Maximal slope of tensor product of Hermitian vector bundles

Huayi Chen

To cite this version:

Huayi Chen. Maximal slope of tensor product of Hermitian vector bundles. Journal of Algebraic Geometry, 2009, 18 (3), pp.575-603. 10.1090/S1056-3911-08-00513-4 . hal-00151961v2

HAL Id: hal-00151961
 https://hal.science/hal-00151961v2

Submitted on 2 Jan 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Maximal slope of tensor product of Hermitian vector bundles

Chen Huayi*

January 2, 2008

Abstract

We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski's First Theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle \bar{M} of the tensor product. In the case where the generic fiber of M is semistable in the sense of geometric invariant theory, the estimation is established by constructing (through the classical invariant theory) a special polynomial which does not vanish on the generic fibre of M. Otherwise we use an explicte version of a result of Ramanan and Ramanathan to reduce the general case to the former one.

1 Introduction

It is well known that on a projective and smooth curve defined over a field of characteristic 0 , the tensor product of two semistable vector bundles is still semistable. This result has been firstly proved by Narasimhan and Seshadri NS65 by using analytic method in the complex algebraic geometry framework. Then this result has been reestablished by Ramanan and Ramanathan RR84 in purely algebraic context, through the geometric invariant theory. Their method is based on a result of Kempf Kem78, which has also been independently obtained by Rousseau Rou78], generalizing the Hilbert-Mumford criterion MFK94 of semistability in the sense of geometric invariant theory. By reformulating the results of Kempf and RamananRamanathan, Totaro Tot96] (see also dS] for a review) has given a new proof of a conjecture due to Fontaine [Fon79], which had been firstly proved by Faltings [Fal89] asserting that the tensor product of two semistable admissible filtered isocristals is still semistable.

Let us go back to the case of vector bundles. Consider a smooth projective curve C defined over a field k. For any non-zero vector bundle E on C, the slope of E is defined as the quotient of its degree by its rank and is denoted by $\mu(E)$. The maximal slope $\mu_{\max }(E)$ of E is the maximal value of slopes of all non-zero subbundles of E. By definition, $\mu(E) \leq \mu_{\max }(E)$. We say that E is semistable if the equality $\mu(E)=\mu_{\max }(E)$ holds. If E and F are two non-zero vector bundles on C, then $\mu(E \otimes F)=\mu(E)+\mu(F)$. The result of Ramanan-Ramanathan [RR84] implies that, if k is of characteristic 0 , then the equality holds for maximal slopes, i.e., $\mu_{\max }(E \otimes F)=\mu_{\max }(E)+\mu_{\max }(F)$. When the characteristic of k is positive, this equality is not true in general (see Gie73] for a counter-example). Nevertheless, there always exists a constant a which only depends on C such that

$$
\begin{equation*}
\mu_{\max }(E)+\mu_{\max }(F) \leq \mu_{\max }(E \otimes F) \leq \mu_{\max }(E)+\mu_{\max }(F)+a . \tag{1}
\end{equation*}
$$

[^0]Hermitian vector bundles play in Arakelov geometry the role of vector bundles in algebraic geometry. Let K be a number field and \mathcal{O}_{K} be its integer ring. We denote by Σ_{∞} the set of all embeddings of K into \mathbb{C}. A Hermitian vector bundle $\bar{E}=(E, h)$ on $\operatorname{Spec} \mathcal{O}_{K}$ is by definition a projective \mathcal{O}_{K}-module of finite type E together with a family of Hermitian metrics $h=\left(\|\cdot\|_{\sigma}\right)_{\sigma \in \Sigma_{\infty}}$, where for any $\sigma \in \Sigma_{\infty},\|\cdot\|_{\sigma}$ is a Hermitian norm on $E \otimes_{\mathcal{O}_{K}, \sigma} \mathbb{C}$, subject to the condition that the data $\left(\|\cdot\|_{\sigma}\right)_{\sigma \in \Sigma_{\infty}}$ is invariant by the complex conjugation. That is, for any $e \in E, z \in \mathbb{C}$ and $\sigma \in \Sigma_{\infty}$, we have $\|e \otimes \bar{z}\|_{\bar{\sigma}}=\|e \otimes z\|_{\sigma}$.

The (normalized) Arakelov degree of a Hermitian vector bundle \bar{E} of rank r on $\operatorname{Spec} \mathcal{O}_{K}$ is defined as

$$
\widehat{\operatorname{deg}}_{n} \bar{E}=\frac{1}{[K: \mathbb{Q}]}\left(\log \#\left(E / \mathcal{O}_{K} s_{1}+\cdots+\mathcal{O}_{K} s_{r}\right)-\frac{1}{2} \sum_{\sigma \in \Sigma_{\infty}} \log \operatorname{det}\left(\left\langle s_{i}, s_{j}\right\rangle_{\sigma}\right)\right)
$$

where $\left(s_{1}, \cdots, s_{r}\right)$ is an arbitrary element in E^{r} which defines a basis of E_{K} over K. This definition does not depend on the choice of $\left(s_{1}, \cdots, s_{r}\right)$. The function $\widehat{\operatorname{deg}}_{n}$ is invariant by any finite extension of K. That is, if K^{\prime} / K is a finite extension and if $E^{\prime}=E \otimes \mathcal{O}_{K} \mathcal{O}_{K^{\prime}}$, then $\widehat{\operatorname{deg}}_{n}\left(\bar{E}^{\prime}\right)=\widehat{\operatorname{deg}}_{n}(\bar{E})$. The slope of a non-zero Hermitian vector bundle \bar{E} on $\operatorname{Spec} \mathcal{O}_{K}$ is defined as the quotient $\widehat{\mu}(\bar{E}):=\widehat{\operatorname{deg}}_{n}(\bar{E}) / \operatorname{rk}(E)$. For more details, see Bos96, Bos01, CL02.

We say that a non-zero Hermitian vector bundle \bar{E} is semistable if the maximal slope $\widehat{\mu}_{\max }(\bar{E})$ of \bar{E}, defined as the maximal value of slopes of its non-zero Hermitian subbundles, equals its slope. If \bar{E} is a non-zero Hermitian vector bundle on $\operatorname{Spec} \mathcal{O}_{K}$, Stuhler Stu76 and Grayson Gra84 have proved that there exists a unique Hermitian subbundle $\bar{E}_{\text {des }}$ of \bar{E} having $\widehat{\mu}_{\max }(\bar{E})$ as its slope and containing all Hermitian subbundle \bar{F} of \bar{E} such that $\widehat{\mu}(\bar{F})=\widehat{\mu}_{\max }(\bar{E})$. Clearly \bar{E} is semistable if and only if $\bar{E}=\bar{E}_{\text {des }}$. If it is not the case, then $\bar{E}_{\text {des }}$ is said to be the Hermitian subbundle which destabilizes \bar{E}.

In a lecture at Oberwolfach, J.-B. Bost Bos97 has conjectured that the tensor product of two semistable Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$ is semistable. This conjecture is equivalent to the assertion that for any non-zero Hermitian vector bundles \bar{E} and \bar{F} on $\operatorname{Spec} \mathcal{O}_{K}$,

$$
\widehat{\mu}_{\max }(\bar{E} \otimes \bar{F})=\widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F}) .
$$

We always have the inequality $\widehat{\mu}_{\max }(\bar{E} \otimes \bar{F}) \geq \widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F})$. But the inverse inequality remains open. Several special cases of this conjecture have been proved. Some estimations of type (11) have been established with error terms depending on the ranks of the vector bundles and on the number field K. We resume some known results on this conjecture.

