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We present a new variational model for computing the perturbation of the electronic first-order
density matrix generated by a defect in a crystalline material. A natural way to obtain variational
discretizations of this model is to expand the perturbation in a basis of precomputed maximally
localized Wannier functions of the reference perfect crystal. This approach can be used within any
semi-empirical or Density Functional Theory framework.

PACS numbers: 31.10.+z

Describing the electronic state of crystals with local
defects is a major issue in solid-state physics, materials
science and nano-electronics [1–3]. Usually, the energy
of a local defect is computed by subtracting the energy
of the perfect crystal from the energy of the crystal with
the defect, using a supercell model [4, 5]. However, the
supercell model has several drawbacks. First, the defect
interacts with its periodic images. Second, the supercell
must have a neutral total charge, so that in the simula-
tion of charged defects, an artificial charge distribution
(a jellium for instance) needs to be introduced to coun-
terbalance the charge of the defect. These two drawbacks
may lead to large, uncontrolled errors in the estimation
of the energy of the defect. In practice, ad hoc correction
terms are introduced to account for these errors [6].

In a recent article [7], we have used rigorous thermo-
dynamic limit arguments to derive a variational model
allowing to directly compute the perturbation of the elec-
tronic first order density matrix generated by a (neu-
tral or charged) local defect, when the host crystal is
an insulator (or a semi-conductor). This model has a
structure similar to the Chaix-Iracane model in quan-
tum electrodynamics [8–10]. This similarity originates
from formal analogies between the Fermi sea of a per-
turbed crystal and the Dirac sea in presence of atomic
nuclei. For technical reasons, the reference model con-
sidered in [7] was the reduced Hartree-Fock model, or in
other words, a Kohn-Sham model with fractional occu-
pancies and exchange-correlation energy set to zero.

The purpose of the present Letter is twofold. First, the
extension of our model to a generic exchange-correlation
functional is discussed. Second, a rigorous justification
of the numerical method consisting in expanding the per-
turbation in a basis of well-chosen Wannier functions of
the reference perfect crystal, is provided: this method
can be seen as a variational approximation of our model.
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Derivation of the model

We consider a generic Kohn-Sham model (or rather a
generic extended Kohn-Sham model in which fractional
occupancies are allowed) with exchange correlation en-
ergy functional Exc(ρ). For the sake of simplicity, we
omit the spin variable. The ground state of a molecular
system with nuclear charge density ρnuc and N electrons
is obtained by solving

inf
{

EKS
ρnuc(γ), 0 ≤ γ ≤ 1, tr(γ) = N

}

, (1)

EKS
ρnuc(γ) = tr

(

−
1

2
∆γ

)

− D(ρnuc, ργ)

+
1

2
D(ργ , ργ) + Exc(ργ), (2)

where ργ(r) = γ(r, r) and where

D(f, g) =

∫

R3

∫

R3

f(r) g(r′)

|r − r′|
dr dr′ (3)

is the Coulomb interaction. Still for simplicity, we detail
the case of the Xα exchange-correlation functional

Exc(ρ) = −CXα

∫

R3

ρ4/3,

the extension to more general LDA or GGA functionals
being straightforward.

The above model describes a finite system of N elec-
trons in the electrostatic field created by the external
density ρnuc. Our goal is to describe an infinite crys-
talline material obtained in the thermodynamic limit
N → ∞. In fact we shall consider two such systems.
The first one is the periodic crystal obtained when, in
the thermodynamic limit, the nuclear density approaches
the periodic nuclear distribution of the perfect crystal:

ρnuc → ρnuc
per , (4)

ρnuc
per being a periodic function. The second system is a

perturbation of the previous crystal by a defect:

ρnuc → ρnuc
per + ν. (5)
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Typically, ν describes nuclear vacancies, interstitial nu-
clei, or impurities together with possible local rearrange-
ment of the nuclei of the host crystal in the vicinity of
the defect.

