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BAYESIAN DEFORMABLE MODELS BUILDING
VIA STOCHASTIC APPROXIMATION ALGORITHM:

A CONVERGENCE STUDY

S. ALLASSONNIÈRE , E. KUHN∗, AND A. TROUVÉ†

Abstract. The problem of the definition and the estimation of generative models based on deformable tem-
plates from raw data is of particular importance for modelling non aligned data affected by various types of geo-
metrical variability. This is especially true in shape modelling in the computer vision community or in probabilistic
atlas building for Computational Anatomy (CA). A first coherent statistical framework modelling the geometrical
variability as hidden variables has been given by Allassonnière, Amit and Trouvé in [1]. Setting the problem in a
Bayesian context they proved the consistency of the MAP estimator and provided a simple iterative deterministic
algorithm with an EM flavour leading to some reasonable approximations of the MAP estimator under low noise
conditions. In this paper we present a stochastic algorithm for approximating the MAP estimator in the spirit of
the SAEM algorithm. We prove its convergence to a critical point of the observed likelihood with an illustration
on images of handwritten digits.

Key words. stochastic approximation algorithms, non rigid-deformable templates, shapes statistics, Bayesian
modelling, MAP estimation.

AMS subject classifications. 60J22, 62F10, 62F15, 62M40.

1. Introduction. The statistical analysis of high dimensional data is one of the most active
fields in modern statistics nowadays. However, despite huge progress in the general theory of non-
parametric statistics or machine learning, the practical efficiency of many “black box” universal
methods can be quite limited if the invariances and structural constraints of a specific field are not
properly taken into account. In particular, in the field of image analysis, the statistical analysis
and modelling of variable objects from a limited set of examples is still a quite challenging and
a largely unsolved problem. The analysis of shape variability, even coded as functional data
thanks to the imaging process cannot be efficiently done “as is” without using a more adequate
representation. One such representation is the so-called dense deformable template framework
[2], where the observations are defined as deformations of a given exemplar or template under a
family of deformations of moderate “dimensionality”. Such a representation appears particularly
adapted in the context of probabilistic atlases in Computational Anatomy where one aims at
building a statistical model of the variability of anatomical data among a given population [8].
Whereas the statistical shape analysis theory based on a finite dimensional coding of shapes by
landmarks is well developed [6], the dense deformable templates is more complex and challenging.
Until recently, dense deformable templates have been studied mainly from a variational point
of view as an efficient vehicle for a large range of registration algorithms [4], but the study of
deformable templates from a statistical point of view as a class of generative models for images of
deformable objects is still widely open. A major issue is the design of statistically sound algorithms
for the estimation of dense deformable models from a sample of images of moderate size. A first
approach in this direction were proposed in [7] or more recently in [10], the first used a penalised
likelihood approach and the second one an MDL approach to estimate the template from a training
set of non-aligned images. However, in both cases, the framework does not really differ from the
variational approach in particular because the deformations are considered as nuisance parameters
which need to be estimated. In consequence, the associated algorithms do not lead to consistent
estimators of the template for generative models.

In this paper, we consider the hierarchical Bayesian framework for dense deformable templates
developed by Allassonnière, Amit and Trouvé in [1] where each image in a given population is
assumed to be generated as a noisy and randomly deformed version of a common template drawn
from a prior distribution on the set of templates. The individual deformations appear as hidden
variables (or random effects in the mixed effects terminology) whereas the template and the law of
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the deformations are parameters of interest for the estimation problem (or fixed effects). In [1] the
estimation of the parameters (template and geometric deformation law) is performed by Maximum
A Posteriori (MAP) and the existence and consistence of the MAP estimator is proved. On the
algorithmic side, a deterministic iterative method, based on EM, is proposed to compute the MAP
estimator. Nevertheless, the E step which consists in computing an expectation with respect to
the a posteriori density is untractable in the current framework and a simple approximation by
the mode of the posterior is proposed. This reduces to a registration problem of the current
template to the images in the sample with a regularisation term given by the log-likelihood of the
current deformation law. The result is a purely deterministic algorithm, alternating registration
steps with updates of the template and of the geometric deformation law, and derived from a
coherent statistical perspective. However, due to the approximation of the posterior by its mode,
the convergence of the algorithm to the MAP does not hold even if it produces good results under
low noise conditions.

Our goal in this paper is to overcome the limitations of this deterministic method as exhib-
ited by several experiments and to propose a stochastic iterative method to compute the MAP
estimator for which we will be able to prove convergence results. The solution proposed is to
use a stochastic approximation of the EM algorithm: the non observed variables will be simu-
lated. In the one component case (pure deformable model, no mixture) introduced by [1], we use
the stochastic approximation EM (SAEM) algorithm coupled with a Markov Chain Monte Carlo
method introduced by Kuhn and Lavielle in [9].

This algorithm has been proved to be convergent under the assumption, among others, that
the non observed variables live in a compact set. This is not the case in our framework so we adapt
this algorithm and also the convergence proof to a non compact setting by introducing truncation
on random boundaries along the lines of [3].

The paper is organised as follows: in Section 2 we first recall the observation model proposed
by Allassonnière, Amit and Trouvé in [1]. Then we describe in Section 3 the stochastic algorithm
proposed in the one component case and give a convergence theorem. Section 4 is devoted to
the experiments. To prove the convergence of our stochastic algorithm for deformable template
estimation, we first state in Section 5 a rather general stability result for truncated stochastic
approximation algorithms adapted from [3] and we show in Section 6 that it applies to MAP
based deformable template estimation.

2. Observation model. Let us recall the model introduced in [1]. We are given gray level
images (yi)1≤i≤n observed on a grid of pixels {rs ∈ D ⊂ R

2, s ∈ Λ} where D is a continuous
domain and Λ the pixel network. Although the images are observed only at the pixels (rs)s we are
looking for a template image I0 : R

2 → R defined on the plane (the extension to images on R
d is

straightforward). For each observation y, we assume the existence of an unobserved deformation
field z : R

2 → R
2 such that for s ∈ Λ

y(s) = I0(rs − z(rs)) + σǫ(s)

where σǫ denotes an additive noise.

2.1. Models for template and deformation. Our model takes into account two comple-
mentary sides: photometry -indexed by p, and geometry -indexed by g. The template I0 and
the deformation z are assumed to belong to reproducing kernel Hilbert spaces Vp and Vg defined
by their respective kernels Kp and Kg. Moreover we restrict them to the subset of linear com-
binations of the kernels centred at some fixed control points in the domain D: (rp,k)1≤k≤kp

respectively (rg,k)1≤k≤kg . They are therefore parametrised by the coefficients α ∈ R
kp and

β = (β(1), β(2)) ∈ R
kg × R

kg which yield to: ∀r ∈ D,

Iα(r) = (Kpα)(r) =

kp
∑

k=1

Kp(r, rp,k)α(k) (2.1)
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and

zβ(r) = (Kgβ)(r) =

kg
∑

k=1

Kg(r, rg,k)(β(1)(k), β(2)(k)). (2.2)

Other forms of smooth parametric representations of the images and of the deformation fields
could be used without changing the overall results.

2.2. Parametric model. We suppose that all the data can be explained through that sta-
tistical model (we denote below yn

1 = (yi)1≤i≤n and βn
1 = (βi)1≤i≤n):







βn
1 ∼ ⊗n

i=1N2kg (0,Γg) | Γg

yn
1 ∼ ⊗n

i=1N|Λ|(zβiIα, σ
2Id) | βn

1 , α, σ
2

(2.3)

where zIα(s) = Iα(rs−z(rs)), for s in Λ. The parameters of interest are α, σ2 - the variance of the
additive noise - and the covariance matrix Γg of the variables β. We assume that θ = (α, σ2,Γg)
belongs to the parameter space Θ defined as the open set

Θ , { θ = (α, σ2,Γg) | α ∈ R
kp , |, σ > 0, Γg ∈ Sym+

2kg
} ,

where Sym+
2kg

is the cone of real positive 2kg × 2kg definite symmetric matrices.

The likelihood of the observed data can be written as an integral over the unobserved defor-
mation parameters:

q(yn
1 |θ) =

∫

q(yn
1 |βn

1 , α, σ
2)q(βn

1 |Γg)dβ
n
1

where all the densities are determined by the model. We denote all density functions as q.

2.3. Bayesian model. Even though the parameters are finite dimensional, the maximum-
likelihood estimator can yield degenerate estimates when the training sample is small. Introducing
prior distributions on the parameters, estimation with small samples is still possible and their effect
can be seen in the parameter update steps [1]. We use a generative model which includes standard
conjugate prior distributions with fixed hyperparameters: a normal prior on α and inverse-Wishart
priors on σ2 and Γg. All priors are assumed independent: θ = (α, σ2,Γg) ∼ νp ⊗ νg where



















νp(dα, dσ
2) ∝ exp

(

−1

2
(α − µp)

t(Σp)
−1(α− µp)

)(

exp

(

− σ2
0

2σ2

)

1√
σ2

)ap

dσ2dα, ap ≥ 3

νg(dΓg) ∝

(

exp(−〈Γ−1
g ,Σg〉F /2)

1
√

|Γg|

)ag

dΓg, ag ≥ 4kg + 1 .