1) By definition of the maximal slope, if \bar{E} is a non-zero Hermitian vector bundle and if \bar{L} is a Hermitian line bundle, that is, a Hermitian vector bundle of rank one, then

$$
\widehat{\mu}_{\max }(\bar{E} \otimes \bar{L})=\widehat{\mu}_{\max }(\bar{E})+\widehat{\operatorname{deg}}_{n}(\bar{L})=\widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{L}) .
$$

The geometric counterpart of this equality is also true for positive characteristic case.
2) De Shalit and Parzanovski dSP06 have proved that, if \bar{E} and \bar{F} are two semistable Hermitian vector bundles on Spec \mathbb{Z} such that $\operatorname{rk} E+\operatorname{rk} F \leq 5$, then $\bar{E} \otimes \bar{F}$ is semistable.
3) In Bos96 (see also Gra00), using the comparison of a Hermitian vector bundle to a direct sum of Hermitian line bundles, Bost has proved that

$$
\widehat{\mu}_{\max }\left(\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}\right) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+3 \mathrm{rk} E_{i} \log \left(\mathrm{rk} E_{i}\right)\right)
$$

for any family of non-zero Hermitian vector bundles $\left(\bar{E}_{i}\right)_{i=1}^{n}$ on $\operatorname{Spec} \mathcal{O}_{K}$.
4) Recently, Bost and Künnemann BK07 have proved that, if K is a number field and if \bar{E} and \bar{F} are two non-zero Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$, then

$$
\widehat{\mu}_{\max }(\bar{E} \otimes \bar{F}) \leq \widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F})+\frac{1}{2}(\log \mathrm{rk} E+\log \mathrm{rk} F)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]}
$$

where Δ_{K} is the discriminant of K.
We state the main result of this article as follows:
Theorem 1.1 Let K be a number field and \mathcal{O}_{K} be its integer ring. If $\left(\bar{E}_{i}\right)_{i=1}^{n}$ is a family of non-zero Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$, then

$$
\begin{equation*}
\widehat{\mu}_{\max }\left(\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}\right) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\operatorname{rk} E_{i}\right)\right) . \tag{2}
\end{equation*}
$$

The idea goes back to an article of Bost Bos94 inspired by Bogomolov Ray81, Gieseker Gie77 and Cornalba-Harris CH88]. In an article of Gasbarri Gas00 appears also a similar idea. By Minkowski's First Theorem, we reduce our problem to finding an upper bound for the Arakelov degree of an arbitrary Hermitian line subbundle \bar{M} of $\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}$. In the case where M_{K} is semistable (in the sense of geometric invariant theory) for the action of $\mathbb{G} \mathbb{L}\left(E_{1, K}\right) \times \cdots \times \mathbb{G} \mathbb{L}\left(E_{n, K}\right)$, the classical invariant theory gives invariant polynomials with coefficients in \mathbb{Z} whose Archimedian norms are "small". The general case can be reduced to the former one using an explicit version of a result of Ramanan-Ramanathan RR84.

The structure of this article is as follows. In the second section we fix the notation and present some preliminary results. In the third section we recall the first principal theorem in classical invariant theory and discuss some generalizations in the case of several vector spaces. We then establish in the fourth section an upper bound for the Arakelov degree of a Hermitian line subbundle with semistable hypothesis. The fifth section is contributed to some basic notions for filtrations in the category of vector spaces. Then in the sixth section, we state an explicit version of a result of Ramanan-Ramanathan in our context and, following the method of Totaro, give a proof for it. In the seventh section is presented a criterion of semistability (for Hermitian vector bundles) which is an arithmetic analogue of a result of Bogomolov. In the eighth section, we explain how to use the result in previous sections to reduce the majoration of the Arakelov degree of an arbitrary Hermitian line subbundle to the case with semistability hypothesis, which has already been discussed in the fourth section. Finally, we give the proof of Theorem 1.1 in the ninth section.

The result presented here is part of my doctorial thesis Che06, supervised by J.-B. Bost. The ideas in this article are largely inspired by his article Bos94 and his personal notes. I would like to thank him deeply for his instruction and his sustained encouragement. During my visit to Institut Joseph Fourier in Grenoble, E. Gaudron pointed out to me that the method in this article, combined with his recent result Gau07, leads to an estimation which is similar to (2) for the tensor product of Adelic vector bundles. I am grateful to him for discussions and for suggestions. I would also like to express my gratitude to the referee for his/her very careful reading and for his/her numerous useful suggestions to improve the writing of this article.

2 Notation and preliminary results

Throughout this article, if K is a field and if V is a vector space of finite rank over K, we denote by $\mathbb{P}(V)$ the K-scheme which represents the functor

$$
\left.\begin{array}{ccc}
\text { Schemes } / K & \longrightarrow & \text { Sets } \\
(p: S \rightarrow \text { Spec } K) & \longmapsto & \left\{\begin{array}{c}
\text { locally free quotient } \\
\text { of rank } 1 \text { of } p^{*} V
\end{array}\right. \tag{3}
\end{array}\right\}
$$

In particular, $\mathbb{P}(V)(K)$ classifies all hyperplanes in V, or equivalently, all lines in V^{\vee}. We denote by $\mathcal{O}_{V}(1)$ the canonical line bundle on $\mathbb{P}(V)$. In other words, if $\pi: \mathbb{P}(V) \rightarrow \operatorname{Spec} K$ is the structural morphism, then $\mathcal{O}_{V}(1)$ is the quotient of $\pi^{*} V$ defined by the universal object of the representable functor (3). For any integer $m \geq 1$, we use the expression $\mathcal{O}_{V}(m)$ to denote the line bundle $\mathcal{O}_{V}(1)^{\otimes m}$.

Let G be an algebraic group over $\operatorname{Spec} K$ and X be a projective variety over Spec K. Suppose that G acts on X and that L is an ample G-linearized line bundle on X. We say that a rational point x of X is semistable for the action of G relatively to L if there exists an integer $D \geq 1$ and a section $s \in H^{0}\left(X, L^{\otimes D}\right)$ invariant by the action of G such that x lies in the open subset of X defined by the non-vanishing of s. Clearly x is semistable for the action of G relatively to L if and only if it is semistable for the action of G relatively to any strictly positive tensor power of L.

In particular, if $G(K)$ acts linearly on a vector space V of finite rank over K, then the action of G on V induces naturally an action of G on $\mathbb{P}(V)$, and $\mathcal{O}_{V}(1)$ becomes a G-linearized line bundle. Let R be a vector subspace of rank 1 of V^{\vee}, which is viewed as a point in $\mathbb{P}(V)(K)$. Then R is semistable for the action of G relatively to $\mathcal{O}_{V}(1)$ if and only if there exists an integer $m \geq 1$ and a non-zero section $s \in H^{0}\left(\mathbb{P}(V), \mathcal{O}_{V}(m)\right)=S^{m} V$ which is invariant by the action of $G(K)$ such that the composed homomorphism $R \longrightarrow V^{\vee} \xrightarrow{s} K$ is non-zero.

We present some estimations for maximal slopes in geometric case. Let k be an arbitrary field and C be a smooth projective curve of genus g defined over k. Let $b=\min \{\operatorname{deg}(L) \mid L \in$ $\operatorname{Pic}(C), L$ is ample $\}$ and let $a=b+g-1$.

Lemma 2.1 Let E be a non-zero vector bundle on C. If $H^{0}(C, E)=0$, then $\mu_{\max }(E) \leq g-1$.

Proof. Since $H^{0}(C, E)=0$, for any non-zero subbundle F of E, we also have $H^{0}(C, F)=0$. Recall that the Riemann-Roch theorem asserts that

$$
\mathrm{rk}_{k} H^{0}(C, F)-\mathrm{rk}_{k} H^{1}(C, F)=\operatorname{deg}(F)+\operatorname{rk}(F)(1-g)
$$

Then $\operatorname{deg}(F)+\operatorname{rk}(F)(1-g) \leq 0$, which implies $\mu(F) \leq g-1$. Since F is arbitrary, $\mu_{\max }(E) \leq$ $g-1$.

Proposition 2.2 For any non-zero vector bundles E and F on C, we have the inequality

$$
\mu_{\max }(E)+\mu_{\max }(F) \leq \mu_{\max }(E \otimes F) \leq \mu_{\max }(E)+\mu_{\max }(F)+a
$$

where $a=b+g-1$ only depends on C.

Proof. 1) Let E_{1} be a subbundle of E such that $\mu\left(E_{1}\right)=\mu_{\max }(E)$ and let F_{1} be a subbundle of F such that $\mu\left(F_{1}\right)=\mu_{\max }(F)$. Since $E_{1} \otimes F_{1}$ is a subbundle of $E \otimes F$, we obtain

$$
\mu_{\max }(E)+\mu_{\max }(F)=\mu\left(E_{1}\right)+\mu\left(F_{1}\right)=\mu\left(E_{1} \otimes F_{1}\right) \leq \mu_{\max }(E \otimes F)
$$

which is the first inequality.
2) We first prove that, if E^{\prime} and $E^{\prime \prime}$ are two non-zero vector bundles on C such that $\mu_{\max }\left(E^{\prime}\right)+\mu_{\max }\left(E^{\prime \prime}\right)<0$, then $\mu_{\max }\left(E^{\prime} \otimes E^{\prime \prime}\right) \leq g-1$. In fact, if $\mu_{\max }\left(E^{\prime} \otimes E^{\prime \prime}\right)>g-1$, then by Lemma 2.1, $H^{0}\left(C, E^{\prime} \otimes E^{\prime \prime}\right) \neq 0$. Therefore, there exists a non-zero homomorphism φ from $E^{\prime \vee}$ to $E^{\prime \prime}$. Let G be the image of φ, which is non-zero since φ is non-zero. The vector bundle G is a subbundle of $E^{\prime \prime}$ and a quotient bundle of $E^{\prime \vee}$. Hence G^{\vee} is a subbundle of $E^{\prime \vee \vee} \cong E^{\prime}$. Therefore, we have $\mu(G) \leq \mu_{\max }\left(E^{\prime \prime}\right)$ and $\mu\left(G^{\vee}\right)=-\mu(G) \leq \mu_{\max }\left(E^{\prime}\right)$. By taking the sum, we obtain $\mu_{\max }\left(E^{\prime}\right)+\mu_{\max }\left(E^{\prime \prime}\right) \geq 0$.

