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Abstract

This paper deals with the state and input observability analysis for structured linear systems with unknown inputs. The proposed method
is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. Using a particular decomposition of
the systems into two subsystems, we express, in simple graphic terms, necessary and sufficient conditions for the generic state and input
observability. These conditions are easy to check because they are based on comparison of integers and on finding particular subgraphs
in a digraph. Therefore, our approach is suited to study large scale systems.
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1 Introduction

The problem of estimating the state and the unknown in-
put is of great interest mainly in control law synthesis, fault
detection and isolation, fault tolerant control, supervision
and so on. In this respect, many works (Chu, 2000; Chu
and Mehrmann, 1999; Hou et al., 1999; Trin and Ha, 2000;
Tsui, 1996) are focused on the design of state observers for
linear systems subject to unknown inputs. Otherwise, the
issue of simultaneously observing the whole state and the
unknown input has been investigated in (Hou and Müller,
1992; Koenig, 2005).
In most cases, the studies on the state and input observ-
ability deal with algebraic and geometric tools (Basile and
Marro, 1973; Hou and Müller, 1999; Hou and Patton, 1998;
Trentelman et al., 2001). The use of such tools requires the
exact knowledge of the state space matrices characterizing
the system’s model. However, in many modeling problems,
these matrices have a number of fixed zero entries deter-
mined by the physical laws while the remaining entries are
not precisely known. To study the properties of these sys-
tems in spite of poor knowledge we have on them, the idea
is that we only keep the zero/non-zero entries in the state
space matrices. Thus, we consider models where the fixed
zeros are conserved while the non-zero entries are replaced
by free parameters. There is a huge amount of interesting
works in the literature using this kind of models called struc-
tured models. The study of such systems requires a low com-
putational burden which allows one to deal with large scale
systems. Many studies on structured systems are related to
the graph-theoretic approach to analyse some system prop-
erties such as controllability, observability or the solvability
of several classical control problems including disturbance
rejection, input-output decoupling, . . . (Dion et al., 2003). It
results from these works that the graph-theoretic approach
provides simple and elegant solutions.

However, the well-known graphic observability conditions
for linear structured systems recalled in (Dion et al., 2003)
cannot be applied to systems with unknown inputs. More re-
cently, in (Boukhobza et al., 2006) authors express in graphic
terms necessary and sufficient conditions for the observabil-
ity of general descriptor systems. Nevertheless, these con-
ditions are quite complicated.
In this context, the purpose of this paper is to use a graph-
theoretic approach for providing necessary and sufficient
conditions for the state and input observability for structured
linear systems.
The paper is organised as follows: after Section 2, which is
devoted to the problem formulation, a digraph representa-
tion of structured systems is given in Section 3. The main
result is enounced in Section 4. Finally, some concluding
remarks are made.

2 Problem formulation

In this paper, we treat numerically non-specified systems on
the form:

Σ :

{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

where x ∈ R
n, u ∈ R

q and y ∈ R
p are respectively the state

vector, the unknown input vector and the output vector. We
assume that only the zero/nonzero structure of A, B, C and
D is known. This means that, to each entry in these matrices,
we only know whether its value is fixed to zero, in which
case we call it a fixed zero, or that it has an unknown real
value, in which case we call the entry a free parameter. In
a structured system with h nonzero entries in A, B, C and
D, we can parameterize these nonzero entries by scalar real
(nonzero) parameters λi, i = 1, . . . , h forming a parameter
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vector Λ = (λ1, . . . , λh)
T ∈ R

h. We denote by Aλ, Bλ, Cλ

and Dλ respectively the matrices obtained by replacing the
nonzeros in A, B, C and D by the corresponding parameters
λi, i = 1, . . . , h, and we denote

ΣΛ :

{

ẋ(t) = Aλx(t) + Bλu(t)

y(t) = Cλx(t) + Dλu(t)
(2)

If all parameters λi are numerically fixed, we obtain a so-
called admissible realization of structured system ΣΛ. More
precisely, a realization of ΣΛ is a linear system Σ which
has no indeterminate parameters and has the same struc-
ture than ΣΛ i.e. A(i, j) = 0 ⇔ Aλ(i, j) = 0, B(i, j) =
0 ⇔ Bλ(i, j) = 0, C(i, j) = 0 ⇔ Cλ(i, j) = 0 and
D(i, j) = 0 ⇔ Dλ(i, j) = 0.
We say that a property is true generically (van der Woude,
2000) if it is true for almost all the realizations of struc-
tured system ΣΛ. Here, “ for almost all the realizations ” is
to be understood (Dion et al., 2003; van der Woude, 2000)
as “ for all parameter values (Λ ∈ R

h) except for those in
some proper algebraic variety in the parameter space ”. The
proper algebraic variety for which the property is not true is
the zero set of some nontrivial polynomial with real coeffi-
cients in the h system parameters λ1, λ2, . . . , λh or equiva-
lently it is an algebraic variety which has Lebesgue measure
zero (Reinschke, 1988).
In this paper, we study the generic state and input observ-
ability for structured system ΣΛ. This notion is related to the
strong observability and the left invertibility (Trentelman et
al., 2001). Let us recall the definition of the generic state
and input observability:

Definition 1 Consider structured system ΣΛ, we say that
ΣΛ is generically state and input observable if and only if
it is generically strongly observable and left invertible.