(2.4)
For two matrices A,B we define 〈A,B〉F , tr(AtB).

3. Parameters estimation with stochastic approximation EM. In our Bayesian frame-
work, we obtain from [1] the existence of the MAP estimator

θ̂n = argmax
θ

q(θ|yn
1 ) .

We turn now to the maximisation problem of the posterior distribution q(θ|yn
1 ) and we recall here

briefly how the stochastic approach can be derived from the computation of the derivative of the
observed log-likelihood.
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3.1. Formal derivation of the stochastic approach.

Notation 1. To simplify the presentation, let us denote in the sequel x , βn
1 ∈ R

N with
N , 2nkg the vector collecting all the missing variables and y , yn

1 the collection of observations.
Consider curved exponential densities, that is to say, situations where the complete likelihood

can be written as:

q(y, x, θ) = exp [−ψ(θ) + 〈S(x), φ(θ)〉] (3.1)

where the sufficient statistic S is a Borel function on R
N taking its values in an open subset S of

R
m and ψ, φ two Borel functions on Θ (note that S, φ and ψ may depend also on y, but since y

will stay fixed in the sequel, we omit this dependency).
As we are looking for the MAP estimator, we try to maximise the observed log-likelihood

l(θ) , log
∫

q(y, x, θ)dx. One solution would be a steepest ascent method where the expression of
the gradient is (we ignore the problem of existence of the derivatives):

∂l

∂θ
(θ) = Eθ

[

S(X)t ∂φ

∂θ
(θ) | y

]

− ∂ψ

∂θ
(θ) ,

where Eθ [f(X) | y] ,
∫

f(x)q(x|y, θ)dx for any q(x|y, θ)dx-integrable Borel mapping x → f(x).
We introduce the following function: L : S ×Θ→ R as

L(s; θ) = −ψ(θ) + 〈s, φ(θ)〉 (3.2)

and suppose there exists a function θ̂ : S → Θ such that:

∀θ ∈ Θ, ∀s ∈ S, L(s; θ̂(s)) ≥ L(s; θ) . (3.3)

Then,

∂L

∂θ
(s, θ̂(s)) = st ∂φ

∂θ
(θ̂(s))− ∂ψ

∂θ
(θ̂(s)) = 0 (3.4)

and

∂l

∂θ
(θ̂(s)) = Eθ

[

(S(X)− s)t ∂φ

∂θ
(θ̂(s))

∣

∣

∣

∣

y

]

. (3.5)

Note that s becomes the natural variable, so that the gradient can be computed with respect
to s. This yields:

∂l ◦ θ̂(s)
∂s

=
∂l

∂θ
(θ̂(s))

dθ̂

ds
(s) .

From (3.4), d
ds

(

∂L
∂θ (s, θ̂(s))

)

= ∂2L
∂s∂θ (s, θ̂(s))+ ∂2L

∂θ2 (s, θ̂(s))dθ̂
ds (s) = 0 so that computing ∂2L

∂s∂θ = ∂2L
∂θ∂s

from equation (3.2), we get:

−
(

∂2L

∂θ2

)

(s, θ̂(s))
dθ̂

ds
(s) =

∂φ

∂θ
(θ̂(s))t .

Finally, for M(s) = −
(

dθ̂
ds (s)

)t (
∂2L
∂θ2 (s, θ̂(s))

)

dθ̂
ds(s), we have

∂l ◦ θ̂
∂s

(s) = Eθ

[

(S(X)− s)t
M(s) | y

]

.

Since θ̂(s) is a maximum,
(

∂2L
∂θ2

)

is symmetric non positive and M(s) is a symmetric non negative

matrix so that if

w(s) , −l ◦ θ̂(s) and h(s) , Eθ̂(s) [(S(X)− s) | y] , (3.6)
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we have

〈∂l ◦ θ̂
∂s

(s), h(s)〉 = h(s)tM(s)h(s) ≥ 0 (3.7)

and h(s) is always a descent direction of w. Thus the ODE

ds

dt
= h(s(t))

defines a trajectory for which w(s(t)) is decreasing i.e. l ◦ θ̂(s(t)) is increasing. An Euler discreti-
sation of the previous ODE leads to:

sk − sk−1 = ∆kh(sk−1) = ∆kEθ̂(sk−1) [S(X)− sk−1|y]

where (∆k)k≥0 is the decreasing time-step sequence. As the expectation is intractable, the usual
route is to use a simulation of the missing data xk: For any s ∈ S, let Hs : R

N → S such that

Hs(x) , S(x)− s , (3.8)

we have

h(s) = Eθ̂(s) [Hs(X)|y]

so that

sk − sk−1 = ∆kh(sk−1) ≃ ∆kHsk−1
(xk) = ∆k(S(xk)− sk−1) . (3.9)

Since xk cannot be easily drawn from the posterior distribution q(x|y, θ̂(sk−1)), the usual alter-
native in stochastic approximation of ODEs is to simulate xk from xk−1 with a Markov kernel
having q(x|y, θ̂(sk−1)) as stationary distribution.

3.2. SAEM-MCMC algorithm with truncation on random boundaries. In fact, the
stochastic algorithm derived in the previous section is nothing but the so called Stochastic Ap-
proximation EM coupled with a Monte Carlo Markov Chain procedure proposed by [9] which
generalised the algorithm introduced by [5]. Indeed, the kth iteration of the SAEM-MCMC algo-
rithm consists of three steps:
Simulation step the missing data, here the deformation parameters x = βn

1 , are drawn using a
transition probability of a convergent Markov Chain Πθ having the posterior distribution
πθ = q(x|y, θ) as stationary distribution,

xk ∼ Πθk−1
(xk−1, ·) .

Stochastic approximation step a stochastic approximation is done on the complete log-likelihood
using the simulated value of the missing data,

Qk(θ) = Qk−1(θ) + ∆k−1[log q(y, xk, θ)−Qk−1(θ)]

where (∆k)k is a decreasing sequence of positive step-sizes.
Maximisation step the parameters are updated in the M-step,

θk = argmax
θ

Qk(θ) .

The initial values of Q and θ are arbitrary chosen.
Since our model is exponential, the stochastic approximation can be done on the complete

log-likelihood as well as on a sufficient statistic. This is due to the fact that the missing data
only appears linearly through a sufficient statistic S in the exponential exponent. This yields the
following stochastic approximation:

sk = sk−1 + ∆k−1(S(xk)− sk−1) (3.10)
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which is none other than equation (3.9) in the previous section.
However, as we set a Gaussian prior on the missing variables x, we cannot assume its support

is compact as in [9]. We thus have to employ the more general setting introduced in [3] which
involves truncation on random boundaries. Thanks to this approach, we end up with an algorithm
using an MCMC coupling procedure on SAEM and the truncation on random boundaries detailed
below.

Let (Kq)q≥0 be an increasing sequence of compact subsets of S such as ∪q≥0Kq = S and
Kq ⊂ int(Kq+1), ∀q ≥ 0. Let (εk)k≥0 be a monotone non-increasing sequence of positive numbers
and K a subset of R

N . We construct the sequence ((sk, xk))k≥0 as explained in Algorithm 1. As
long as the stochastic approximation does not wander outside the current compact set and is not
too far from its previous value, we run the SAEM-MCMC algorithm. As soon as one of the two
previous conditions is not satisfied, we reinitialise the sequences of s and x using a projection (for
more details see [3] ).

Algorithm 1 Stochastic approximation with truncation on random boundaries

Set κ0 = 0, s0 ∈ K0 and x0 ∈ K.
for all k ≥ 1 do
compute s̄ = sk−1 + ∆k−1(S(x̄)− sk−1)
where x̄ is sampled from a transition kernel Πθk−1

(xk−1, .).
if s̄ ∈ Kκk−1

and |s̄− sk−1| ≤ εk−1 then
set (sk, xk) = (s̄, x̄) and κk = κk−1,

else
set (sk, xk) = (s̃, x̃) ∈ K0 ×K and κk = κk−1 + 1,
where (s̃, x̃) can be chosen through different ways cf([3]).

end if
θk = argmax

θ
L(sk, θ)

end for

3.3. Transition probability of the Markov Chain. We now explain how we simulate the
Markov Chain of the missing variables x = βn

1 given the observations y = yn
1 . The vector x is

an element of the high dimensional space R
N and to face the potential problems due to this high

dimensionality, we use a hybrid Gibbs sampler scanning all the coordinates xj . For each j, let us
denote x−j = (xl)l 6=j . The coordinate xj is not refreshed according to the usual conditional density
q(xj |x−j , y, θ) which is not easily available but according to the Hasting Metropolis algorithm
whose proposal law is given by q(xj |x−j , θ) i.e. the a priori conditional law according to the
current parameter value θ.

For any b ∈ R and 1 ≤ j ≤ N , denote by xj,b the unique configuration which is equal to x

everywhere except in j where xj
j,b = b. If b is proposed by the proposal law at coordinate j, the

acceptance ratio is as usual given by rθ,j(x, b) =
[

q(xj,b|y,θ)q(xj|x−j ,θ)
q(x|y,θ)q(b|x−j,θ) ∧ 1

]

. Since

q(xj |x−j , y, θ) ∝ q(y|x, θ)q(xj |x−j , θ)

the acceptance ratio can be simplified to

rθ,j(x, b) =

[

q(y|xj,b, θ)

q(y|x, θ) ∧ 1

]

.