The form of the density matrix γ0
per of the perfect

crystal obtained in the thermodynamic limit (4) is well-
known. Let us denote by R the Bravais lattice of the
host crystal and by Ω a reference unit cell. The matrix
γ0
per is a solution of the self-consistent equation

γ0
per = χ(−∞;µ](H

0
per) (6)

H0
per = −

1

2
∆ + Φper −

4

3
CXα ρ0

per
1/3

, (7)

−∆Φper = 4π
(

ρ0
per − ρnuc

per

)

, Φper R-periodic.

The notation P = χ(−∞;µ](A) means that P is the spec-
tral orthogonal projector of the operator A correspond-
ing to filling all the energies up to the Fermi level µ. The
density of the periodic Fermi sea is ρ0

per(r) = γ0
per(r, r).

Note that the system is locally neutral:
∫

Ω

ρ0
per =

∫

Ω

ρnuc
per = Z,

the Fermi level µ being chosen to ensure this equality.
For the rest of the Letter, we assume the host crystal is
an insulator (or a semi-conductor), i.e. that there is a
gap g = Σ+ − Σ− > 0 between the highest occupied and
the lowest virtual bands. Then the Fermi level can be
any number Σ− ≤ µ < Σ+.

Zth band (Z + 1)st band

Σ− Σ+

µ

γ0
per

FIG. 1: Spectrum of H0
per.

Now we consider the system obtained in the thermo-
dynamic limit (5) when there is a defect ν and derive a
nonlinear variational model for it. We shall describe the
variations of the Fermi sea with respect to the periodic
state γ0

per. This means our variable is

Q = γ − γ0
per

where γ is the density matrix of the perturbed Fermi
sea. Notice that the constraint that γ is a density matrix
(0 ≤ γ ≤ 1) translates into −γ0

per ≤ Q ≤ 1 − γ0
per for the

perturbation Q.
The energy of Q is by definition the difference of two in-

finite quantities: the energy of the state γ and the energy
of the periodic Fermi sea γ0

per. Using (2), the computa-
tion formally gives:

Eν(Q) = tr(H0
perQ) − D(ν, ρQ)

+
1

2
D(ρQ, ρQ) + ǫxc(ρQ) (8)

where this time

ǫxc(ρQ) = −CXα

∫

R3

(ρ0
per + ρQ)4/3 − ρ0

per
4/3

−
4

3
ρ0
per
1/3

ρQ.

If we want to describe a system of total charge q (like
q electrons if q > 0 or −q holes if q < 0) interacting with
the self-consistent Fermi sea in the presence of the defect,
we have to consider the minimization principle

Eν(q) = inf
{

Eν(Q), −γ0
per ≤ Q ≤ 1 − γ0

per, tr(Q) = q
}

.
(9)

We obtain in this way a formal model which a priori

renders possible the direct calculation of the perturbation
of the Fermi sea generated by the nuclear charge defect ν,
when q electrons (or −q holes) are trapped by the defect.
A globally neutral system would correspond to q =

∫

R3 ν
but there is no obstacle in applying (9) to charged defects.

Alternatively, one can, instead of imposing a priori the
total charge q of the system (microcanonical viewpoint),
rather fix the chemical potential µ ∈ (Σ−, Σ+) (grand-
canonical viewpoint). This amounts to considering the
Legendre transform of (9):

Eν
µ = inf

{

Eν(Q) − µtr(Q), −γ0
per ≤ Q ≤ 1 − γ0

per

}

.
(10)

Varying µ in the gap (Σ−, Σ+) should allow to describe
all possible q’s in (9), i.e. all possible configurations in
the presence of the defect.

It is however not clear how to construct numerical ap-
proximations of (9) (without coming back to the super-
cell model), nor even how to give a rigorous mathematical
meaning to (8)-(9). The biggest issue is that there is a

priori no reason why Q should be trace-class [11]. In-
deed in the Quantum Electrodynamical model studied in
[9, 10], minimizers are never trace-class, a property which
is related to renormalization. For this reason, a mathe-
matically correct definition of the variational set for Q
(hence of ρQ, tr(Q) and the right-hand side of (8)) is not
obvious. It was shown in [7] that an appropriate set of
admissible Q’s is the convex set

K =
{

Q | −γ0
per ≤ Q ≤ 1−γ0

per, tr(1+ |∇|)Q2(1+ |∇|)

+ tr(1 + |∇|)(Q++ − Q−−)(1 + |∇|) < ∞
}

.