In other words, system ΣΛ is generically state and input
observable iff, for almost all realizations of ΣΛ, for all initial
state x0 and for every input function u(t), y(t) = 0 for t ≥ 0
implies x(t) = 0 for t ≥ 0 and u(t) = 0 for t > 0. Roughly
speaking, generic state and input observability means that a
change in input or initial state can be reflected in a change
of measurements.

Necessary and sufficient conditions for the state and input
observability of structured system ΣΛ can be deduced from
the ones provided in (Trentelman et al., 2001) or from the
conditions of the right-hand side observability of a descriptor
system (Hou and Müller, 1999):

Theorem 2 Consider structured system ΣΛ and let us de-

note P (s) =

(

Aλ − sIn Bλ

Cλ Dλ

)

. Structured system ΣΛ is

generically state and input observable iff ∀ s ∈ C

g_rank(P (s)) = n + g_rank

(

Bλ

Dλ

)

= n + q.

Assume that system ΣΛ is numerically specified. Re-
garding P (s) as a rational matrix, we call its rank the
normal-rank (van der Woude, 2000) and we denote this
normal rank by n-rank(P (s)). Thus, for each realization
of system ΣΛ, we can compute the n-rank of P (s). This

rank will have the same value for almost all parameter
values λ ∈ R

h (Reinschke, 1988; van der Woude, 2000).
This so-called generic n-rank of P (s) will be denoted by
g_n-rank(P (s)). Generic rank of matrix P (s), denoted
g_rank(P (s)), is quite different as it depends on s. Hence,
g_rank(P (s)) = r, ∀ s ∈ C means that for almost all
parameter values λ ∈ R

h, rank(P (s)) = r, ∀ s ∈ C.
The aim of the paper is to give graphical conditions to
analyse the question whether or not structured system ΣΛ

is generically state and input observable. These conditions
are equivalent to the ones of Theorem 2 but are quite easy
to check since they are based on finding paths in a digraph.

3 Graph representation of structured linear systems

This section is devoted in a first stage to the definition of a
digraph representing ΣΛ. Next, we give some useful nota-
tions and definitions.
Digraph G(ΣΛ) associated to ΣΛ is constituted by a vertex
set V and an edge set E i.e. G(ΣΛ) = (V, E). More precisely,
V = X∪Y∪U, where X = {x1, . . . ,xn} is the set of state
vertices, Y = {y1, . . . ,yp} is the set of output vertices and
U = {u1, . . . ,uq} is the set of unknown input vertices. The
edge set is E = A-edges ∪ B-edges ∪ C-edges ∪ D-edges,
with A-edges =

{

(xj,xi) | Aλ(i, j) 6= 0
}

,

B-edges =
{

(uj,xi) | Bλ(i, j) 6= 0
}

,

C-edges =
{

(xj,yi) | Cλ(i, j) 6= 0
}

,

D-edges =
{

(uj,yi) | Dλ(i, j) 6= 0
}

.

Here, Mλ(i, j) is the (i, j)th element of matrix Mλ and
(v1,v2) denotes a directed edge from vertex v1 ∈ V to ver-
tex v2 ∈ V .
Hereafter, we illustrate the proposed digraph representation
with an example.

Example 3 To the system defined by the following matri-
ces, we associate the digraph in Figure 1.

Aλ =



































0 λ1 0 0 0 0 0 0 0

λ2 0 0 0 0 0 0 0 0

0 λ3 0 0 0 0 0 0 0

0 0 λ4 0 0 0 0 0 0

0 0 0 λ5 0 λ6 λ7 0 0

0 0 λ8 λ9 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 λ10



































, Bλ =



































0 0

0 0

λ11 λ12

0 0

0 0

0 0

0 λ13

0 λ14

0 0



































,

Cλ =











0 0 0 0 λ15 0 0 0 0

0 0 0 0 λ16 0 0 0 λ17

0 0 0 0 0 0 λ18 0 0

0 0 0 0 0 0 0 λ19 0











, Dλ =











0 0

0 0

0 0

0 λ20











.
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Fig 1: Digraph associated to system of Example 3
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Let us now give some useful definitions and notations.
• Two edges e1 = (v1,v′

1) and e2 = (v2,v′
2) are v-

disjoint if v1 6= v2 and v′
1 6= v′

2. Note that e1 and e2 can
be v-disjoint even if v′

1 = v2 or v1 = v′
2.

