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CULMINATING PATHSMIREILLE BOUSQUET-MÉLOU AND YANN PONTYAbstra
t. Let a and b be two positive integers. A 
ulminating path is a path of Z
2 thatstarts from (0, 0), 
onsists of steps (1, a) and (1,−b), stays above the x-axis and ends at thehighest ordinate it ever rea
hes. These paths were �rst en
ountered in bioinformati
s, in theanalysis of similarity sear
h algorithms. They are also related to 
ertain models of Lorentziangravity in theoreti
al physi
s.We �rst show that the language on a two letter alphabet that naturally en
odes 
ulminatingpaths is not 
ontext-free.Then, we fo
us on the enumeration of 
ulminating paths. A step by step approa
h, 
om-bined with the kernel method, provides a 
losed form expression for the generating fun
tionof 
ulminating paths ending at a (generi
) height k. In the 
ase a = b, we derive from thisexpression the asymptoti
 behaviour of the number of 
ulminating paths of length n. When

a > b, we obtain the asymptoti
 behaviour by a simpler argument. When a < b, we onlydetermine the exponential growth of the number of 
ulminating paths.Finally, we study the uniform random generation of 
ulminating paths via various methods.The reje
tion approa
h, 
oupled with a symmetry argument, gives an algorithm that is linearwhen a ≥ b, with no pre
omputation stage nor non-linear storage required. The 
hoi
e of thebest algorithm is not as 
lear when a < b. An elementary re
ursive approa
h yields a linearalgorithm after a pre
omputation stage involving O(n3) arithmeti
 operations, but we alsopresent some alternatives that may be more e�
ient in pra
tise.1. Introdu
tionOne-dimensional latti
e walks on Z have been extensively studied over the past 50 years.These walks usually start from the point 0, and take their steps in a pres
ribed �nite set S ⊂ Z.A large number of results are now known on the enumeration of sub-families of these walks, and
an be obtained in a systemati
 way on
e the set S is given. This in
ludes the enumerationof bridges (walks ending at 0), meanders (walks that always remain at a non-negative level),ex
ursions (meanders ending at level 0), ex
ursions of bounded height, and so on. In parti
ular,the nature of the asso
iated generating fun
tions is well understood: these series are alwaysalgebrai
, and even rational for bounded walks [2, 5, 9, 8, 18, 24, 28, 29, 34℄. These algebrai
ityproperties a
tually re�e
t the fa
t that the languages on the alphabet S that naturally en
odethese families of walks are 
ontext-free, and even regular in the fourth 
ase. In many papers,these one-dimensional walks are a
tually des
ribed as dire
ted two-dimensional (2D) walks, uponrepla
ing the starting point 0 by (0, 0) and every step s ∈ S by (1, s). This explains whyex
ursions are often 
alled generalised Dy
k paths (the authenti
 Dy
k paths 
orrespond to the
ase S = {1,−1}). This two-dimensional setting allows for a further generalisation, with stepsof the form (i, j), with i > 0 and j ∈ Z, but this does not a�e
t the nature of the asso
iatedlanguages and generating fun
tions. The uniform random generation of these walks has alsobeen investigated, through a re
ursive approa
h [36℄ or using an anti
ipated reje
tion [6, 30℄.This paper deals with a new 
lass of walks whi
h has re
ently o

urred in two independent
ontexts, and seems to have a more 
ompli
ated stru
ture than the above mentioned 
lasses:
ulminating walks. A 2D dire
ted walk is said to be 
ulminating if ea
h step ends at a positivelevel, and the �nal step ends at the highest level ever rea
hed by the walk (Figure 1). We fo
usYann Ponty was partially supported by the a
tion "Aspe
ts mathématiques et algorithmiques des réseauxbio
himiques et évolutifs (π-vert)" of ACI Nouvelles Interfa
es des Mathématiques, Fren
h Ministry of Resear
h.1
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a

bFigure 1. A 
ulminating path (for a = 5 and b = 3) and the 
orresponding word.here on the 
ase where the steps are (1, a) and (1,−b), with a and b positive, hoping that thisen
apsulates all the possible typi
al behaviours.In the 
ase a = b = 1, 
ulminating walks have re
ently been shown to be in bije
tion with
ertain Lorentzian triangulations [17℄, a 
lass of 
ombinatorial obje
ts studied in theoreti
alphysi
s as a model of dis
rete two-dimensional Lorentzian gravity. Using a transfer matrixapproa
h, the authors derived the generating fun
tion for this 
ase. We give two shorter proofsof their result. Also, while it is not 
lear how the method used in [17℄ 
ould be extended to thegeneral (a, b)-
ase, one of our approa
hes works for arbitrary values of a and b.The general (a, b)-
ase appears in bioinformati
s in the study of the sensitivity of heuristi
homology sear
h algorithms, su
h as BLAST, FASTA or FLASH [1, 31, 11℄. These algorithmsaim at �nding the most 
onserved regions (similarities ) between two genomi
 sequen
es (DNA,RNA, proteins...) while allowing 
ertain alterations in the entries of the sequen
es. In orderto avoid the supposedly intrinsi
 quadrati
 
omplexity of the deterministi
 algorithms, theseheuristi
 algorithms �rst 
onsider identi
al regions of bounded size and extend them in bothdire
tions, updating the s
ore with a bonus for a mat
h or a penalty for an alteration, until thes
ore drops below a 
ertain threshold. The evolution of the s
ore all the way through the �nalalignment turns out to be en
oded by a 
ulminating walk.In [27℄, we �rst studied the probability of a 
ulminating walk to 
ontain 
ertain patterns
alled seeds, as some re
ent algorithms make use of them to relax the mandatory 
onservation ofsmall an
horing portions. Then, we proposed a variant of the re
ursive approa
h for the randomgeneration of these walks. Finally, we observed that the naive reje
tion-based algorithm, whi
h
onsists in drawing uniformly at random up and down steps and reje
ting the resulting walk ifis not 
ulminating, seemed to be linear (resp. exponential) when a > b (resp. a < b). Thisobservation, whi
h is 
losely related to the asymptoti
 enumeration of 
ulminating walks, is
on�rmed below in Se
tion 6.2.To 
on
lude this introdu
tion, let us �x the notation and summarize the 
ontents of this paper.Let a and b be two positive integers. A walk (or path) of length n is a sequen
e (0, η0), . . . , (n, ηn)su
h that η0 = 0 and ηi+1 − ηi ∈ {a,−b} for all i. The height of the walk is the largest of the
ηi's, while the �nal height is ηn. The walk is 
ulminating if the two following 
onditions hold:

∀i ∈ [1, n], ηi > 0 (Positivity),
∀i ∈ [0, n− 1], ηi < ηn (Final re
ord).See Figures 1 and 2 for examples and 
ounter-examples. We en
ode every walk by a word onthe alphabet {m, m} in a standard way: ea
h as
ending step (1, a) is repla
ed by a letter mand ea
h des
ending step (1,−b) is repla
ed by a letter m. We denote by {m, m}∗ the set ofwords on the alphabet {m, m}. From now on, we identify a path and the 
orresponding word.Sin
e these obje
ts are essentially one-dimensional, we will often use a 1D vo
abulary, saying,for instan
e, that our paths take steps +a and −b (rather than (1, a) and (1,−b)). We hope thatthis will not 
ause any 
onfusion.
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Figure 2. Two walks that are not 
ulminating, violating the �nal re
ord 
on-dition (left) or the positivity 
ondition (right).For any word w, we denote by |w|m (resp. |w|m) the number of o

urren
es of the letter m(resp. m) that it 
ontains. We denote by |w| the length of w. The fun
tion φa,b : {m, m}∗ → Nmaps a word to the �nal height of the 
orresponding walk. That is, φa,b(w) = a|w|m − b|w|m.The 
ulmination properties 
an be translated into the following language-theoreti
 de�nition:De�nition 1.1. The language of 
ulminating words is the set Ca,b ⊂ {m, m}∗ of words w su
hthat, for all non-empty pre�x w′ of w:

φa,b(w
′) > 0 (Positivity),and, for all proper pre�x w′ of w:

φa,b(w
′) < φa,b(w) (Final re
ord).The main result of Se
tion 2 is that the language Ca,b is not 
ontext-free. In Se
tion 3,we obtain a 
losed form expression for the generating fun
tion of 
ulminating walks. Thisexpression is 
ompli
ated, but we believe this only re�e
ts the 
omplexity of this 
lass of walks.This enumerative se
tion is 
losely related to the re
ent work [9℄, devoted to a general studyof ex
ursions 
on�ned in a strip. In parti
ular, symmetri
 fun
tions play a slightly surprisingrole in the proof and statement of our results. We then derive in Se
tion 4 the asymptoti
number of 
ulminating walks, in the 
ase a ≥ b. Our result implies that, asymptoti
ally, apositive fra
tion of (general) (a, b)-walks are 
ulminating if a > b. We prove that this fra
tiontends to 0 exponentially fast if a < b. More pre
isely, we determine the exponential growthof the number of 
ulminating walks. This asymptoti
 se
tion uses the results obtained in [5℄on the exa
t and asymptoti
 enumeration of ex
ursions and meanders. Finally, in Se
tion 6,we present several algorithms for generating uniformly at random 
ulminating walks of a givenlength. Our best algorithms are linear when a ≥ b. When a < b, the 
hoi
e of the best algorithmis not obvious. An elementary re
ursive approa
h yields a quasi-linear generating stage butrequires the pre
omputation and storage of O(n3) numbers. We exploit in this se
tion severalgeneration s
hemes, like the re
ursive method [36, 22℄, the reje
tion method [13℄ and Boltzmannsamplers [19℄. Moreover, we address in Se
tion 5 the random generation of positive walks,whi
h is a preliminary step in some of our algorithms generating 
ulminating walks. We haveimplemented our algorithms in Java, and we invite the reader to generate his/her own paths atthe address http://www.lri.fr/∼ponty/walks. Figure 3 shows random 
ulminating paths oflength 1000 generated with our software, for various values of a and b.Without loss of generality, we restri
t our study to the 
ase where a and b are 
oprime.2. Language theoreti
 propertiesWe denote by Ca,b⇒k the subset of Ca,b that 
ontains the walks (words) ending at height k.It will be easily seen that this language (for a �xed k) is regular. However, we shall prove thatthe full language Ca,b is not 
ontext-free. We refer to [25℄ for de�nitions on languages.
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10008006004002000

454035302520151050Figure 3. Random 
ulminating paths of size 1000, when (a, b) = (1, 1), (a, b) =
(2, 1), (a, b) = (1, 2). In the �rst two 
ases, four paths are displayed, while forthe sake of 
larity, only one path is shown in the third 
ase.2.1. Culminating walks of bounded heightProposition 2.1. For all a, b, k ∈ N, the language Ca,b⇒k of 
ulminating words ending at height

k is regular.Proof. The 
ulminating paths of �nal height k move inside a bounded spa
e. This allows us to
onstru
t a (deterministi
) �nite-state automaton that re
ognises these paths. The states of this
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essible heights (that is, 0, 1, . . . , k), plus a garbage state ⊥. The initialstate is 0, the �nal state is k, and the transition fun
tion δ is given, for 0 ≤ q < k, by:
δ(q, m) =

{

q + a if q ≤ k − a,
⊥ otherwise , δ(q, m) =

{

q − b if q > b,
⊥ otherwise ,while

δ(k, ·) = δ(⊥, ·) =⊥ .Clearly, this automaton sends any word attempting to walk below 0 (resp. above k) in thegarbage ⊥, where it will stay forever and therefore be reje
ted. Moreover, it a

epts only wordsending in the state k. Hen
e this automaton re
ognises exa
tly Ca,b⇒k. As the state spa
e is�nite, Ca,b⇒k is a regular language.2.2. Unbounded 
ulminating walksProposition 2.2. For all a, b ∈ N, the language Ca,b of 
ulminating walks is not 
ontext-free.Proof. Re
all that the interse
tion of a 
ontext-free language and a regular language is 
ontext-free [25℄. Let L be the following regular language: L = m∗.m∗.m∗. It 
an be seen as the languageof �zig-zag� paths. Let K = Ca,b ∩ L. It is easy to see that
K = {mi.mj .mk| i > 0, bj < ai and bj < ak}.Assume that Ca,b is 
ontext-free. Then so is K, and, by the pumping lemma for 
ontext-freelanguages [25, Theorem 4.7℄, there exists n ∈ N su
h that any word w ∈ K of length at least nadmits a fa
torisation w = x.u.y.v.z satisfying the following properties:

(i) |u.v| ≥ 1,
(ii) |u.y.v| ≤ n,

(iii) ∀ℓ ≥ 0, wℓ := x.uℓ.y.vℓ.z ∈ K.Sin
e a and b are 
oprime, there exist i > n and j > n su
h that ia − jb = 1 (this is theBa
het-Bezout theorem). Hen
e the word w = mimjmi belongs to K. In the rest of the proof,we will refer to the �rst sequen
e of as
ending steps of w as A, to the des
ending sequen
e as Band to the se
ond as
ending sequen
e as C.Where is the fa
tor u.y.v? ℓ wℓ Failing 
ondition
A 0 mi−h.mj .mi Pos.: φ(mi−h.mj) = 1− ah ≤ 0

B 2 mi.mj+h.mi Pos.: φ(mi.mj+h) = 1− bh ≤ 0

C 0 mi.mj .mi−h Fin. re
.: φ(wℓ) = φ(mi)− ah ≤ φ(mi)
A ∪B

|u|m.|u|m + |v|m.|v|m 6= 0 2 mp.mk.mk′

.mp′

.mi wℓ /∈ L (Too many peaks)
u = mk, v = mk′

2 mi+k.mk′+j .mi Final re
ord:
φ(wℓ) = φ(mi+k) + 1− bk′ ≤ φ(mi+k)

B ∪ C

|u|m.|u|m + |v|m.|v|m 6= 0 2 mi.mp.mk.mk′

.mp′

wℓ /∈ L (Too many valleys)
u = mk, v = mk′

2 mi.mj+k.mk′+i Pos.: φ(mi.mj+k) = 1− kb ≤ 0Table 1. Why the pumping lemma is not satis�ed.In Table 1, we 
onsider all eligible fa
torisations of w of the form w = x.u.y.v.z. Five 
aseso

ur, depending on whi
h part of w 
ontains the fa
tor u.y.v. Condition (ii) implies that thisfa
tor 
annot overlap simultaneously with the parts A and C. Ea
h of the 
ases A∪B and B∪Cis further subdivided into two 
ases, depending on whether u and v are monotonous or not.
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h fa
torisation, the table gives a value of ℓ for whi
h the word wℓ does not belong to
K. This is justi�ed in the rightmost 
olumn: either wℓ does not belong to the set L of zig-zagpaths, or the positivity 
ondition does not hold, or the last step of the walk is not a re
ord.On
e all the possible fa
torisations have been investigated and found not to satisfy the pump-ing lemma, we 
on
lude that the languages K and Ca,b are not 
ontext-free.3. Exa
t enumerative resultsIn this se
tion, we give a 
losed form expression for the generating fun
tion of (a, b)-
ulminating walks. More pre
isely, we give an expression for the series 
ounting 
ulminatingwalks of height k, and then sum over k. This summation makes the series a bit di�
ult to han-dle, for instan
e to extra
t the asymptoti
 behaviour of the 
oe�
ients (Se
tion 4). We believethat this 
omplexity is inherent to the problem. In parti
ular, we prove that the generatingfun
tion of (1, 1)-
ulminating walks is not only trans
endental, but also not D-�nite. That is, itdoes not satisfy any linear di�erential equation with polynomial 
oe�
ients [34, Ch. 6℄.3.1. Statement of the results and dis
ussionLet us �rst state our results in the (1,1)-
ase and then explain what form they take in thegeneral (a, b)-
ase.Proposition 3.1. Let a = b = 1 and k ≥ 1. The length generating fun
tion of 
ulminatingpaths of height k is

Ck(t) =
tk

Fk−1
= t

U1 − U2

Uk
1 − Uk

2

=
1− U2

1 + U2

Uk

1− U2k
,where

• Fk is the kth Fibona

i polynomial, de�ned by F0 = F1 = 1 and Fk = Fk−1 − t2Fk−2 for
k ≥ 2,

• U1 and U2 are the two roots of the polynomial u− t(1 + u2):
U1,2 =

1∓
√

1− 4t2

2t
,

• U stands for any of the Ui's.The generating fun
tion of 
ulminating walks,
C(t) =

1− U2

1 + U2

∑

k≥1

Uk

1− U2k
, (1)is not D-�nite.The above expression of C(t) is equivalent to the 
ase x = y = 1 of [17, Eq.(2.26)℄.The �rst expression of Ck, in terms of the Fibona

i polynomials, is 
learly rational. Asexplained in Se
tion 2.1, the language of 
ulminating walks of height k is regular for all a and b,so that the series Ck will always be rational. Of 
ourse, Ck is simply 0 when k < a. When k = a,there is only one 
ulminating path, redu
ed to one up step, so that Ck = t. More generally, thefollowing property, illustrated in Figure 4 and proved in Se
tion 3.2.1, holds.Property 3.2. For k ≤ a + b, there is at most one 
ulminating path of height k.As soon as k > a, 
ulminating walks of height k have at least two steps. Deleting the �rstand last ones gives Ck = t2Wk, where Wk 
ounts walks (with steps +a,−b) going from a to k−aon the segment J1, k− 1K. General (and basi
) results on the enumeration of walks on a digraphprovide [33, Ch. 4℄:

Ck = t2Wk = t2
(

(1− tAk)−1
)

a,k−a
= t2

Nk

Dk
, (2)
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2
1Figure 4. When a = 5 and b = 3, there is no 
ulminating walk of height k, for

k ∈ J1, 8K \ {5, 7, 8}. For k = 5, 7, 8, there is exa
tly one 
ulminating walk.where Ak = (Ai,j)1≤i,j≤k−1 is the adja
en
y matrix of our segment graph:
Ai,j =

{

1 if j = i + a or j = i− b,
0 otherwise, (3)

Dk is the determinant of (1− tAk) and Nk/Dk is the entry (a, k − a) of (1− tAk)−1.We note from Proposition 3.1 that, in the (1, 1)-
ase, both Nk and Dk are espe
ially simple.Indeed, Nk = tk−2, while Dk = Fk−1 satis�es a linear re
urren
e relation (with 
onstant 
oe�-
ients) of order 2. We will prove that, for all a and b, both sequen
es Nk and Dk satisfy su
h are
urren
e relation (of a larger order in general). The monomial form of Nk will hold as soon as
a = 1.The se
ond expression of Ck given in Proposition 3.1 appears as a rational fun
tion of theroots of the polynomial u − t(1 + u2). Even though both series U1 and U2 are algebrai
 (andirrational), the fa
t that Ck is symmetri
 in U1 and U2 explains why Ck itself is rational. Ingeneral, we will write Ck as a symmetri
 rational fun
tion of the a + b roots of the polynomial
ub − t(1 + ua+b), denoted U1, . . . , Ua+b.The third expression of Ck follows from the fa
t that U1U2 = 1. In general, t = U b/(1+Ua+b)for U = Ui, so that it will always be possible to write Ck as a rational fun
tion of U . However,this expression will not be always as simple as above. The equivalen
e of the three expressionsof Proposition 3.1 follows easily from the fa
t that

Fk =
1− U2k+2

(1− U2)(1 + U2)k
.This 
an be proved by solving the re
urren
e relation satis�ed by the Fk's � or 
an be 
he
kedby indu
tion on k.Let us now state our generalisation of Proposition 3.1 to (a, b)-
ulminating walks. Our �rstexpression of Ck, namely the rational form (2), involves the evaluation of two determinantsof size (approximately) k. Our se
ond expression of Ck will be a �xed rational fun
tion of

U1, . . . , Ua+b, U
k
1 , . . . , Uk

a+b, symmetri
 in the Ui, whi
h involves two determinants of 
onstantsize a + b. The existen
e of su
h smaller determinantal forms for walks 
on�ned in a striphas already been re
ognised in [3, Ch. 1℄. More re
ently, the 
ase of ex
ursions 
on�ned in astrip has been simpli�ed and worked out in greater detail [9℄. As in [9℄, our results will beexpressed in terms of the S
hur fun
tions sλ, whi
h form one of the most important bases ofsymmetri
 fun
tions in n variables x1, . . . , xn: for any integer partition λ with at most n parts,
λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

sλ(X ) =
aδ+λ

aδ
, (4)with X = (x1, . . . , xn), δ = (n − 1, n − 2, . . . , 1, 0) and aµ = det

(

x
µj

i

)

1≤i,j≤n
. We refer to [34,Ch. 7℄ for generalities on symmetri
 fun
tions.



8 MIREILLE BOUSQUET-MÉLOU AND YANN PONTYProposition 3.3. Let k > a. With the above notation, the length generating fun
tion of (a, b)-
ulminating paths of height k admits the following expressions:
Ck(t) = t2

(

(1 − tAk)−1
)

a,k−a
= t2

Nk

Dk
= t

sµ(U)

sλ(U)
,where Ak is given by (3), the (a + b)-tuple U = (U1, . . . , Ua+b) is the 
olle
tion of roots ofthe polynomial ub − t(1 + ua+b), and the partitions λ and µ are given by λ = (k − 1)a and

µ = ((k − 1)a−1, a− 1).The determinant Dk of (1− tAk) and the relevant 
ofa
tor Nk are respe
tively given by
Dk = (−1)(a−1)(k−1)tk−1sλ(U) and Nk = (−1)(a−1)(k−1)tk−2sµ(U). (5)Both sequen
es Nk and Dk satisfy a linear re
urren
e relation with 
oe�
ients in Q[t], respe
-tively of order (a+b

a

) and (a+b
a−1

). These orders are optimal.Note that the expression of Ck in terms of S
hur fun
tions still holds for k = a. Examples willbe given below. For the moment, let us underline that the 
ase a = 1 of this proposition takesa remarkably simple form, whi
h will be given a 
ombinatorial explanation in Se
tion 3.2.3.Corollary 3.4. When a = 1, the generating fun
tion of 
ulminating walks of height k ≥ 1 reads
Ck(t) =

tk

Dk
=

t

hk−1(U)
,where hi is the 
omplete homogeneous symmetri
 fun
tion of degree i, Dk = 1 for 1 ≤ k ≤ b + 1and Dk = Dk−1 − tb+1Dk−b−1 for k > b + 1.Examples. Let us illustrate Proposition 3.3 by writing down expli
itly the expression of Ck fora few values of a and b. We use the determinantal form (4) of S
hur fun
tions.Case a = b = 1. Here U1 and U2 are the two roots of the polynomial u−t(1+u2). The partition

µ is empty, so that sµ = 1, while λ = (k − 1). This gives
Ck = t

∣

∣

∣

∣

U1 1
U2 1

∣

∣

∣

∣

∣

∣

∣

∣

Uk
1 1

Uk
2 1

∣

∣

∣

∣

= t
U1 − U2

Uk
1 − Uk

2

,as in Proposition 3.1. The re
urren
e relations satis�ed by the polynomials Nk and Dk 
analways be worked out from their expressions (5), as will be explained in Se
tion 3.2.2. In the
ase a = b = 1, one �nds
Ck = t2Nk/Dk with Nk = tk−2 and Dk = Dk−1 − t2Dk−2,with initial 
onditions D1 = D2 = 1.Case a = 1, b = 2. Here U1, U2, U3 are the three roots of the polynomial u2 − t(1 + u3). Again,

µ is empty and λ = (k − 1) (this holds as soon as a = 1). One obtains
Ck = t

∣

∣

∣

∣

∣

∣

U2
1 U1 1

U2
2 U2 1

U2
3 U3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uk+1
1 U1 1

Uk+1
2 U2 1

Uk+1
3 U3 1

∣

∣

∣

∣

∣

∣

.The rational expression of Ck reads
Ck = t2Nk/Dk with Nk = tk−2 and Dk = Dk−1 − t3Dk−3,with initial 
onditions D1 = D2 = D3 = 1. Note that this expression allows us to 
ompute in afew se
onds the number cn of 
ulminating walks for n up to 500.



CULMINATING PATHS 9Case a = 2, b = 1. Here U1, U2, U3 are the three roots of the polynomial u− t(1 + u3). One has
µ = (k − 1, 1) and λ = (k − 1)2, whi
h gives:

Ck = t

∣

∣

∣

∣

∣

∣

Uk+1
1 U2

1 1

Uk+1
2 U2

2 1

Uk+1
3 U2

3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uk+1
1 Uk

1 1

Uk+1
2 Uk

2 1

Uk+1
3 Uk

3 1

∣

∣

∣

∣

∣

∣

= t

∣

∣

∣

∣

∣

∣

Ūk+1
1 Ūk−1

1 1

Ūk+1
2 Ūk−1

2 1

Ūk+1
3 Ūk−1

3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ūk+1
1 Ū1 1

Ūk+1
2 Ū2 1

Ūk+1
3 Ū3 1

∣

∣

∣

∣

∣

∣

,where Ūi := 1/Ui. Note that the series Ūi are the roots of the polynomial u2 − t(1 + u3), whi
ho

urs in the (symmetri
) 
ase a = 1, b = 2. It is a
tually 
lear from (2) that the denominator
Dk is un
hanged when ex
hanging a and b.The rational expression of Ck reads