We now prove the second inequality in the proposition. By definition of b, there exists a line bundle M such that $-b \leq \mu_{\max }(E)+\mu_{\max }(F)+\operatorname{deg}(M)=\mu_{\max }(E \otimes M)+\mu_{\max }(F)<0$. Then, by combining the previously proved result, we obtain $\mu_{\max }(E \otimes M \otimes F) \leq g-1$. Therefore,

$$
\mu_{\max }(E \otimes F) \leq g-1-\operatorname{deg}(M) \leq \mu_{\max }(E)+\mu_{\max }(F)+g+b-1
$$

We now recall some classical results in Arakelov theory, which will be useful afterwards. We begin by introducing the notation.

Let \bar{E} be a Hermitian vector bundle on $\operatorname{Spec} \mathcal{O}_{K}$. For any finite place \mathfrak{p} of K, we denote by $K_{\mathfrak{p}}$ the completion of K with respect to \mathfrak{p}, equipped with the absolute value $|\cdot|_{\mathfrak{p}}$ which is normalized as $|\cdot|_{\mathfrak{p}}=\#\left(\mathcal{O}_{K} / \mathfrak{p}\right)^{-v_{\mathfrak{p}}(\cdot)}$ with $v_{\mathfrak{p}}$ being the discrete valuation associated to \mathfrak{p}. The structure of \mathcal{O}_{K}-module on E induces naturally a norm $\|\cdot\|_{\mathfrak{p}}$ on $E_{K_{\mathfrak{p}}}:=E \otimes_{K} K_{\mathfrak{p}}$ such that $E_{K_{\mathfrak{p}}}$ becomes a Banach space over $K_{\mathfrak{p}}$.

If \bar{L} is a Hermitian line bundle on $\operatorname{Spec} \mathcal{O}_{K}$ and if s is an arbitrary non-zero element in L, then

$$
\widehat{\operatorname{deg}}_{n}(\bar{L})=\frac{1}{[K: \mathbb{Q}]}\left(\log \#\left(L / \mathcal{O}_{K} s\right)-\sum_{\sigma: K \rightarrow \mathbb{C}} \log \|s\|_{\sigma}\right)
$$

which can also be written as

$$
\begin{equation*}
\widehat{\operatorname{deg}}_{n}(\bar{L})=-\frac{1}{[K: \mathbb{Q}]}\left(\sum_{\mathfrak{p}} \log \|s\|_{\mathfrak{p}}+\sum_{\sigma: K \rightarrow \mathbb{C}} \log \|s\|_{\sigma}\right) \tag{4}
\end{equation*}
$$

Note that this formula is analogous to the degree function of a line bundle on a smooth projective curve. Similarly to the geometric case, for any Hermitian vector bundle \bar{E} of rank r on $\operatorname{Spec} \mathcal{O}_{K}$, we have

$$
\begin{equation*}
\widehat{\operatorname{deg}}_{n}(\bar{E})=\widehat{\operatorname{deg}}_{n}\left(\Lambda^{r} \bar{E}\right) \tag{5}
\end{equation*}
$$

where $\Lambda^{r} \bar{E}$ is the $r^{\text {th }}$ exterior power of \bar{E}, that is, the determinant of \bar{E}, which is a Hermitian line bundle. Furthermore, if $0 \longrightarrow \bar{E}^{\prime} \longrightarrow \bar{E} \longrightarrow \bar{E}^{\prime \prime} \longrightarrow 0$ is a short exact sequence of Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$, the following equality holds:

$$
\begin{equation*}
\widehat{\operatorname{deg}}_{n}(\bar{E})=\widehat{\operatorname{deg}}_{n}\left(\bar{E}^{\prime}\right)+\widehat{\operatorname{deg}}_{n}\left(\bar{E}^{\prime \prime}\right) \tag{6}
\end{equation*}
$$

Lemma 2.3 If \bar{E} and \bar{F} are two Hermtian vector bundles of ranks r_{1} and r_{2} on $\operatorname{Spec} \mathcal{O}_{K}$, respectively. Then

$$
\begin{equation*}
\widehat{\operatorname{deg}}_{n}(\bar{E} \otimes \bar{F})=\operatorname{rk}(E) \widehat{\operatorname{deg}}_{n}(\bar{F})+\operatorname{rk}(F) \widehat{\operatorname{deg}}_{n}(\bar{E}) . \tag{7}
\end{equation*}
$$

Proof. The determinant Hermitian line bundle $\Lambda^{r_{1}+r_{2}}(\bar{E} \otimes \bar{F})$ is isomorphic to $\left(\Lambda^{r_{1}} \bar{E}\right)^{\otimes r_{2}} \otimes$ $\left(\Lambda^{r_{2}} \bar{F}\right)^{\otimes r_{1}}$. Taking Arakelov degree and using (5) we obtain (7).

We establish below the arithmetic analogue to the first inequality in Proposition 2.2.
Proposition 2.4 Let \bar{E} and \bar{F} be two non-zero Hermitian vector bundles on Spec \mathcal{O}_{K}. Then

$$
\widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F}) \leq \widehat{\mu}_{\max }(\bar{E} \otimes \bar{F})
$$

Proof. Let $\bar{E}_{\text {des }}$ and \bar{F} des be the Hermitian subbundles of \bar{E} and of \bar{F} respectively as defined in Section 田. By definition, $\widehat{\mu}\left(\bar{E}_{\text {des }}\right)=\widehat{\mu}_{\max }(\bar{E})$ and $\widehat{\mu}\left(\bar{F}_{\text {des }}\right)=\widehat{\mu}_{\max }(\bar{F})$. Since $\bar{E}_{\text {des }} \otimes \bar{F}_{\text {des }}$ is a Hermitian vector subbundle of $\bar{E} \otimes \bar{F}$, we obtain

$$
\widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F})=\widehat{\mu}\left(\bar{E}_{\mathrm{des}}\right)+\widehat{\mu}\left(\bar{F}_{\mathrm{des}}\right)=\widehat{\mu}\left(\bar{E}_{\mathrm{des}} \otimes \bar{F}_{\mathrm{des}}\right) \leq \widehat{\mu}_{\max }(\bar{E} \otimes \bar{F})
$$

where the second equality results from (7).

Corollary 2.5 Let $\left(\bar{E}_{i}\right)_{1 \leq i \leq n}$ be a finite family of non-zero Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$. Then the following equality holds:

$$
\begin{equation*}
\widehat{\mu}_{\max }\left(\bar{E}_{1}\right)+\cdots+\widehat{\mu}_{\max }\left(\bar{E}_{n}\right) \leq \widehat{\mu}_{\max }\left(\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}\right) \tag{8}
\end{equation*}
$$

Let \bar{E} and \bar{F} be two Hermitian vector bundles and $\varphi: E_{K} \rightarrow F_{K}$ be a non-zero K-linear homomorphism. For any finite place \mathfrak{p} of K, we denote by $h_{\mathfrak{p}}(\varphi)$ the real number $\log \left\|\varphi_{\mathfrak{p}}\right\|$, where $\varphi_{\mathfrak{p}}: E_{K_{\mathfrak{p}}} \rightarrow F_{K_{\mathfrak{p}}}$ is induced from φ by scalar extension. Note that if φ is induced by an \mathcal{O}_{K}-homomorphism from E to F, then $h_{\mathfrak{p}}(\varphi) \leq 0$ for any finite place \mathfrak{p}. Similarly, for any embedding $\sigma: K \rightarrow \mathbb{C}$, we define $h_{\sigma}(\varphi)=\log \left\|\varphi_{\sigma}\right\|$, where $\varphi_{\sigma}: E_{\sigma, \mathbb{C}} \rightarrow F_{\sigma, \mathbb{C}}$ is given by the scalar extension σ. Finally, we define the height of φ as

$$
h(\varphi)=\frac{1}{[K: \mathbb{Q}]}\left(\sum_{\mathfrak{p}} h_{\mathfrak{p}}(\varphi)+\sum_{\sigma: K \rightarrow \mathbb{C}} h_{\sigma}(\varphi)\right) .
$$

Proposition 2.6 (Bos96]) Let \bar{E} and \bar{F} be two Hermitian vector bundles on Spec \mathcal{O}_{K} and $\varphi: E_{K} \rightarrow F_{K}$ be a K-linear homomorphism.