This hybrid Gibbs sampler is explained in [12] among others and Algorithm 2 summarises a
transition step of the Markov Chain generation.

We denote Πθ,j(x, dz) = q(zj|x−j , θ)rθ,j(x, z
j)1z−j=x−jdz for zj 6= xj the associated kernel on

x defined by the update of the jth coordinate and Πθ = Πθ,N · · ·Πθ,1 the kernel associated with
a complete scan.
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Algorithm 2 Transition step k → k + 1 using a hybrid Gibbs sampler

Require: x = xk; θ = θk

Gibbs sampler:

for all j = 1 : N do
Hasting-Metropolis procedure:

b ∼ q(b|x−j , θ);

Compute rθ,j(x, b) =
[

q(y|xj,b,θ)
q(y|x,θ) ∧ 1

]

With probability rθ,j(x, b), update xj : xj ← b
end for

3.4. Convergence Theorem. In this section, we give a convergence result for the truncated
procedure in the case where the noise variance σ2 is fixed, taking into account only the template
α and the geometric covariance matrix Γg as our parameters (indeed, if σ is free we have not

succeeded in providing a simple proof of the C1 regularity of the mapping s → θ̂(s) which is
usually needed in this setting). Hence, in this section θ = (α,Γg).

We define the sufficient statistics in this setting. The complete log-likelihood can be written
as:

log q(y, x, θ) = log q(y|x, θ) + log q(x|θ) + log q(θ) ,

so that, denoting ∀1 ≤ k ≤ kp and ∀s ∈ Λ, the coordinate (s, k) of the matrix Kβ
p

Kβ
p (s, k) = Kp(rs − zβ(rs), rp,k) ,

then

log q(y, x, θ) =

n
∑

i=1

{

−|Λ|
2

log(2πσ2)− 1

2σ2
|yi −Kβi

p α|2
}

+
n
∑

i=1

{

−2kg

2
log(2π)− 1

2
log(|Γg|)−

1

2
βt

iΓ
−1
g βi

}

+ ag

{

−1

2
〈Γ−1

g ,Σg〉F −
1

2
log(|Γg|)

}

− 1

2
(α− µp)

tΣ−1
p (α− µp) .

Developing the square |yi −Kβi
p α|2 and using the fact that 〈Kβi

p α,Kβi
p α〉 = 〈(Kβi

p )tKβi
p , αtα〉F ,

we get easily the following matricial form of the sufficient statistics:

S1(x) =
∑

1≤i≤n

(

Kβi
p

)t
yi (3.11)

S2(x) =
∑

1≤i≤n

(

Kβi
p

)t (
Kβi

p

)

(3.12)

S3(x) =
∑

1≤i≤n

βt
iβi . (3.13)

For simplicity, we denote S(x) = (S1(x), S2(x), S3(x)) for any x = βn
1 ∈ R

N and define the
sufficient statistic space as

S =
{

(s1, s2, s3)|s1 ∈ R
kp , s2 + σ2Σ−1

p ∈ Sym+
kp
, s3 + agΣg ∈ Sym+

2kg

}

.

Identifying s2 and s3 with their lower triangular parts, the set S can be viewed as an open set of

R
ns with ns = kp +

kp(kp+1)
2 + kg(2kg + 1).
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As already proved in [1] the maximising function θ̂ satisfying (3.3) exists. We can thus give

an explicit form of θ̂(s) = (α(s),Γg(s)) for our sufficient statistic vectors and matrices (s1, s2, s3):

Γg(s) = 1
n+ag

(s3 + agΣg) ,

α(s) =
(

s2 + σ2(Σp)
−1
)−1 (

s1 + σ2(Σp)
−1µp

)

.

(3.14)

All these formula also prove the smoothness of θ̂ on the subset S. This property enables us
to work either with the stochastic approximation variable s or with the parameter function θ̂(s)
when needed in Algorithm 1.

As said before, the proof of the convergence of the stochastic sequence (sk) to critical points of
the observed log-likelihood in our model cannot rely on the coupling result given in [9] because of
the restrictive assumption on the compactness of the missing data support (since we set a Gaussian
prior on the missing variable β, we should not restrict the estimation of the law to any compact
subset). We also cannot apply directly the convergence results proved in [3] about the stability
of stochastic approximation since they assume several Hölder conditions involving the Markov
transition kernel which are not fully satisfied in our model. However it is possible to adapt their
proof while partially relaxing some of the assumptions and obtain the same convergence results.
This technical part is postponed to Section 5 from which we can deduce our first result:

Theorem 3.1 (Convergence of Bayesian deformable template building via SA).

Let w(s) = −l ◦ θ̂(s) and h(s) =
∫

(S(x)− s)q(x|y, θ̂(s))dx for s ∈ S. Assume that:
1. there exist p ≥ 2 and a ∈]0, 1[ such that the sequences ∆ = (∆k)k≥0 and ε = (εk)k≥0 are

non-increasing, positive and satisfy:
∞
∑

k=0

∆k =∞, lim
k→∞

εk = 0 and
∞
∑

k=1

{∆2
k + ∆kε

a
k + (∆kε

−1
k )p} <∞;

2. L′ , {s ∈ S, 〈∇w(s), h(s)〉 = 0} is included in a level set of w.
Let (sk)k≥0 be the sequence defined in Algorithm 1 with K bounded and K0 ⊂ S(RN ). Then, for
all x0 ∈ K and s0 ∈ K0, we have

lim
k→∞

d(sk,L′) = 0 P̄x0,s0
-a.s. ,

where P̄x0,s0
is the probability measure associated with the chain Zk = (xk, sk, κk), k ≥ 0 starting

at (x0, s0, 0).
Proof. The proof follows from the general stability result Theorem 5.1 stated in Section 5 and

is postponed to Section 6.
Remark 1. Note that condition (1) is easily checked for ∆k = O(k−α) and ǫk = O(k−α′

)
with 1/2 < α′ < α < 1. However condition (2) is somewhat less tractable and should be relaxed in
future work.

Remark 2. Note that as observed in [5] (Lemma 2), since θ̂, φ and ψ are smooth, we get

from (3.5) and (3.7) that if L , { θ ∈ θ̂(S), ∂l
∂θ (θ) = 0}, then θ̂(L′) = L and lim

k→∞
d(θk,L) = 0

P̄x0,s0
-a.s

4. Experiments. To illustrate our stochastic algorithm for the deformable template models,
we consider handwritten digit images. For each digit class, we learn the template, the correspond-
ing noise variance and the geometric covariance matrices (note that in the experiments the noise
variance is no longer fixed and is estimated as the other parameters). We use the US-Postal
database which contains a training set of around 7000 images and a test set of 2007 images.

Each picture is a (16 × 16) gray level image with intensity in [0, 2] where 0 corresponds to
the black background. We will also use these sets in the special case of a noisy setting by adding
independent normalised Gaussian noise to each image.

To be able to compare the results with the previous deterministic algorithm proposed in [1],
we use the same samples. In Figure (4.1) below, we show some of the training images used for the
statistical estimation.



BAYESIAN DEFORMABLE MODELS BUILDING 9

Fig. 4.1. Training set used for the estimation of the model parameters.

Fig. 4.2. Estimated prototypes of digit 1 (20 images per class) for different hyper-parameters. Left: smoother
geometry but large photometric covariance in the spline kernel. Right: more rigid geometry and smaller photometric
covariance.

A natural choice for the prior laws on α and Γg is to set 0 for the mean on α and to induce the
two covariance matrices by the metric of the spaces Vp and Vg involving the correlation between
the landmarks determined by the kernel. Define the square matrices

Mp(k, k
′) = Kp(rp,k, rp,k′) ∀1 ≤ k, k′ ≤ kp

Mg(k, k
′) = Kg(rg,k, rg,k′ ) ∀1 ≤ k, k′ ≤ kg

(4.1)

then Σp = M−1
p and Σg = M−1

g . In our experiments, we have chosen Gaussian kernels for both Kp

and Kg, where the standard deviations are fixed at σp = 0.12 and σg = 0.3. These two variances
are some important parameters; indeed, it has been shown in [1] that changing the geometrical
covariance had an effect on the sharpness of the template images. Concerning the effect of the
photometrical hyper-parameter, it affects both the template and the geometry in the sense that
with a too large variance, the kernel centred on one landmark spreads out on too many of its
neighbours. This leads to some thicker shapes as shown in left panel of Figure (4.2). As a conse-
quence, the template is biased: it is not “centred” in the sense that the mean of the deformations
required to fit the data is not close to zero. For example for the digit “1”, the main deformations
should be some contractions or dilations of the template. With a large variance σ2

p, the template is
thicker yielding larger contractions and smaller dilations. Since we have set a Gaussian law on the
deformation variable β and the spline model of the deformation is anti-symmetric (z−β = −zβ),
for each deformation (Id+ zβ) learnt, its symmetric deformation (Id− zβ) will be learnt as well.
Looking at some synthetic examples given in Figure (4.3) top panel, there are many large dilated
shapes whereas these examples were not in the training set and does not appear with the other
hyper-parameters (Figure (4.3) bottom panel). This particular effect is due to the model we set for
the template; indeed, the spline model requires some landmarks on the domain and the variance
of the kernel Kp has to be fixed according to the distance between landmarks (and the kind of
images treated). We have tried different relevant values and kept the best with regard to the visual
results. We present in the following only the results with the adapted variances.