To illustrate the latter definition, note that in example 3,
(x5,y2) and (x4,x5) as well as (x2,x1) and (x1,x2)
are v-disjoint. However, neither (x3,x6) and (x4,x6) nor
(x7,y3) and (x7,x5) are v-disjoint. Some edges are v-
disjoint if they are mutually v-disjoint.
• A subgraph SG of G(ΣΛ) is defined by an edge subset
SE ⊆ E and a vertex subset SV ⊆ V such that SV is con-
stituted by the begin and the end vertices of all elements of
SE . We note SG = (SV ,SE). A subgraph SG of G(ΣΛ) is
a v-disjoint subgraph if all its edges are v-disjoint. A sub-
graph SG = (SV ,SE) of G(ΣΛ) covers vertex v if ∃e ∈ SE

such that v is the begin vertex of e.
• We denote path P containing vertices vr0 , . . . , vri by
P = vr0 → vr1 → . . . → vri , where (vrj ,vrj+1

) ∈ E
for j = 0, 1 . . . , i − 1. A cycle is a path of the form
vr0 → vr1 → . . . → vri → vr0 , where all vertices vr0 ,
vr1 ,. . . , vri are distinct. Some paths are disjoint if they
have no common vertex. Path P is an Y-topped path if its
end vertex is an element of Y.
• The length of a path is the number of edges that the path
uses, counting multiple edges multiple times.
• Let V1 and V2 denote two subsets of V . The cardinality
of V1 is noted card(V1). A path P is said a V1-V2 path if
its begin vertex belongs to V1 and its end vertex belongs to
V2. If the only vertices of P belonging to V1 ∪ V2 are its
begin and its end vertices, P is said a direct V1-V2 path.
• A set of l disjoint V1-V2 paths is called a V1-V2 linking of
size l. The linkings which consist of a maximal number of
disjoint V1-V2 paths are called maximum V1-V2 linkings.
We define by ρ (V1,V2) the size of these maximum V1-V2

linkings.
• The length of a V1-V2 linking is defined as the sum of the
lengths of all its paths.
• µ (V1,V2) is the minimal number of vertices belonging to
a maximum V1-V2 linking. Note that the minimal length of a
maximum V1-V2 linking is equal to µ (V1,V2)− ρ(V1,V2).

• Vess(V1,V2)
def
= {v ∈ V |v is included in every maximum

V1-V2 linking}. Vertex subset Vess(V1,V2) denotes the
set of all essential vertices (van der Woude, 2000), which
correspond by definition to vertices present in all the maxi-
mum V1-V2 linkings.
• S ⊆ V is a separator between sets V1 and V2, if every
path from V1 to V2 contains at least one vertex in S. We
call minimum separators between V1 and V2 any separators
having the smallest size. According to Menger’s Theorem,
the latter equals ρ(V1,V2).
• There exist two uniquely determined minimum separators
between V1 and V2 noted Si(V1,V2) and So(V1,V2) such
that (van der Woude, 2000):

- Si(V1,V2) is the set of the end vertices of all direct V1 −
Vess(V1,V2) paths, where Vess(V1,V2)∩V1 is considered,
in the present definition, as output vertices. Vertex subset
Si(V1,V2) is the minimum input separator.

- So(V1,V2) is the set of begin vertices of all direct
Vess(V1,V2)−V2 paths, where Vess(V1,V2)∩V2 is con-
sidered, in the present definition, as input vertices. Vertex
subset So(V1,V2) is the minimum output separator.

It results, from the previous definitions, that
Vess(V1,V2) ∩ V1 ⊆ Si(V1,V2) and Vess(V1,V2) ∩ V2 ⊆
So(V1,V2).
• θ(V1,V2) is the maximal number of v-disjoint edges from
V1 to V2.
In Example 3, ρ(U,Y) = 2 and θ(U,Y) = 1. Further-
more, there exist several maximum linkings:
{u1 → x3 → x4 → x5 → y1; u2 → y4},

{u1 → x3 → x4 → x6 → x5 → y1; u2 → x8 → y4} , . . . Ac-
cording to the fact that the first maximum linking is the
"shortest one" with a length equal to 5, we have that
µ(U,Y) = 7. Finally, Vess(U,Y) = {u1, x3, x5, u2},
Si(U,Y) = {u1, u2} and So(U,Y) = {x5, u2}.

