can then follow essentially the same arguments as in the proof of Proposition 4.1 in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF]. In particular, we have to control both

r j+1 t (l (X s ) -( Y s ) )dK + s and r j+1 t (( Y s ) -h (X s ))dK - s , ∈ {1, . . . , d} .
For all s ≤ T , we have

l (X s ) -( Y s ) ≤ E s l (X s ) -l (X r j+1 ) + r j+1 s |f (X u , Y u , Z u )|du , (6.2) ( Y s ) -h (X s ) ≤ E s h (X r j+1 ) -h (X s )+ r j+1 s |f (X u , Y u , Z u )|du . (6.3)
Under (Hf )-( Hx1)-(Hb2), the control on h and l given by the assumption and the Lipschitz-continuity of σ, b and f , implies that,

l (X s ) -( Y s ) ≤ C L E s r j+1 s (1 + |ρ 1 (X s ) b(X u )| + |ρ 3 (X s )|(1 + |X u | 2 ))du + C L E s r j+1 s (|X u | + | Y u | + |Z u |)du
It then follows from Cauchy-Schwartz inequality and Propositions 2.1 and 4.2 that

l (X s ) -( Y s ) ≤ | | β .
Similar arguments applied to (6.3) lead to

( Y s ) -h (X s ) ≤ | | β .
Under (Hx1)-(Hb1), we use the Lipschitz-continuity of l, to obtain

l (X s ) -( Y s ) ≤ C L E s L|X s -X r j+1 | + r j+1 s (|X u | + | Y u | + |Z u |)du .
It follows then from Proposition 2.1, Proposition 4.2 and Cauchy-Schwartz inequality that

l (X s ) -( Y s ) ≤ (| | 1 2 + κ 1 2 | |) β ≤ | | 1 2 β . We consider processes (Y , Y , Z ) ∈ S 2 (R d ) × S 2 (R d ) × H 2 (M d ) such that: Y t = Y r j+1 + r j+1 t f (u)du - r j+1 t (Z u ) dW u , t ∈ [r j , r j+1 ) , j < κ , (7.1)
where f is some adapted process satisfying

| f | ≤ C L (|η| + | Y | + |Z |) , for some η ∈ H 2 (R) . (7.2)
We also assume that Obviously, this implies that

| Y t | = |Y t | , ∀t ∈ [0, T ] \ , ( 7 
|Y r | 2 ≤ | Y r | 2 + |ξ r | 2 , r ∈ and |Y T | 2 ≤ |ξ T | 2 . ( 7.4) 
We shall also make use of the following assumption, which is a particular case of (7. In this framework, we can state the following proposition. for all s ≤ t ∈ [r j , r j+1 ), j < κ.

Recall the definition of τ q . On {τ q = r q+1 }, we obviously have

|( Y t ) | 2 + τ j t |(Z u ) . | 2 du ≤ |ξ τ j | 2 -2 τ j t ( Y u ) ((Z u ) . ) dW u +2 τ j t ( Y u ) f (u)du .
On {τ q > r q+1 }, we denote by θ q the random index such that r θ q = τ q . Summing up from q to θ q in (7.8) applied to t = r q+1 , we retrieve the last inequality.

Arguing as in step 1, recall (Af ), we then obtain

E s |( Y t ) | 2 + 1 2 τ q t |(Z u ) . | 2 du ≤ C L E s |ξ τ q | 2 + τ q t | Y u | 2 + |η u | 2 du , (7.9)
for all s ≤ t ∈ [r q , r q+1 ), q < κ. Summing up on in the last inequality, we get Proof. This follows directly from Jensen's inequality applied to (7.10) with t = s. 2

E s | Y t | 2 ≤ C L E

  and b : R d → R d , σ : R d → M d satisfy one of the following assumptions, for some positive constant L: • (Hx1): b, σ are L-Lipschitz continuous. • (Hx2): b, σ are C 1 b with L-Lipschitz continuous first derivative bounded by L.
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 41 Set α(κ) = κ under (Hx1)-(Hb1) and α(κ) = 1 under (Hf )-(Hx1)-(Hb1), then the following holds sup t∈[0,T ]
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 41 Set α(κ) = κ under (Hx1)-(Hb1) and α(κ) = 1 under (Hf )-(Hx1)-(Hb1), then the following holds
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 42 Set α(κ) = κ under (Hx1)-(Hb1) and α(κ) = 1 under (Hf )-(Hx1)-(Hb1).

