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Introduction

Opdam shift operators are multivariable generalizations of the identity

d dz 2 F 1 (a, b; c; z) = ab c 2 F 1 (a + 1, b + 1; c + 1; z).
The introduction of the concept of shift operators goes back to Koorwinder in the context of orthogonal polynomials in two variables for the root system BC 2 [START_REF] Koornwinder | Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I[END_REF]. In his thesis [START_REF] Opdam | Root systems and hypergeometric functions[END_REF][START_REF] Opdam | Root systems and hypergeometric functions[END_REF], Opdam established the existence of such operators in the setting of hypergeometric functions associated with root systems. Later Heckman gave an effective construction of the shift operators [START_REF] Heckman | An elementary approach to the hypergeometric shift operators of Opdam[END_REF]. We should mention the partial contributions made in [START_REF] Sprinkhuizen-Kuyper | Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola[END_REF][START_REF] Vretare | Formulas for elementary spherical functions and generalized Jacobi polynomials[END_REF][START_REF] Beerends | On the Abel transformations and its inversion[END_REF]. Since then, the shift operators found several applications in Harmonic analysis, in the theory of multivariable special functions associated with finite Coxeter groups, and in the integrability of Hamiltonian systems. In a series of papers by Heckman and Opdam, the authors used the shift operators to prove the existence of what is nowadays called the Heckman-Opdam hypergeometric functions. This direction generalizes Harish-Chandra's theory of spherical functions on noncompact Riemannian symmetric spaces. In particular, the shift operators helped to search for explicit formulas for the spherical functions on certain Riemannian symmetric spaces. See e.g. [START_REF] Chalykh | Integrability in the theory of Schrdinger operator and harmonic analysis[END_REF][START_REF] Vretare | Formulas for elementary spherical functions and generalized Jacobi polynomials[END_REF][START_REF] Beerends | On the Abel transformations and its inversion[END_REF][START_REF] Zhu | On the inverse Abel transforms for certain Riemannian symmetric spaces of rank 2[END_REF].

Another direction has been attempted to use the shift operators to obtain explicit formulas for the spherical functions on noncompact causal symmetric spaces with even multiplicities. This was done by Òlafsson and Pasquale in [START_REF] Òlafsson | A Paley-Wiener theorem for the Θ-hypergeometric transform: the even multiplicity case[END_REF].

Wile the theory of spherical functions has been pursed for a long time, the growing interest in the theory of Bessel functions, either on flat symmetric spaces or associated with arbitrary root systems, is comparably recent. The present paper continue the investigation of the Bessel functions on flat symmetric spaces of the noncompact causal type begun in [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF]. Here the list of causal symmetric spaces is larger than the one in [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF]. By means of a rational shift operators, we give explicit formulas for the Bessel functions and we investigate their meromorphic extension (in the spectral parameter). These are the main new results of the paper. Further, we formulate a conjecture about the nature and order of the singularities (in the spectral parameter) of the Bessel functions.

To be more precise, let G/H be a noncompact causal symmetric space (NCC for abbreviation). That is G/H is a non-Riemannian symmetric space characterized by the existence of a certain maximal Ad(H)-invariant convex cone C max in its tangent space q at the base point {H}. For the corresponding Lie algebra, we have g = h ⊕ q. Let g = k ⊕ p be the Cartan decomposition of g so the following direct sum g = (h ∩ k) ⊕ (h ∩ p) ⊕ (q ∩ k) ⊕ (q ∩ p) holds.

Fix a maximal abelian subspace a of p ∩ q. Then a is maximal abelian in p and in q. Let Σ = Σ(g, a) be the restricted root system with respect to a. It is well known that for every NCC symmetric space Σ is reduced. Set Σ c and Σ n to be the set of compact and noncompact roots in Σ. We will denote the Weyl groups for Σ and Σ c by W and W 0 respectively.

By analyzing a deformation of Faraut-Hilgert-Òlafsson' spherical functions on G/H, it is shown in [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF] that for all λ in a specific set E, the integral representation of the Bessel functions on q is given by Ψ λ (m, X) = H e -λ(P(Ad(h)X)) dh, X ∈ C 0 max , where P : q → a denotes the orthogonal projection. The parameter m refers to the multiplicity function on Σ. See the next section for more details.

Let O s be the orbit of the short roots in Σ. Let m l and m s be the multiplicities of the long and the short roots in Σ respectively. Henceforth, we will assume that Σ is a non-exceptional root system such that m s is even. The integer m l can be either even or odd. See Section 4 for the list of symmetric pairs (g, h) which obey our assumptions. To simplify the presentation of the results, we denote the elements of a and a * C by vectors of length r := dim(a). In these circumstances, we prove that for t ∈ a -and λ ∈ E ∩ {λ ∈ C r : (∀α ∈ Σ + ) α(λ) = 0}, we have

Ψ λ ((m l , m s ), t) =(-1) ms 2 |Σ + c ∩Os| 2 ms|Σ + ∩Os| α∈Σ + ∩Os λ, α -ms (F) G(2 • 1 Os , (m l , m s -2)) • • • • • G(2 • 1 Os , (m l , 0)) Ψ λ ((m l , 0), t),
where

Ψ λ ((m l , 0), t) = π -r/2 w∈W 0 r i=1 (2t i ω(λ i )) -m l 2 + 1 2 K m l 2 -1 2 (t i ω(λ i )).
Here K ν denotes the Bessel function of the third kind, and G(2 • 1 Os , (m l , a)) is the operator that shifts the pair (m l , a) to (m l , a + 2). In section 3 we recall the construction of the operators G from [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF]. The shift operator G appeared for the first time in [START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF] from a different point of view. Formula (F) generalizes [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF], since here we do not restrict m l to be even. In view of (F) we give for several NCC symmetric pairs explicit formulas for the Bessel functions on q. This study allows to investigate the nature and order of the singularities of Ψ λ ((m l , m s ), t) in the λ-variable. Motivated by this investigation and by a hand made computation for the symmetric pair (su * (6), sp(2, 1)), we conjecture that for every NCC symmetric pair (g, h) such that Σ is a non-exceptional root system and such that m s ∈ 2N, the function λ → Ψ λ ((m l , m s ), t), for t ∈ a -, extends to a meromorphic function in the domain

D := {λ ∈ C r : (∀1 ≤ i ≤ r) λ i → λ - m l 2 + 1 2 i K m l 2 -1 2 (λ i ) is analytic} with poles for λ, α = 0 (∀α ∈ Σ + c ), of order = m c -2, λ, α = 0 (∀α ∈ Σ + n ), of order = m n -1.
Here m c and m n denotes the multiplicities of the compact and noncompact roots respectively.

Explicit formulas of Ψ λ ((m l , m s ), t) have also significant applications in inverting the "flat" analogue of the Abel transform on q, and in the proof of the Paley-Wiener theorem for the Bessel Laplace transform defined in terms of integrating against Ψ λ ((m l , m s ), t). See [START_REF] Saïd | A Paley-Wiener theorem for the Bessel Laplace transform (I): the case SU (n, n)/SL(n, C) × R * +[END_REF] for the symmetric pair (su(r, r), sl(r, C) × R). We shall investigate these applications in a forthcoming paper.

In the light of formula (F) and [6, Lemma 4.6], we deduce that if Φ λ ((m l , m s ), t) denotes the Bessel function on p associated with the Riemannian symmetric pair (g, k), then

Φ -λ ((m l , m s ), t) = c(m) α∈Σ + ∩Os λ, α -ms G(2 • 1 Os , (m l , m s -2)) • • • • • G(2 • 1 Os , (m l , 0)) Φ λ ((m l , 0), t), where Φ λ ((m l , 0), t) = π -r/2 ω∈W r i=1 (2t i ω(λ i )) -m l 2 + 1 2 K m l 2 -1 2 (t i ω(λ i )),
and c(m) is a constant which depends only on m. Now a similar procedure to the one that we will use in Section 4 for Ψ λ gives explicit formulas for Φ λ . This result covers in a unified way the explicit formulas obtained in [START_REF] Brézin | An extension of the HarishChandra-Itzykson-Zuber integral[END_REF][START_REF] Meaney | The inverse Abel transform for SU (p, q)[END_REF][START_REF] Zhu | On the inverse Abel transforms for certain Riemannian symmetric spaces of rank 2[END_REF][START_REF] Saïd | Analysis on flat symmetric spaces[END_REF] for certain Riemannian symmetric pairs (g, k) or for certain values of r.

Spherical functions on non-compactly causal symmetric spaces

This section collects basic notation and some known results that will be needed later on. For a more detailed exposition we refer to [START_REF] Faraut | Spherical functions on ordered symmetric spaces[END_REF][START_REF] Hilgert | Causal symmetric spaces. Geometry and harmonic analysis[END_REF][START_REF] Òlafsson | Spherical Functions and Spherical Laplace Transform on Ordered Symmetric Spaces[END_REF].