4 Main results

4.1 Preliminary results

At first, let us specify a particular subdivision of structured
system ΣΛ:

Definition 4 For structured system ΣΛ represented by di-
graph G(ΣΛ), we define the vertex subsets:

∆0

def
= {xi | ρ(U ∪ {xi},Y) = ρ(U,Y)};

X1

def
= {xi | ρ(U ∪ {xi},Y) > ρ(U,Y)} = X \ ∆0;

Y0

def
= {yi | ρ(U,Y) > ρ(U,Y \ {yi})} = Y ∩ Vess(U,Y);

Y1

def
= Y \ Y0; U0

def
= {ui | θ({ui},X1 ∪ Y1) = 0};

U1

def
= U \U0; Xs

def
= So(U0,Y) ∩X and X0

def
= ∆0 \Xs.

Furthermore, we define n0 = card(X0), ns = card(Xs),
n1 = card(X1), q0 = card(U0), q1 = card(U1),
p0 = card(Y0) and p1 = card(Y1).

Considering the system described in Example 3, we have
mentioned that ρ(U,Y) = 2. Since Y ∩ Vess(U,Y) = ∅,
we have that Y0 = ∅, Y1 = Y. Moreover, for i = 1, . . . , 9,
let us compute the number of disjoint paths from U ∪ {xi}
to Y:
for i = 1, . . . , 6, ρ(U ∪ {xi},Y) = 2 and for i =
7, . . . , 9, ρ(U ∪ {xi},Y) = 3. We can deduce that
∆0 = {x1, x2, x3, x4, x5, x6}, X1 = {x7, x8, x9}.
Furthermore, contrary to u2, u1 cannot be linked with
an edge to an element of X1 ∪ Y1, so U0 = {u1}
and U1 = {u2}. Finally, Vess(U0,Y) = {u1,x3,x5}
and so So(U0,Y) = {x5}. Thus, Xs = {x5} and
X0 = ∆0 \ Xs = {x1, x2, x3, x4, x6}.

Let us comment the graph partition presented above:

• ∆0 merges the state vertices which cannot be linked to
Y, the state vertices belonging to Vess(U,Y). Obviously,
Vess(U,Y)∩X ⊆ ∆0 and the state vertices from which
all Y-topped paths lead to Vess(U,Y).
Indeed, if it is not the case i.e. there exist vi ∈ ∆0

and a path P from vi to Y which does not contain
any element of Vess(U,Y), then there is no element
of So(U,Y) in P and so card(So(U ∪ {vi},Y)) >
card(So(U,Y)). According to Menger’s Theorem, this
implies that ρ(U∪{vi},Y) > ρ(U,Y), which is in con-
tradiction with assumption vi ∈ ∆0.

• Directly from the definition of Y0, we have that Y0 ⊆
Vess(U,Y) and so Y0 ⊆ So(U,Y).
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• Assume that ρ(U,Y) = q, then ρ(U1,Y) = card(U1).
In this case, U1 ⊆ Vess(U,Y) and subsequently U1 ⊆
Si(U,Y). Moreover, all elements of U1 are begin ver-
tices of U-Y paths where all vertices are in U1∪X1∪Y1.
Since, (X1 ∪Y1)∩Vess(U,Y) = ∅, all elements of U1

are begin vertices of direct Vess(U,Y) − Y paths and
so U1 ⊆ So(U,Y). Otherwise, U1 ⊆ Si(U,Y) and
U1 ⊆ So(U,Y) imply that, in a maximum U-Y linking,
all vertices included in a path starting from U1 are not in-
cluded in Vess(U,Y) and so are not included in ∆0. So,

Vess(U,Y) = U1 ∪ Vess(U0,Y) (3)

• From each xi ∈ X1, there exists an Y-topped path,
which is disjoint with at least one maximum U-Y linking.
Therefore, ∀xi ∈ X1, there exists an Y-topped path con-
stituted only by the elements of X1 and Y1. In the same
sense, ∀xi ∈ X1, in all the maximum U∪{xi}−Y link-
ings, the paths beginning with the vertices of U1 ∪ {xi}
are necessarily in X1 ∪ Y1. Similarly, ∀yi ∈ Y1, in all
the maximum U−Y \{yi} linkings, the paths beginning
with the vertices of U1 are necessarily in X1∪Y1. Thus,
∀xi ∈ X1 and ∀yi ∈ Y1,

Vess(U ∪ {xi},Y) ∩ (∆0 ∪ Y0) =

Vess(U,Y \ {yi}) ∩ (∆0 ∪ Y0) = Vess(U0,Y)

(4)

According to Definition 4, we state now:

Lemma 5 Consider structured system ΣΛ represented by
digraph G(ΣΛ), where ρ(U,Y) = q. Using the subdivision
given in Definition 4, we have:

St1. So(U0,Y) ∩ (X1 ∪ Y1) = ∅;
St2. ∀vi ∈ ∆0 ∪ U0,

vi ∈ So(U0,Y) ⇔ θ({vi},X1 ∪ Y1) 6= 0;
St3. θ(Xs,X1 ∪ Y1) = card(Xs) = ns;
St4. So(U0,Y) ∩ U0 = ∅;
St5. θ(X0,X1 ∪ Y1) = 0;
St6. Y0 ⊆ So(U0,Y).