Ck = t2Nk/Dk with Nk = tNk−2 + t3Nk−3 and Dk = Dk−1 − t3Dk−3,with initial 
onditions N1 = 0, N2 = 1/t, N3 = t and D1 = D2 = D3 = 1.3.2. Proofs3.2.1. Proof of Property 3.2. Let us say that a path is positive if every step ends at a positivelevel. For instan
e, 
ulminating walks are positive. For n ≥ 0 there exists a unique positive walkof length n and height at most a + b, denoted wn. Indeed, given h ∈ J0, a + bK, exa
tly one ofthe values h + a, h− b lies in the interval J1, a + bK. For the same reason, wi is a pre�x of wj for
i ≤ j. Let k ≤ a + b, and assume that there exist two distin
t 
ulminating walks of height k.These walks must be wi and wj , for some i and j, with, say, i < j. But then wi is a pre�x of
wj , and ends at height k, whi
h prevents wj from 
ulminating.3.2.2. Proof of Proposition 3.3. The expression of Ck in terms of the adja
en
y matrix Akhas been justi�ed in Se
tion 3.1. Let us now derive the S
hur expression of this series. We willgive a
tually two proofs of this expression: the �rst one is based on the kernel method [8, 4, 3℄,and the se
ond one on the Ja
obi-Trudi identity. The �rst proof is 
ompletely elementary. These
ond one allows us to relate the polynomials Nk and Dk to the S
hur fun
tions sλ and sµ.This derivation is very 
lose to what was done in [9℄ for ex
ursions 
on�ned in a strip. Some ofthe results of [9℄ will a
tually be used to shorten some arguments.First proof via the kernel method. Consider a 
ulminating walk of height k > a. Su
h awalk has length at least 2. Delete its �rst and last steps: this gives a walk starting from level a,ending at level k − a, and 
on�ned between levels 1 and k − 1. Translating this walk one stepdown, we obtain a non-negative walk starting from level a− 1 and ending at level k − 1− a, ofheight at most k − 2. Let G(t, u) ≡ G(u) denote the generating fun
tion of non-negative walksstarting from a−1, of height at most k−2. In this series, the variable t keeps tra
k of the lengthwhile the variable u re
ords the �nal height. Write G(u) =

∑k−2
h=0 uhGh, where Gh 
ounts walksending at height h. The above argument implies that the generating fun
tion of 
ulminatingwalks of height k is

Ck = t2Gk−a−1. (6)We 
an 
onstru
t the walks 
ounted by G(u) step by step, starting from height a−1, and addingat ea
h time a step +a (unless the 
urrent height is k− a− 1 or more) or −b (unless the 
urrentheight is b− 1 or less). In terms of generating fun
tions, this gives:
G(u) = ua−1 + t(ua + u−b)G(u)− tu−b

b−1
∑

h=0

uhGh − tua
k−2
∑

h=k−a−1

uhGh,
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(

ub − t(1 + ua+b)
)

G(u) = ua+b−1 − t

b−1
∑

h=0

uhGh − tua+b
k−2
∑

h=k−a−1

uhGh.The kernel of this equation, that is, the polynomial ub − t(1 + ua+b), has a + b distin
t roots,whi
h are Puiseux series in t. We denote them U1, . . . , Ua+b. Re
all that G(u) is a polynomial in
u (of degree k−2). Repla
ing u by ea
h of the Ui gives a system of a+b linear equations relatingthe unknown series G0, . . . , Gb−1 and Gk−a−1, . . . , Gk−2. For U = Ui, with 1 ≤ i ≤ a + b,

b−1
∑

h=0

UhGh + Ua+b
k−2
∑

h=k−a−1

UhGh = Ua+b−1/t.In matrix form, we haveMG = C/t, whereM is the square matrix of size a + b given by
M =











Ua+b+k−2
1 Ua+b+k−3

1 · · · U b+k−1
1 U b−1

1 U b−2
1 · · · 1

Ua+b+k−2
2 · · · · · · 1... ...

Ua+b+k−2
a+b Ua+b+k−3

a+b · · · U b+k−1
a+b U b−1

a+b U b−2
a+b · · · 1











, (7)
G is the 
olumn ve
tor (Gk−2, . . . , Gk−a−1, Gb−1, . . . , G0), and C is the 
olumn ve
tor
(Ua+b−1

1 , . . . , Ua+b−1
a+b ). In view of the de�nition (4) of S
hur fun
tions,

det(M) = sλ(U),with λ = (k − 1)a. It has been shown in [9℄ that the generating fun
tion of ex
ursions (walksstarting and ending at 0) 
on�ned in the strip of height k − 2 is
(−1)a+1

t

s(k−2)a(U)

s(k−1)a(U)
,and that, in parti
ular, sλ(U) 6= 0. Hen
e M is invertible, and applying Cramer's rule to theabove system gives

Gk−a−1 =
1

t

sµ(U)

sλ(U)
,with λ and µ de�ned as in the statement of the proposition. Combining this with (6) gives thedesired S
hur form of Ck.A se
ond proof via symmetri
 fun
tions. Let us now give an alternative proof of the S
hurexpression of Ck. It will be based on the dual Ja
obi-Trudi identity, whi
h expresses S
hurfun
tions as a determinant in the elementary symmetri
 fun
tions ei [34, Cor. 7.16.2℄: for anypartition ν,

sν = det
(

eν′

j
+i−j

)

1≤i,j≤ν1

, (8)where ν′ is the 
onjugate of ν.Let us 
onsider the identity (2), with Dk = det(1− tAk). It turns out that this determinantis of the form (8). Indeed, let us de�ne Vi = −Ui, for 1 ≤ i ≤ a + b. Then the only elementarysymmetri
 fun
tions of the Vi that do not vanish are e0(V) = 1, ea(V) = −1/t and ea+b(V) = 1(with V = (V1, . . . , Va+b)). Let us apply (8) to ν = λ = (k − 1)a, with variables V1, . . . , Va+b.Then ν′ = ak−1 and one obtains
sλ(V) = (−t)−(k−1)Dk = (−1)a(k−1)sλ(U),sin
e sλ is homogeneous of degree a(k − 1). This gives the S
hur expression of Dk.Now by the general inversion formula for matri
es, Nk = (−1)k det((1 − tAk)k−a,a), where

(1− tAk)k−a,a is obtained by deleting row k− a and 
olumn a from (1− tAk). Let us apply (8)to ν = µ = ((k− 1)a−1, a− 1). Then ν′ = aa−1(a− 1)k−a. The matrix (eν′

j
+i−j

) has size k− 1,
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olumn 
ontains only one non-zero entry (equal to e0(V) = 1), in row k − a. Afterdeleting this row and the last 
olumn, one obtains:
sµ(V) = (−1)a−1(−t)−(k−2) det((1 − tAk)k−a,a) = (−1)a−1t−(k−2)Nk = (−1)k(a−1)sµ(U),as sµ is homogeneous of degree k(a− 1). This gives the desired expression of Nk.Linear re
ursions. Finally, let us prove that the sequen
es of polynomials Nk and Dk satisfya linear re
urren
e relation with 
oe�
ients in Q[t], the ring of polynomials in t. Equivalently,we prove that ea
h of the generating fun
tions

N(z, t) :=
∑

k≥a

Nkzk and D(z, t) :=
∑

k≥a

Dkzkis a
tually a rational fun
tion in z and t. The existen
e of a linear re
ursion then easily followsby the general theory of rational series [33, Ch. 4℄.Given the expression (5) of Nk, what we have to do is to evaluate
N ′(z; u1, . . . , ua+b) :=

∑

k≥a

s(k−1)a−1,a−1z
kwhere the symmetri
 fun
tions involve the a + b indeterminates u1, . . . , un, with n = a + b.We use the de�nition (4) of S
hur fun
tions to write s(k−1)a−1,a−1 as a ratio of determinants ofsize n. The determinant o

urring at the denominator is the Vandermonde Vn in the ui's, andis independent of k. The determinant at the numerator is obtained from (7) by repla
ing the
olumn 
ontaining U b+k−1

i by a 
olumn of Ua+b−1
i (and then ea
h Ui by the indeterminate ui).We expand it as a sum over permutations of length n, and obtain:

N ′(z; u) =
1

Vn

∑

k≥a

zk
∑

σ∈Sn

ε(σ) σ
(

un+k−2
1 · · ·ub+k

a−1u
a+b−1
a ub−1

a+1 · · ·u1
n−1u

0
n

)

=
1

Vn

∑

σ∈Sn

ε(σ) σ

(

un+a−2
1 · · ·ua+b

a−1u
a+b−1
a ub−1

a+1 · · ·u1
n−1u

0
n

1− zu1 · · ·ua−1

)

,where σ a
ts on fun
tions of u1, . . . , un by permuting the variables:
σF (u1, . . . , un) = F (uσ(1), . . . , uσ(n)).Equivalently,

N ′(z; u) =
P (z; u)

Q(z; u)where
Q(z; u) =

∑

I⊂JnK, |I|=a−1

(

1− z
∏

i∈I

ui

)and P (z; u) is another polynomial in z and the ui, symmetri
 in the ui's. This symmetry propertyshows that repla
ing ui by Ui transforms N ′(z; u) into a rational series in z and t. The linkbetween Nk and s(k−1)a−1,a−1 then gives
N(z, t) =

(−1)a−1P ((−1)a−1tz; U)

t2 Q((−1)a−1tz; U)
,another rational fun
tion of z and t. A similar argument, given expli
itly in [9℄, yields

D(z, t) =
(−1)a−1P̃ ((−1)a−1tz; U)

t Q̃((−1)a−1tz; U)
,for two polynomials P̃ and Q̃ in z and u1, . . . , un. More pre
isely,

Q̃(z; u) =
∑

I⊂JnK, |I|=a

(

1− z
∏

i∈I

ui

)

.