For the stochastic approximation step-size, we allow a heating period which corresponds to

Fig. 4.3. Synthetic examples corresponding to the two previous templates of digit 1.
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Fig. 4.4. Estimated prototypes issued from left 10 images per class and right 20 images per class in the
training set.

the absence of memory for the first iterations. This allows the Markov Chain to reach a region of
interest in the posterior probability density function q(β|y) before exploring this particular region.

In the experiments run here, the heating time lasts kh (up to 150) iterations and the whole
algorithm is stopped at, at most, 200 iterations depending on the data set (noisy or not). This
number of iterations corresponds to a point where the convergence seems to be reached. This
yields:

∆k =

{

1 ∀1 ≤ k ≤ kh
1

(k−kh)d ∀k > kh for d = 0.6 or 1 .

4.1. Estimated Template. We show here the results of the statistical learning algorithm
for the one component model. Ten images per class are enough to obtain very contrasted and
satisfactory template images. Increasing the number of training images does not significantly im-
prove the estimated photometric template and may at some point provoke some deterioration of
the templates. Indeed, if there are only few images, the model will fit these data precisely but
as soon as some “outliers” appear the model will try to explain them as well by enlarging the
estimated variability. The resulting estimated parameters can thus be less accurate. Figure (4.4)
shows two runs of the one component algorithm for a non noisy data base with respectively 10
and 20 images per class.

4.2. Photometric noise variance. The same behaviour for our stochastic EM as for the
mode approximation EM algorithm done in [1] is observed for the noise variance: during the
first iterations, the noise variance balances the inaccuracy of the estimated template which is
simply the gray-level mean of the training set. As the iterations proceed, the templates estimates
become more precise as does the estimate of covariance matrix for the geometry. This yields
very small residual noise. Note that here the final noise variances are smaller than for the mode
approximation; between 0.2 and 0.3 for the mode in the one component run and less than 0.1 for
the Stochastic EM for all digits. This can be explained by the stochastic nature of the algorithm
which enables it to escape from local minima provoking early stops in the deterministic version.

4.3. Estimated geometric distribution. As said previously we have to fix the value of
the hyper-parameter ag of the prior on Γg. This quantity has a significant role in the results.
Indeed, to satisfy the theoretical conditions we have to choose ag larger than 4kg + 1 that is to
say 4 × 36 + 1 in our examples. But if we have a look at the geometry update equation which is
a barycenter between what we have learnt and the prior with coefficients equal to the number n
of images and ag respectively, we notice that with a small number of images in the training set,
the prior will dominate. This will not allow the covariance matrix to move away from that prior.
We thus need to decrease ag and find the best trade-off between the degenerate inverse Wishart
and the weight of the prior in the covariance estimation. We fix this value with a visual criterion:
both the templates and the generated sample with the learnt geometry have to be satisfactory.
This yields ag = 0.5 or 0.1.

We do note however that the fact that the prior is degenerated does not really matter as soon
as the posterior distribution is not. In addition, considering the update formulas, even if this law
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Fig. 4.5. Estimated noise variance using 20 images per class.

does not have a total weight equal to 1 (for it to be a probability distribution) it does not affect
the parameter estimation.

Fig. 4.6. 20 synthetic examples per class generated with the estimated template but the prior covariance matrix.

In Figure (4.7), we show a sample of some synthetic digits drawn with respect to the model with
the estimated parameters. Note that the resulting digits in Figure (4.7) look like some elements of
the training set and seem to explain it correctly. In particular, for some especially geometrically
constrained digits such as 0 or 1, the geometry variability reflects their constrains. For digits like
the 2s, the training set is heterogeneous and shows a large geometrical variability. Comparing to the
deformations obtained by the mode approximation in [1], it seems that here we obtain a less rigid
geometry. This might be because with a stochastic algorithm, we explore the posterior density and
do not only concentrate at its mode. This allows some more exotic deformations corresponding to
realizations of the missing variable β which may belong to the tail of the law. Another reason may
be that for such digits, the mode approximation gets stuck in a local minimum of the matching
energy. Jumping out of this configuration would require a large deformation (not allowed by the
gradient descent since it would increase the energy again) whereas such a deformation can be
proposed and accepted by the stochastic algorithm. Subsequently the deformed template may
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Fig. 4.7. 40 synthetic examples per class generated with the estimated parameters: 20 with the direct defor-
mations and 20 with the symmetric deformations.

better fit the observations leading to acceptance of these large deformations. This also leads to
a lower value of the residual noise and may also explain the low noise variance estimated by the
stochastic EM algorithm.

Fig. 4.8. Two images examples per class of the noisy training set (variance: top: σ
2 = 1, bottom: σ

2 = 2).

4.4. Noise effect. As shown in [1], in the presence of noise, the mode approximation algo-
rithm does not converge toward the MAP estimator. In our setting, the consistence of the “SAEM
like” algorithm has been proved independently of the training set, thus noisy images can also be
treated exactly the same way. These are the results we present here. Figure (4.8) shows two
training examples per class for noise variance values σ2 = 1 and σ2 = 2. In Figures (4.9) and
(4.10), we show the estimated templates for the noisy training set containing 20 images for both
methods. Even if the mode approximation algorithm does not diverge, it cannot fit the template
for digits with a high variability whereas the stochastic EM finds the template and gives acceptable
contrasted templates which look like those obtained in Figure (4.4). This becomes more significant
as we increase the variance of the additive noise we introduce in the training set.
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Fig. 4.9. Estimated prototypes in a noisy setting σ
2 = 1: Left: with the mode approximation algorithm.

Right: with the SAEM-MCMC coupling procedure.

Fig. 4.10. Estimated prototypes in a noisy setting σ
2 = 2: Left: with the mode approximation algorithm.

Right: with the SAEM-MCMC coupling procedure.

The same choice of the hyper-parameters has to be done. For the geometry, there is not reason
to change them. Concerning the photometric variance of the spline kernel, a too small one could
create some non smooth templates whereas a larger kernel would smooth the noise effect. We are
presenting here only some experiments which seem to be a good tradeoff between these effects.

The geometry is also well estimated despite the high level of noise in the training set. Figure
(4.11) shows some synthetic examples drawn with the estimated parameters learnt from the noisy
training set with an additive noise variance of 1. The two lines correspond to deformations and
their symmetric deformation. This sample looks like the synthetic samples learnt on non noisy
images even if some example are not really relevant. However, the global behaviour has been learnt.

The algorithm manages to catch the photometry (a contrasted and smooth template) and the
geometry of the shapes and to “separate” the additive noise.

The number of iterations needed to reach the convergence point in the noisy setting is about
twice that of the non noisy case. The convergence of the template is the longest whereas the
convergence of σ2 takes relatively the same number of iterations. In particular, the templates
obtained in the left panel of Figure (4.4) with only 10 images per training digit set are obtained
with a heating period of 25 iterations and 5 more EM steps with memory. Whereas the templates
of Figure (4.9) left picture require 100 to 125 heating iterations in the 150 EM iterations. This is
understandable since the algorithm has to cope with variations due to the noise and thus needs a
longer time to fit the right model.

5. Main stochastic approximation convergence Theorem. We give here a theorem
that, under some assumptions, will ensure the convergence of the stochastic approximation se-
quence (sk)k. This is a direct adaptation of the convergence theorem of [3] with weaker Hölder
conditions.

We consider the following assumptions, generalised from [3]. Define for V : R
N → [1,∞[ and
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Fig. 4.11. 40 synthetic examples per class generated with the parameters estimated from the noisy training
set (additive noise variance of 1).

any g : R
N → R

ns the norm

‖g‖V = sup
x∈RN

|g(x)|
V (x)

(5.1)

A1’ S is an open subset of R
ns , h : S → R

ns is continuous and there exists a continuously
differentiable function w : S → [0,∞[ such that
(i) There exists M0 > 0 such that

L′ , {s ∈ S, 〈∇w(s), h(s)〉 = 0} ⊂ {s ∈ S, w(s) < M0},

(ii) There exist a closed convex set Sa ⊂ S for which s→ ρH(s, x) ∈ Sa for any ρ ∈ [0, 1]
and (s, x) ∈ Sa × R

N (Sa is absorbing) such that for any M1 ∈]M0,∞], we have
WM1

∩ Sa is a compact set of S where WM1
, {s ∈ S, w(s) ≤M1},

(iii) For any s ∈ S\L′ 〈∇w(s), h(s)〉 < 0,
(iv) The closure of w(L′) has an empty interior.

A2 For any θ ∈ θ̂(S), the Markov kernel Πθ has a single stationary distribution πθ, πθΠθ = πθ.
In addition H : S × R

N → S is measurable, for all s ∈ S,
∫

RN |H(s, x)|πθ̂(s)(dx) <∞.