Let G be a connected noncompact semisimple Lie group equipped with a non-trivial involution σ. Denote by H an open subgroup of G satisfying G σ 0 ⊂ H ⊂ G σ , where G σ is the set of σ-fixed points of G. The quotient G/H is called a symmetric space. Let θ be a Cartan involution on G commuting with σ, and set

K := G θ = {g ∈ G : θ(g) = g}. Then K is a maximal compact in G.
Denote by g the Lie algebra of G. The involutions of g corresponding to σ and θ will be denoted by the same letters. Let g = k ⊕ θ p = h ⊕ σ q be the decomposition of g according to the eigenvalues ±1 of the involutions θ and σ respectively. Note that h = Lie(H) and k = Lie(K). We view q as a real euclidean vector space with the inner product

(X|Y ) θ := -B(X, θ(Y )),
where B denotes the Killing form of g.

In this paper we will always assume that G/H (or equivalently the pair (g, h)) is irreducible. That is the only σ-invariant ideals in g are the trivial ones. An irreducible symmetric space G/H is said to be causal if there exists a non-empty open Ad(H)invariant convex cone C in q, containing no affine lines. By a result due to Vinberg, this is equivalent to the existance of a non-zero Ad(K ∩ H)-invariant vector z 0 in q. If in addition z 0 ∈ p, then G/H is called a noncompactly causal symmetric space (NCC for abbreviation). We may normalize the vector z 0 so that the eigenvalues of ad(z 0 ) are 0, 1, -1.

Henceforth we will assume that G/H is a NCC symmetric space. We refer to [14, p. 89] for the complete list of NCC symmetric spaces.

Let a be a maximal abelian subspace of p ∩ q, and set r := dim(a). Note that the NCC structure implies that a is also maximal abelian in p and in q. Moreover z 0 ∈ a. Let Σ = Σ(g, a) ⊂ a * be the restricted root system with respect to a. It is well known that for every NCC symmetric space, Σ is reduced, i.e. if α ∈ Σ then 2α ∈ Σ. Further, Σ can be written as

Σ = Σ - n ∪ Σ c ∪ Σ + n , where Σ ± n := {α ∈ Σ : α(z 0 ) = ±1}, Σ c := {α ∈ Σ : α(z 0 ) = 0}.
The set Σ c is the set of compact roots while Σ + n ∪ Σ - n is the set of noncompact roots. The Weyl groups associated with Σ and Σ c will be denoted by W and W 0 respectively. Choose a positive system Σ + c ⊂ Σ c and set Σ + := Σ + n ∪ Σ + c . Then Σ + is a system of positive roots in Σ. Define the convex cone in a by

c max = {X ∈ a : (∀α ∈ Σ + n ) α(X) ≤ 0}
, and let n := α∈Σ + g α be the sum of the root spaces corresponding to the positive roots. The analytic subgroups of G with Lie algebras a and n will be denoted by the capital letters.

Let S = H exp(c • max )H be the H-bi-invariant semigroup in G. By [START_REF] Faraut | Spherical functions on ordered symmetric spaces[END_REF], S ⊂ N AH. For x ∈ N AH, we will write x = n exp(A(x))h with n ∈ N , A(x) ∈ a, and h ∈ H.

For α ∈ Σ, let m α := dim(g α ), and denote by m : Σ → N, α → m α the W -invartiant multiplicity function on Σ. Define E to be the set of λ ∈ a * C for which the function h → e ρ(m)-λ,A(hx) is integrable over H. Here ρ(m) := 1/2 α∈Σ + m α α. In [START_REF] Krötz | The c-function for non-compactly causal symmetric spaces[END_REF] the authors show that

E = {λ ∈ a * C : (∀α ∈ Σ + n ) Re λ(H α ) < 2 -m α }, where H α ∈ [g α , g α ] ⊂ a so that α(H α ) = 2.
For λ ∈ E , let ϕ λ (m, •) be the function defined on S by

ϕ λ (m, s) = H e ρ(m)-λ,A(hs) dh. (2.1) 
By [START_REF] Faraut | Spherical functions on ordered symmetric spaces[END_REF], the convergence of the integral defining ϕ λ (m, s) depends on λ and not on s. 

Clearly ϕ λ (m, •) is an Ad(H)-invariant
a -= {X ∈ a : (∀α ∈ Σ + ) α(X) < 0},
and denote by A -the analytic subgroup of G with Lie algebra a -. Notice that A - is a subset of S ∩ A = Int(W 0 A -). In [START_REF] Òlafsson | Spherical Functions and Spherical Laplace Transform on Ordered Symmetric Spaces[END_REF] the author proves that ϕ λ (m, •) admits on A -a Harish-Chandra type expansion. More precisely, for λ ∈ a * C , define the following c-functions

c 0 (m, λ) := c0 (m, λ) c0 (m, ρ(m)) , c 1 (m, λ) := c1 (m, λ) c1 (m, ρ(m))
,

where c0 (m, λ) = α∈Σ + c Γ λ(Hα) 2 Γ λ(Hα) 2 + mα 2 , and 
c1 (m, λ) = α∈Σ + n Γ -λ(Hα) 2 -mα 2 + 1 Γ -λ(Hα) 2 + 1
.

For λ ∈ E generic and a ∈ A -, we have the following expansion formula

ϕ λ (m, a) = c 1 (m, λ) w∈W 0 c 0 (m, wλ)Φ wλ (m, a), (2.2) 
where

Φ λ (m, a) = a ρ(m)-λ µ∈N[Σ + ] Γ µ (m, λ)a µ , a ∈ A -,
with Γ 0 (m, λ) = 1 and Γ µ (m, λ) ∈ C are obtained by means of a recurrence formula.

In the light of (2.8), the function λ → ϕ λ (m, a), for a ∈ A -, extends to a meromorphic function in a * C . For more details on the theory of spherical functions for NCC symmetric spaces we refer to [START_REF] Faraut | Spherical functions on ordered symmetric spaces[END_REF][START_REF] Òlafsson | Spherical Functions and Spherical Laplace Transform on Ordered Symmetric Spaces[END_REF].

Opdam's shift operators

For fixed H ∈ a, the trigonometric Dunkl-Heckman differential-difference operator T (H, m) is defined by

T (H, m) = ∂(H) + α∈Σ + m α 2 α(H) coth α ⊗ (1 -r α ),
where ∂(H) denotes the directional derivative in the direction of H, and

r α (λ) := λ -λ(H α )α, λ ∈ a * .
Let O ⊂ Σ be an orbit of the Weyl group W in Σ. The orbit O defines the signature ε O : W → {±1} given by ε O (r α ) = -1 for α ∈ O and ε O (r α ) = 1 otherwise.

Set O + := O ∩ Σ + , and write

π O + (X) = α∈O + sh α(X), X ∈ a.
For any H ∈ a, Opdam's elementary shift operators associated with an orbit O are defined by

G(2 • 1 O , m) = Res π -1 O + w∈W ε O (w)T (wH, m) |O + | ,
where 1 O : Σ → {0, 1} denotes the characteristic function of O, and Res is the operation that consists of placing all the reflection terms to the right and then restrict the operator onto the space of W -invariant functions. The operator

G(2 • 1 O , m) satisfies G(2 • 1 O , m)Φ λ (m, a) = c(m, -λ) c(m + 2 • 1 O , -λ) Φ λ (m + 2 • 1 O , a), (3.1) 
where

c(m, λ) = α∈Σ + Γ λ(Hα) 2 Γ λ(Hα) 2 + mα 2 , (3.2) 
and m+2•1 O : Σ → N denotes the multiplicity function defined by m+2

•1 O (α) = m α +2 for α ∈ O and m+2•1 O (α) = m α otherwise.
In the light of (3.3) and the Harish-Chandra expansion (2.8), one can check that for λ ∈ E generic and a ∈ A -

G(2 • 1 O , m)ϕ λ (m, a) = c G/H (m, λ) c G/H (m + 2 • 1 O , λ) c(m, -λ) c(m + 2 • 1 O , -λ) ϕ λ (m + 2 • 1 O , a), (3.3) 
where

c G/H (m, λ) := c 0 (m, λ)c 1 (m, λ). (3.4) For all ζ > 0 and O ⊂ Σ, let G (ζ) (2 • 1 O , m) be the deformed elementary shift operator Res π -1 ζ,O + w∈W ε O (w)T (ζ) (wH, m) |O + | , where π ζ,O + (X) = α∈O + sh ζα(X), X ∈ a,
and

T (ζ) (H, m) = 1 ζ ∂(H) + α∈Σ + m α 2 α(H) ∞ κ=0 B 2κ 2 2κ ζ 2κ-1 α 2κ-1 (2κ)! ⊗ (1 -r α ),
with B ℓ is the Bernoulli number. We may think of T (ζ) (H, m) as the Dunkl-Heckman differential-difference operator associated with the triple (Σ (ζ) , m (ζ) , a), where Σ (ζ) is the root system given by Σ

(ζ) = {ζα : α ∈ Σ}, (3.5) 
and m (ζ) is the multiplicity function defined by

m (ζ) : Σ (ζ) → N, ζα → m α . (3.6) 
It is shown in [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF] that, under the weak topology, the following limit

G(2 • 1 O , m) := lim ζ→0 ζ 2|O + | G (ζ) (2 • 1 O , m)
exists, and

G(2 • 1 O , m) = Res π -1 O + w∈W ε O (w)T • (wH, m) |O + | , (3.7) 
where

π O + (X) = α∈O + α(X), and 
T • (H, m) = ∂(H) + α∈Σ + m α 2 α(H)α -1 ⊗ (1 -r α )
denotes the so-called rational Dunkl operator. The operator

G(2 • 1 O , m) satisfies G(2 • 1 O , m) • △(m) = △(m + 2 • 1 O ) • G(2 • 1 O , m), (3.8) 
where

△(m) := Res r j=1 T • (H j , m) 2 , = r j=1 ∂(H j ) 2 + α∈Σ+ m α ∂ α α ,
with {H j } r j=1 is an orthonormal basis of a. The relation (3.11) 

means that G(2 • 1 O , m) transforms the eigenfunctions of △(m) to the eigenfunctions of △(m + 2 • 1 O ) and shifts in that sense from m to m + 2 • 1 O . Further, for two orbits O and O ′ in Σ, we have G(2 • (1 O + 1 O ′ ), m) = G(2 • 1 O , m + 2 • 1 O ′ ) • G(2 • 1 O ′ , m).
The operator G(2 • 1 O , m) appeared for the first time in [START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF] from a different point of view.