1) If φ is injective, then

$$
\begin{equation*}
\widehat{\mu}(\bar{E}) \leq \widehat{\mu}_{\max }(\bar{F})+h(\varphi) . \tag{9}
\end{equation*}
$$

2) If φ is non-zero, then

$$
\begin{equation*}
\widehat{\mu}_{\min }(\bar{E}) \leq \widehat{\mu}_{\max }(\bar{E})+h(\varphi) \tag{10}
\end{equation*}
$$

where $\widehat{\mu}_{\min }(\bar{E})$ is the minimal value of slopes of all non-zero Hermitian vector quotient bundles of \bar{E}.

For any non-zero Hermitian vector bundle \bar{E} on $\operatorname{Spec} \mathcal{O}_{K}$, let udeg$\widehat{d e}_{n}(\bar{E})$ be the maximal degree of line subbundles of \bar{E}. We recall a result of Bost and Künnemann comparing the maximal degree and the maximal slope of \bar{E}, which is a variant of Minkowski's First Theorem.

Proposition 2.7 (BK07 (3.27)) Let \bar{E} be a non-zero Hermitian vector bundle on $\operatorname{Spec} \mathcal{O}_{K}$. Then

$$
\begin{equation*}
\widehat{\operatorname{udeg}}_{n}(\bar{E}) \leq \widehat{\mu}_{\max }(\bar{E}) \leq \widehat{\mathrm{udeg}}_{n}(\bar{E})+\frac{1}{2} \log (\operatorname{rk} E)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]} \tag{11}
\end{equation*}
$$

where Δ_{K} is the discriminant of K.

3 Reminder on invariant theory

In this section we recall some known results in classical invariant theory. We fix K to be a field of characteristic 0 . If V is a vector space over K and if $u \in \mathbb{N}$, then the expression $V^{\otimes(-u)}$ denotes the space $V^{\vee \otimes u}$.

Let V be a finite dimensional non-zero vector space over K. For any $u \in \mathbb{N}$, we denote by $J_{u}: \operatorname{End}_{K}(V)^{\otimes u} \rightarrow \operatorname{End}_{K}\left(V^{\otimes u}\right)$ the K-linear homomorphism (of vector spaces) which sends the tensor product $T_{1} \otimes \cdots \otimes T_{u}$ of u elements in $\operatorname{End}_{K}(V)$ to their tensor product as an endomorphism of $V^{\otimes u}$. The mapping J_{u} is actually a homomorphism of K-algebras. Furthermore, as a homomorphism of vector spaces, J_{u} can be written as the composition of the following natural isomorphisms:

$$
\operatorname{End}_{K}(V)^{\otimes u} \longrightarrow\left(V^{\vee} \otimes V\right)^{\otimes u} \longrightarrow\left(V^{\vee}\right)^{\otimes u} \otimes V^{\otimes u} \longrightarrow\left(V^{\otimes u}\right)^{\vee} \otimes V^{\otimes u} \longrightarrow \operatorname{End}_{K}\left(V^{\otimes u}\right),
$$

so is itself an isomorphism. Moreover, there exists an action of the symmetric group \mathfrak{S}_{u} on $V^{\otimes u}$ by permuting the factors. This representation of \mathfrak{S}_{u} defines a homomorphism from the group algebra $K\left[\mathfrak{S}_{u}\right]$ to $\operatorname{End}_{K}\left(V^{\otimes u}\right)$. The elements of \mathfrak{S}_{u} act by conjugation on $\operatorname{End}_{K}\left(V^{\otimes u}\right)$. If we identify $\operatorname{End}_{K}\left(V^{\otimes u}\right)$ with $\operatorname{End}_{K}(V)^{\otimes u}$ by the isomorphism J_{u}, then the corresponding \mathfrak{S}_{u}-action is just the permutation of factors in tensor product. Finally the group $\mathrm{GL}_{K}(V)$ acts diagonally on $V^{\otimes u}$.

When $u=0, J_{0}$ reduces to the identical homomorphism Id: $K \rightarrow K$, and \mathfrak{S}_{0} reduces to the group of one element. The "diagonal" action of $\mathrm{GL}_{K}(V)$ on $V^{\otimes 0} \cong K$ is trivial.

We recall below the "first principal theorem" of classical invariant theory (cf. Wey97] Chapter III, see also ABP73 Appendix 1 for a proof).

Theorem 3.1 Let V be a finite dimensional non-zero vector space over K. Let $u \in \mathbb{N}$ and $v \in \mathbb{Z}$. If T is a non-zero element in $V^{\vee} \otimes u \otimes V^{\otimes v}$, which is invariant by the action of $\mathrm{GL}_{K}(V)$, then $u=v$, and T is a linear combination of permutations in \mathfrak{S}_{u} acting on V (here we identify $V^{\vee \otimes u} \otimes V^{\otimes u}$ with $\left.\operatorname{End}_{K}\left(V^{\otimes u}\right)\right)$.

We now present a generalization of Theorem 3.1 to the case of several linear spaces. In the rest of this section, we fix a family $\left(V_{i}\right)_{1 \leq i \leq n}$ of finite dimensional non-zero vector space over K. For any mapping $\alpha:\{1, \cdots, n\} \rightarrow \mathbb{Z}$, we shall use the notation

$$
\begin{equation*}
V^{\alpha}:=V_{1}^{\otimes \alpha(1)} \otimes \cdots \otimes V_{n}^{\otimes \alpha(n)} \tag{12}
\end{equation*}
$$

to simplify the writing. Denote by G the algebraic group $\mathbb{G L}_{K}\left(V_{1}\right) \times_{K} \cdots \times_{K} \mathbb{G}_{\mathbb{L}_{K}}\left(V_{n}\right)$. Then $G(K)$ is the group $\mathrm{GL}_{K}\left(V_{1}\right) \times \cdots \times \mathrm{GL}_{K}\left(V_{n}\right)$. For any mapping $\alpha:\{1, \cdots, n\} \rightarrow \mathbb{N}$ with natural integer values, we denote by \mathfrak{S}_{α} the product $\mathfrak{S}_{\alpha(1)} \times \cdots \times \mathfrak{S}_{\alpha(n)}$ of symmetric groups. We have a natural isomorphism of K-algebras from $\operatorname{End}_{K}\left(V^{\alpha}\right)$ to $\operatorname{End}_{K}\left(V_{1}\right)^{\otimes \alpha(1)} \otimes_{K}$ $\cdots \otimes_{K} \operatorname{End}_{K}\left(V_{n}\right)^{\otimes \alpha(n)}$. The group $G(K)$ acts naturally on V^{α} and the group \mathfrak{S}_{α} acts on V^{α} by permutating tensor factors. By using induction on n, Theorem 3.1 implies the following corollary:

Corollary 3.2 With the notation above, if $\alpha:\{1, \cdots, n\} \rightarrow \mathbb{N}$ and $\beta:\{1, \cdots, n\} \rightarrow \mathbb{Z}$ are two mappings and if T is a non-zero element in $\left(V^{\alpha}\right)^{\vee} \otimes V^{\beta}$ which is invariant by the action of $G(K)$, then $\alpha=\beta$, and T is a linear combination of elements in \mathfrak{S}_{α} acting on V^{α}.

Let \mathcal{A} be a finite family of mappings from $\{1, \cdots, n\}$ to \mathbb{N} and $\left(b_{i}\right)_{1 \leq i \leq n}$ be a family of integers. We denote by W the vector space $\bigoplus_{\alpha \in \mathcal{A}} V^{\alpha}$. Note that the group $G(K)$ acts naturally
on W. Let L be the $G(K)$-module $\left(\operatorname{det} V_{1}\right)^{\otimes b_{1}} \otimes \cdots \otimes\left(\operatorname{det} V_{n}\right)^{\otimes b_{n}}$. For any integer $D \geq 1$ and any element $\underline{\alpha}=\left(\alpha_{j}\right)_{1 \leq j \leq D} \in \mathcal{A}^{D}$, let

$$
\mathrm{pr}_{\underline{\alpha}}: W^{\otimes D} \longrightarrow V^{\alpha_{1}} \otimes \cdots \otimes V^{\alpha_{D}}
$$

be the canonical projection. For any integer $i \in\{1, \cdots, n\}$, let r_{i} be the rank of V_{i} over K. Finally let $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K be the canonical morphism.

Theorem 3.3 With the notation above, if m is a strictly positive integer and if R is a vector subspace of rank 1 of W (considered as a rational point of $\left.\mathbb{P}\left(W^{\vee}\right)\right)$ which is semistable for the action of G relatively to $\mathcal{O}_{W \vee}(m) \otimes \pi^{*} L$, then there exists an integer $D \geq 1$ and a family $\underline{\alpha}=$ $\left(\alpha_{j}\right)_{1 \leq j \leq m D}$ of elements in \mathcal{A} such that, by noting $A=\alpha_{1}+\cdots+\alpha_{m D}$, we have $A(i)=D b_{i} r_{i}$ and hence $b_{i} \geq 0$ for any i.