A3’ For any s ∈ S and θ = θ̂(s), the Poisson equation g − Πθg = Hs − πθ(Hs) where Hs(x) ,

H(s, x) has a solution gs. There exists a function V : R
N → [1,∞] such that {x ∈

R
N , V (x) <∞} 6= ∅, a constant a ∈]0, 1] and an integer p ≥ 2 such that for any compact

subset K ⊂ S,
(i)

sup
s∈K
‖Hs‖V <∞ (5.2)

sup
s∈K

(‖gs‖V + ‖Πθ̂(s)gs‖V ) <∞ (5.3)
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(ii)

sup
s,s′∈K

|s− s′|−a{‖gs − gs′‖V 3/2 + ‖Πθ̂(s)gs −Πθ̂(s′)gs′‖V 3/2) <∞ (5.4)

(iii) Let k0 be an integer; there exist ǫ > 0 and a constant C such that for any sequence
(εk)k satisfying 0 < εk ≤ ε for all k ≥ k0, for any sequence ∆ = (∆k)k≥0 and for any
x ∈ R

N ,

sup
s∈K

sup
k≥0

E
∆
x,s

[

V p(xk)1σ(K)∧νε≥k

]

≤ CV p(x) (5.5)

where νε = inf{k ≥ 1, |sk − sk−1| ≥ εk} and σ(K) = inf{k ≥ 1, sk /∈ K} and
the expectation is related to the non-homogeneous Markov Chain (xk, sk)k≥0 with
step-size sequence (∆k)k≥0.

A4 The sequences ∆ = (∆k)k≥0 and ε = (εk)k≥0 are non-increasing, positive and satisfy:
∞
∑

k=0

∆k = ∞, lim
k→∞

εk = 0 and
∞
∑

k=1

{∆2
k + ∆kε

a
k + (∆kε

−1
k )p} < ∞ where a and p are

defined in (A3’).
Theorem 5.1 (General Convergence Result for Truncated Stochastic Approximation). As-

sume (A1’),(A2), (A3’) and (A4). Let K ⊂ R
N such that sup

x∈K
V (x) < ∞ and K0 ⊂ WM0

∩ Sa

(where M0 is defined in (A1’)), and let (sk)k≥0 be the sequence defined in Algorithm 1. Then,
for all x0 ∈ K and s0 ∈ K0, we have lim

k→∞
d(sk,L′) = 0 P̄x0,s0

-a.s, where P̄x0,s0
is the probability

measure associated with the chain Zk = (xk, sk, κk), k ≥ 0 starting at (x0, s0, 0).
The proof that we satisfy assumptions (A1’),(A2), (A3’) and (A4) is given in Section 6. The

convergence of the sequence (sk)k is a consequence of Theorem 5.5 of [3] with these assumptions.
Proof. • The deterministic results obtained by [3] under their assumption (A1) remain true if

we suppose the existence of an absorbing set as defined in assumption (A1’). Indeed, the proofs
can be carried through in the same way restricting the sequences to the absorbing set.
• Assumption (A2) remains unchanged.
• We have to prove an equivalent of proposition 5.2 from [3].
Proposition 5.2. Assume (A3’). Let K be a compact subset of S and let ∆ = (∆k)k and

ε = (εk)k be two non-increasing sequences of positive numbers such that lim
k→∞

εk = 0. Then, for p

as defined in (A3’),
1 There exists a constant C such that, for any (x, s) ∈ R

N ×K and any integer l, any δ > 0

P
∆
x,s

(

sup
n≥l
|Sl,n(ε,∆,K)| ≥ δ

)

≤ Cδ−p







(

∞
∑

k=l

∆2
k

)p/2

+

(

∞
∑

k=l

∆kε
a
k

)p






V 3p/2(x)

where Sl,n(ε,∆,K) , 1σ(K)∧ν(ε)≥n

n
∑

k=l

∆k(H(sk−1, xk) − h(sk−1)) and P
∆
x,s is the proba-

bility measure generated by the non homogeneous Markov Chain ((xk, sk))k started from
the initial condition (x, s).

2 There exists a constant C such that for any (x, s) ∈ R
N ×K

P
∆
x,s(ν(ε) < σ(K)) ≤ C

{

∞
∑

k=l

(∆kε
−1
k )p

}

V 3p/2(x) . (5.6)

The proof of this proposition can proceed as in [3] except for the upper bound of the term
involving the Hölder property. Under (A3’(ii)), this upper bound brings into play an exponent
3p/2 on the function V . This leads to the two previous majorations in the previous proposition.

Given this proposition, it is straightforward to prove the following proposition which corre-
sponds to Proposition 5.3 in [3].
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Proposition 5.3. Assume (A3’) and (A4). Then, for any subset K ⊂ R
N such that

sup
x∈K

V (x) <∞, any M ∈ (M0,M1] and any δ > 0, we have lim
k→∞

A(δ, ε←k,M,∆←k) = 0 where

A(δ, ε,M,∆) = sup
s∈K0

sup
x∈K

{

P
∆
x,s

(

sup
k≥1
|S1,k(ε,∆,WM )| ≥ δ

)

+ P
∆
x,s (ν(ε) < σ(WM ))

}

.

The convergence of the sequence (sk)k follows from the proof of Theorem 5.5 of [3] with our
assumptions.

6. Proof of the convergence of the truncated SAEM/MCMC algorithm for de-
formable template. Here we demonstrate Theorem 3.1 that is to say the convergence of the
parameter sequence obtained by the coupling procedure for one component model. We recall that
in this Section, the parameter σ2 is fixed so that θ = (α,Γ). The sufficient statistic vector S, the

set S as well as the explicit expression of θ̂(s) have been given in Subsection 3.4. As noted, θ̂ is a
smooth function of S.

We will prove the conditions (A1’), (A2), (A3’) and (A4) hold for any p ≥ 1 and a ∈]0, 1[
so that applying Theorem 5.1, we get immediately Theorem 3.1.

6.1. (A1’). We choose the same functions H, h and w as in [5] defined as follows:

H(s, x) = Hs(x) = S(x)− s

h(s) =

∫

RN

H(s, x)q(x|y, θ)dx

w(s) = −l(θ̂(s)) .

where as introduced before, x stands for the family βn
1 and y for yn

1 . As shown in [5], we get
(A1’(iii)) and (A1’(iv)).

Moreover, there exists an absorbing closed subset Sa of R
ns such that

s+ ρH(s, x) ∈ Sa for any ρ ∈ [0, 1] and s ∈ Sa. (6.1)

Indeed, since the interpolation kernel Kp is bounded, there exist a > 0 and A ∈ Sym+
kp

such that

for any x ∈ R
N , we have

|S1(x)| ≤ a, 0 ≤ S2(x) ≤ A and 0 ≤ S3(x) (6.2)

where, as usual, for any symmetric matrices B and C, we say that B ≤ C if C−B is a non-negative
symmetric matrix.

Now define the set Sa by

Sa , { s ∈ S | |s1| ≤ a, 0 ≤ s2 ≤ A and 0 ≤ s3 } .

Since the constraints are obviously convex and closed, we get that Sa is a closed convex subset of
R

ns such that

Sa ⊂ S ⊂ R
ns

and satisfying (6.1).

We now focus on the first two points. As l and θ̂ are continuous functions, we only need to
prove that WM ∩ Sa is a bounded set for a constant M ∈ R

∗
+ with:

WM = {s ∈ S, −l(θ̂(s)) ≤M} .

On Sa, s1 and s2 are bounded so that if θ̂(s) = (α(s),Γ(s)), we deduce from (3.14) and from the
boundedness of interpolation kernel Kp that α(s) is bounded on Sa and |yi−Kβi

p α(s)| is uniformly
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bounded on β ∈ R
2kg and s ∈ Sa. Hence (recall that σ2 is fixed here), there exists η > 0 such

that q(y|x, θ̂(s)) ≥ η for any s ∈ Sa and x ∈ R
N . We have

w(s) ≥ − log(

∫

q(x, θ̂(s))dx) + C ≥ − log(q(θ̂(s))) + C ≥ − log(q(Γ(s))) + C′ (6.3)

where C and C′ are two constants independent of s ∈ Sa. Since

− log(q(Γg)) =
ag

2

(

〈Γ−1
g ,Σg〉F + log |Γg|

)

≥ ag

2
log |Γg|

and log(|Γg(s)|) = log(|(s3 + agΣg)/(n+ ag)|)→ +∞ as |s| → +∞, s ∈ Sa, we deduce that

lim
|s|→+∞,s∈Sa

w(s) = +∞ .

Since w is continuous and Sa is closed, this proves (A1’(ii)).

Considering (A1’(i)), we assume that the assumption is satisfied.