Bessel functions associated with NCC symmetric spaces

For ζ > 0 and λ ∈ a * C , write Ψ λ (m, X) := lim ζ→0 ϕ λ/ζ (m, exp(ζX)), X ∈ c 0 max , (4.1) 
when ever the limit exists. We may think of ϕ λ/ζ (m, exp(ζ •)) as the spherical function associated with the triple (Σ (ζ) , m (ζ) , a) defined by (2.9) and (2.10). Using the integral representation (2.4) of the spherical functions, it was shown in [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF] that for all λ belongs to the set E := {λ ∈ a * C : (∀α ∈ Σ + n ) Re λ(H α ) < 0}, the limit Ψ and its derivatives exist. Moreover, its integral representation is given by Ψ λ (m, X) = H e -λ,P(Ad(h)X) dh, where P : q → a denotes the orthogonal projection. Note that for all h ∈ H and X ∈ c 0 max , P(Ad(h)X) ∈ c 0 max . The function Ψ λ (m, •) is called the Bessel function on the flat symmetric space H ⋉ q/H ≃ q. Further, if S(a C ) denotes the symmetric algebra over a C considered as the space of polynomial functions on a

* C , then Ψ λ (m, •) satisfies p(T • (m))Ψ λ (m, X) = p(λ)Ψ λ (m, X), ∀p ∈ S(a C ) W ,
where

T • (m) = (T • (H 1 , m), . . . , T • (H r , m)).
On the other hand, by means of (3.5), we have

ϕ λ/ζ (m + 2 • 1 O , exp(ζX)) = c G/H (m + 2 • 1 O , λ/ζ) c G/H (m, λ/ζ) c(m + 2 • 1 O , -λ/ζ) c(m, -λ/ζ) G (ζ) (2 • 1 O , m)ϕ λ/ζ (m, exp(ζX)), (4.2) 
where c G/H and c are given respectively by (3.4) and (3.6). Since Γ(z+a)/Γ(z+b) ∼ z a-b as z → ∞, equation (??) and (??) implies that for all X ∈ a -and λ

∈ E ∩ {λ ∈ a * C : (∀α ∈ Σ + ) λ(H α ) = 0} Ψ λ (m + 2 • 1 O , X) = (-1) |Σ + 0 ∩O| α∈O + λ(H α ) 2 -2 G(2 • 1 O , m)Ψ λ (m, X). (4.3) 
Recall that for every NCC symmetric space, the root system Σ is reduced. Thus, Let us assume that m O ∈ 2N. By virtue of (4.2)

Ψ λ ((m Σ\O , m O ), X) = (-1) |Σ + 0 ∩O| m O 2 α∈O + λ(H α ) 2 -m O (4.4) G(2 • 1 O , (m Σ\O , m O -2)) • • • • • G(2 • 1 O , (m Σ\O , 0))Ψ λ ((m Σ\O , 0), X).
From now on we will work with NCC symmetric spaces such that Σ is a non-exceptional root system. That is, if r = dim(a), then Σ is either of type A r-1 , B r , C r , or D r . Thus Σ consists of short roots with multiplicity m s , and, possibly, long roots with multiplicity m l . Furthermore, we will assume that Σ obeys the following condition:

(H)
The multiplicity m s of the short roots is even.

Let {γ 1 , . . . , γ r } ⊂ Σ n be a maximal strongly orthogonal subset such that γ j is the highest element of Σ n strongly orthogonal to {γ j+1 , . . . , γ r } for j = r, . . . , 1. We will use the realization of the reduced root system Σ in terms of the vectors γ i as described in [START_REF] Bourbaki | Eléments de mathématique; groupes et algèbre de Lie[END_REF].

1. Assume that Σ is of type A r-1 , i.e. Σ = {±(γ j -γ i ) : 1 ≤ i < j ≤ r}.
Let the symmetric group S r acts on the subscripts of the γ i , then the Weyl group W associated with Σ is isomorphic to S r . In the present case, we say that there exists in Σ only one W -orbit O s = {±(γ j -γ i )} i<j consisting of short roots. The irreducible NCC symmetric pairs of type A r-1 which satisfy the condition (H) are: (sl(p + q, C), su(p, q)), with m l = 0 and m s = 2, (su * (2(p + q)), sp(p, q)), with m l = 0 and m s = 4, (e 6(-26) , f 4(-20) ), with m l = 0 and m s = 8.

Here p + q = r for the first two pairs, while r = 3 for the third one. The set of compact and non-compact roots in Σ + are given respectively by

Σ + c = {(γ j -γ i ) : 1 ≤ i < j ≤ p} ∪ {(γ p+j -γ p+i ) : 1 ≤ i < j ≤ q} = A p-1 × A q-1 , and Σ + n = {(γ p+j -γ i ) : 1 ≤ i ≤ p, 1 ≤ j ≤
q}, with p = 1 and q = 2 for the symmetric pair (e 6(-26) , f 4(-20) ). The Weyl group W 0 associated with Σ c is isomorphic to S p × S q .

2. Assume that the root system Σ is of type B r , i.e.

Σ = {±γ i (1 ≤ i ≤ r), ±(γ j ± γ i ) (1 ≤ i < j ≤ r)}.
The Weyl group W is isomorphic to the semidirect product of (Z/2Z) r and S r . The two possible W -orbits in Σ are the orbit O l = {±γ i } i of the long roots and the orbit O s = {±(γ j ± γ i )} i<j of the short roots. The irreducible NCC symmetric pairs of type B r which satisfy the hypothesis (H) are:

(so(2r + 1, C), so(2r -1, 2)), with m l = 2 and m s = 2, (so(r + 2k, r), so(r + 2k -1, 1) × so(r -1, 1)), with m l = 1 and m s = 2k.

The set of compact and non-compact roots in Σ + are given respectively by

Σ + c = {γ i (2 ≤ i ≤ r), (γ j ± γ i ) (2 ≤ i < j ≤ r)} = B r-1 , and Σ + n = {γ 1 , (γ j ± γ 1 ) (2 ≤ j ≤ r)}.
The little Weyl group W 0 is isomorphic to the semidirect product of (Z/2Z) r-1 and S r-1 .

3. Assume that Σ is of type C r , i.e. Σ = {±2γ i (1 ≤ i ≤ r), ±(γ j ± γ i ) (1 ≤ i < j ≤ r)}.
The Weyl group W is isomorphic to that of B r . The two W -orbits in Σ are the orbit O l = {±2γ i } i of the long roots, and the orbit O s = {±(γ j ± γ i )} i<j of the short roots. The irreducible NCC symmetric pairs of type C r which satisfy the hypothesis (H) are:

(su(r, r), sl(r, C) × R), with m l = 1 and m s = 2, (so * (4r), su * (2r) × R), with m l = 1 and m s = 4, (sp(r, C), sp(r, R)),
with m l = 2 and m s = 2, (sp(r, r), sp(r, C)), with m l = 3 and m s = 4, (e 7(-25) , e 6(-26) × R), with m l = 1 and m s = 8.

The set of compact and non-compact roots in Σ + are given respectively by

Σ + c = {(γ j -γ i ) : 1 ≤ i < j ≤ r} = A r-1 , and Σ + n = {2γ i (1 ≤ i ≤ r), (γ j + γ i ) (1 ≤ i < j ≤ r)}.
For the exceptional symmetric pair, r = 3. The Weyl group W 0 is isomorphic to the symmetric group S r .

4.

Assume that Σ is a root system of type D r , i.e.

Σ = {±(γ j ± γ i ) : 1 ≤ i < j ≤ r}.
The Weyl group W is isomorphic to the semidirect product of S r and (Z/2Z) r even := {(ε 1 , . . . , ε r ) :

ε i = ±1, r i=1 ε i = 1}. The only orbit of W in Σ is O s = {±(γ j ± γ i )} i<j .
The NCC symmetric pairs of type D r which obey the hypothesis (H) are:

(so(2r, C), so * (2r)), with m l = 0 and m s = 2, (so(2r, C), so(2r -2, 2)), with m l = 0 and m s = 2,

For the first symmetric pair, the set of compact and non-compact roots in Σ + are given respectively by

Σ + c = {(γ j -γ i ) : 1 ≤ i < j ≤ r} = A r-1 , and Σ + n = {(γ j + γ i ) : 1 ≤ i < j ≤ r}.
The Weyl group W 0 is isomorphic to S r .