Proof:
[St1.] Due to the definition of X1 and Y1, (X1 ∪ Y1) ∩
Vess(U,Y) = ∅. Yet, So(U0,Y) ⊆ Vess(U0,Y) ⊆
Vess(U,Y). Then, So(U0,Y) ∩ (X1 ∪ Y1) = ∅.

[St2.] First, we show that ∀vi ∈ ∆0, if θ({vi},X1∪Y1) 6=
0 then vi ∈ So(U,Y).
We have that vi ∈ ∆0 and θ({vi},X1 ∪ Y1) 6= 0
imply that vi ∈ Vess(U,Y). Indeed, if is assumed
that it is not the case, then according to relations (4),
∀xj ∈ X1, vi /∈ Vess(U ∪ {xj},Y) and ∀yk ∈ Y1,
vi /∈ Vess(U,Y \ {yk}). Since vi is directly linked to
X1∪Y1, then there exists a {vi}−Y path which is disjoint
from all the paths constituting a maximum U-Y linking.
This is equivalent to ρ(U ∪ {vi},Y) > ρ(U,Y), which is
in contradiction with the fact that vi ∈ ∆0. Furthermore,
not only vi ∈ Vess(U,Y) but also it is the begin vertex of
a direct Vess(U,Y) − Y path. Thus, vi ∈ So(U,Y).
Moreover, from equality (3), vi ∈ Vess(U0,Y) and as vi

is the begin vertex of a direct Vess(U0,Y) − Y path, this
implies that vi ∈ So(U0,Y).

Now, we will prove that ∀vi ∈ ∆0 ∪ U0, θ({vi},X1 ∪

Y1) = 0 ⇒ vi /∈ So(U0,Y).
Assume that there exists vi ∈ ∆0 ∪ U0 such that
θ({vi},X1 ∪ Y1) = 0 and vi ∈ So(U0,Y). Obvi-
ously, vi ∈ So(U0,Y) implies that vi is included in
all maximum U0 − Y linkings. Consider any maximum
U0 − Y linking, it necessarily includes a path of the form
P = uj → . . . → vi → vj1 → vj2 . . . → vjk → yt.
First note that as θ({vi},X1 ∪ Y1) = 0, vj1 ∈ ∆0. Next,
for r > 1 if vjr ∈ X1 then from the previous settings
vjr−1

∈ So(U0,Y). Nevertheless, this is impossible be-
cause in any maximum U0-Y linkings, we must have one
and only one element of So(U0,Y) in every path. So,
vj1 , vj2 . . . , vjk are all included in ∆0. Besides, yt /∈ Y1

because otherwise vjk ∈ So(U0,Y). This implies nec-
essarily that, yt ∈ Y0. By definition, Y0 ⊆ Vess(U,Y)
and from equality (3), we have yt ∈ Vess(U0,Y). Thus,
yt ∈ So(U0,Y). Hence, in path P , we have two elements
of So(U0,Y). As this fact is impossible, the assumption that
there exists vi ∈ ∆0∪U0 such that θ({vi},X1∪Y1) = 0
and vi ∈ So(U0,Y) is false and [St2] is proved.

[St3.] In any maximum U0-Y linking, there are ns paths
containing vertices of Xs which end necessarily with a
vertex of Y1. Moreover, in all these paths, all state vertices
between elements of Xs and output vertices belong to X1.
Hence, there exist ns disjoint paths linking Xs to Y1 and in-
cluding only vertices of X1∪Y1. So, θ(Xs,X1∪Y1) = ns.

[St4.] As θ(U0,X1 ∪ Y1) = 0, we have from [St2] that
U0 ∩ So(U0,Y) = ∅.

[St5.] Since X0 = X \ (Xs ∪ X1), where Xs =
So(U0,Y) ∩ X, we have that So(U0,Y) ∩ X0 = ∅. So,
directly from [St2], θ(X0,X1 ∪ Y1) = 0.