6.2. (A2). We prove a classical sufficient condition (DRI1), used in [3] which will imply
(A2).
(DRI1) For any s ∈ S, Πθ̂(s) is irreducible and aperiodic. In addition there exist a small set C (

defined below), a function V : R
N → [1,∞[ and constants 0 ≤ b ≤ 1, such that , for any

p ≥ 2 and any compact subset K ⊂ S, there exist an integer m and constants 0 < λ < 1,
B, κ, δ > 0 and a probability measure ν such that

sup
s∈K

Πm
θ̂(s)

V p(x) ≤ λV p(x) +B1C(x) (6.4)

sup
s∈K

Πθ̂(s)V
p(x) ≤ κV p(x) ∀x ∈ R

N (6.5)

sup
s∈K

Πm
θ̂(s)

(x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ B(RN) . (6.6)

Notation 2. Let (ej)1≤j≤N be the canonical basis of the x-space and for any 1 ≤ j ≤ N , let

Eθ,j , { x ∈ R
N | 〈x, ej〉θ = 0} be the orthogonal of Span{ej} and pθ,j be the orthogonal projection

on Eθ,j i.e.

pθ,j(x) , x− 〈x, ej〉θ
|ej |2θ

ej ,

where 〈x, x′〉θ =
∑n

i=1 β
t
iΓ
−1
g βi for θ = (α,Γg) and x = βn

1 , x′ = β′
n
1 (i.e. the natural dot product

associated with the covariance matrix Γg).
We denote for any 1 ≤ j ≤ N and θ ∈ Θ, Πθ,j the Markov kernel on R

N associated with the
j-th Hasting-Metropolis step of the Gibbs sampler on x. We have Πθ = Πθ,N ◦ · · ·Πθ,1.

We first recall the definition of a small set:
Definition 1. ( [11]) A set E ∈ B(X ) is called a small set for the kernel Π if there exists

an m > 0, and a non trivial measure νm on B(X ), such that for all x ∈ E, B ∈ B(X ),

Πm(x,B) ≥ νm(B). (6.7)

When (6.7) holds, we say that E is νm-small. We now prove the following lemma:
Lemma 6.1. Let E be a compact subset of R

N then E is a small set of R
N for (Πθ̂(s))s∈K.

Proof. First note that there exists ac > 0 such that for any θ ∈ Θ, any x ∈ R
N and any b ∈ R,

the acceptance rate rθ,j(x, b) is uniformly lower bounded by ac so that for any 1 ≤ j ≤ N and any
non-negative function f ,

Πθ,jf(x) ≥ ac

∫

R

f(x−j + bej)q(b|x−j , θ)db = ac

∫

R

f(pθ,j(x) + zej/|ej|θ)g0,1(z)dz
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where g0,1 is the standard N (0, 1) density.
By induction, we have

Πθf(x) ≥ aN
c

∫

RN

f



pθ,N,1(x) +

N
∑

j=1

zjpθ,N,j+1(ej)/|ej|θ





N
∏

j=1

g0,1(zj)dzj (6.8)

where pθ,q,r = pθ,r ◦ pθ,r−1 ◦ · · · ◦ pθ,q for any integer q ≤ r pθ,N,N+1 = IdRN . Let Aθ ∈ L(RN )

be the linear mapping on zN
1 = (z1, · · · , zN) defined by Aθz

N
1 =

∑N
j=1 zjpθ,N,j+1(ej)/|ej |θ. One

easily checks that for any 1 ≤ k ≤ N , Span{ pθ,N,j+1(ej), k ≤ j ≤ N} = Span{ej | k ≤ j ≤ N}
so that Aθ is an invertible mapping. By a change of variable, we get

∫

RN

f
(

pθ,N,1(x) +Aθz
N
1

)

N
∏

j=1

g0,1(zj)dzj =

∫

RN

f(u)gpθ,N,1(x),AθAt
θ
(u)du

where gµ,Σ stands for the density of the normal law N (µ,Σ). Since θ → Aθ is smooth on the set
of invertible mappings in θ, we deduce that there exists c > 0 such that cId ≤ AθA

t
θ ≤ Id/c and

gpθ,N,1(x),AθAt
θ
(u) ≥ Cgpθ,N,1(x),Id/c(u) uniformly for θ = θ̂(s) with s ∈ K. Assuming that x ∈ E ,

since θ → pθ,N,1 is smooth and E is compact, we have supx∈E,θ=θ̂(s), s∈K |pθ,N,1(x)| < ∞ so that

there exists C′ > 0 and c′ > 0 such that for any (u, x) ∈ R
N × E and any θ = θ̂(s), s ∈ K

gpθ,N,1(x),AθAt
θ
(u) ≥ C′g0,Id/c′(u). (6.9)

Using (6.8) and (6.9), we deduce that for any A

Πθ(x,A) ≥ C′aN
c ν(A)

with ν equal to the density of the normal law N (0, Id/c′).
This yields the existence of the small set as well as equation (6.6).

This property also implies the φ-irreducibility of the Markov chain (xk)k.
Moreover, the existence of a ν1-small set implies the aperiodicity of the chain (cf:[11] p121).
We set V : R

N → [1,+∞[ as the following function

V (x) = 1 +

n
∑

i=1

|βi|2. (6.10)

We now prove condition (6.5). For any 1 ≤ j ≤ N and any θ, we have

Πθ,jV
p(x) ≤ V p(x) +

∫

R

V p(pθ,j(x) + zej/|ej|θ)g0,1(z)dz .

Since V (x + h) ≤ 2(V (x) + V (h)) for any x, h ∈ R
N , |pθ,j(x)| ≤ C|x| and |ej|θ ≥ 1/c for C and

c > 0 independent of θ = θ(s), s ∈ K, we have

∫

R

V p(pθ,j(x) + zej/|ej|θ)g0,1(z)dz ≤ 2pCpV p(|x|)
∫

R

(1 + V (czej))
pg0,1(z)dz

we deduce that there exists C′ > 0 such that for any x ∈ R
N

sup
θ=θ(s),s∈K

Πθ,jV
p(x) ≤ C′V p(x) , (6.11)

such that by composition ΠθV
p(x) ≤ C′NV p(x) and (6.5) holds.
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Now consider the Drift condition (6.4).

For any θ = (α,Γg), we introduce a θ dependent function Vθ(x) , 1 +
∑n

i=1 |βi|2θ, where

|β|2θ , 〈β, β〉θ = βtΓ−1
g β is the natural dot product induced by the covariance operator Γg.

Lemma 6.2. Let K be a compact subset of Θ. For any integer p ≥ 1, there exist 0 ≤ ρ < 1
and C > 0 such that for any θ ∈ K, any x ∈ R

N we have

ΠθV
p
θ (x) ≤ ρV p

θ (x) + C .

Proof. The proposal distribution for Πθ,j is given by q(x | x−j , y, θ)
law
= pθ,j(x) + Uθej where

Uθ ∼ N (0, |ej |−2
θ ). Since we easily check that the acceptance rate aθ,x is uniformly bounded from

below by a positive number ac > 0, we deduce that there exists CK such that for any x ∈ R
N and

any measurable set A ∈ B(RN )

Πθ,j(x,A) = (1 − aθ,x)1A(x) + aθ,x

∫

R

1A(pθ,j(x) + zej)γθ(dz)

where aθ,x ≥ ac, γθ ≤ CKγK and γK equals to the density of the normal law N (0, supθ∈K |ej|−2
θ ).

Since 〈pθ,j(x), ej〉θ = 0, we get V p
θ (pθ,j(x) + zej) = (Vθ(pθ,j(x)) + z2|ej |2θ)p and

Πθ,jV
p
θ (x) = (1 − aθ,x)V p

θ (x) + aθ,x

∫

R

(

Vθ(pθ,j(x)) + z2|ej|2
)p
γθ,x(dz)

≤ (1− aθ,x)V p
θ (x) + aθ,x

(

V p
θ (pθ,j(x)) + (2p − 1)CKV

p−1
θ (pθ,j(x))

∫

R

(1 + z2|ej|2θ)p−1γK(dz)

)

≤ (1− aθ,x)V p
θ (x) + aθ,xV

p
θ (pθ,j(x)) + C′KV

p−1
θ (pθ,j(x))

where we have used the fact that a Gaussian variable has bounded moment of any order. Since
aθ,x ≥ ac and |pθ,j(x)|θ ≤ |x|θ (pθ,j is an orthonormal projection for the dot product 〈·, ·〉θ), we
get that for any η > 0, there exists CK,η such that for any x ∈ R

N and θ ∈ K

Πθ,jV
p
θ (x) ≤ (1− ac)V

p
θ (x) + (ac + η)V p

θ (pθ,j(x)) + CK,η .

By induction, starting with j=1, we get

ΠθV
p
θ (x) ≤

∑

u∈{0,1}N

N
∏

j=1

(1− ac)
1−uj (ac + η)ujV p

θ (pθ,u(x)) +
CK,η

η
((1 + η)N+1 − 1)

where pθ,u = ((1 − uN )Id + uNpθ,N) ◦ · · · ◦ ((1 − u1)Id + u1pθ,1). Let pθ = pθ,1 = pθ,N ◦ · · · ◦ pθ,1

and note that pθ,u is contracting so that

ΠθV
p
θ (x) ≤ bc,ηV

p
θ (x) + (ac + η)NV p

θ (pθ(x)) +
CK,η

η
((1 + η)N+1)

for bc,η =
(

∑

u∈{0,1}N , u6=1

∏N
j=1(1− ac)

1−uj (ac + η)uj

)

. To end the proof, we need to check that

pθ is strictly contracting uniformly on K. Indeed, |pθ(x)|θ = |x|θ implies that pθ,j(x) = x for
any 1 ≤ j ≤ N so that 〈x, ej〉θ = 0 and x = 0 since (ej)1≤j≤N is a basis. Using the continuity
of the norm of pθ in θ and the compactness of K, we deduce that there exists 0 < ρK < 1
such that |pθ(x)|θ ≤ ρK |x|θ for any x and θ ∈ K. Changing ρK for 1 > ρ′K > ρK we get

(1 + ρ2
K |x|2θ)q ≤ ρ′2q

K (1 + |x|2θ)q + C′′K for some uniform constant C′′K so that

ΠθV
p
θ (x) ≤ bc,ηV

p
θ (x) + ρ′

2p
K (ac + η)NV p

θ (x) + C′′K,η.