For the second symmetric pair, the set of compact and non-compact roots in Σ + are given respectively by

Σ + c = {(γ j ± γ i ) : 2 ≤ i < j ≤ r} = D r-1 , and 
Σ + n = {(γ j ± γ 1 ) : 2 ≤ j ≤ r}.
The Weyl group W 0 is isomorphic to the semidirect product of S r-1 and (Z/2Z) r-1 even . Consider the Euclidean space R r with the usual orthonormal basis {e 1 , . . . , e r } and inner product •, • . Henceforth we will use the following identifications:

(i) When Σ is of type B r , C r , or D r : Let E = R r . Identify the complex dual a * C with the complexification E C of E via the map λ = (λ 1 , . . . , λ r ) → - r j=1 λ j γ j .
Thus, if Σ of type B r or C r , then

a -≡ {t = (t 1 , . . . , t r ) ∈ E : 0 < t 1 < • • • < t r },
and if Σ of type D r , then

a -≡ {t = (t 1 , . . . , t r ) ∈ E : t 1 < • • • < t r }, (ii) When Σ is of type A r-1 : Let E be the r-dimensional subspace of R r orthogonal to e 1 + • • • + e r . Identify a *
C with E C as above. Thus

a -≡ {t = (t 1 , . . . , t r ) ∈ E : t 1 < • • • < t r }.
Now let us go back to the identity (4.3) where we will fix from now on the orbit O to be O s . In view of the hypothesis (H), we have

Ψ λ ((m l , m s ), t) =(-1) ms 2 |Σ + c ∩Os| 2 ms|Σ + ∩Os| α∈Σ + ∩Os λ, α -ms G(2 • 1 Os , (m l , m s -2)) • • • • • G(2 • 1 Os , (m l , 0)) Ψ λ ((m l , 0), t), (4.5)
where

Ψ λ ((m l , 0), t) = π -r/2 w∈W 0 r i=1 (2t i ω(λ i )) -m l 2 + 1 2 K m l 2 -1 2 (t i ω(λ i )).
Here K ν denotes the Bessel function of the third kind. We remind the reader that the function z → K ν (z) is analytic on the complex plane cut along the negative real axis.

In the sequel we will need the following obvious lemma. 

(f i (x j )) 1≤i<j≤r (x i -x j ) .
Then for all x i 0 and x j 0 in I lim x i 0 →x j 0 F (x 1 , . . . , x i 0 , . . . , x j 0 , . . . , x r ) = 1≤i<j≤r (i,j) =(i 0 ,j 0 )

(x i -x j ) -1 × f 1 (x 1 ) • • • f r (x 1 ) . . . . . . . . . f 1 (x i 0 -1 ) • • • f r (x i 0 -1 ) f ′ 1 (x i 0 ) • • • f ′ r (x i 0 ) f 1 (x i 0 +1 ) • • • f r (x i 0 +1 ) . . . . . . . . . f 1 (x r ) • • • f r (x r )
.

Depending on the type of the restricted root system Σ we are now going to investigate the nature and order of the singularities of the Bessel functions.

The cases with restricted root system of type

A r-1 . When Σ is of type A r-1 , formula (4.4) reads Ψ λ ((0, m s ), t) = (-1) ms 2 (p(p-1)/2+q(q-1)/2) 2 msr(r-1)/2 1≤i<j≤r (λ i -λ j ) -ms (4.6) G(2 • 1 Os , (0, m s -2)) • • • • • G(2 • 1 Os , (0, 0)) Ψ λ ((0, 0), t).
Due an observation made by Berezin in [START_REF] Berezin | Laplace-Beltrami operators on semisimple Lie groups[END_REF], the elementary shift operator G(2•1 Os , (0, 0)) is given by

1≤i<j≤r ∂ i -∂ j t i -t j ,
where ∂ i = ∂/∂t i for 1 ≤ i ≤ r. The function Ψ λ ((0, 0), t) is given by

ω∈W 0 1≤i≤r e -t i ω(λ i ) . (4.7) 
Here we used the fact that

K -1/2 (z) = (π/2z) 1/2 e -z .
4.1.1. The symmetric pair (sl(p + q, C), su(p, q)). For the present pair, formula (??) becomes

Ψ λ ((0, 0), t) = (σ,τ )∈Sp×Sq 1≤i≤p e -t i λ σ(i) 1≤i≤q e -t p+i λ p+τ (i) .
It is easy to check that

G(2 • 1 Os , (0, 0)) Ψ λ ((0, 0), t) = 1≤i<j≤r λ i -λ j t i -t j det 1≤i,j≤p (e -t i λ j ) det 1≤i,j≤q
(e -t p+i λ p+j ).

Thus the Bessel function associated with the symmetric pair (sl(p + q, C), su(p, q)) is given by Ψ λ ((0, 2), t) = (-1) p(p-1)/2+q(q-1)/2 2 r(r-1) 1≤i≤p 1≤j≤q

(λ i -λ p+j ) 1≤i<j≤r (t i -t j ) det 1≤i,j≤p (e -t i λ j ) 1≤i<j≤p (λ i -λ j ) det 1≤i,j≤q
(e -t p+i λ p+j ) 1≤i<j≤q (λ p+i -λ p+j ) .

By Lemma 3.1, the function λ → Ψ λ ((0, 2), t) extends to a meromorphic function in C r with simple poles for λ i -λ p+j = 0 (1 ≤ i ≤ p, 1 ≤ j ≤ q). Thus we have proved: Proposition 4.2. For the symmetric pair (sl(p + q, C), su(p, q)), we have Ψ λ ((0, 2), t) = (-1) p(p-1)/2+q(q-1)/2 2 r(r-1)

det 1≤i,j≤p (e -t i λ j ) det 1≤i,j≤q (e -t p+i λ p+j ) 1≤i<j≤r (λ i -λ j ) 1≤i<j≤r (t i -t j )
.

For fixed t ∈ a -, the map λ → Ψ λ ((0, 2), t) extends to a meromorphic function in C r with simple poles for λ, α = 0 (∀α ∈ Σ + n ). Remark 4.3. For the complex symmetric pair (sl(p + q, C), su(p, q)), and indeed for every complex NCC symmetric pair, an explicit formula for the spherical function ϕ λ is well known [START_REF] Faraut | Spherical functions on ordered symmetric spaces[END_REF] (see also [START_REF] Faraut | Algèbres de Volterra et transformation de Laplace sphérique sur certaiuns espaces symétriques ordonnés[END_REF]). Thus one may recover the above formula for Ψ λ ((0, 2), t) in a direct fashion by applying the limit formula (4.1). 4.1.2. The symmetric pair (su * (2(p + q)), sp(p, q)). In view (??), a similar calculation to the one above implies that the Bessel function associated with (su * (2(p + q)), sp(p, q)) is given by Ψ λ ((0, 4), t) = 2 2r(r-1) 1≤i<j≤r

(λ i -λ j ) 3 G(2 • 1 Os , (0, 2)) det 1≤i,j≤p
(e -λ i t j ) det 1≤i,j≤q (e -λ p+i t p+j ) 1≤i<j≤r (t i -t j ) .

By means of [START_REF] Chalykh | Integrability in the theory of Schrdinger operator and harmonic analysis[END_REF], we have

G(2 • 1 Os , (0, 2)) • 1 1≤i<j≤r (t i -t j ) = 1 1≤i<j≤r (t i -t j ) 2 D r • • • • • D 2 ,
where D ℓ , for 2 ≤ ℓ ≤ r, denotes the differential operators obtained after replacing z i by ∂ i -∂ ℓ in the following polynomial on z

D ℓ = exp - ℓ-1 i=1 2 (t i -t ℓ ) ∂ ∂z i + 1≤i<j≤ℓ-1 2 (t i -t j ) 2 ∂ 2 ∂z i ∂z j 1≤i≤ℓ-1 z i .
It follows that the Bessel function associated with (su * (2(p + q)), sp(p, q)) extends to a meromorphic function of λ in C r with the following possible poles:

λ i -λ j = 0 (1 ≤ i < j ≤ p), of order ≤ 2, λ p+i -λ p+j = 0 (1 ≤ i < j ≤ q), of order ≤ 2, λ i -λ p+j = 0 (1 ≤ i ≤ p, 1 ≤ j ≤ q), of order ≤ 3.
Thus we have proved:

Proposition 4.4. For the symmetric pair (su * (2(p + q)), sp(p, q)), we have

Ψ λ ((0, 4), t) = 2 2r(r-1)
1≤i<j≤r

(λ i -λ j ) 3 1≤i<j≤r (t i -t j ) 2 D r • • • • • D 2 det 1≤i,j≤p
(e -λ i t j ) det 1≤i,j≤q (e -λ p+i t p+j ) , (4.8)

where D ℓ , for 2 ≤ ℓ ≤ r, are the differential operators as defined above. For fixed t ∈ a -, the map λ → Ψ λ ((0, 4), t) extends to a meromorphic function in C r with the possible poles for λ, α = 0 (∀α ∈ Σ + c ) and λ, α = 0 (∀α ∈ Σ + n ), of orders less or equal than 2 and 3 respectively. Example 4.5. Assume that p = 1 and q = 1. Thus, the differential operator D 2 is given by

(∂ 1 -∂ 2 ) - 2 (t 1 -t 2 ) , (4.9) 
and formula (4.7) becomes

Ψ λ ((0, 4), t) = 2 4 (λ 1 -λ 2 ) 3 (t 1 -t 2 ) 2 (λ 2 -λ 1 ) - 2 (t 1 -t 2 ) e -t 1 λ 1 e -t 2 λ 2 .
Clearly the function (λ 1 , λ 2 ) = λ → Ψ λ ((0, 4), t) has poles for λ 1 -λ 2 = 0 with order 3.