Here we have introduced the notation

Q−− = γ0
perQγ0

per, Q++ = (1 − γ0
per)Q(1 − γ0

per).

Notice that when Q satisfies the constraint −γ0
per ≤ Q ≤

1 − γ0
per, one has Q++ ≥ 0 and Q−− ≤ 0.

A remarkable point, proved in [7], is that the density
ρQ of any operator Q ∈ K is a well-defined function which
satisfies

∫

R3

ρ2
Q + D(ρQ, ρQ) < ∞.

This allows to give a rigorous formulation of the model
described above: as ρ0

per is periodic, continuous and pos-

itive on R
3 and as ρQ ∈ L2(R3), the fifth term of (8)



3

which was not considered in [7] is also well-defined. Fi-
nally, following [9], the trace of any operator Q ∈ K is
defined by tr(Q) = tr(Q++) + tr(Q−−).

Any solution of (9) or (10) satisfies the SCF equation

Q = χ(−∞,µ) (HQ) − γ0
per + δ, (11)

where

HQ = −
∆

2
+ Φper + (ρQ − ν) ∗

1

|x|
−

4

3
CXα(ρ0

per + ρQ)1/3

and where 0 ≤ δ ≤ 1 is a finite-rank self-adjoint operator
on L2(R3) such that Ran(δ) ⊂ Ker(HQ − µ). In the
case of (9), µ is a Fermi level (a Lagrange multiplier)
which serves to ensure the constraint tr(Q) = q. The
essential spectrum of HQ is the same as the one of H0

per

and is therefore composed of bands. On the other hand,
the discrete spectrum of H0

per is empty, while the discrete
spectrum of HQ may contain isolated eigenvalues of finite
multiplicities located below the essential spectrum and
between the bands. Each filled (or unfilled) eigenvalue
may correspond to electrons (or holes) which are trapped
by the defect.

The SCF equation (11) is equivalent to the usual Dyson
equation on the Green functions. But its variational in-
terpretation (namely (9) or (10) with the additional con-
straint Q ∈ K) is new. This interpretation allows to
rigorously justify the numerical method described below.

Zth band (Z + 1)st band

Σ− Σ+

µ

γ = Q + γ0
per

FIG. 2: Spectrum of HQ.

Variational approximation

We consider the decomposition L2(R3) = H− ⊕ H+

where H− = γ0
perL

2(R3) and H+ = (1 − γ0
per)L

2(R3).
If one discretizes (9) in a local basis without taking care

of the constraint Q ∈ K, there is a risk to obtain mean-
ingless numerical results. On the other hand, selecting
a basis set which respects the above decomposition, will
lead to a well-behaved variational approximation of (9).
Let V h

± be finite-dimensional subspaces of H±, and con-

sider the finite-dimensional subspace V h = V h
− ⊕ V h

+ of
L2(R3). Let (φ1, · · · , φN−

) (resp. (φN−+1, · · · , φNb
)) be

an orthonormal basis of V h
− (resp. of V h

+ ). The approxi-
mation set for Q consists of the finite-rank operators

Q =

Nb
∑

i,j=1

Qh
ij |φi〉〈φj | (12)

with Qh ∈ Kh =
{

Qh = [Qh]T , 0 ≤ I + Qh ≤ 1
}

, where
I is the Nb × Nb block diagonal matrix

I =

[

1N−
0

0 0N+

]

.

The matrix of H0
per in the basis (φi) is of the form

Hh =

[

H−− 0
0 H++

]

.