Since we have infη>0 bc,η + ρ′
2p
K (ac + η)N < 1 we get the result.
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Lemma 6.3. For any compact set K ⊂ Θ, any integer p ≥ 0, there exist 0 < ρ < 1, C > 0
and m0 such that ∀m ≥ m0 , ∀θ ∈ K

Πm
θ V

p(x) ≤ ρV p(x) + C .

Proof. Indeed, there exist 0 ≤ c1 ≤ c2 such that c1V (x) ≤ Vθ(x) ≤ c2V (x) for any (x, θ) ∈
R

N ×K. Then, using the previous lemma, we have Pm
θ V p(x) ≤ c−p

1 Pm
θ V p

θ (x) ≤ c−p
1 (ρmV p

θ (x) +
C/(1− ρ)) ≤ (c2/c1)

p(ρmV p(x) + C/(1− ρ)). Choosing m large enough for (c2/c1)
pρm < 1 gives

the result.
This finishes the proof of (6.4) and in the same time (A2).

6.3. (A3’). The geometric ergodicity of the Markov Chain, implied by the drift condition
(6.4), ensures the existence of a solution of the Poisson equation (cf:[11]):

gs(x) =
∑

k≥0

(Πk
θ̂(s)

Hs(x) − h(s)). (6.12)

We first focus on the proof of (A3’(iii)).
Lemma 6.4. Let K be a compact subset of S. There exists C > 0 such that for any s, s′ ∈ K,

|V p

θ̂(s)
(x) − V p

θ̂(s′)
(x)| ≤ C|s− s′|V p

θ̂(s)
(x) .

Proof. Indeed, there exists C > 0 such that for any θ̂(s) = (α,Γg) and θ̂(s′) = (α′,Γ′g),
|Γg−Γ′g| ≤ C|s−s′|. Therefore, there exists C′ such that for any s, s′ ∈ K, |Γ−1

g −(Γ′g)
−1| ≤ C|s−s′|

and |Vθ̂(s)(x)−Vθ̂(s′)(x)| ≤
∑n

i=1 β
t
i (Γ
−1
g − (Γ′g)

−1)βi ≤ C′|s− s′|V (x). Since there exists C′′ such

that V (x) ≤ C′′Vθ̂(s)(x) for any (s, x) ∈ K × R
N , we get the result.

Lemma 6.5. Let K be a compact subset of S and p ≥ 1 an integer. There exist ǫ > 0 and
C > 0 such that for any sequence ǫ = (ǫk)k≥0 such that ǫk ≤ ǫ for k large enough, any sequence
∆ = (∆k)k≥0 and any x ∈ R

N ,

sup
s∈K

sup
k≥0

E
∆
x,θ̂(s)

[V p(Xk)1σ(K)∧ν(ǫ)≥k] ≤ CV p(x) .

Proof. Let K be a compact subset of Θ such that θ̂(K) ⊂ K. We note in the sequel, θk = θ̂(sk).
We have for k ≥ 2, using the Markov property and Lemma 6.2 and 6.4,

E
∆
x,θ[V

p
θk−1

(Xk)1σ(K)∧ν(ǫ)≥k] ≤ E
∆
x,θ[Πθk−1

V p
θk−1

(Xk−1)1σ(K)∧ν(ǫ)≥k]

≤ ρ
(

E
∆
x,θ[V

p
θk−2

(Xk−1)1σ(K)∧ν(ǫ)≥k] + E
∆
x,θ[(V

p
θk−1

(Xk−1)− V p
θk−2

(Xk−1))1σ(K)∧ν(ǫ)≥k]
)

+ C

≤ ρ
(

E
∆
x,θ[V

p
θk−2

(Xk−1)1σ(K)∧ν(ǫ)≥k−1] + C′ǫk−1E
∆
x,θ[V

p
θk−2

(Xk−1)1σ(K)∧ν(ǫ)≥k−1]
)

+ C

so that by induction, we have

E
∆
x,θ[V

p
θk−1

(Xk)1σ(K)∧ν(ǫ)≥k] ≤
k−1
∏

l=1

(ρ(1 + C′ǫl))V
p
θ (x) +

C

(1− ρ(1 + C′ǫ))
.

Choosing ǫ such that ρ(1 + C′ǫ) < 1 and introducing again 0 ≤ c1 ≤ c2 such that c1V (x) ≤
Vθ(x) ≤ c2V (x) for any (x, θ) ∈ R

N ×K, we get the result.
This yields (A3’(iii)).

We now prove condition (A3’(i)).
Since Hs(x) = S(x)−s with S(x) at most quadratic in x, the choice of V directly ensures (5.2).
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Considering (5.3): Since the Markov Chain satisfies the Drift condition (6.4), it is geometrically
ergodic (see [11]), so there exist constants 0 < γ < 1 and C such that

‖gs‖V = ‖
∑

k≥0

(Πk
θ̂(s)

Hs(x) − h(s))‖V ≤
∑

k≥0

Cγk‖Hs‖V <∞ .

Thus ∀s ∈ S, gs belongs to LV .
Thanks to (6.5), it is immediate that Πθ̂(s)gs belongs to LV too. This ends the proof of

(A3’(i)).

We now move to the Hölder condition (A3’(ii)). We will use the following lemma:
Lemma 6.6. Let K be a compact subset of S. For all p ≥ 1 and any function f ∈ LV p ,

∀(s, s′) ∈ K2 we have for θ = θ̂(s) and θ′ = θ̂(s′):

‖Πθf −Πθ′f‖V p+1/2 ≤ CK‖f‖V p+1/2 |s− s′| .

Proof. For any 1 ≤ j ≤ N and f ∈ LV p , we have

Πθ,jf(x) = (1 − rθ,j(x))f(x) +

∫

R

f(xj,b)rθ,j(x, b)q(b|x−j , θ)db (6.13)

where rθ,j(x) =
∫

R
rθ,j(x, b)q(b|x−j , θ)db is the average acceptance rate.

Let s and s′ be two points in K and s(ǫ) = (1− ǫ)s+ ǫs′ for ǫ ∈ [0, 1] be a linear interpolation
between s and s′ (since S is convex, we can assume that K is a convex set so that s(ǫ) ∈ K for

any ǫ ∈ [0, 1]). We denote also θ(ǫ) , θ̂(s(ǫ)) the associated path in Θ which is a C1 function. To
study the difference |(Πθ(1),j−Πθ(0),j)f(x)|, introduce Π1

θ,jf(x) , (1−rθ,j(x))f(x) and Π2
θ,jf(x) ,

∫

R
f(xj,b)rθ,j(x, b)q(b|x−j , θ)db. We start with the difference |(Π2

θ(1),j−Π2
θ(0),j)f(x)|, and first note

that under the conditional law q(b|x−j , θ), b ∼ N (bθ,j(x), 1/|ej |2θ) where

bθ,j(x) , et
jpθ,j(x) = et

jx− 〈x, ej〉θ/|ej|2θ (6.14)

is the j-th coordinate of pθ,j(x). We have

Π2
θ,jf(x) =

∫

R

f(xj,0 + bej)rθ,j(x, b) exp

(

− (b− bθ,j(x))
2|ej |2θ

2

) |ej |θ√
2π
db .

Since rθ,j(x, b) = r̃θ,j(x, b) ∧ 1 where r̃θ,j ,
q(y|xj,b,θ)
q(y|x,θ) is a smooth function in θ, we have

|(Π2
θ(1),j −Π2

θ(0),j)f(x)| ≤
∫ 1

0

∫

R

f(xj,0 + bej)

∣

∣

∣

∣

d

dǫ

(

rθ,j(x, b) exp(− (b − bθ,j(x))
2|ej |2θ

2
)
|ej |θ√

2π

)∣

∣

∣

∣

db .