Example 4.6. Assume that p = 2 and q = 1. The operator D 2 is given by (4.8) while D 3 is defined by

(∂ 1 -∂ 3 )(∂ 2 -∂ 3 ) -2 (∂ 2 -∂ 3 ) (t 1 -t 3 ) -2 (∂ 1 -∂ 3 ) (t 2 -t 3 ) + 2 (t 1 -t 2 ) 2 + 4 (t 1 -t 3 )(t 2 -t 3 )
.

A straitforward calculation shows that

(∂ 1 -∂ 3 )(∂ 2 -∂ 3 ) -2 (∂ 2 -∂ 3 ) (t 1 -t 3 ) -2 (∂ 1 -∂ 3 ) (t 2 -t 3 ) D 2 det 1≤i,j≤2 (e -t i λ j )e -t 3 λ 3 = (λ 2 -λ 1 )e -t 1 λ 1 e -t 2 λ 2 e -t 3 λ 3 1 - 2 (t 1 -t 2 )(λ 1 -λ 2 ) -2 (λ 3 -λ 1 ) (t 2 -t 3 ) -2 (λ 3 -λ 2 ) (t 1 -t 3 ) + (λ 3 -λ 1 )(λ 3 -λ 2 ) + (λ 2 -λ 1 )e -λ 2 t 1 e -λ 1 t 2 e -t 3 λ 3 1 + 2 (t 1 -t 2 )(λ 1 -λ 2 ) -2 (λ 3 -λ 2 ) (t 2 -t 3 ) -2 (λ 3 -λ 1 ) (t 1 -t 3 ) + (λ 3 -λ 1 )(λ 3 -λ 2 ) + 4 det 1≤i,j≤2 (e -t i λ j )e -t 3 λ 3 (t 1 -t 2 ) 2 1 (t 2 -t 3 ) - 1 (t 1 -t 3 ) + 1 (t 1 -t 2 )
.

Thus the spherical function associated with (su * (6), sp(2, 1)) is given by

Ψ λ ((0, 4), t) = 2 13 1≤i≤2 (λ i -λ 3 ) 3 2t 1 -t 2 -t 3 (t 1 -t 2 ) 2 (t 1 -t 3 ) 2 (t 2 -t 3 ) 3 Ψ c (λ 1 , λ 2 ; t 1 , t 2 )e -t 3 λ 3 + 2 12 1≤i≤2 (λ i -λ 3 ) 3 (λ 1 -λ 2 ) 2 1 1≤i≤2 (t i -t 3 ) 2 (t 1 -t 2 ) 2 e -t 1 λ 1 e -t 2 λ 2 e -t 3 λ 3 1 - 2 (t 1 -t 2 )(λ 1 -λ 2 ) -2 (λ 3 -λ 1 ) (t 2 -t 3 ) -2 (λ 3 -λ 2 ) (t 1 -t 3 ) + (λ 3 -λ 1 )(λ 3 -λ 2 ) +e -λ 2 t 1 e -λ 1 t 2 e -t 3 λ 3 1 + 2 (t 1 -t 2 )(λ 1 -λ 2 ) -2 (λ 3 -λ 2 ) (t 2 -t 3 ) -2 (λ 3 -λ 1 ) (t 1 -t 3 ) + (λ 3 -λ 1 )(λ 3 -λ 2 ) + 2 14 1≤i<j≤3 (t i -t j ) 2 (t 1 -t 2 ) 2 1 (t 2 -t 3 ) - 1 (t 1 -t 3 ) + 1 (t 1 -t 2 ) det 1≤i,j≤2
(e -t i λ j )e -t 3 λ 3 1≤i<j≤3 (λ i -λ j ) 3 .

Here

Ψ c (λ 1 , λ 2 ; t 1 , t 2 ) := 1 (t 1 -t 2 ) 2 (λ 1 -λ 2 ) 2 1 - 2 (t 1 -t 2 )(λ 1 -λ 2 ) e -(λ 1 t 1 +λ 2 t 2 ) + 1 + 2 (t 2 -t 1 )(λ 1 -λ 2 ) e -(λ 1 t 2 +λ 2 t 1 )
denotes the Bessel function associated with the Riemannian symmetric pair (su(4), sp( 2)) which is holomorphic in C 2 . It follows that for r = 3, the poles of the function λ → Ψ λ ((0, 4), t) are λ i -λ 3 = 0 (i = 1, 2) of order 3, and λ 1 -λ 2 = 0 of order 2.

4.1.3. The symmetric pair (e 6(-26) , f 4(-20) ). For the present pair 3) .

Ψ λ ((0, 0), t) = e -t 1 λ 1 σ∈S 2 e -t 2 λ σ(2) e -t 3 λ σ(
Using [START_REF] Beerends | On the Abel transformations and its inversion[END_REF][START_REF] Vretare | Formulas for elementary spherical functions and generalized Jacobi polynomials[END_REF], we get

G(2 • 1 Os , (0, 6)) • • • • • G(2 • 1 Os , (0, 0)) = 1 (t 1 -t 2 ) 4 (t 2 -t 3 ) 4 (t 3 -t 1 ) 4 D 3 • D 2 • D 1 • D 0 ,
where 

D ℓ = (∂ 1 -∂ 2 ) • (∂ 2 -∂ 3 ) • (∂ 3 -∂ 1 ) - 2ℓ (t 1 -t 2 ) (∂ 2 -∂ 3 ) • (∂ 3 -∂ 1 ) - 2ℓ (t 2 -t 3 ) (∂ 3 -∂ 1 ) • (∂ 1 -∂ 2 ) - 2ℓ (t 3 -t 1 ) (∂ 1 -∂ 2 ) • (∂ 2 -∂ 3 ) + 4ℓ 2 (t 1 -t 2 )(t 2 -t 3 ) - ℓ(ℓ -1) (t 3 -t 1 ) 2 (∂ 3 -∂ 1 ) + 4ℓ 2 (t 2 -t 3 )(t 3 -t 1 ) - ℓ(ℓ -1) (t 1 -t 2 ) 2 (∂ 1 -∂ 2 ) + 4ℓ 2 (t 3 -t 1 )(t 1 -t 2 ) - ℓ(ℓ -1) (t 2 -t 3 ) 2 (∂ 2 -∂ 3 ) -2ℓ(ℓ -1)(ℓ + 2) 1 (t 1 -t 2 ) 3 + 1 (t 2 -t 3 ) 3 + 1 (t 3 -t 1 ) 3 - 6ℓ 2 (ℓ + 1) (t 1 -t 2 )(t 2 -t 3 )(t 3 -t 1 ) . ( 4 
Ψ λ ((0, 8), t) = 2 24 2≤j≤3 (λ 1 -λ j ) 7 (λ 2 -λ 3 ) 6 1≤i<j≤3 (t i -t j ) 4 D 3 • D 2 • D 1 e -t 1 λ 1 det 2≤i,j≤3 (e -t i λ j ) (λ 2 -λ 3 ) .
It follows that λ → Ψ λ ((0, 8), t) extends to a meromorphic function in C r with the following possible poles:

λ 1 -λ i = 0 (i = 2, 3), of order ≤ 7, λ 2 -λ 3 = 0,
of order ≤ 6.

Thus we have proved:

Proposition 4.7. For the symmetric pair (e 6(-26) , f 4(-20) ), we have

Ψ λ ((0, 8), t) = 2 24 1≤i<j≤3 (λ i -λ j ) 7 1≤i<j≤3 (t i -t j ) 4 D 3 • D 2 • D 1 e -t 1 λ 1 det 2≤i,j≤3
(e -t i λ j ) , wher D ℓ , for 1 ≤ ℓ ≤ 3, are the same as in (4.9). For fixed t ∈ a -, the map λ → Ψ λ ((0, 8), t) extends to a meromorphic function in C r with the possibles poles for λ, α = 0 (∀α ∈ Σ + c ) and λ, α = 0 (∀α ∈ Σ + n ), of orders less or equal than 6 and 7 respectively. 4.2. The cases with restricted root system of type B r . When Σ is a root system of type B r , formula (??) becomes

Ψ λ ((m l , m s ), t) = 2 msr(r-1) 1≤i<j≤r (λ 2 i -λ 2 j ) -ms G(2 • 1 Os , (m l , m s )) • • • • • G(2 • 1 Os , (m l , 0)) Ψ λ ((m l , 0), t).
Using [START_REF] Chalykh | Integrability and Huygens' principle on symmetric spaces[END_REF], it follows that the shift operator G(2 • 1 Os , (m l , 0)) is given by

1≤i<j≤r (t 2 i -t 2 j ) -1 1≤i<j≤r L m l (t i , ∂ i ) -L m l (t j , ∂ j ) , (4.11) 
where

L m l := d 2 dt 2 + m l t d dt .
4.2.1. The symmetric pair (so(2r + 1, C), so(2r -1, 2)). For the present pair, m l = 2 and

Ψ λ ((2, 0), t) = e -λ 1 t 1 2λ 1 t 1 ω∈Z r-1 2 ×S r-1 2≤i≤r e -t i ω(λ i ) 2t i ω(λ i
) .