For Q of the form (12), one has Eν(Q) − µtr(Q) =

ǫh
ν,µ(Qh) with ρQh(r) =

∑Nb

i,j=1 Qh
ijφi(r)φj(r) and

ǫh
ν,µ(Qh) = tr((Hh − µ)Qh) −

∫

R3

VνρQh

+
1

2
D(ρQh , ρQh) + ǫxc(ρQh).

We then end up with the finite-dimensional problem

eh
ν,µ = inf

{

ǫh
ν,µ(Qh), Qh ∈ Qh

}

(13)

which is a variational approximation of (10): eh
ν,µ ≥ Eν

µ.

As Qh ∈ Kh if and only if

I + Qh ∈
{

D = DT ∈ R
2Nb , D2 ≤ D, tr(D) = q + N−

}

,

problem (13) can be solved using relaxed constrained al-
gorithms [13, 14].

The question is now to build spaces V h
− and V h

+ that
provide a good approximation to (10). A natural choice
is to use the maximally localized (generalized) Wannier
functions [12] (MLWFs) of the reference perfect crystal.
A very interesting feature of these basis functions is that
they can be precalculated once and for all for a given host
crystal, independently of the local defect under consid-
eration. To construct V h

− , one can select the maximally
localized (generalized) Wannier functions of the occupied
bands, that overlap with some ball BRc

of radius Rc cen-
tered on the nuclear charge defect. To obtain a basis set
for V h

+ , one can select a number of active (unoccupied)
bands using an energy cut-off and retain the maximally
localized (generalized) Wannier functions of the active
bands that overlap with the same ball BRc

.

Numerical results

In order to illustrate the efficiency of the variational
approximation presented above, we take the example of
a one-dimensional (1D) model with Yukawa interaction
potential, for which the energy functional reads

E1D(γ) = tr

(

−
1

2

d2γ

dx2

)

− Dκ(ρnuc, ργ) +
1

2
Dκ(ργ , ργ)

with Dκ(f, g) = (A/2κ)

∫

R

∫

R

f(x) e−κ |x−x′| g(x′) dx dx′.

In the numerical examples reported below, the host
crystal is Z-periodic and the nuclear density is a Dirac
comb, i.e. ρnuc = Z

∑

j∈Z
δj, with Z ∈ N \ {0}. The

values of the parameters (A = 10 and κ = 5) have been
chosen in such a way that the ground state kinetic and
potential energies are of the same order of magnitude.
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FIG. 3: Modulus of MLWFs associated with the two occupied
bands (left) and with the lowest two virtual bands (right).

0-5 5

0

-0.5

0.5

FIG. 4: Perturbation ρQh of the periodic ground state density
with 28 MLWFs (line in red). The reference is a supercell
calculation in a basis set of size 1224 (dashed line in blue).

The nuclear local defect is taken of the form

ν = (Z − 1)δ0.25 − Zδ0.

This corresponds to moving one nucleus and lowering its
charge by one unit.

The first stage of the calculation consists in solving
the cell problem. For simplicity, we use a uniform dis-
cretization of the Brillouin zone (−π, π], and a plane wave
expansion of the crystalline orbitals.

The second stage is the construction of MLWFs. For
this purpose, we make use of an argument specific to the
one-dimensional case [15]: the MLWFs associated with
the spectral projector γ are the eigenfunctions of the op-
erator γxγ. One first constructs Ne mother MLWFs (tak-
ing γ = γ0

per), then Na mother MLWFs corresponding to
the lowest Na virtual bands (taking for γ the spectral pro-
jector associated with the lowest Na virtual bands). The
so-obtained mother MLWFs are represented on Fig. 3.

The third stage consists in constructing a basis set
(φj)1≤j≤Nb

of Nb = Nv(Ne + Na) MLWFs by selecting
the Nv translations of the (Ne + Na) mother MLWFs
that are closest to the local defect, and in computing the
first-order density matrix of the form (12) which satisfies
the constraints and minimizes the energy. The profile of
the density ρQh obtained with Z = 2, Ne = 2, Na = 2
and Nb = 28 is displayed on Fig. 4. It is compared with a
reference supercell calculation with 1224 plane wave ba-
sis functions. A fairly good agreement is obtained with
very few MLWFs.
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