Furthermore, there exists an element $\sigma \in \mathfrak{S}_{A}$ such that the composition of homomorphisms

does not vanish, where the first arrow is induced by the canonical inclusion of $R^{\otimes n D}$ in $W^{\otimes n D}$.
Proof. Since R is semistable for the action of G relatively to $\mathcal{O}_{W^{\vee}}(m) \otimes \pi^{*} L$, there exists an integer $D \geq 1$ and an element $s \in S^{m D}\left(W^{\vee}\right) \otimes L^{\otimes D}$ which is invariant by the action of $G(K)$ such that the composition of homomorphisms

$$
R^{\otimes m D} \otimes L^{\vee \otimes D} \longrightarrow S^{m D}\left(W^{\vee}\right)^{\vee} \otimes L^{\vee \otimes D} \xrightarrow{s} K
$$

does not vanish, the first arrow being the canonical inclusion.
As K is of characteristic $0, S^{m d}\left(W^{\vee}\right)$ is a direct factor as a GL (W)-module of $W^{\vee \otimes m D}$. Hence $S^{m D}\left(W^{\vee}\right) \otimes L^{\otimes D}$ is a direct factor as a $G(K)$-module of $W^{\vee \otimes m D} \otimes L^{\otimes D}$. So we can choose $s^{\prime} \in W^{\vee} \otimes m D \otimes L^{\otimes D}$ invariant by the action of $G(K)$ such that the class of s^{\prime} in $S^{m D}\left(W^{\vee}\right) \otimes L^{\otimes D}$ coincides with s. There then exists $\underline{\alpha}=\left(\alpha_{j}\right)_{1 \leq j \leq m D} \in \mathcal{A}^{D}$ such that the composition

$$
R^{\otimes m D} \otimes L^{\vee \otimes D} \longrightarrow W^{\otimes m D} \otimes L^{\vee \otimes D} \xrightarrow{\mathrm{pr}_{\underline{\alpha}} \otimes \mathrm{Id}} V^{A} \otimes L^{\vee \otimes D} \xrightarrow{s_{\underline{\alpha}}^{\prime}} K
$$

is non-zero, where $A=\alpha_{1}+\cdots+\alpha_{m D}$ and $s_{\underline{\alpha}}^{\prime}$ is the component of index $\underline{\alpha}$ of s^{\prime}. Let $B:\{1, \cdots, n\} \rightarrow \mathbb{Z}$ be the mapping which sends i to $D b_{i} r_{i}$. Note that for any $i, \Lambda^{r_{i}} V_{i}=\operatorname{det} V_{i}$ is naturally a direct factor of $V_{i}^{\otimes r_{i}}$. We can therefore choose a preimage $s_{\underline{\alpha}}^{\prime \prime}$ of $s_{\underline{\alpha}}^{\prime}$ in $\left(V^{A}\right)^{\vee} \otimes V^{B}$ which is invariant by $G(K)$. By Corollary $3.2, A=B$ and $s_{\underline{\alpha}}^{\prime \prime}$ is a linear combination of permutations acting on V. Therefore the theorem is proved.

4 Upper bound for the degree of a Hermitian line subbundle with hypothesis of semistability

Let K be a number field and \mathcal{O}_{K} be its integer ring. Consider a family $\left(\bar{E}_{i}\right)_{1 \leq i \leq n}$ of non-zero Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$. Let \mathcal{A} be a non-empty and finite family of non-identically zero mappings from $\{1, \cdots, n\}$ to \mathbb{N}. We define a new Hermitian vector bundle over $\operatorname{Spec} \mathcal{O}_{K}$ as follows:

$$
\bar{E}:=\bigoplus_{\alpha \in \mathcal{A}} \bar{E}_{1}^{\otimes \alpha(1)} \otimes \cdots \otimes \bar{E}_{n}^{\otimes \alpha(n)}
$$

In this section, we shall use the ideas in Bos94 to obtain an upper bound for the Arakelov degree of a Hermitian line subbundle \bar{M} of \bar{E} under hypothesis of semistability (in the sense of geometric invariant theory) for M_{K}. This upper bound is crucial because, as we shall see later, the general case can be reduced to this special one through an argument of Ramanan and Ramanathan RR84.

For any integer i such that $1 \leq i \leq n$, let r_{i} be the rank of E_{i} and let V_{i} be the vector space $E_{i, K}$. Let $W=E_{K}$ and $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K be the canonical morphism. By definition $W=\bigoplus_{\underline{\alpha} \in \mathcal{A}} V^{\alpha}$, where V^{α} is defined in (12). We denote by G the algebraic group $\mathbb{G L}_{K}\left(V_{1}\right) \times$ $\cdots \times \mathbb{G}_{K}\left(V_{n}\right)$ which acts naturally on $\mathbb{P}\left(W^{\vee}\right)$. Let $\left(b_{i}\right)_{1 \leq i \leq n}$ be a family of strictly positive integers such that r_{i} divides b_{i}. Finally let

$$
\bar{L}=\left(\Lambda^{r_{1}} \bar{E}_{1}\right)^{\otimes b_{1} / r_{1}} \otimes \cdots\left(\Lambda^{r_{n}} \bar{E}_{n}\right)^{\otimes b_{n} / r_{n}} .
$$

Lemma 4.1 Let H be a Hermitian space of dimension $d>0$. Then the norm of the homomorphism det : $H^{\otimes d} \rightarrow \Lambda^{d} H$ equals $\sqrt{d!}$.

Proof. Let $\left(e_{i}\right)_{1 \leq i \leq d}$ be an orthonormal basis of H and let $\left(e_{i}^{\vee}\right)_{1 \leq i \leq d}$ be its dual basis in H^{\vee}. If we identifies $\Lambda^{\bar{d}} \bar{H}$ with \mathbb{C} via the basis $e_{1} \wedge \cdots \wedge e_{d}$, then the homomorphism det, viewed as an element in $H^{\vee \otimes d}$, can be written as

$$
\sum_{\sigma \in \mathfrak{S}_{d}} \operatorname{sign}(\sigma) e_{\sigma(1)} \otimes \cdots \otimes e_{\sigma(d)}
$$

which is the sum of $d!$ orthogonal vectors of norm 1 in $H^{\vee \otimes d}$. So its norm is $\sqrt{d!}$.

Theorem 4.2 With the notation above, if $m \geq 1$ is an integer and if \bar{M} is a Hermitian line subbundle of \bar{E} such that M_{K} is semistable for the action of G relatively to $\mathcal{O}_{W} \vee(m) \otimes \pi^{*} L_{K}$, then

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \frac{1}{m} \widehat{\operatorname{deg}}(\bar{L})+\frac{1}{2 m} \sum_{i=1}^{r} b_{i} \log \left(\operatorname{rk} E_{i}\right)=\sum_{i=1}^{n} \frac{b_{i}}{m}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{1}{2} \log \left(\operatorname{rk} E_{i}\right)\right)
$$

Proof. By Theorem 3.3, we get, by combining the slope inequality (9) and Lemma 4.1,

$$
\begin{aligned}
& m D \widehat{\operatorname{deg}}(\bar{M})-D \widehat{\operatorname{deg}}(\bar{L})=m D \widehat{\operatorname{deg}}(\bar{M})-\sum_{i=1}^{n} D b_{i} \widehat{\mu}\left(\bar{E}_{i}\right) \\
\leq & \sum_{i=1}^{n} \frac{A(i) \log \left(r_{i}!\right)}{2 r_{i}}=\sum_{i=1}^{n} \frac{D b_{i} \log \left(r_{i}!\right)}{2 r_{i}} \leq \frac{1}{2} D \sum_{i=1}^{n} b_{i} \log r_{i},
\end{aligned}
$$

where we have used the evident estimation $r!\leq r^{r}$ to obtain the last inequality. Finally we divide the inequality by $m D$ and obtain

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \frac{1}{m} \widehat{\operatorname{deg}}(\bar{L})+\frac{1}{2 m} \sum_{i=1}^{n} b_{i} \log r_{i}=\sum_{i=1}^{n} \frac{b_{i}}{m}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{\log r_{i}}{2}\right)
$$

Let m be a strictly positive integer which is divisible by all r_{i}. We apply Theorem 4.2 to the special case where \mathcal{A} contains a single map α such that $\alpha(i)=1$ for any $i \in\{1, \cdots, n\}$, in other words, $\bar{E}=\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}$, and where $b_{i}=m$ for any integer i such that $1 \leq i \leq n$. Then we get the following upper bound:

Corollary 4.3 If \bar{M} is a Hermitian line subbundle of $\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}$ such that M_{K} is semistable for the action of G relatively to $\mathcal{O}_{W^{\vee}}(m) \otimes \pi^{*} L_{K}$, then we have

$$
\begin{equation*}
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{1}{2} \log \left(\operatorname{rk} E_{i}\right)\right) . \tag{13}
\end{equation*}
$$

5 Filtrations of vector spaces

In this section, we introduce some basic notation and results on \mathbb{R}-filtrations of vector spaces, which we shall use in the sequel. We fix a field K.