Proposition 4 . 3 .

 43 Set α(κ) = κ under (Hx1)-(Hb1) and α(κ) = 1 under (Hf )-(Hx1)-(Hb1), then the following holds

Theorem 5 . 1 .

 51 Set (α(κ), γ(κ)) = (κ 2 , κ) under (Hx1)-(Hb1), (α(κ), γ(κ)) = (κ, 1) (Hf )-(Hx1)-(Hb1) and (α(κ), γ(κ)) = (κ, 0) under (Hf )-(Hx2)-(Hb3) then the following holds sup t∈[0,T ]

. 3 )

 3 and we work under the following assumption• (A0): For all ∈ {1, . . . , d}, r ∈ , |(Y r ) | ≤ |( Y r ) |1 S r + |ξ r |1 Q r with ξ ∈ S 2 (R), S r , Q r ∈ F r , S r ∩ Q r = ∅ and S T = ∅.

  2), -(Af ): For each ∈ {1, ..., d} and all u ∈ [0, T ], we have| f (u)| ≤ C L (|η u | + | Y u | + |(Z u ) . |) .

  d) follows easily from a simple induction argument.

Remark 3.3. Using (3.2) and (3.14), we observe that (D t Y , D t Y , (D t (Z ) . ) ∈{1,...,d} ) and

  ) . | 2 du ≤ C L E s max Proof. 1. Since Y ∈ S 2 (R d ), applying Itô's formula to | Y | 2 on [r j , r j+1 ), implies E s | Y t | 2 + |Z u | 2 du = E s |Y r j+1 | 2 + 2 , f (u) du ,for all s ≤ t ∈ [r j , r j+1 ), j < κ. Fix α > 1 to be chosen later on. Combining Cauchy-Schwartz inequality and (7.2) with the inequality ab ≤ αa 2 + b 2 /α, α > 0 , we compute that, for all s ≤ t,E s | Y t | 2 + |Z u | 2 du ≤ E s |Y r j+1 | 2 + αC L (|Z u | 2 + |η u | 2 )du .Taking α large enough such that C L /α ≤ 1/2, we obtainE s | Y t | 2 + 1 2 |Z u | 2 du ≤ E s |Y r j+1 | 2 + C L | 2 + |η u | 2 du .Using Gronwall's Lemma in the last inequality, we then getE s | Y t | 2 + 1 2 | 2 du ≤ e C L |r j+1 -t| E s |Y r j+1 | 2 + C L |Z u | 2 du ≤ (1 + C L | |)E s | Y r j+1 | 2 + |ξ r j+1 | 2 + C L |Z u | 2 du ≤ C L E s | Y T | 2 + κ maxwhich concludes the proof of the first claim.3. We now turn to the case where (Af ) hold. Recalling (7.1) and applying Itô's formula to |( Y ) | 2 on [r j , r j+1 ), we get|( Y t ) | 2 + ) . | 2 du = |(Y r j+1 ) | 2 -2

	When (Af ) holds, we have sup t∈[s,T ] E s τ j t r j+1 t r j+1 t r j+1 r j+1 r j for j < κ. Summing up in this inequality and using (7.7), we obtain r j+1 + C L α r j+1 t r j+1 E s T t ! |(Z u r j+1 t r j+1 t |(Z u r j+1 t r j+1	r j+1 | Y u | 2 du r j+1 r j+1 r j |η u | 2 du , ( Y u ) ((Z u ) . ) dW u t
	+2	

Proposition 7.1. For all s ≤ T , the following holds

sup t∈[s,T ] E s | Y t | 2 + T t |Z u | 2 du ≤ C L E s | Y T | 2 + κ max r∈ |ξ r | 2 + T 0 |η u | 2 du . E s | Y t | 2 ≤ C L E s max r∈ |ξ r | 2 + T 0 |η u | 2 du , s ≤ T ,

and, for all s ≤ t, t ∈ [r j , r j+1 ), j < κ,

r∈ |ξ r | 2 + T 0 |η u | 2 du ,

where

τ j = inf{r ∈ | r ≥ r j+1 , 1 Q r = 0} ∧ T , j ≤ κ -1 , ≤ d . (7.5) t Y u t | Y u t |Z u t |η u | 2 du , (

7.6)

for all s ≤ t ∈ [r j , r j+1 ).