12 MIREILLE BOUSQUET-MÉLOU AND YANN PONTYBy looking at the degree of Q̃ and Q, this establishes the existen
e of re
urren
e relations oforder (a+b
a−1

) for Nk, and (a+b
a

) for Dk. If there were re
ursions of a smaller order, the polynomials
Q(z; U) or Q̃(z; U) would fa
tor. It has been shown in [9, Se
tion 6℄ that Q̃(z; U) is irredu
ible,and the same argument implies that Q(z; U) is irredu
ible as well.3.2.3. Two proofs of Corollary 3.4. Let us spe
ialise Proposition 3.3 to the 
ase a = 1. Weobserve that µ is the empty partition, so that sµ = 1, while λ = (k− 1), so that sλ = hk−1. Theexpressions (5) of Nk and Dk in terms of S
hur fun
tions give Nk = tk−2 and Dk = tk−1hk−1(U).Observe that e1(U) = 1/t and eb+1(U) = (−1)b+1. The 
lassi
al relation between elementaryand 
omplete symmetri
 fun
tions [34, Eq. (7.13)℄ gives, for k ≥ 1,

hk(U) =
1

t
hk−1(U)− hk−b−1(U),with initial 
onditions h0 = 1 and hi = 0 for i < 0. This gives the desired re
ursion for Dk.Let us now justify 
ombinatorially the simpli
ity of Nk and Dk. Re
all that, for k ≥ 2, onehas Ck = t2Wk, where Wk 
ounts walks (with steps +1, −b) going from 1 to k−1 on the segmentgraph J1, k−1K. The adja
en
y matrix of this graph is Ak. The 
ombinatorial des
ription1 of theinverse of the matrix (1− tAk) tells us that Dk 
ounts non-interse
ting 
olle
tions of elementary
y
les on the segment J1, k − 1K, while Nk 
ounts 
on�gurations formed of a self-avoiding path

w going from 1 to k− 1 together with a non-interse
ting 
olle
tion of elementary 
y
les that donot meet w. In the polynomials Nk and Dk, ea
h 
y
le of length ℓ is given a weight (−tℓ) whilethe path w is simply weighted tℓ if it has length ℓ. This gives dire
tly Nk = tk−2, as the onlypossible path w is formed of k − 2 up steps, and leaves no pla
e to 
o-existing 
y
les. Now theonly elementary 
y
les are formed of b up steps and one down step −b. The re
ursion satis�edby Dk is then obtained by dis
ussing whether the point k − 1 is 
ontained in one su
h 
y
le.Note that this proof 
an be rephrased in terms of heaps of 
y
les using Viennot's 
orrespon-den
e between walks on a graph and 
ertain heaps [35℄. The expression Nk/Dk then appears asa spe
ialisation of the inversion lemma (also found in [35℄). In parti
ular, Dk is the (alternating)generating fun
tion of trivial heaps of 
y
les.Remark. For general values of a and b, the des
ription of Dk and Nk in terms of 
y
les andpaths on the graph J1, k−1K remains perfe
tly valid. But the stru
ture of elementary 
y
les andself-avoiding paths be
omes more 
ompli
ated. See an example in Figure 5.
Figure 5. Two non-interse
ting elementary 
y
les (for a = 4 and b = 3).3.2.4. Proof of Proposition 3.1. The expression of Ck is just a spe
ialisation of Corollary 3.4to the 
ase b = 1. It remains to prove that the series C(t) is not D-�nite.Let us �rst observe that C(t) is D-�nite if and only if the power series (in u) B(u) :=

∑

k uk/(1−u2k) is D-�nite. Indeed, one goes from C(t) to B(u), and vi
e-versa, by an algebrai
substitution of the variable, as U is an algebrai
 fun
tion of t and t = U/(1 + U2). It is knownthat D-�nite series are preserved by algebrai
 substitutions [34, Thm. 6.4.10℄, so that we 
annow fo
us on the series B(u).This series has integer 
oe�
ients, and radius of 
onvergen
e 1. Hen
e it is either rational,or admits the unit 
ir
le as a natural boundary [12℄. As will be re
alled later (10), the singularbehaviour of B(u) as u approa
hes 1 involves a logarithm, whi
h rules out the possibility of1This des
ription seems to have been around sin
e, at least, the 80's [23, 35℄. See [10, Thm. 2.1℄ for a modernformulation.
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B(u) being rational. Thus B(u) has a natural boundary, and, in parti
ular, in�nitely manysingularities. But D-�nite series have only �nitely many singularities, so that B(u) is not D-�nite. 4. Asymptoti
 enumerative resultsIn this se
tion we present some results on the asymptoti
 enumeration of 
ulminating walks.Intuitively, three 
ases arise, depending on the drift of the walks, de�ned as the di�eren
e a− b.Indeed, an n-step random walk of positive drift is known to end at level O(n) and is, intuitively,quite likely to be 
ulminating. On the 
ontrary, walks with a negative drift have a very smallprobability of staying positive. We �rst work out the intermediate 
ase of a zero drift.4.1. Walks with a null drift (a = b = 1)When the drift is zero, the number of positive walks (walks in whi
h every step ends at apositive level) of length n is known to be equivalent to 2n/

√
2πn. The average height, andthe average �nal level of these walks both s
ale like √n. Hen
e we 
an expe
t the number of
ulminating walks to be of the order of 2n/n. This is 
on�rmed by the following result.Proposition 4.1. As n → ∞, the number of (1, 1)-
ulminating paths of length n is equivalentto 2n/(4n).Proof. We start from the expression (1) of C(t), with U = U1 = O(t), and apply the analysis ofsingularities of [21℄. Note that U(t) is an odd fun
tion of t. Let us �rst study the even part of

C(t), whi
h 
ounts 
ulminating paths of even length:
Ce(t) =

1− U2

1 + U2

∑

k≥1

U2k

1− U4k
.Let Z ≡ Z(x) be su
h that U(t)2 = Z(t2). That is,

Z ≡ Z(x) =
1− 2x−

√
1− 4x

2x
.The equation U = t(1 + U2) gives Z = x(1 + Z)2. Moreover, we have Ce(t) = D(t2) where

D(x) =
1− Z

1 + Z

∑

k≥1

Zk

1− Z2k
.We thus need to study the asymptoti
 behaviour of the 
oe�
ients of D(x). We write

D(x) = S(Z(x)), with S(z) =
1− z

1 + z

∑

k≥1

zk

1− z2k
.The series Z(x) has radius of 
onvergen
e 1/4. It is analyti
 in the domain D = C\[1/4, +∞),with exa
tly one singularity, at x = 1/4. One has Z(0) = 0, and |Z(x)| < 1 for all x in D. Indeed,assume that Z(x) = eiθ for some x in D. From the equation x(1 + Z)2 = Z, we 
on
lude that

θ ∈ (−π, π), and that x = 1/(4 cos2(θ/2)). But this 
ontradi
ts the fa
t that x ∈ D.The series S(z) has radius of 
onvergen
e 1. Given that |Z(x)| < 1 in D, this implies that
D(x) = S(Z(x))) is analyti
 in the domain D. It remains to understand how D(x) behaves as xapproa
hes 1/4 in D.Take x = (1− reiθ)/4, with 0 < r < 1 and |θ| < π. Then

Z(x) = 1− 2
√

1− 4x + O(1 − 4x) = 1− 2
√

reiθ/2 + O(r).In parti
ular,
arg(1− Z(x)) = θ/2 + O(

√
r).Choose α ∈ (π/4, π/2). The above identity shows that there exists η > 0 and π/2 < φ < π su
hthat, in the indented disk

I = {x : |1− 4x| < η and | arg(1 − 4x)| < φ},
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| arg(1 − Z(x))| < α. (9)Now when z → 1 in su
h a way | arg(1− z)| < α,

∑

k≥1

zk

1− z2k
∼ 1

2(1− z)
log

1

1− z
, so that S(z) ∼ 1

4
log

1

1− z
. (10)This 
an be obtained using a Mellin transform or some already known results of the generatingfun
tion of divisor sums [20℄.Combining (9) and (10) shows that, as x tends to 1/4 in the indented disk I,

D(x) = S(Z(x)) ∼ 1

8
log

1

1− 4x
. (11)This allows us to apply the transfer theorems of [21℄. Indeed, the series D(x) is analyti
 in thefollowing �
amembert� domain:

∆ = {x 6= 1/4 : |4x| < 1 + η and | arg(1− 4x)| < φ},with a singular behaviour near x = 1/4 given by (11). From this we 
on
lude that the 
oe�
ientof xn in D(x) is equivalent to 4n/(8n). Going ba
k to the series Ce(t), this means that thenumber of 
ulminating paths of (even) length N = 2n is equivalent to 2N/(4N).The study of the odd part of C(t) is similar.4.2. Walks with positive drift (a > b)When the drift is positive, it is known that, asymptoti
ally, a positive fra
tion of walks withsteps +a, −b are a
tually positive (every step ends at a positive level). More pre
isely, as n→∞,the number pa,b
n of positive walks of length n satis�es

pa,b
n ∼ κa,b.2

n (12)for some positive 
onstant κa,b. We will show that the 
ulmination and �nal re
ord 
onditionsplay similar �ltering roles in the paths of {m, m}∗, and prove the following result.Proposition 4.2. For a > b, the number ca,b
n of 
ulminating walks of length n satis�es

ca,b
n = κ2

a,b.2
n + O(ρn),where ρ < 2 and κa,b is the 
onstant involved in the asymptoti
s of positive walks.Proof. In what follows, we 
onsider two families of paths that are 
lose to the meanders andex
ursions de�ned in the introdu
tion: the (already de�ned) positive walks, and 
ertain quasi-ex
ursions. The exa
t and asymptoti
 enumeration of meanders and ex
ursions has been 
om-pletely worked out in [5℄, and we will rely heavily on this paper. For instan
e, the estimate (12)follows from the results of [5℄ by noti
ing that a meander fa
tors into an ex
ursion followed by apositive walk. Let us 
all quasi-ex
ursion a walk in whi
h every step, ex
ept the �nal one, endsat a positive level. For instan
e, if a = 3 and b = 2, the word mmm is a quasi-ex
ursion. Byremoving the last step of su
h a walk, we see that quasi-ex
ursions are in bije
tion with positivewalks of �nal height 1, 2, . . . , or b. We denote the number of quasi-ex
ursions of length n by

ea,b
n . Using the results of [5℄, it is easy to see that, when the drift is positive, quasi-ex
ursionsare exponentially rare among general walks. That is, there exists µ < 2 su
h that for n largeenough,

ea,b
n < µn. (13)From now on, we drop the supers
ripts a and b, writing for instan
e cn rather than ca,b

n . Forany word w = w1 · · ·wk, denote by ←w the mirror image of w, that is, ←w = wk · · ·w1. Let u be a
ulminating word of length n, and write u = vw, where the word v (resp. w) has length ⌊n/2⌋(resp. ⌈n/2⌉). Then both v and ←w are positive walks, and this proves that
cn ≤ p⌊n/2⌋p⌈n/2⌉. (14)



CULMINATING PATHS 15Conversely, let us bound the number of pairs (v, w), where v and w are positive walks of respe
tivelengths ⌊n/2⌋ and ⌈n/2⌉, su
h that the word u = v
←
w is not 
ulminating. This means that

• either u fa
tors as v1w1, where v1 is a quasi-ex
ursion of length i > ⌊n/2⌋,
• or, symmetri
ally, u fa
tors as v2

←
w2 where w2 is a quasi-ex
ursion of length j > ⌈n/2⌉.This implies that

p⌊n/2⌋p⌈n/2⌉ − cn ≤ 2
n
∑

i=⌊n/2⌋
ei2

n−i.In view of (13), we have, for n large enough:
p⌊n/2⌋p⌈n/2⌉ − cn ≤ 2

n
∑

i=⌊n/2⌋
µi2n−i ≤ 2

1− µ/2
2n(µ/2)⌊n/2⌋ ≤ 4

1− µ/2
(2µ)⌊n/2⌋.Combining this with (14) and the know asymptoti
s for the numbers pn gives the expe
ted result.4.3. Walks with negative drift (a < b): exponential de
ayWhen the drift is negative, it is known that positive walks are exponentially rare amonggeneral walks. Indeed, there exists 
onstants κa,b > 0 and αa,b ∈ (1, 2), su
h that

pa,b
n ∼ κa,b

αn
a,b

n3/2
.More pre
isely,

αa,b =
a + b

a+b
√

aabb
=

1 + q
1+q
√

qq
≡ α(q), (15)where q = a/b < 1. We show below that the 
onstant αa,b also governs the number of 
ulminatingwalks of size n.Proposition 4.3. For a < b, the number ca,b

n of 
ulminating walks of length n satis�es
ca,b
n = O

(

αn
a,b

n3

)

, (16)where αa,b is given above. Moreover,
lim

n→∞

(

ca,b
n

)1/n
= αa,b.Proof. The inequality (14) still holds, and gives the upper bound (16) on the number of 
ulmi-nating paths.Let us now prove that the growth 
onstant of 
ulminating walks is still αa,b by 
onstru
ting alarge 
lass of su
h walks. Let En be the set of ex
ursions of length n (from now on, we drop thesupers
ripts a and b). Su
h ex
ursions only exist when n is a multiple of a + b, and the number

en of su
h walks then satis�es
en ∼ καn

a,bn
−3/2for some positive 
onstant κ. It is known that random (a, b)-ex
ursions of length n 
onvergein law to the Brownian ex
ursion, after normalising the length by n and the height by κ′

√
n,for some 
onstant κ′ depending on a and b [26℄. This implies that the (normalised) height ofa dis
rete ex
ursion 
onverges in law to the height of the Brownian ex
ursion (des
ribed by atheta distribution). In parti
ular, the probability pn that an ex
ursion of En has height largerthan √n tends to a limit p < 1 as n goes to in�nity. Take an ex
ursion of Ek of height less that√

n, with
k = (a + b)

⌊

n− 1−√n

a + b

⌋



16 MIREILLE BOUSQUET-MÉLOU AND YANN PONTYand append one up step at its left, and n− k − 1 up steps at its right: this gives a 
ulminatingwalk of length n, whi
h proves that
cn ≥ ek(1− pk).Taking nth roots gives the required lower bound on the growth of cn.Hen
e there are exponentially few walks of size n with steps +a,−b that are 
ulminating. Itis likely that cn behaves like αn

a,bn
−3−γ , for some γ ≥ 0 that remains to be determined. Notethat the �nal height of an n-step meander is known to have a dis
rete limit law as n→∞ [5℄.5. Random generation of positive walksThe random generation of positive walks will be a preliminary step in some of the algorithmswe present in the next se
tion for the generation of 
ulminating walks. The main ideas underlyingthe generation are the same for both 
lasses of walks, but the 
lass of positive walks is simpler. Weapply three di�erent approa
hes to their random generation: re
ursive methods (two versions),anti
ipated reje
tion, and Boltzmann sampling. The 
hoi
e of the best algorithm depends on thedrift, as summarised in the top part of Table 2. We denote by Pa,b the language of positivewalks, but the supers
ript a, b will often be dropped.5.1. Re
ursive step-by-step approa
hThe �rst approa
h we present is elementary: we 
onstru
t positive walks step-by-step, 
hoos-ing at ea
h time an up or down step with the right probability. This is the basis of the re
ursiveapproa
h introdu
ed in [36℄. Here are the three ideas underlying the algorithm:

• Let W be a language, and let Wp denote the language of the pre�xes of words of W .Assume that for all w ∈ Wp su
h that |w| ≤ n, we know the number Nw(n) of wordsof W of length n beginning with w (we 
all these words extensions of w). Then it ispossible to draw uniformly words of length n inW as follows. One starts from the emptyword, and adds steps in
rementally. If at some point the pre�x that is built is w, oneadds the letter x to w with probability Nwx(n)/Nw(n).
• When W = Pa,b, the number of extensions of length n of a pre�x w ∈ Wp depends onlyon two parameters:� the length di�eren
e i = n− |w|,� the �nal height of w, j = φa,b(w),
• Let pi,j be the number of extensions of length n of su
h a pre�x w. The numbers pi,jobey the following re
urren
e:

pi,j = pi−1,j+a + 1j>b pi−1,j−b for i ≥ 1,
p0,j = 1.As the two parameters i and j are bounded by n and an respe
tively, the pre
omputation of thenumbers pi,j takes O(n2) arithmeti
 operations and requires to store O(n2) numbers. Then, thegeneration of a random word of length n 
an be performed in linear time. However, one shouldtake into a

ount the 
ost due to the size of the numbers in the pre
omputation stage. Indeed,the numbers pi,j are exponential in n, so that the a
tual time-spa
e 
omplexity for this stagemay grow to O(n3). However, using a �oating-point te
hnique adapted from [14℄, it should bepossible to take advantage of the numeri
al stability of the algorithm to redu
e the spa
e neededto O(n2+ε).This naive re
ursive approa
h is less e�
ient than the one presented below, whi
h is basedon 
ontext-free grammars. But it will be easily adapted to the generation of 
ulminating walks,whi
h 
annot be generated via a grammar, as was proved in Se
tion 2.
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ursive approa
h via 
ontext-free grammarsIt is easy to see that the language Pa,b ≡ P is re
ognised by a non-deterministi
 push-downautomaton. This implies that P is 
ontext-free. The same holds for the language Da,b ≡ Dof ex
ursions. A non-ambiguous 
ontext-free grammar generating ex
ursions is given expli
itlyin [18℄. It su�
es to add one equation to obtain a non-ambiguous grammar generating positivewalks:
D = ε +