However, one easily checks that there exists a constant CK such that for any s, s′ ∈ K, ǫ, j and x
(with θ = θ(ǫ)):

∣

∣

∣

∣

d

dǫ
exp

(

− (b− bθ,j(x))
2|ej |2θ

2

) |ej |θ√
2π

∣

∣

∣

∣

≤ CK(1 + |b− bθ,j(x)|)2 exp

(

− (b− bθ,j(x))
2|ej |2θ

2

) |ej |θ√
2π

(∣

∣

∣

∣

d

dǫ
bθ,j(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

d

dǫ
|ej |θ

∣

∣

∣

∣

)

. (6.15)

Since d
dǫ |ej|θ = 1

2|ej |θ
et

j
d
dǫΓ
−1
θ ej ,

d
dǫΓ
−1
θ = −Γ−1

θ
d
dǫΓθΓ

−1
θ and d

dǫΓθ =
s′

3−s3

n+ag
(see (3.14)), we deduce

that there exists C′K such that
∣

∣

∣

∣

d

dǫ
|ej |θ

∣

∣

∣

∣

≤ C′K|s′ − s| . (6.16)
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Similarly, updating the constant C′K, we have

∣

∣

∣

∣

d

dǫ
bθ,j(x)

∣

∣

∣

∣

≤ C′K(1 + |x|)|s′ − s| . (6.17)

Now, concerning the derivative of r̃θ,j(x, b), since

log(r̃θ,j(x, b)) =
1

2

n
∑

i=1

(

|yi −K β̃i
p α|2 − |yi −Kβi

p α|2
)

with β̃i = (xj,b)
2kgi

2kg(i−1)+1, only one term of the previous sum is non zero. We deduce from the

fact that Kp is bounded and from (3.14) that | d
dǫ log(r̃θ,j(x, b))| ≤ C| d

dǫα| ≤ C′′K|s − s′|, so that

using the fact that r̃θ,j(x, b) is uniformly bounded for θ ∈ θ̂(K), x ∈ R
N and b ∈ R, there exists a

new constant C′′K such that

| d
dǫ
r̃θ,j(x, b))| ≤ C′′K|s− s′| . (6.18)

Thus, using (6.16), (6.17) and (6.18), we get (for a new constant CK) that

| d
dǫ

exp

(

− (b− bθ,j(x))
2|ej|2θ

2

) |ej |θ√
2π
|

≤ CK(1 + |x|)|s′ − s|(1 + |b − bθ,j(x)|)2 exp

(

− (b− bθ,j(x))
2|ej|2θ

2

) |ej|θ√
2π

. (6.19)

Since |f(x)| ≤ ‖f‖V pV p(x) and V (a+b) = (1+ |a+b|2) ≤ 2(V (a)+V (b)), we get |f(x0,j +bej)| ≤
C‖f‖V p(V p(x0,j) + V p(bej)) with C = 22p−1. Hence, there exists CK such that for any s, s′ ∈ K,
any j, x and ǫ ∈ [0, 1] we have:

∫

R

|f(xj,0 + bej)|
∣

∣

∣

∣

d

dǫ

(

rθ,j(x, b) exp

(

− (b− bθ,j(x))
2|ej |2θ

2

) |ej |θ√
2π

)∣

∣

∣

∣

db

≤ CK‖f‖V pV p(xj,0)(1 + |x|)|s′ − s| ≤ CK‖f‖V pV p(x)(1 + |x|)|s′ − s| (6.20)

where we have used the fact that a Gaussian variable has finite moments of all order. Since
(1 + |x|) ≤ (2V (x))1/2, we get (updating CK) that

|(Π2
θ(1),j −Π2

θ(0),j)f(x)| ≤ CK‖f‖V pV p+1/2(x)|s′ − s| . (6.21)

Now, looking at the first term in (6.13), we deduce easily from the previous study for f ≡ f(x)
that

|(Π1
θ(1),j −Π1

θ(0),j)f(x)| ≤ CKV (x)1/2|s′ − s||f(x)| ≤ CK‖f‖V pV p+1/2(x)|s′ − s| (6.22)

so that adding (6.21) and (6.22), we get (updating again CK) that

‖(Πθ(1),j −Πθ(0),j)f‖V p+1/2 ≤ CK‖f‖V p |s′ − s| . (6.23)

We end the proof, saying that Πθ(1) − Πθ(0) =
∑N

j=1 Πθ(1),j+1,N ◦ (Πθ(1),j − Πθ(0),j) ◦ Πθ(0),1,j−1

where Πθ,q,r = Πθ,r ◦Πθ,r−1 ◦ · · · ◦ Πθ,q for any integer q ≤ r and any θ ∈ Θ so that using (6.11)
and (6.23), we get the result.

Lemma 6.7. Let K be a compact subset of S. There exists a constant CK such that for all
p ≥ 1 and any function f ∈ LV p , ∀(s, s′) ∈ K2, ∀k ≥ 0, we have for θ = θ̂(s) and θ′ = θ̂(s′) that:

‖Πk
θf −Πk

θ′f‖V p+1/2 ≤ CK‖f‖V p+1/2|s− s′| .
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Proof. We use the same decomposition of the difference as previously:

Πk
θf −Πk

θ′f =

k−1
∑

i=1

Πi
θ(Πθ −Πθ′)(Πk−i−1

θ′ f − πθ′(f)) .

Using Lemma 6.6, Lemma 6.3 and the fact that ‖Πk
θ(f − πθ(f))‖V p ≤ γk‖f‖V p with γ < 1

(geometric ergodicity) we get:

‖Πk
θf −Πk

θ′f‖V p+1/2 ≤ C
k−1
∑

i=1

‖(Πθ −Πθ′)(Πk−i−1
θ′ f − πθ′(f))‖V p+1/2

≤ C‖f‖V p+1/2 |s− s′|
k−1
∑

i=1

γk−i+1

and the lemma is proved.

We now prove that h is a Lipschitz function, adapting linearly Appendix B in [3].

Let x ∈ R
N and denote θ = θ̂(s), θ′ = θ̂(s′). Write h(s)− h(s′) = A(s, s′) +B(s, s′) +C(s, s′)

where

A(s, s′) = (h(s)−Πk
θHs(x)) + (Πk

θ′Hs′(x)− h(s′))
B(s, s′) = Πk

θHs(x) −Πk
θ′Hs(x)

C(s, s′) = Πk
θ′Hs(x) −Πk

θ′Hs′(x) .

Using the geometric ergodicity, Lemma 6.3 and Lemma 6.6, we get that there exists C > 0,
independent of k such that:

|A(s, s′)| ≤ Cγk sup
S∈K
‖Hs‖V V (x)

|B(s, s′)| ≤ C sup
S∈K
‖Hs‖V |s− s′|V 3/2(x)

|C(s, s′)| ≤ C sup
S∈K
‖Hs‖V |s− s′|V (x) .

This yields

|h(s)− h(s′)| ≤ CV 3/2(x)(γk + |s− s′|) .

Hence, setting k = [log |s− s′|/ log(γ)] if |s− s′| < 1 and 1 otherwise, we get the result.

We can now end the proof of (A3’(ii)): On one hand we have:

|(Πk
θHs(x)− h(s)) − (Πk

θ′Hs′(x) − h(s′))| ≤ |Πk
θHs(x)−Πk

θHs′(x)|
+ |Πk

θHs′(x)−Πk
θ′Hs′(x)| + |h(s)− h(s′)| ≤ C|s− s′|V 3/2(β0) .

On the other hand, we have thanks to the geometric ergodicity,

|(Πk
θHs(x)− h(s)) − (Πk

θ′Hs′(x) − h(s′))| ≤ CγkV 3/2(x) .

Hence for any t and T ≥ t, we have

|Πt
θgs(x)−Πt

θ′gs′(x)| ≤
∞
∑

k=t

|(Πk
θHs(x)− h(s))− (Πk

θ′Hs′(x)− h(s′))| ≤

CV 3/2(x)

[

T |s− s′|+ γT+t

1− γ

]

.
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Setting T = [log |s− s′|/ log(γ)] for |s− s′| ≤ δ < 1 and T = t otherwise, using also the fact that
for any 0 < a < 1 we have |s− s′| log |s− s′| = o(|s− s′|a), we get the result.

This proves condition (A3’(ii)) for any a < 1.

6.4. (A4). This condition is not restrictive at all as we can set the step-size sequences as we
need.

This concludes the demonstration of Theorem 3.1.

7. Conclusion and discussion. We have proposed a stochastic algorithm for Bayesian non-
rigid deformable models building in the context of [1] as well as a proof of convergence toward a
critical point of the observed likelihood. To our best knowledge, this is the first theoretical result
of convergence for a well defined statistical point of view in the framework of deformable template.
The algorithm is based on a stochastic approximation of the EM algorithm based on a MCMC
approximation of the posterior. If our main contribution concerns here mostly the theoretical side,
the preliminary experiments presented here on the US-postal database shows that the stochastic
approach can be easily implemented and is robust to noisy situations, giving better result than
the previous deterministic schemes.

Many interesting questions remain open. One of them is the extension of the stochastic
scheme to mixture of deformable models (defined as the multicomponents model in [1]) where the
parameters are the weights of the individual components and for each component, the associated
template and deformation law. This is of particular importance on real data analysis where
the restriction to a unique deformable model could be too drastic. The design of such mixture
corresponds to some kind of deformation invariant clustering approach of the data which is a basic
issue in any unsupervised data analysis scheme. This extension is however not as straightforward
as it could appear at first glance: due the high dimensional hidden deformation variables, a
naive extension of Markovian dynamic to the label variables coding for the component value will
have extremely poor mixing properties leading to unpractical algorithm. A less straightforward
extension involving multiple MCMC chains is under study.

An other interesting extension is to consider diffeomorphic mapping and not only displacement
fields for the hidden deformation. This appears to be particularly interesting in the context
of Computational Anatomy where a one to one correspondence between the template and the
observation is usually needed and cannot be guaranteed with linear spline interpolation schemes.
This extension could be done in principle using tangent models based on geodesic shooting in the
spirit of [13] but many numerical as well as theoretical works are still to be done on this side.

REFERENCES
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