[St6.] From statement [St2], ∀vi ∈ So(U0,Y), satisfying
θ({vi},X1 ∪Y1) 6= 0 we have that vi ∈ So(U,Y) and so
that So(U0,Y) ⊆ So(U,Y). Besides, U1 ⊆ So(U,Y),
U1 ∩ So(U0,Y) = ∅ and card(So(U,Y)) = q1 + q0 =
card(U1) + card(So(U0,Y)). Thus, So(U,Y) =
So(U0,Y) ∪ U1. Yet, Y0 ⊆ Vess(U,Y) ⇒ Y0 ⊆
So(U,Y) and as So(U,Y) = So(U0,Y) ∪ U1, we have
finally Y0 ⊆ So(U0,Y). △

To summarize, Lemma 6 states that
Vess(U,Y) = Vess(U0,Y) ∪ U1, θ(Xs,X1 ∪ Y1) = ns,
So(U,Y) = So(U0,Y) ∪ U1 = Xs ∪ Y0 ∪ U1

and that θ(X0 ∪ Y0,X1 ∪ Y1) = 0.
These equalities are important in the sequel of the paper.

4.2 Generic input and state observability

Using the graph decomposition presented above, we give
now the first result of the paper

Proposition 6 ΣΛ is generically state and input observable
iff, in its associated digraph G(ΣΛ), there exists a v-disjoint
subgraph SG which satisfies:
Cond1. SG covers X ∪ U;
Cond2. all vertices xi covered by cycles in SG are included
in X1;
Cond3. SG contains a maximum U0-So(U0,Y) linking,
with a length equal to µ(U0,So(U0,Y)) − card(So(U0,Y)).
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Proof: We first prove the necessity of Cond1, next we
decompose the system into two subsystems and we study
separately each of them.

Necessity of condition Cond1: Cond1 is equivalent to

the existence of n + q v-disjoint edges and means that
g_rank(P (0)) = n + q. Indeed, the number of v-disjoint
edges in G(ΣΛ) is equal to the maximum matching in
the bipartite graph (Murota, 1987) associated to matrix
P (0), which is equal to g_rank(P (0)). Therefore, Cond1
is a necessary condition to the generic input and state
observability of ΣΛ. Moreover, Cond1 implies also that
ρ(U,Y) = q and so we can apply the results of Lemma 5.

Decomposition of system ΣΛ: using Definition 4 and re-

sults of Lemma 5, there is no edge from X0 ∪ U0 to
X1 ∪ Y1. So, we can write ΣΛ as:











































































Ẋ0(t) = Aλ
0,0X0(t) + Aλ

0,sXs(t) + Aλ
0,1X1(t)+

+Bλ
0,0U0(t) + Bλ

0,1U1(t)

Ẋs(t) = Aλ
s,0X0(t) + Aλ

s,sXs(t) + Aλ
s,1X1(t)+

+Bλ
s,0U0(t) + Bλ

s,1U1(t)

Ẋ1(t) = Aλ
1,sXs(t) + Aλ

1,1X1(t) + Bλ
1,1U1(t)

Y0(t) = Cλ
0,0X0(t) + Cλ

0,sXs(t) + Cλ
0,1X1(t)+

+Dλ
0,0U0(t) + Dλ

0,1U1(t)

Y1(t) = Cλ
1,sXs(t) + Cλ

1,1X1(t) + Dλ
1,1U1(t)

(5)

where X0, Xs, U0, U1, Y0 and Y1 represent the variables
associated to vertex subsets X0, Xs, U0, U1, Y0 and Y1

respectively.
Therefore, with some appropriate permutations on the rows
and columns of P (s), we can transform P (s) into

P̃ (s) =

















Aλ
0,0 − sIn0

Aλ
0,s Bλ

0,0 Aλ
0,1 Bλ

0,1

Aλ
s,0 Aλ

s,s − sIns
Bλ

s,0 Aλ
s,1 Bλ

s,1

Cλ
0,0 Cλ

0,s Dλ
0,0 Cλ

0,1 Dλ
0,1

0 Aλ
1,s 0 Aλ

1,1 − sIn1
Bλ

1,1

0 Cλ
1,s 0 Cλ

1,1 Dλ
1,1

















.

According to statement St3, g_rank

(

Aλ
1,s

Cλ
1,s

)

= θ(Xs,X1∪

Y1) = ns. Matrix P (s), and so P̃ (s), has generically full
column rank ∀s ∈ C, iff Pe(s) has also generically full
column rank ∀s ∈ C, where:

Pe(s) =



























Aλ
0,0 − sIn0

Aλ
0,s Bλ

0,0 Aλ
0,1 Bλ

0,1 0

Aλ
s,0 Aλ

s,s − sIns
Bλ

s,0 Aλ
s,1 Bλ

s,1 0

Cλ
0,0 Cλ

0,s Dλ
0,0 Cλ

0,1 Dλ
0,1 0

0 Ins
0 0 0 0

0 0 0 Aλ
1,1 − sIn1

Bλ
1,1 Aλ

1,s

0 0 0 Cλ
1,1 Dλ

1,1 Cλ
1,s



























Moreover, we have that ρ(U0,Y) = card(U0) = q0 =
card(So(U0,Y)) = p0 + ns and so

P1(s)
def
=











Aλ
0,0 − sIn0

Aλ
0,s Bλ

0,0

Aλ
s,0 Aλ

s,s − sIns
Bλ

s,0

Cλ
0,0 Cλ

0,s Dλ
0,0

0 Ins
0











is a square ma-

trix. Matrix Pe(s) has generically full column rank ∀s ∈ C

iff P1(s) and P2(s) have both generically full column rank

∀s ∈ C, where P2(s)
def
=

(

Aλ
1,1 − sIn1

Bλ
1,1 Aλ

1,s

Cλ
1,1 Dλ

1,1 Cλ
1,s

)

.

Necessity and Sufficiency of Cond2 and Cond3:

for P1(s), we can apply Theorem 5.1 of (van der Woude,
2000) which states that the degree of the determinant of
P1(s) is generically equal to n0+q0−

(

µ(U0,So(U0,Y))−

card(So(U0,Y))
)

, with obviously So(U0,Y) = Y0∪Xs.
This determinant is non-zero ∀s ∈ C iff its degree is equal
to 0 and g_rank(P1(0)) = n0 + q0 + ns. Yet, according to
θ(X0 ∪ U0,X1 ∪ U1) = 0, the existence of a v-disjoint
subgraph which covers X0 ∪ U0, with the requirements
enounced in Cond2 and Cond3, is necessary and suffi-
cient to ensure that g_rank(P1(0)) = n0 + q0 + ns and
µ(U0,So(U0,Y)) = n0 + q0 + card(So(U0,Y)), and so,
to ensure that P1(s) has generically full column rank i.e.
g_rank(P1(s)) = n0 + q0 + ns, ∀s ∈ C.

Sufficiency of condition Cond1: From Theorem 5.2 of (van
der Woude, 2000), adapted to the observation context, we
have:
If P2(s) has generically full column n-rank even after the
deletion of an arbitrary row, then, generically, the greatest
common divisor of all the (n1 + q1 + ns)

th order minors of
P2(s) is a monomial in s with a degree equal to: n1+q1+ns

minus the maximum number of edges in the disjoint union of
a linking of size ns + q1 from U1 ∪Xs to Y, an Y-topped
family and a cycle family in X1.

Cond1 implies that ρ(U1∪Xs,Y1) = q1 +ns and that the
maximal number of edges in a disjoint union of a linking
of size ns + q1 from U1 ∪ Xs to Y, an Y-topped family
and a cycle family in X1 is equal to n1 + ns + q1. Thus,
if the hypothesis that generically P2(s) has full column n-
rank even after the deletion of an arbitrary row, is satis-
fied then, generically, the greatest common divisor of all the
(n1 + q1 + ns)

th order minors of P2(s) is a monomial in
s with a degree equal to zero and so P2(s) has generically
full column rank.

We will now show that the hypothesis that P2(s) generically
has full column n-rank even after the deletion of an arbitrary
row, is true. That is to say g_n-rank(P2,i(s)) = n1+ns+q1,
∀i = 1, . . . , n1 + q1, where P2,i(s), for i = 1, . . . , n1 + q1,

corresponds to matrix P2(s) after the deletion of its ith row.

The deletion of the ith row of
(

Aλ
1,1 − sIn1

Bλ
1,1 Aλ

1,s

)

in

P2(s) is equivalent to the deletion of all the edges ending
by xi1 in the digraph, where xi1 is the ith component of the

state subvector X1. Yet, ρ
(

U∪{xi1},Y
)

> ρ(U,Y) and so

ρ (So(U,Y) ∪ {xi1},Y) > ρ(So(U,Y),Y). Moreover,
from Lemma 5, So(U,Y) = U1 ∪Xs ∪Y0. Knowing that
Y1 = Y \ Y0, we have that ρ(U1 ∪ Xs ∪ {xi1},Y1) >
ρ(U1∪Xs,Y1) = q1+ns. Then, ρ(U1∪Xs∪{xi1},Y1) =
q1 +ns +1. Applying results of (van der Woude, 2000), we
have that for i < n1, g_n-rank(P2,i(s)) is equal to n1 − 1
plus the maximal size of a U1 ∪ Xs ∪ {xi1}-Y1 linking.
Thus, g_n-rank(P2,i(s)) = n1 + q1 + ns for i ≤ n1.