∑a
k=1 LkRk, Li = 1i=am D +

∑a
k=i+1 LkRk−i,

P = ε +
∑a

i=1 LiP , Rj = 1j=bm D +
∑b

k=j+1 Lk−jRk.
(17)In this system, ε is the empty word, D (resp. P) is the language of ex
ursions (resp. positivewalks) while Li, 1 ≤ i ≤ a and Rj , 1 ≤ j ≤ b, are a + b auxiliary languages de�ned in [18℄. Asabove, m and m are the up and down letters in our alphabet.From this grammar, we 
an apply the re
ursive approa
h of [22℄ for the uniform generation ofde
omposable obje
ts, implemented in the 
ombstru
t pa
kage of Maple or in the stand-alonesoftware GenRGenS [32℄. The generation of positive walks of size n begins with the pre
omputa-tion of O(n) large numbers. These numbers 
ount words of length m, for all m ≤ n, in ea
h ofthe languages involved in the grammar. The fastest way to get them is to 
onvert the algebrai
system (17) into a system of linear di�erential equations, whi
h, in turn, yields a system oflinear re
urren
e relations (with polynomial 
oe�
ients) de�ning the requested numbers. Thisstep requires a linear number of arithmeti
 operations. But one has to multiply numbers whosesize (number of digits) is O(n), whi
h may result, in pra
tise, in a quadrati
 time-
omplexity forthe pre
omputation stage. Then, the generation of a random positive walk 
an be performed intime O(n log n).Note that a 
areful implementation [15℄ of the �oating point approa
h of [14℄ using anarbitrary-pre
ision �oating-point 
omputation library yields a O(n1+ε) 
omplexity after a

O(n1+ε) pre
omputation.5.3. Anti
ipated reje
tionThe prin
iple of this approa
h is to start with an empty walk, and then add su

essive upand down steps by �ipping an unbiased 
oin until the walk rea
hes the desired length n, ora non-positive ordinate. In this 
ase, the walk is reje
ted and the pro
edure starts from thebeginning. Of 
ourse, no pre
omputation nor non-linear storage is required. This prin
iple wasapplied to meanders, in the 
ase a = b = 1, in [6℄, as a �rst step towards the uniform randomgeneration of dire
ted animals. The analysis of this algorithm yielded a linear time-
omplexity,later generalised in [7℄ to the 
ase of 
oloured walks, in whi
h up, down, and level steps 
omerespe
tively in p, q and r di�erent 
olours. There, it was shown that the time-
omplexity islinear when p ≥ q, but exponential when p < q.Unsurprisingly, we obtain similar results for the general (a, b)-
ase.Proposition 5.1. The anti
ipated reje
tion s
heme applied to the uniform random generationof (a, b)-positive walks has a linear time-
omplexity when a ≥ b and an exponential 
omplexityin Θ((2/αa,b)
nn
√

n) when a < b, with αa,b = a+b
a+b
√

aabb
< 2.Proof. We �rst note that the language P of positive walks is a left-fa
tor language. That is, itis stable by taking pre�xes, and every word of P is the proper pre�x of another word of P . Ithas been proved in [13℄ that the average 
omplexity fL(n) of the anti
ipated reje
tion s
hemefor a left-fa
tor language L on a k-letter alphabet is

fL(n) =
[zn] z

1−z L(z/k)

[zn]L(z/k)where L(z) is the length generating fun
tion of the words of L.We now exploit the results of [5℄, giving the singular behaviour of the series M(z) and E(z)that 
ount respe
tively meanders and ex
ursions. As a meander fa
tors uniquely as an ex
ursion
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an derive from [5℄ the singular behaviour of the series P (z) =
∑

pnzn that 
ounts positive walks. This series is always algebrai
, so that singularity analysisapplies.� For a ≥ b, the series P (z/2) has an algebrai
 singularity at z = 1 in (1 − z)−ν (with
ν = 1 if a > b, and ν = 1/2 if a = b). Thus P (z/2)/(1− z) has a singular behaviour in
(1− z)−ν−1. A singularity analysis gives fP(n) ∼ n/ν.� For a < b, the series P (z/2) has a square-root singularity at 2/αa,b > 1, but P (z/2)/(1−
z) has a smaller radius of 
onvergen
e zc = 1, with a simple pole at this point. Thisgives

fP(n) ∼ 2n P (1/2)

pn
∼ κ

(

2

αa,b

)n

n
√

nfor some 
onstant κ.5.4. Boltzmann samplingA Boltzmann generator [19℄ generates every obje
t in the 
lass C with a probability propor-tional to xn, where n is the size of the obje
t. More pre
isely, for every obje
t w (a walk, in our
ontext):
P(w) =

x|w|

C(x)where C(x) is the generating fun
tion of the obje
ts of C. Of 
ourse, this results in a relaxationof the size 
onstraint, sin
e obje
ts of all sizes 
an be generated. But, by tuning 
arefully theparameter x (whi
h has to be smaller than or equal to the radius of 
onvergen
e of C(x)), andreje
ting the too large and too small obje
ts, one 
an often a
hieve an approximate-size randomsampling, with a toleran
e ε, in linear time. This means that after a linear number of real-arithmeti
 operations, and a number of attempts that is 
onstant on average, the algorithm willprodu
e an obje
t of size |w| ∈ [(1 − ε)n, (1 + ε)n], whi
h is uniform among the obje
ts of thesame size.In parti
ular, the grammar (17) shows that the 
lass of positive walks is spe
i�able in thesense of [19℄. The analysis of the generating fun
tions of meanders and ex
ursions performedin [5℄ shows that the series P (z) 
ounting positive walks is always analyti
 in a ∆-domain, witha dominant singularity in (1 − µt)−ν , where ν = 1 if a > b, ν = 1/2 if a = b and ν = −1/2if a < b. In the �rst two 
ases, Theorem 6.3 of [19℄ gives an approximate sampling in lineartime (and an exa
t sampling in quadrati
 time). In the third 
ase, the standard deviation ofthe obje
ts produ
ed by a standard Boltzmann sampler is mu
h larger than their mean, whi
hmakes reje
tion 
ostly. However, we 
an generate instead pointed positive walks, that is, positivewalks with a distinguished step, and forget the pointing: as guaranteed by Theorem 6.5 of [19℄,this gives again an approximate sampling in linear time.To 
on
lude, the uniform random generation of (a, b)-positive walks of size n 
an be performedin linear time when a ≥ b by an anti
ipated reje
tion, and this strategy does not require anypre
omputations nor storage. When a < b, our best algorithm for exa
t sampling remains there
ursive approa
h based on the grammar (17). It runs in O(n1+ε) after a O(n1+ε) pre
ompu-tation. However, one 
an a
hieve, in linear time and spa
e, an approximate-size sampling usinga Boltzmann generator.6. Random generation of 
ulminating walks6.1. Re
ursive step-by-step approa
hThis elementary pro
edure, introdu
ed in [27℄, generates 
ulminating walks step by step,
hoosing every new step with the right probability. This is again instan
e of Wilf's re
ursive



CULMINATING PATHS 19method. The arguments given in Se
tion 5.1 for positive walks should now be repla
ed by thefollowing ones:
• For W = Ca,b, the number of extensions of length n of a pre�x w ∈ Wp depends only onthree parameters:� the length di�eren
e i = n− |w|,� the �nal height j = φa,b(w),� the maximal height h rea
hed by w.
• Let ci,j,h be the number of extensions of length n of su
h a pre�x w. The numbers ci,j,hobey the following re
urren
e:

ci,j,h = ci−1,j+a,max(h,j+a) + 1j>b ci−1,j−b,h for i > 1,
c1,j,h = 1j+a>h.As the parameters i, j and h are bounded by n, an and an respe
tively, the pre
omputation ofthe numbers c(i, j, h) takes O(n3) arithmeti
 operations and requires to store O(n3) numbers.Then, the generation of a random word of length n 
an be performed in linear time. Butagain, the numbers ci,j,h are exponential in n, so that the a
tual time-spa
e 
omplexity of thepre
omputation stage may grow to O(n4).The above pro
edure is easily adapted to generate 
ulminating walks ending at a pres
ribedheight k. The number c

(k)
i,j of i-step extensions of a pre�x ending at height j is given by

c
(k)
i,j = 1j+a<k c

(k)
i−1,j+a + 1j>b c

(k)
i−1,j−b for i > 1,

c
(k)
1,j = 1j+a=k.Now j is bounded by k, so that we only have to 
ompute a table of O(kn) numbers, in O(kn)arithmeti
 operations. The a
tual time-spa
e 
omplexity is likely to grow to O(kn2) due to thehandling of large numbers.However, whether the height of the walk is �xed or not, one should be able to limit the 
om-putational overhead due to the size of these numbers to O(nε), using a �oating-point te
hniqueadapted from [14℄.6.2. Reje
tion methodsWe presented in Se
tion 5.3 an example of the anti
ipated reje
tion approa
h. The moregeneral reje
tion prin
iple has been applied su

essfully to various problems [16, 6, 19℄. Theprin
iple of a reje
tion algorithm for words in W is to draw obje
ts uniformly in a superset