An easy calculation gives

G(2 • 1 Os , (2, 0)) Ψ((2, 0), λ, t) = e -λ 1 t 1 2λ 1 t 1 2≤j≤r (λ 2 1 -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j ) 2≤j≤r 2t i λ i σ∈S r-1 2≤i<j≤r (λ 2 σ(i) -λ 2 σ(j) ) ε∈Z r-1 2 2≤i≤r ε i 2≤i≤r e -ε i t i λ σ(i) = e -λ 1 t 1 2λ 1 t 1 2≤j≤r (λ 2 1 -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j ) 2≤j≤r t i λ i σ∈S r-1 2≤i<j≤r (λ 2 σ(i) -λ 2 σ(j) ) 2≤i≤r sh(t i λ σ(i) ) = e -t 1 λ 1 2λ 1 t 1 1≤i<j≤r (λ 2 i -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j ) 2≤j≤r t j λ j det 2≤i,j≤r (sh(t i λ j )).
As a consequence

Ψ λ ((2, 2), t) = 2 2r(r-1)-1 e -t 1 λ 1 λ 1 1≤i≤r t i 1≤i<j≤r (t 2 i -t 2 j ) 2≤j≤r (λ 2 1 -λ 2 j ) det 2≤i,j≤N (sh(t i λ j )) 2≤j≤r λ j 2≤i<j≤r (λ 2 i -λ 2 j )
.

By Lemma 3.1, the Bessel function associated with (so(2r + 1, C), so(2r -1, 2)) extends to a meromorphic function of λ in C r with simple poles for λ 1 = 0 and λ 1 ± λ j = 0 (2 ≤ j ≤ r). Thus we have proved:

Proposition 4.8. For the symmetric pair (so(2r + 1, C), so(2r -1, 2)), we have

Ψ λ ((2, 2), t) = 2 2r(r-1)-1 e -t 1 λ 1 det 2≤i,j≤r (sh(t i λ j )) 1≤i≤r λ i 1≤i≤r t i 1≤i<j≤r (t 2 i -t 2 j ) 1≤i<j≤r (λ 2 i -λ 2 j )
.

For fixed t ∈ a -, the map λ → Ψ λ ((2, 2), t) extends to a meromorphic function in C r with simple poles for λ, α = 0 (∀α ∈ Σ + n ). 4.2.2. The symmetric pair (so(r + 2k, r), so(r + 2k -1, 1) × so(r -1, 1)). Here m l = 1 and

Ψ λ ((1, 0), t) = K 0 (t 1 λ 1 ) ω∈S r-1 ×Z r-1 2 2≤i≤r K 0 (t i ω(λ i )).
Using the fact that K 0 (z) is a solution to

u ′′ + 1 z u ′ = u, we deduce that 1 G(2 • 1 Os , (1, 0)) Ψ λ ((1, 0), t) = K 0 (λ 1 t 1 ) 2≤i≤r (λ 2 1 -λ 2 i ) 1≤i<j≤r (t 2 i -t 2 j ) σ∈S r-1 2≤i<j≤r (λ 2 σ(i) -λ 2 σ(j) ) ε∈Z r-1 2 2≤i≤r K 0 (t i ε i λ σ(i) ) = K 0 (λ 1 t 1 ) 1≤i<j≤r (λ 2 i -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j ) σ∈S r-1 (-1) σ 2≤i≤r K 0 (t i λ σ(i) ) + K 0 (-t i λ σ(i) ) = K 0 (λ 1 t 1 ) 1≤i<j≤r (λ 2 i -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j ) det 2≤i,j≤r K 0 (t i λ j ) + K 0 (-t i λ j )
This leads to

Ψ λ ((1, 2k), t) = 2 2kr(r-1) 2≤i<j≤r (λ 2 i -λ 2 j ) 2k-2 2≤i≤r (λ 2 1 -λ 2 i ) 2k-1 G(2 • 1 Os , (1, 2k -2)) • • • • • G(2 • 1 Os , (1, 2)) K 0 (λ 1 t 1 ) det 2≤i,j≤r K 0 (t i λ j ) + K 0 (-t i λ j ) 1≤i<j≤r (t 2 i -t 2 j ) 2≤i<j≤r (λ i -λ j ) 2≤i<j≤r (λ i + λ j ) .
By Lemma 3.1, the function λ → Ψ λ ((1, 2k), t) extends to a meromorphic function in

D = {λ ∈ C r : λ i ∈ C\]∞, 0 
]}, with the following possible poles:

λ 1 ± λ j = 0 (2 ≤ j ≤ r), of order ≤ 2k -1, λ i ± λ j = 0 (2 ≤ i < j ≤ r), of order ≤ 2k -2.
Thus we have proved:

Proposition 4.9. For the symmetric pair (so(r + 2k, r), so(r + 2k -1, 1) × so(r -1, 1)), we have

Ψ λ ((1, 2k), t) = 2 2kr(r-1) 1≤i<j≤r (λ 2 i -λ 2 j ) 2k-1 G(2 • 1 Os , (1, 2k -2)) • • • • • • G(2 • 1 Os , (1, 2)) K 0 (λ 1 t 1 ) det 2≤i,j≤r K 0 (t i λ j ) + K 0 (-t i λ j ) 1≤i<j≤r (t 2 i -t 2 j )
, where G(2 • 1 Os , (1, 2ℓ)), for 1 ≤ ℓ ≤ k -1, denotes the differential operator (??). For fixed t ∈ a -, the map λ → Ψ λ ((1, 2k), t) extends to a meromorphic function in the set D = {λ ∈ C r : λ i ∈ C\]∞, 0]} with the possible poles for λ, α = 0 (∀α ∈ Σ + c ) and λ, α = 0 (∀α ∈ Σ + n ), of orders less or equal than 2k -2 and 2k -1 respectively. Example 4.10. The Bessel function associated with (so(r+2, r), so(r+1, 1)×so(r-1, 1)) is given by

Ψ λ ((1, 2), t) = 2 2r(r-1) K 0 (λ 1 t 1 ) det 2≤i,j≤r K 0 (t i λ j ) + K 0 (-t i λ j ) 1≤i<j≤r (λ 2 i -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j )
.

The function λ → Ψ λ ((1, 2), t) extends to a meromorphic function in D with simple poles for λ 1 ± λ i = 0, with 2 ≤ i ≤ r.

4.3.

The cases with restricted root system of type C r . When Σ is a root system of type C r , we have

Ψ λ ((m l , m s ), t) = (-1)
sr(r-1) 4

2 msr(r-1) 1≤i<j≤r (λ 2 i -λ 2 j ) -ms (4.12)

G(2 • 1 Os , (m l , m s -2)) • • • • • G(2 • 1 Os , (m l , 0)) Ψ λ ((m l , 0), t).
The shift operator G(2 • 1 Os , (m l , 0)) is the same as in (??).

4.3.1.

The symmetric pair (su(r, r), sl(r, C) × R). Considerations similar to the case 4.2.2 yield

Ψ λ ((1, 2), t) = (-1) r(r-1) 2 
2 2r(r-1) 1≤i<j≤r (λ 2 i -λ 2 j ) 2 1≤i<j≤r (t 2 i -t 2 j ) σ∈Sr 1≤i<j≤r (λ 2 σ(i) -λ 2 σ(j) ) r i=1 K 0 (t i λ σ(i) ) = (-1) r(r-1) 2 
2 2r(r-1) 1≤i<j≤r (λ i + λ j ) 1≤i<j≤r (t 2 i -t 2 j ) det 1≤i,j≤r (K 0 (t i λ j )) 1≤i<j≤r (λ i -λ j )
.

By virtue of Lemma 3.1, the Bessel function associated with (su(r, r), sl(r, C)×R) extends to a meromorphic function of λ in

D = {λ ∈ C r : λ i ∈ C\]∞, 0]}
with simple poles for λ i + λ j = 0 (1 ≤ i < j ≤ r).

Proposition 4.11. For the symmetric pair (su(r, r), sl(r, C) × R), we have

Ψ λ ((1, 2), t) = (-1) r(r-1) 2 
2 2r(r-1) det 1≤i,j≤r

(K 0 (t i λ j )) 1≤i<j≤r (λ 2 i -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j )
.