5.1 Definition of filtrations

Let V be a non-zero vector space of finite rank r over K. We call \mathbb{R}-filtration of V any family $\mathcal{F}=\left(\mathcal{F}_{\lambda} V\right)_{\lambda \in \mathbb{R}}$ of subspaces of V such that

1) $\mathcal{F}_{\lambda} V \supset \mathcal{F}_{\lambda^{\prime}} V$ for all $\lambda \leq \lambda^{\prime}$,
2) $\mathcal{F}_{\lambda} V=0$ for λ sufficiently positive,
3) $\mathcal{F}_{\lambda} V=V$ for λ sufficiently negative,
4) the function $x \mapsto \operatorname{rk}_{K}\left(\mathcal{F}_{x} V\right)$ on \mathbb{R} is left continuous.

A filtration \mathcal{F} of V is equivalent to the data of a flag

$$
\begin{equation*}
V=V_{0} \supsetneq V_{1} \supsetneq V_{2} \supsetneq \cdots \supsetneq V_{d}=0 \tag{14}
\end{equation*}
$$

of V together with a strictly increasing sequence of real numbers $\left(\lambda_{i}\right)_{0 \leq i<d}$. In fact, we have the relation $\mathcal{F}_{\lambda} V=\bigcup_{\lambda_{i} \geq \lambda} V_{i}$. We define the expectation of \mathcal{F} to be

$$
\begin{equation*}
\mathbb{E}[\mathcal{F}]:=\sum_{i=0}^{d-1} \frac{\mathrm{rk}_{K}\left(V_{i} / V_{i+1}\right)}{\mathrm{rk}_{K} V} \lambda_{i} \tag{15}
\end{equation*}
$$

Furthermore, we define a function $\lambda_{\mathcal{F}}: V \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
\begin{equation*}
\lambda_{\mathcal{F}}(x)=\sup \left\{a \in \mathbb{R} \mid x \in \mathcal{F}_{a} V\right\} . \tag{16}
\end{equation*}
$$

The function $\lambda_{\mathcal{F}}$ takes values in $\left\{\lambda_{0}, \cdots, \lambda_{d-1}\right\} \cup\{+\infty\}$ and is finite on $\mathbb{R} \backslash\{0\}$.

5.2 Spaces of filtrations

Let Z be a subset of \mathbb{R}. We say that \mathcal{F} is supported by Z if $\left\{\lambda_{i} \mid 0 \leq i<d\right\} \subset Z$. We say that a basis e of V is compatible with \mathcal{F} if it is compatible with the flag (14). That is, $\#\left(V_{i} \cap \mathbf{e}\right)=\operatorname{rk}\left(V_{i}\right)$.

We denote by $\mathbf{F i l}_{V}$ the set of all filtrations of V. For any non-empty subset Z of \mathbb{R}, denote by $\mathbf{F i l}_{V}^{Z}$ the set of all filtrations of V supported by Z. Finally, for any basis e, we use the expression $\mathbf{F i l}_{\mathrm{e}}$ to denote the set of all filtrations of V with which \mathbf{e} is compatible, and we denote by $\mathbf{F i l}{ }_{\mathbf{e}}^{Z}$ the subset of $\mathbf{F i l}_{\mathbf{e}}$ of filtrations supported by Z.

Proposition 5.1 Let $\mathbf{e}=\left(e_{1}, \cdots, e_{r}\right)$ be a basis of V and Z be a non-empty subset of \mathbb{R}. The mapping $\Phi_{\mathbf{e}}: \mathbf{F i l}_{\mathbf{e}}^{Z} \rightarrow Z^{r}$ defined by

$$
\begin{equation*}
\Phi_{\mathbf{e}}(\mathcal{F})=\left(\lambda_{\mathcal{F}}\left(e_{1}\right), \cdots, \lambda_{\mathcal{F}}\left(e_{r}\right)\right) \tag{17}
\end{equation*}
$$

is a bijection.
Proposition 5.2 Let v be a non-zero vector in V, F be a subfield of \mathbb{R} and \mathbf{e} be a basis of V. Then the function $\mathcal{F} \mapsto \lambda_{\mathcal{F}}(v)$ from $\mathbf{F i l} \mathbf{e}_{\mathbf{e}}^{F}$ to \mathbb{R} can be written as the minimal value of a finite number of F-linear forms.

Proof. Let $v=\sum_{i=1}^{r} a_{i} e_{i}$ be the decomposition of v in the basis \mathbf{e}, then for any filtration $\mathcal{F} \in \mathbf{F i l}_{\mathrm{e}}{ }^{F}$, we have

$$
\lambda_{\mathcal{F}}(v)=\min _{\substack{1 \leq i \leq n \\ a_{i} \neq 0}} \lambda_{\mathcal{F}}\left(e_{i}\right) .
$$

5.3 Construction of filtrations

For any real number $\varepsilon>0$, we define the dilation of \mathcal{F} by ε as the filtration

$$
\begin{equation*}
\psi_{\varepsilon} \mathcal{F}:=\left(\mathcal{F}_{\varepsilon \lambda} V\right)_{\lambda \in \mathbb{R}} \tag{18}
\end{equation*}
$$

of V. Clearly we have

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\varepsilon} \mathcal{F}\right]=\varepsilon \mathbb{E}[\mathcal{F}] \quad \text { and } \quad \lambda_{\psi_{\varepsilon} \mathcal{F}}=\varepsilon \lambda_{\mathcal{F}} . \tag{19}
\end{equation*}
$$

Let $\left(V^{(i)}\right)_{1 \leq i \leq n}$ be a family of non-zero vector spaces of finite rank over K and $V=$ $\bigoplus_{i=1}^{n} V^{(i)}$ be their direct sum. For each integer $1 \leq i \leq n$, let $\mathcal{F}^{(i)}$ be a filtration of $V^{(i)}$. We construct a filtration \mathcal{F} of V such that

$$
\mathcal{F}_{\lambda} V=\bigoplus_{i=1}^{n} \mathcal{F}_{\lambda}^{(i)} V^{(i)} .
$$

The filtration \mathcal{F} is called the direct sum of $\mathcal{F}^{(i)}$ and is denoted by $\mathcal{F}^{(1)} \oplus \cdots \oplus \mathcal{F}^{(n)}$. If for each $1 \leq i \leq n, \mathbf{e}^{(i)}$ is a basis of $V^{(i)}$ which is compatible with $\mathcal{F}^{(i)}$, then the disjoint union $\mathbf{e}^{(1)} \amalg \cdots \amalg \mathbf{e}^{(n)}$, which is a basis of $V^{(1)} \oplus \cdots \oplus V^{(n)}$, is compatible with $\mathcal{F}^{(1)} \oplus \cdots \oplus \mathcal{F}^{(n)}$. Similarly, if $W=\bigotimes_{i=1}^{n} V^{(i)}$ is the tensor product of $V^{(i)}$, we construct a filtration \mathcal{G} of W such that

$$
\mathcal{G}_{\lambda} W=\sum_{\lambda_{1}+\cdots+\lambda_{n} \geq \lambda} \bigotimes_{i=1}^{n} \mathcal{F}_{\lambda_{i}}^{(i)} V^{(i)}
$$

called the tensor product of $\mathcal{F}^{(i)}$ and denoted by $\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}$. If $\mathbf{e}^{(i)}$ is a basis of $V^{(i)}$ which is compatible with the filtration $\mathcal{F}^{(i)}$, then the basis

$$
\mathbf{e}^{(1)} \otimes \cdots \otimes \mathbf{e}^{(n)}:=\left\{e_{1} \otimes \cdots \otimes e_{n} \mid \forall 1 \leq i \leq n, e_{i} \in \mathbf{e}^{(i)}\right\}
$$

of $V^{(1)} \otimes \cdots \otimes V^{(n)}$ is compatible with $\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}$. Finally, for any $\varepsilon>0$,

$$
\begin{equation*}
\psi_{\varepsilon}\left(\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}\right)=\psi_{\varepsilon} \mathcal{F}^{(1)} \otimes \cdots \otimes \psi_{\varepsilon} \mathcal{F}^{(n)} \tag{20}
\end{equation*}
$$

5.4 Scalar product on the space of filtrations

Let V be a non-zero vector space of finite rank r over K. If \mathcal{F} and \mathcal{G} are two filtrations of V, then by Bruhat's decomposition, there always exists a basis \mathbf{e} of V which is compatible simultaneously with \mathcal{F} and \mathcal{G}. We define the scalar product of \mathcal{F} and \mathcal{G} as

$$
\begin{equation*}
\langle\mathcal{F}, \mathcal{G}\rangle:=\frac{1}{r} \sum_{i=1}^{r} \lambda_{\mathcal{F}}\left(e_{i}\right) \lambda_{\mathcal{G}}\left(e_{i}\right) . \tag{21}
\end{equation*}
$$

This definition does not depend on the choice of \mathbf{e}. The number $\|\mathcal{F}\|:=\langle\mathcal{F}, \mathcal{F}\rangle^{\frac{1}{2}}$ is called the norm of the filtration \mathcal{F}. Notice that $\|\mathcal{F}\|=0$ if and only if \mathcal{F} is supported by $\{0\}$. In this case, we say that the filtration \mathcal{F} is trivial.