V ⊃ W until an obje
t of W is found. The average-
ase 
omplexity of a su
h a te
hnique is then
ζ(n)vn/wn, where ζ(n) is the 
ost for the generation of a word of size n in V , and wn and vnrespe
tively denote the number of words of length n in W and V .The aim is to �nd a superset V satisfying the following (sometimes 
on�i
ting) requirements:� the words of V 
an be generated qui
kly, so that ζ(n) is small,� the set V is not too large, so that the ratio vn/wn is small.Moreover, testing whether a word of V a
tually belongs to W should be doable in linear time.This is obviously the 
ase when W = Ca,b.We investigate below two possibilities for the superset V , while �xing W = Ca,b.6.2.1. Drawing from positive walks. Here, we take for V the set of positive walks. Theirrandom generation has been dis
ussed in Se
tion 5, and we refer to the last lines of this se
tionfor our 
on
lusions on this question.� When a < b, the number vn of positive walks of length n grows like αn

a,bn
−3/2 (up to amultipli
ative 
onstant). If ca,b

n grows like αn
a,bn

−3−γ for γ ≥ 0 (see Proposition 4.3), the
ost will be O(nγ+5/2+ε), with a prepro
essing stage of O(n1+ε). However, approximate-size sampling 
an be performed in time O(nγ+5/2), with no prepro
essing stage. Itsu�
es to reje
t among the set of positive walks generated by a Boltzmann algorithm.



20 MIREILLE BOUSQUET-MÉLOU AND YANN PONTY� If a = b, then vn grows like 2nn−1/2, while cn ∼ 2n/n (Proposition 4.1). Hen
e the 
osthere is O(n3/2).� Finally, for a > b, the number of 
ulminating walks grows like 2n (Proposition 4.2). Thisshows that the algorithm is linear.Remark. For a > b, 
ulminating walks are so numerous that we 
an even perform the reje
-tion in the set of general (a, b)-walks, and still obtain a linear 
omplexity, as dis
ussed in theintrodu
tion. However, it seems natural to perform an anti
ipated reje
tion, reje
ting walks assoon as they stop being positive: but this amounts to performing reje
tion in the set of positivewalks, obtained themselves via an anti
ipated reje
tion from general walks.6.2.2. Drawing from hybrid walks. We begin with a simple, but 
ru
ial, observation:Let ←w denote the mirror image of the word w. Then if w ∈ Ca,b, so does ←w.Graphi
ally, taking the mirror image amounts to a 
entral symmetry on walks. This remarkimplies that, on average, the mid-point of a 
ulminating walk lies at a height whi
h is half the�nal height. This suggests another possible superset of Ca,b from whi
h we may draw, namelythe language Ha,b of hybrid walks, de�ned by
H ≡ Ha,b :=

⋃

n≥0

P⌊n/2⌋
←−−−−P⌈n/2⌉,where P is the language of positive walks, and ←−P the language of mirror images of positivewalks. As already observed in Se
tion 4, Ca,b ⊂ Ha,b.The intuition behind the 
hoi
e of the superset Ha,b is that a path that violates the positivity(resp. �nal re
ord) 
ondition is likely to do so at its beginning (resp. ending). Thus, ensuringpositivity on the �rst half of the walk, and the �nal re
ord 
ondition on the se
ond half, shouldyield a lower reje
tion probability than ensuring positivity everywhere, as we did when drawingfrom positive walks.How 
an one generate hybrid walks uniformly at random? As a hybrid walk of length n isthe (non-ambiguous) 
on
atenation of a positive walk of size ⌊n/2⌋ and of the mirror image ofanother positive walk, of size ⌈n/2⌉, it is su�
ient to draw positive walks uniformly at random.The 
ost of the generation of a hybrid walk of length n will be twi
e the 
ost of the generationof a positive walk of length (approximately) n/2. We refer again to the end of Se
tion 5 forour 
on
lusions on this 
ost. We do not use below the Boltzmann sampling for positive walks,sin
e gluing two positive walks of approximate size n/2 does not give the same probability to allhybrid walks of a given size.Let us now dis
uss the e�
ien
y of the reje
tion approa
h based on the language H.� When a < b, we have |Hn| = Θ(αn

a,b/n3), while mn = Θ(αn
a,b/n3/2), so that we gain anorder O(n3/2) in 
omplexity (
omparing with the reje
tion of positive walks). This leadsto a 
ost O(nγ+1+ε) if cn s
ales like αn

a,bn
−3−γ , with a O(n1+ε) pre
omputation.� When a = b = 1, |Hn| = Θ(2n/n), while mn = Θ(2n/

√
n), so that the gain is of order√

n. Consequently, the 
omplexity of the reje
tion algorithm based on H is linear. Nopre
omputation nor storage is required.� For a > b, we have |Hn| = Θ(2n), and similarly mn = Θ(2n). So the 
omplexity gain(
ompared with the approa
h that generates positive walks) 
an only be Θ(1). Thealgorithm is still linear.7. Con
lusion and perspe
tivesWe have studied 
ulminating paths, from the point of view of formal languages, enumerative
ombinatori
s and random generation. Our best results in terms of random generation aresummarised in Table 2.An important question that is left open is to determine the asymptoti
 growth of the number of
ulminating walks when the drift is negative (a < b). One possible approa
h would be to exploit



CULMINATING PATHS 21Paths Method ♯ Attempts Pre
omp. Cost
Pa,b Re
ursive method, Se
tion 5.2:standard implementation O(n2) O(n log n)or �oating-point implementation. O(n1+ε) O(n1+ε)
a < b Approximate-size Boltzmann,Se
tion 5.4 O(1) ∅ O(n)
a ≥ b Anti
ipated reje
tion, O(

√
n) (a = b) ∅ O(n)Se
tion 5.3 O(1) (a > b)

Ca,b⇒k Re
ursive method, O(kn1+ε) O(n)Se
tion 6.1
Ca,b Re
ursive method, [27℄ and Se
tion 6.1 O(n3+ε) O(n)
a < b or reje
tion from hybrid walks,Se
tion 6.2.2 O(nγ) O(n1+ε) O(n1+γ+ε)
a = b Reje
tion from O(1) ∅ O(n)hybrid walks, Se
tion 6.2.2
a > b Reje
tion from positive walks or O(1) ∅ O(n)hybrid walks, Se
tions 6.2.1 and 6.2.2Table 2. The 
omplexity of random generation of positive and 
ulminatingpaths. The 
ost is that of one random drawing, on
e the pre
omputations havebeen performed. It is assumed that cn ∼ αn

a,bn
−3−γ if a < b.the 
losed form expression of Proposition 3.3, in the spirit of Proposition 4.1 and [5℄. The resultmight have interesting 
onsequen
es regarding the random generation of 
ulminating walks. Inparti
ular, if ca,b

n = Θ((ma,b
n/2)

2 n−γ) = Θ(αn
a,bn

−3−γ), with γ < 2, the generation algorithmbased on hybrid walks would be faster than the re
ursive algorithm, at least for generating fewpaths. However, our numeri
al data suggest that the ratio ca,b
n /(ma,b

n/2)
2 de
reases at least like

1/n2.Another interesting question would be to study the height of 
ulminating walks. Su
h a studymay provide better algorithms for random generation, espe
ially in the 
ase a < b, where theheight is expe
ted to be small.Future extensions of the present work may also in
lude the study of 
ulminating walks withmore than two types of step, in order to model di�erent kinds of mat
hes and mismat
hes, andthus 
apture the whole s
oring s
heme of the FLASH algorithm. For instan
e, it is usually
onsidered less drasti
 to repla
e a purine base by another purine base (A↔G) rather than apyrimidine one in DNA. It is thus natural to penalise di�erently di�erent mismat
hes. This
ould be modelled by introdu
ing down steps of di�erent heights.Lastly, a natural, biologi
ally relevant perspe
tive would be to address the non-uniform gen-eration of 
ulminating paths. Indeed, the mat
hes and mismat
hes may not be uniform over abiologi
al sequen
e, and be subje
t to lo
al 
orrelations. This 
an be 
lassi
ally modelled by aMarkov 
hain (further 
onditioned to yield 
ulminating paths). Our algorithms 
an be adaptedto this more general 
ontext, but their analysis needs to be 
arefully worked out. In parti
ular,the drift of random walks will now depend on the 
hain and di�er in general from a − b. Wenaturally expe
t the e�
ien
y of our algorithms to depend of the model, 
ulminating walks withpositive drift being mu
h easier to generate than those with a negative drift.A
knowledgements. We are grateful to Jean-François Mar
kert for pointing out to us thereferen
e [26℄, whi
h shortened signi�
antly the proof of Proposition 4.3.
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