For fixed t ∈ a -, the map λ → Ψ λ ((1, 2), t) extends to a meromorphic function in the set D = {λ ∈ C r : λ i ∈ C\]∞, 0]} with simple poles for λ, α = 0 (∀α ∈ Σ + n ). 4.3.2. The symmetric pair (so * (4r), su * (2r) × R). A similar calculation to one illustrated above gives Ψ λ ((4, 1), t) = 2 4r(r-1) 1≤i<j≤r

(λ i -λ j ) 2 1≤i<j≤r (λ i + λ j ) 3 G(2 • 1 Os , (1, 2)) det 1≤i,j≤r (K 0 (λ i t j )) 1≤i<j≤r (t 2 i -t 2 j ) 1≤i<j≤r (λ i -λ j ) .
Thus, the function λ → Ψ λ ((4, 1), t) extends meromorphically in

D = {λ ∈ C r : λ i ∈ C\]∞, 0]}
with the following possible poles

λ i -λ j = 0 (1 ≤ i < j ≤ r), of order ≤ 2, λ i + λ j = 0
(1 ≤ i < j ≤ r), of order ≤ 3.

Proposition 4.12. For the symmetric pair (so * (4r), su * (2r) × R), we have

Ψ λ ((0, 2), t) = 2 4r(r-1) 1≤i<j≤r (λ 2 i -λ 2 j ) 3 G(2 • 1 Os , (1, 2)) det 1≤i,j≤r (K 0 (λ i t j )) 1≤i<j≤r (t 2 i -t 2 j )
, where G(2 • 1 Os , (1, 2)) denotes the differential operator (??). For fixed t ∈ a -, the map λ → Ψ λ ((0, 2), t) extends to a meromorphic function in D = {λ ∈ C r : λ i ∈ C\]∞, 0]} with the possible poles for λ, α = 0 (∀α ∈ Σ + c ) and λ, α = 0 (∀α ∈ Σ + n ), of orders less or equal than 2 and 3 respectively. 

(2t i λ σ(i) ) -1 e -t i λ σ(i) , and 
G(2 • 1 Os , (2, 0)) Ψ λ ((2, 0), t) = 1≤i<j≤r (λ 2 i -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j ) σ∈Sr ε(σ) r i=1 e -t i λ σ(i) 2t i λ σ(i) .
Now formula (??) reads Ψ λ ((2, 2), t) = (-1)

r(r-1) 2 
2 r(r-1)-r 1≤i≤r λ i 1≤i<j≤r

(λ i + λ j ) 1≤i≤r t i 1≤i<j≤r (t 2 i -t 2 j ) det 1≤i,j≤r (e -λ i t j ) 1≤i<j≤r (λ i -λ j ) .
Hence, the map λ → Ψ λ ((2, 2), t) extends to a meromorphic function in C r with simple poles for λ i = 0 (1 ≤ i ≤ r) and λ i + λ j = 0 (1 ≤ i < j ≤ r).

Proposition 4.13. For the symmetric pair (sp(r, C), sp(r, R)), we have

Ψ λ ((2, 2), t) = (-1) r(r-1) 2 
2 r(r-1)-r det 1≤i,j≤r (e -λ i t j )

1≤i≤r t i 1≤i≤r λ i 1≤i<j≤r (t 2 i -t 2 j ) 1≤i<j≤r (λ 2 i -λ 2 j )
.

For fixed t ∈ a -, the map λ → Ψ λ ((2, 2), t) extends to a meromorphic function in C r with simple poles for λ, α = 0 (∀α ∈ Σ + n ). 4.3.4. The symmetric pair (sp(r, r), sp(r, C)). Here we have m l = 3, and therefore

Ψ λ ((3, 0), t) = π -r/2 σ∈Sr r i=1 (2t i λ σ(i) ) -1 K 1 (t i λ σ(i) ).
Using the fact that

L 3 (t, dt) K 1 (λt) λt = λ 2 2λt K 1 (λt),
we deduce that

G(2 • 1 Os , (3, 0)) Ψ λ ((3, 0), t) = 2 -r π -r/2 1≤i<j≤r λ 2 i -λ 2 j t 2 i -t 2 j det 1≤i,j≤r K 1 (t i λ j ) t i λ j .
Hence the Bessel function can be written as

Ψ λ ((3, 4), t) = 2 r(4r-1) π -r/2 1≤i<j≤r (λ i + λ j ) 3 1≤i<j≤r (λ i -λ j ) 2 1≤i≤r λ 2 i G(2 • 1 Os , (3, 2)) det 1≤i,j≤r (λ i K 1 (t i λ j )) 1≤i≤r t i 1≤i<j≤r (t 2 i -t 2 j ) 1≤i<j≤r (λ i -λ j ) .
It follows that the function λ → Ψ λ ((3, 4), t) extends meromorphically in

D = {λ ∈ C r : λ i ∈ C\]∞, 0[}
with the following possible poles:

λ i = 0 (1 ≤ i ≤ r) of order ≤ 2 λ i -λ j = 0 (1 ≤ i < j ≤ r) of order ≤ 2 λ i + λ j = 0 (1 ≤ i < j ≤ r) of order ≤ 3.
Proposition 4.14. For the symmetric pair (sp(r, r), sp(r, C)), we have

Ψ λ ((3, 4), t) = 2 r(4r-1) π -r/2 1≤i<j≤r (λ 2 i -λ 2 j ) 3 1≤i≤r λ i G(2 • 1 Os , (3, 2)) det 1≤i,j≤r (K 1 (λ i t j )) 1≤i≤r t i 1≤i<j≤r (t 2 i -t 2 j )
, where G(2 • 1 Os , (3, 2)) denotes the differential operator (??). For fixed t ∈ a -, the map λ → Ψ λ ((3, 4), t) extends to a meromoprhic function on D = {λ ∈ C r : λ i ∈ C\]∞, 0[} with the possible poles for λ, α = 0 (∀α ∈ Σ + c ) and λ, α = 0 (∀α ∈ Σ + n ), of orders less or equal than 2 and 3 respectively. 4.3.5. The symmetric pair (e 7(-25) , e 6(-26) × R). For this pair, recall that r = 3. Clearly we have

Ψ λ ((1, 8), t) = 2 72 π -3/2 1≤i<j≤3 (λ i + λ j ) 7 1≤i<j≤3 (λ i -λ j ) 6 G(2 • 1 Os , (1, 6)) • • • • • G(2 • 1 Os , (1, 2)) det 1≤i,j≤3 (K 0 (t i λ j )) 1≤i<j≤3 (t 2 i -t 2 j ) 1≤i<j≤3 (λ i -λ j ) .
Thus, the function λ → Ψ λ ((1, 8), t) extends to a meromorphic function in

D = {λ ∈ C 3 : λ i ∈ C\]∞, 0]}
with the following possible poles

λ i -λ j = 0 (1 ≤ i < j ≤ 3), of order ≤ 6 λ i + λ j = 0 (1 ≤ i < j ≤ 3), of order ≤ 7.
Proposition 4.15. For the symmetric pair (e 7(-25) , e 6(-26) × R), we have

Ψ λ ((1, 8), t) = 2 72 π -3/2 1≤i<j≤3 (λ 2 i -λ 2 j ) 7 G(2 • 1 Os , (1, 6)) • • • • • G(2 • 1 Os , (1, 2)) det 1≤i,j≤3 (K 0 (t i λ j )) 1≤i<j≤3 (t 2 i -t 2 j )
, where G(2 • 1 Os , (1, 2ℓ)), for 1 ≤ ℓ ≤ 3, denotes the differential operator (??). For fixed t ∈ a -, the map λ → Ψ λ ((1, 8), t) extends to a meromorphic function in D = {λ ∈ C 3 : λ i ∈ C\]∞, 0]} with the possible poles for λ, α = 0 (∀α ∈ Σ + c ) and λ, α = 0 (∀α ∈ Σ + n ), of orders less or equal than 2 and 3 respectively. 4.4. The cases with restricted root system of type D r . For both pairs (so(2r, C), so * (2r)) and (so(2r, C), so(2r -2, 2)), we have m l = 0 and m s = 2. It follows that

Ψ λ ((0, 2), t) = (-1) |Σ + c ∩Os| 2 2r(r-1) 1≤i<j≤r (λ 2 i -λ 2 j ) 2 G(2 • 1 Os , (0, 0)) ω∈W 0 r i=1 e -t i ω(λ i ) , (4.13) 
where 

G(2 • 1 Os , (0, 0)) = 1≤i<j≤r ∂ 2 i -∂ 2 j t 2 i -t 2 j . ( 4 
G(2 • 1 Os , (0, 0)) Ψ λ ((0, 0), t) = 1≤i<j≤r λ 2 i -λ 2 j t 2 i -t 2 j det 1≤i,j≤r (e -t i λ j ). Now formula (3.3) implies that Ψ λ ((0, 2), t) = (-1) r(r-1) 2 
2 2r(r-1) 1≤i<j≤r (t 2 i -t 2 j ) 1≤i<j≤r (λ i + λ j ) det 1≤i,j≤r (e -t i λ j ) 1≤i<j≤r (λ i -λ j ) ,
and the function λ → Ψ λ ((0, 2), t) extends to a meromorphic function in C r with simple poles for λ i + λ j = 0 (1 ≤ i < j ≤ r).