Proposition 5.3 Let \mathbf{e} be a basis of V. Then the function $(x, y) \mapsto r\left\langle\Phi_{\mathbf{e}}^{-1}(x), \Phi_{\mathbf{e}}^{-1}(y)\right\rangle$ on $\mathbb{R}^{r} \times \mathbb{R}^{r}$ coincides with the usual Euclidean product on \mathbb{R}^{r}, where $\Phi_{\mathbf{e}}: \mathbf{F i l}_{\mathbf{e}} \rightarrow \mathbb{R}^{r}$ is the bijection defined in (17).

5.5 Construction of filtration from subquotients

Let V be a non-zero vector space of finite rank over K and \mathcal{F} be a filtration of V corresponding to the flag $V=V_{0} \supsetneq V_{1} \supsetneq V_{2} \supsetneq \cdots \supsetneq V_{d}=0$ together with the sequence $\left(\lambda_{j}\right)_{0 \leq j<d}$. For any integer j such that $0 \leq j<d$, we pick a basis \mathbf{e}^{j} of the subquotient V_{j} / V_{j+1}. After choosing a preimage of \mathbf{e}^{j} in V_{j} and taking the disjoint union of the preimages, we get a basis $\mathbf{e}=\left(e_{1}, \cdots, e_{r}\right)$ of V which is clearly compatible with the filtration \mathcal{F}. The basis \mathbf{e} defines a natural isomorphism Ψ form V to $\bigoplus_{j=0}^{d-1}\left(V_{j} / V_{j+1}\right)$ which sends e_{i} to its class in $V_{\tau(i)} / V_{\tau(i)+1}$, where $\tau(i)=\max \left\{j \mid e_{i} \in V_{j}\right\}$.

For any integer j such that $0 \leq j \leq d-1$, let \mathcal{G}^{j} be a filtration of V_{j} / V_{j+1} with which \mathbf{e}^{j} is compatible. We construct a filtration \mathcal{G} on V which is the direct sum via Ψ of $\left(\mathcal{G}^{j}\right)_{0 \leq j \leq d-1}$. Note that the basis \mathbf{e} is compatible with the new filtration \mathcal{G}. If e_{i} is an element in \mathbf{e}, then $\lambda_{\mathcal{G}}\left(e_{i}\right)=\lambda_{\mathcal{G}^{\tau(i)}}\left(\Psi\left(e_{i}\right)\right)$. Therefore we have

$$
\begin{equation*}
\mathbb{E}[\mathcal{G}]=\frac{1}{r} \sum_{j=0}^{d-1} \mathbb{E}\left[\mathcal{G}^{j}\right] \mathrm{rk}_{K}\left(V_{j} / V_{j+1}\right), \quad\langle\mathcal{F}, \mathcal{G}\rangle=\frac{1}{r} \sum_{j=0}^{d-1} \lambda_{j} \mathbb{E}\left[\mathcal{G}^{j}\right] \mathrm{rk}_{K}\left(V_{j} / V_{j+1}\right) \tag{22}
\end{equation*}
$$

6 More facts in geometric invariant theory

We shall establish in this section the explicit version of a result of Ramanan and Ramanathan RR84 (Proposition 1.12) for our particular purpose, along the path indicated by Totaro Tot96 in his proof of Fontaine's conjecture.

Let K be a perfect field. If G is a reductive group over Spec K, we call one-parameter subgroup of G any morphism of K-group schemes from $\mathbb{G}_{\mathrm{m}, K}$ to G. Let X be a K-scheme on
which G acts. If x is a rational point of X and if h is a one-parameter subgroup of G, then we get a K-morphism from $\mathbb{G}_{\mathrm{m}, K}$ to X given by the composition

$$
\mathbb{G}_{\mathrm{m}, K} \xrightarrow{h} G \xrightarrow{\sim} G \times_{K} \operatorname{Spec} K \xrightarrow{\operatorname{Id} \times x} G \times_{K} X \xrightarrow{\sigma} X,
$$

where σ is the action of the group. If in addition X is proper over $\operatorname{Spec} K$, this morphism extends in the unique way to a K-morphism $f_{h, x}$ from \mathbb{A}_{K}^{1} to X. We denote by 0 the unique element in $\mathbb{A}^{1}(K) \backslash \mathbb{G}_{\mathrm{m}}(K)$. The morphism $f_{h, x}$ sends the point 0 to a rational point of X which is invariant by the action of $\mathbb{G}_{\mathrm{m}, K}$. If L is a G-linearized line bundle on X, then the action of $\mathbb{G}_{\mathrm{m}, K}$ on $\left.L\right|_{f_{h, x}(0)}$ defines a character of $\mathbb{G}_{\mathrm{m}, K}$ of the form

$$
t \mapsto t^{\mu(x, h, L)}, \text { where } \mu(x, h, L) \in \mathbb{Z}
$$

Furthermore, if we denote by $\operatorname{Pic}^{G}(X)$ the group of isomorphism classes of all G-linearized line bundles, then $\mu(x, h, \cdot)$ is a homomorphism of groups from $\operatorname{Pic}^{G}(X)$ to \mathbb{Z}.

Remark 6.1 In MFK94, the authors have defined the μ-invariant with a minus sign.
We now recall a well-known result which gives a semistability criterion for rational points in a projective variety equipped with an action of a reductive group.

Theorem 6.2 (Hilbert-Mumford-Kempf-Rousseau) Let G be a reductive group which acts on a projective variety X over $\operatorname{Spec} K, L$ be an ample G-linearized line bundle on X and $x \in X(K)$ be a rational point. The point x is semistable for the action of G relatively to L if and only if $\mu(x, h, L) \geq 0$ for any one-parameter subgroup h of G.

This theorem has been originally proved by Mumford (see MFK94) for the case where K is algebraically closed. Then it has been independently proved in all generality by Kempf Kem78 and Rousseau Rou78, where Kempf's approach has been revisited by Ramanan and Ramanathan RR84 to prove that the tensor product of two semistable vector bundle on a smooth curve (over a perfect field) is also semistable. The idea of Kempf is to choose a special one-parameter subgroup h_{0} of G destabilizing x, which minimizes a certain function. The uniqueness of his construction allows us to descend to a smaller field. Later Totaro Tot96 has introduced a new approach of Kempf's construction and thus found an elegant proof of Fontaine's conjecture.

In the rest of this section, we recall Totaro's approach of Hilbert-Mumford criterion in our setting. We begin by calculating explicitly the number $\mu(x, h, L)$ using filtrations introduced in the previous section.

Let V be a vector space of finite rank over K and $\rho: G \rightarrow \mathbb{G} \mathbb{L}(V)$ be a representation of G on V. If $h: \mathbb{G}_{\mathrm{m}, K} \rightarrow G$ is a one-parameter subgroup, then the multiplicative group $\mathbb{G}_{\mathrm{m}, K}$ acts on V via h and ρ. Hence we can decompose V into direct sum of eigenspaces. More precisely, we have the decomposition $V=\bigoplus_{i \in \mathbb{Z}} V(i)$, where the action of $\mathbb{G}_{\mathrm{m}, K}$ on $V(i)$ is given by the composition

$$
\mathbb{G}_{\mathrm{m}, K} \times_{K} V(i) \xrightarrow{\left(t \mapsto t^{i}\right) \times \mathrm{Id}} \mathbb{G}_{\mathrm{m}, K} \times_{K} V(i) \longrightarrow V(i),
$$

the second arrow being the scalar multiplication structure on $V(i)$. We then define a filtration $\mathcal{F}^{\rho, h}$ (supported by \mathbb{Z}) of V such that

$$
\mathcal{F}_{\lambda}^{\rho, h} V=\sum_{i \geq \lambda} V(i) \quad \text { where } \lambda \in \mathbb{R}
$$

called the filtration associated to h relatively to the representation ρ. If there is no ambiguity on the representation, we also write \mathcal{F}^{h} instead of $\mathcal{F}^{\rho, h}$ to simplify the notation. If $G=\mathbb{G} \mathbb{L}(V)$ and if ρ is the canonical representation, then for any filtration \mathcal{F} of V supported by \mathbb{Z}, there exists a one-parameter subgroup h of G such that the filtration associated to h equals \mathcal{F}.