The deletion of the ith row of
(

Cλ
1,1 Dλ

1,1 Cλ
1,s

)

in P2(s)

is equivalent to the deletion of all edges ending by yi1

in the digraph, where yi1 is the ith component of out-
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put subvector Y1. Yet, ρ(U,Y) = ρ (U,Y \ {yi1}). Thus,
ρ(So(U,Y),Y) = ρ(U1∪Xs∪Y0,Y \{yi1}). As Y1 =
Y \Y0, we have that ρ(U1 ∪Xs,Y1 \ {yi1}) = q1 + ns.
Applying results of (van der Woude, 2000), we have that
g_n-rank(P2,i(s)) for n1 < i ≤ n1 + p1, is equal to n1

plus the maximal size of a U1∪Xs-Y1 \{yi1} linking. So,
for n1 < i ≤ n1 + p1, g_n-rank(P2,i(s)) = n1 + q1 + ns.
To summarize, Cond1 of Proposition 6 ensures that:
- the maximal number of edges in the disjoint union of a
linking of size ns + q1 from U1 ∪ Xs to Y, an Y-topped
family and a cycle family in X1 is equal to n1 + ns + q1;
- P2(s) has generically full column n-rank, even after the
deletion of an arbitrary row.
Therefore, the greatest common divisor of all the (n1 +
q1 + ns)

th order minors of P2(s) is generically a mono-
mial in s with a degree equal to zero. As g_rank(P2(0)) =
n1 + ns + q1, then P2(s) has generically full column rank
∀ s ∈ C.
Thus, conditions of Proposition 6 are necessary and suffi-
cient to ensure that ∀ s ∈ C, Pe(s) has generically full col-
umn rank. Then, g_rank(P (s)) = n + q, ∀ s ∈ C. △

We can deduce from Proposition 6 other simpler graphic
conditions:

Corollary 7 ΣΛ is generically state and input observable
iff
Ca. in its associated digraph G(ΣΛ), there exists a v-
disjoint subgraph SG which covers X ∪ U;
Cb. X0 ∪ U0 ⊆ Vess(U0,Y0 ∪ Xs).

Proof: First note that condition Ca is the same as Cond1 in
Proposition 6. So, we have only to prove hereafter that con-
dition Cb of Corollary 7 is equivalent to conditions Cond2
and Cond3 in Proposition 6.
Necessity: If condition Cb is not satisfied then card(X0 ∪
U0) > µ(U0,So(U0,Y)) − ρ(U0,So(U0,Y)). In this
case, we cannot cover all the elements of X0 ∪ U0 with
paths of total length µ(U0,So(U0,Y))−card(So(U0,Y)).
Thus, since no cycle can be used to cover X0 ∪ U0, there
cannot exist a v-disjoint subgraph which covers X0 ∪ U0

and which satisfies Cond2 and Cond3.
Sufficiency: Assume that Ca is satisfied. Condition Cb im-

plies, on the one hand, that ρ(U0,Y) = card(U0) and on
the other hand, that card(X0∪U0) = µ(U0,So(U0,Y))−
ρ(U0,So(U0,Y)). So, all the v-disjoint subgraphs which
cover X0∪U0 are constituted by a maximum U0−Xs∪Y0

linking of a minimal length. Therefore, all v-disjoint sub-
graphs covering X∪U contain a maximum U0 −Xs ∪Y0

linking of a minimal length, which covers X0 ∪U0 and so
cannot contain any cycles on X0 ∪Xs. This is sufficient to
ensure that conditions Cond2 and Cond3 are satisfied. △

Finally, note that conditions of Corollary 7 generalize explic-
itly the well-known state observability conditions for linear
systems without unknown inputs. Indeed, if U = ∅, Cb is
equivalent to X0 = ∅ and so, each state component is the
begin vertex of an Y-topped path and Ca is equivalent to
the existence of disjoint Y-topped paths and cycles, which
cover X (Dion et al., 2003).

5 Conclusion

In this paper, we propose a graph-theoretic tool to analyze
the state and input generic observability for structured lin-
ear systems. Necessary and sufficient conditions for state
and unknown input generic observability are given and ex-
pressed in graphic terms. These intrinsic conditions need
few information about the system. Moreover, they are easy
to check by means of well-known combinatorial techniques.
Indeed, from a computational point of view, to check the
first condition of Corollary 7, we use the Bipmatch method
(Micali and Vazirani, 1980), which complexity order of al-
gorithms is O(M ×N0.5), where M = n2 + nq + np + pq
is the number of edges and N = n + q + p is the number
of vertices in the digraph. Furthermore, condition Cb can
be checked using depth search algorithms. These algorithms
have a complexity order O(M ×N). Thus, the global com-
plexity of our method is O(n3). This is why our approach
is particularly suited for large-scale systems.
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