2. It follows easily from (7.6), (7.3), (A0) and an induction argument that

sup t∈[s,T ] E s | Y t | 2 + |Y t | 2 ≤ C L E s | Y T | 2 + κ max r∈ |ξ r | 2 + T s |η u | 2 du (7.7)

for all s ≤ T . Moreover, (7.6) applied to t = r j and s ≤ r j reads, recall (7.4),

E s | Y r j | 2 + 1 2 r∈ |ξ r | 2 + T t |η u | 2 du , s ≤ t ≤ T , t ( Y u ) f (u)du , (

7.8)

Similarly, we have

In both cases, the proof is then concluded by arguing exactly in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF].

2

Combining this Proposition with Proposition 4.1, and Proposition 4.3, we deduce the following regularity property for (Y, Z).

Corollary 6.1. Set q = 1 3 under (Hx1)-(Hb1), q = 1 2 under (Hf )-(Hx1)-(Hb1) and q = 1 under (Hf )-( Hx1)-(Hb2), then the following holds

Moreover, if q = 1 3 under (Hf )-( Hx1)-(Hb1) and q = 2 3 under (Hf )-( Hx2)-(Hb3), then we have

Proof. 1. We first study the regularity of Y . Since, 2. We now turn to Z. By Jensens's inequality, we have

Thus, choosing and π as in (6.4) with α = 2

We now state the main result of this section which provides an upper bound for the convergence rate of the Euler scheme (5.2) to the continuously reflected BSDE (6.1).

Theorem 6.1. Set q = 1 6 under (Hx1)-(Hb1), q = 1 3 under (Hf )-(Hx1)-(Hb1), q = 1 2 under (Hf )-(Hx2)-(Hb3), then we have

Moreover, if (Hf )-(Hx2)-(Hb3) hold and X π = X on π, then

Proof. This is a direct consequence of Proposition 6.1 and Theorem 5.1 applied with and π defined as in (6.4), with α = 1 3 under (Hx1)-(Hb1), α = 2 3 under (Hf )-(Hx1)-(Hb1), α = 1 2 under (Hf )-( Hx2)-(Hb3) and α = 2 3 under (Hf )-( Hx2)-(Hb3) and when X π = X on π.

2

The results of the last Theorem can be compared to those of Theorem 4.1 in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF], which gives an upper bound for the rate of convergence in the case of unidimensional simply reflected BSDEs. First, observe that (Hb1) is weaker than the assumptions of Theorem 4.1 in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF] and the price to pay for these fairly mild regularity assumptions is the poor rate of convergence. Second, under (Hf )-( Hx2)-(Hb3), we are not able to retrieve the result of [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF]. This can be explained by the structure of f in our multidimensional setting. In particular, its dependence with respect to all component of y prevents us to get rid of the term

Let us conclude this paper with the following result dealing with the special case when the system of BSDE is decoupled: Theorem 6.2. Assume that f depends on (y, z) only through (y , z ) and set q = 1 2 under (Hx1)-(Hb2), q = 2 3 under (Hx2)-(Hb3), then we have

Proof. This is an immediate consequence of Proposition 6.1 and the second claim of Theorem 5.1 applied with and π defined as in (6.4), with α = 1 2 under (Hx1)-(Hb2) and α = 2 3 under (Hx2)-(Hb3). 2

Notice that, when d = 1, the last restriction on f trivially holds. In this case, Y can be interpreted as the price of a Game Option (see e.g. [START_REF] Cvitanic | Reflected Forward-Backward SDEs and obstacle problems with boundary condition[END_REF]). This provides an interesting financial application of our result. Also, observe that, in Theorem 6.2, we obtain better bounds on the convergence rate. But, we are not able to retrieve the bounds of [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDEs[END_REF], due to the presence of two reflecting boundaries, see Lemma 4.1.

7 Appendix: a priori estimates

In this section we provide a priori estimates for reflected BSDEs in an abstract framework.