Proposition 4.16. For the symmetric pair (so(2r, C), so * (2r)), we have

Ψ λ ((0, 2), t) = (-1) r(r-1) 2 2 2r(r-1) det 1≤i,j≤r (e -t i λ j ) 1≤i<j≤r (λ 2 i -λ 2 j ) 1≤i<j≤r (t 2 i -t 2 j )
.

For fixed t ∈ a -, the map λ → Ψ λ ((0, 2), t) extends to a meromorphic function in C r with simple poles for λ, α = 0 (∀α ∈ Σ + n ). 4.4.2. The symmetric pair (so(2r, C), so(2r -2, 2)). Applying the shift operator (??) to the function

Ψ λ ((0, 0), t) = e -t 1 λ 1 w∈S r-1 ×Z r-1 2,even r i=2 e -t i ω(λ i ) gives G(2 • 1 Os , (0, 0)) Ψ λ ((0, 0), t) = 2 r-1 e -t 1 λ 1 1≤i<j≤r λ 2 i -λ 2 j t 2 i -t 2 j ǫ∈Z r-1 2,even σ∈S r-1 (-1) σ r i=2 e -t i ǫ σ(i) λ σ(i) = 2 r-1 e -t 1 λ 1 1≤i<j≤r λ 2 i -λ 2 j t 2 i -t 2 j det 2≤i,j≤r (ch(t i λ j )) + (-1) r det 2≤i,j≤r (sh(t i λ j )) . Hence formula (3.3) reads Ψ λ ((0, 2), t) = 2 (2r+1)(r-1) (-1) r(r-1) 2 1≤i<j≤r (t 2 i -t 2 j ) e -t 1 λ 1 2≤j≤r (λ 2 1 -λ 2 j ) det 2≤i,j≤r (ch(t i λ j )) + (-1) r det 2≤i,j≤r (sh(t i λ j )) 2≤i<j≤r (λ 2 i -λ 2 j )
.

It is now clear that the function λ → Ψ λ ((0, 2), t) extends to a meromorphic function in C r with simple poles for λ 1 ± λ j = 0 (2 ≤ j ≤ r).

Proposition 4.17. For the symmetric pair (so(2r, C), so(2r -2, 2)), we have

Ψ λ ((0, 2), t) = 2 (2r+1)(r-1) (-1) r(r-1) 2 e -t 1 λ 1 det 2≤i,j≤r (ch(t i λ j )) + (-1) r det 2≤i,j≤r (sh(t i λ j )) 1≤i<j≤r (t 2 i -t 2 j ) 1≤i<j≤r (λ 2 i -λ 2 j )
.

For t ∈ a -, the map λ → Ψ λ ((0, 2), t) extends to a meromorphic functions in C r with simple poles for λ, α = 0 (∀α ∈ Σ + n ).

The main theorem

For m ∈ N, denote by D m the complex plane for which the function z → z -m

2 + 1 2 K m 2 -1 2 (z) is analytic.
Taking all our results from the previous discussions together, the following theorem holds.

Theorem 5.1. (i) Assume that (g, h) is one of the following NCC symmetric pairs: g h sl(p + q, C) su(p, q) so(2r + 1, C) so(2r -1, 2) su(r, r) sl(r, C) × R sp(r, C) sp(r, R) so(2r, C) so * (2r) so(2r, C) so(2r -2, 2)

Then the function λ → Ψ λ ((m l , m s ), t) extends meromorphically in the product domain D r m l with poles for λ, α = 0 (∀α ∈ Σ + n ) of order m n -1.

(ii) Assume that (g, h) is one of the following NCC symmetric pairs: Here m c and m n denote the multiplicity of the compact and non-compact roots respectively.

Recall that for the symmetric pairs listed in part (i) of Theorem 5.1, the multiplicity of the compact roots is equal to 2. Motivated by the main result above and Example 4.5 we conjecture that: Conjecture 5.2. Let (g, h) be a NCC symmetric pair with restricted root system of the non-exceptional type such that (H) holds. Then the function λ → Ψ λ ((m l , m s ), t), for fixed t ∈ a -, extends to a meromorphic function in the product D r m l with poles for λ, α = 0 (∀α ∈ Σ + c ), of order = m c -2, λ, α = 0 (∀α ∈ Σ + n ), of order = m n -1.

Concluding remark

Let k d := (k ∩ h) ⊕ i(p ∩ h) and p d := i(k ∩ q) ⊕ (p ∩ q). Then Recall that the maximal abelian subspace a in p ∩ q is also maximal in p and q, i.e. a Cartan subspace for both G/H and G d /K d ≃ G/K. For λ ∈ a * C and X ∈ p, let Φ λ (m, X) = K e λ(Ad(k)X) dk.

The function Φ λ (m, •) is the so-called Bessel function on the flat symmetric space K ⋉ p/K ≃ p with spectral parameter λ. It is well known that the function λ → Φ λ (m, X) is holomorphic on a * C . We refer to [START_REF] Helgason | Groups and Geometric Analysis[END_REF] for more details on the theory of Bessel functions on p. See also [START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF].

Set ρ n (m) := α∈Σ + n m α /2, and recall the identifications of a and a * C with R r and C r . In [START_REF] Saïd | Bessel functions for root systems via the trigonometric setting[END_REF], it is shown that for t ∈ a -, the relation Φ -λ (m, t) = (-1) ρn(m) c 0 (m, ρ(m)) ω∈W \W 0 Ψ ω(λ) (m, t) (6.1) holds as equality of meromorphic functions in C r . Henceforth we will assume that Σ = Σ(g, a) is a restricted root system of the nonexceptional type such that the hypothesis (H) holds. In view of formula (3.3) and the fact that m s is even, it follows from (??) that Φ -λ ((m l , m s ), t) = (-1) This result generalizes [START_REF] Meaney | The inverse Abel transform for SU (p, q)[END_REF][START_REF] Zhu | The Radon transformation on the Cartan motion group associated with a noncompact symmetric space of rank one[END_REF][START_REF] Brézin | An extension of the HarishChandra-Itzykson-Zuber integral[END_REF][START_REF] Saïd | Analysis on flat symmetric spaces[END_REF], where the authors give explicit formulas for Φ λ ((m l , m s ), t) only for some Riemannian symmetric pairs or for particular values of r.

  if we write the multiplicity function m as (m Σ\O , m O ), where m Σ\O : Σ \ O → N and m O : O → N, then each component is a constant function. By abuse of notation, we will denote m Σ\O (α), for all α ∈ Σ \ O, by m Σ\O , and m O (α), for all α ∈ O, by m O .
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 41 Suppose f 1 , f 2 , . . . , f r are smooth functions on a real interval I. Let F (x 1 , . . . , x r ) := det 1≤i,j≤r

. 10 )

 10 It follows that the Bessel function associated with (e 6(-26) , f 4(-20) ) is given by
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 33 The symmetric pair (sp(r, C), sp(r, R)). For the present caseΨ λ ((2, 0), t) = σ∈Sr r i=1

  + 2k, r) so(r + 2k -1, 1) × so(r -1, 1) so * (4r) su * (2r) × R sp(r, r) sp(r, C)e 7(-25) e 6(-26) × R Then the function λ → Ψ λ ((m l , m s ), t) extends meromorphically in the product domain D r m l with the following possible poles λ, α = 0 (∀α ∈ Σ + c ), of order ≤ m c -2, λ, α = 0 (∀α ∈ Σ + n ), of order ≤ m n -1.

  g d := k d ⊕ p d is a semisimple Lie algebra with Cartan involution θ |g d , and k d is the corresponding maximal compactly embedded subalgebra. Denote by G d and K d the analytic Lie subgroups of G C with Lie algebras g d and k d respectively. The symmetric space G d /K d is the so-called Riemannian dual of G/H. The NCC structure of G/H implies that G d /K d ≃ G/K.
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 2122 |Σ + c ∩Os|+ρn(m) 2 ms|Σ + ∩Os| c 0 (m, ρ(m)) α∈Σ + ∩Os λ, α -ms G(2 • 1 Os , (m l , m s -2)) • • • • • G(2 • 1 Os , (m l , 0)) Φ λ ((m l , 0), t), where Φ λ ((m l , 0), t) = π -r/2 ω∈W r i=1 (2t i ω(λ i )) -m l 2 + t i ω(λ i )).Now one may continue the discussion as in Section 4 to obtain explicit formulas for the Bessel functions Φ λ ((m l , m s ), t) associated with the following Riemannian symmetric pairs: + 1, C) so(2r + 1) so(r + 2k, r) so(r + 2k) × so(r)C r su(r, r) s(u(r) ⊕ u(r)) so * (4r)

  function, and it is well known that ϕ λ (m, •) is an eigenfunction of all G-invariant differential operators on G/H. The function ϕ λ (m, •) : S → C is the so-called spherical function on G/H. Define the open Weyl chamber a -⊂ a by

  .14) 4.4.1. The symmetric pair (so(2r, C), so * (2r)). It is easy to check that

K0(-z) = K0(z) -iπI0(z) (cf.[25, p. 428])