From the scheme-theoretical point of view, the algebraic group G acts via the representation ρ on the projective space $\mathbb{P}\left(V^{\vee}\right)$.

The following result is in MFK94 Proposition 2.3. Here we work on the dual space V^{\vee}.
Proposition 6.3 Let x be a rational point of $\mathbb{P}\left(V^{\vee}\right)$, viewed as a one-dimensional subspace of V and let v_{x} be an arbitrary non-zero vector in x. Then

$$
\mu\left(x, h, \mathcal{O}_{V \vee}(1)\right)=-\lambda_{\mathcal{F}^{\rho}, h}\left(v_{x}\right),
$$

where the function $\lambda_{\mathcal{F}^{\rho}, h}$ is defined in (16).
Proof. Let $v_{x}=\sum_{i \in \mathbb{Z}} v_{x}(i)$ be the canonical decomposition of v_{x}. Let $i_{0}=\lambda_{\mathcal{F} \rho, h}\left(v_{x}\right)$. By definition, it is the maximal index i such that $v_{x}(i)$ is non-zero. Furthermore, $f_{h, x}(0)$ is just the rational point x_{0} which corresponds to the subspace of V generated by $v_{x}\left(i_{0}\right)$. The restriction of $\mathcal{O}_{V^{\vee}}(1)$ on x_{0} identifies with the quotient $\left(K v_{x}\left(i_{0}\right)\right)^{\vee}$ of V^{\vee}. Since the action of $\mathbb{G}_{\mathrm{m}, K}$ on $v_{x}\left(i_{0}\right)$ via h is the multiplication by $t^{i_{0}}$, its action on $\left(K v_{x}\left(i_{0}\right)\right)^{\vee}$ is then the multiplication by $t^{-i_{0}}$. Therefore, $\mu\left(x, h, \mathcal{O}_{V^{\vee}}(1)\right)=-i_{0}=-\lambda_{\mathcal{F} \rho, h}\left(v_{x}\right)$.

Let $\left(V_{i}\right)_{1 \leq i \leq n}$ be a finite family of non-zero vector spaces of finite rank over K. For any integer $1 \leq i \leq n$, let r_{i} be the rank of V_{i}. Let G be the algebraic group $\mathbb{G L}\left(V_{1}\right) \times \cdots \times \mathbb{G L}\left(V_{n}\right)$. We suppose that the algebraic group G acts on a vector space V. Let $\pi: \mathbb{P}\left(V^{\vee}\right) \rightarrow \operatorname{Spec} K$ be the canonical morphism. For each integer $1 \leq i \leq n$, we choose an integer m_{i} which is divisible by r_{i}. Let M be the G-linearized line bundle on $\mathbb{P}\left(V^{\vee}\right)$ defined as

$$
M:=\bigotimes_{i=1}^{n} \pi^{*}\left(\Lambda^{r_{i}} V_{i}\right)^{\otimes m_{i} / r_{i}}
$$

It is a trivial line bundle on $\mathbb{P}\left(V^{\vee}\right)$ with possibly non-trivial G-action. Notice that any oneparameter subgroup of G is of the form $h=\left(h_{1}, \cdots, h_{n}\right)$, where h_{i} is a one-parameter subgroup of $\mathbb{G L}\left(V_{i}\right)$. Let $\mathcal{F}^{h_{i}}$ be the filtration of V_{i} associated to h_{i} relatively to the canonical representation of $\mathbb{G L}\left(V_{i}\right)$ on V_{i}. The action of $\mathbb{G}_{\mathrm{m}, K}$ via h_{i} on $\Lambda^{r_{i}} V_{i}$ is nothing but the multiplication by $t^{r_{i} \mathbb{E}\left[\mathcal{F}^{h_{i}}\right]}$. Then we get the following result.

Proposition 6.4 With the notation above, for any rational point x of $\mathbb{P}\left(V^{\vee}\right)$, we have

$$
\mu(x, h, M)=\sum_{i=1}^{n} m_{i} \mathbb{E}\left[\mathcal{F}^{h_{i}}\right] .
$$

We now introduce the Kempf's destabilizing flag for the action of a finite product of general linear groups. Consider a family $\left(V^{(i)}\right)_{1 \leq i \leq n}$ of finite dimensional non-zero vector space over K. Let W be the tensor product $V^{(1)} \otimes_{K} \cdots \otimes_{K} V^{(n)}$ and G be the algebraic group $\mathbb{G} \mathbb{L}\left(V^{(1)}\right) \times$ $\cdots \times \mathbb{G} \mathbb{L}\left(V^{(n)}\right)$. For any integer i such that $1 \leq i \leq n$, let $r^{(i)}$ be the rank of $V^{(i)}$. The group G acts naturally on W and hence on $\mathbb{P}\left(W^{\vee}\right)$. We denote by $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K the canonical morphism. Let m be a strictly positive integer which is divisible by all $r^{(i)}$ and L be a G-linearized line bundle on $\mathbb{P}\left(W^{\vee}\right)$ as follows:

$$
\begin{equation*}
L:=\mathcal{O}_{W^{\vee}}(m) \otimes \bigotimes_{i=1}^{n} \pi^{*}\left(\operatorname{det} V^{(i)}\right)^{\otimes\left(m / r^{(i)}\right)} \tag{23}
\end{equation*}
$$

For any rational point x of $\mathbb{P}\left(W^{\vee}\right)$, we define a function $\Lambda_{x}: \mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\Lambda_{x}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)=\frac{\mathbb{E}\left[\mathcal{G}^{(1)}\right]+\cdots+\mathbb{E}\left[\mathcal{G}^{(n)}\right]-\lambda_{\mathcal{G}^{(1)} \otimes \cdots \otimes \mathcal{G}^{(n)}}\left(v_{x}\right)}{\left(\left\|\mathcal{G}^{(1)}\right\|^{2}+\cdots+\left\|\mathcal{G}^{(n)}\right\|^{2}\right)^{\frac{1}{2}}} \tag{24}
\end{equation*}
$$

if at least one filtration among the $\mathcal{G}^{(i)}$'s is non-trivial, and $\Lambda_{x}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)=0$ otherwise. We recall that in (24), v_{x} is an arbitrary non-zero element in x. Note that the function Λ_{x} is invariant by dilation. In other words, for any positive number $\varepsilon>0$,

$$
\Lambda_{x}\left(\psi_{\varepsilon} \mathcal{G}^{(1)}, \cdots, \psi_{\varepsilon} \mathcal{G}^{(n)}\right)=\Lambda_{x}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)
$$

where the dilation ψ_{ε} is defined in (18).
Proposition 6.5 Let x be a rational point of $\mathbb{P}\left(W^{\vee}\right)$. Then the point x is not semistable for the action of G relatively to L if and only if the function Λ_{x} defined above takes at least one strictly negative value.

Proof. By Propositions 6.3 and 6.4, for any rational point x of $\mathbb{P}\left(W^{\vee}\right)$,

$$
\begin{equation*}
\mu(x, h, L)=m\left(\sum_{i=1}^{n} \mathbb{E}\left[\mathcal{F}^{h_{i}}\right]-\lambda_{\mathcal{F}^{h}}\left(v_{x}\right)\right) . \tag{25}
\end{equation*}
$$

$" \Longrightarrow$ ": By the Hilbert-Mumford criterion (Theorem 6.2), there exists a one-parameter subgroup $h=\left(h_{1}, \cdots, h_{n}\right)$ of G such that $\mu(x, h, L)<0$. The filtration \mathcal{F}^{h} of W associated with h coincides with the tensor product filtration $\mathcal{F}^{h_{1}} \otimes \cdots \otimes \mathcal{F}^{h_{n}}$, where $\mathcal{F}^{h_{i}}$ is the filtration of $V^{(i)}$ associated with h_{i}. Therefore,

$$
\Lambda_{x}\left(\mathcal{F}^{h_{1}}, \cdots, \mathcal{F}^{h_{n}}\right)=\frac{\mu(x, h, L)}{m\left(\left\|\mathcal{F}^{h_{1}}\right\|^{2}+\cdots+\left\|\mathcal{F}^{h_{n}}\right\|^{2}\right)^{\frac{1}{2}}}<0
$$

" ": Suppose that $\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)$ is an element in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$ such that $\Lambda_{x}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)<0$. By equalities (19), (20) and the invariance of Λ_{x} by dilation, we can assume that $\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}$ are all supported by \mathbb{Z}. In this case, there exists, for each $1 \leq i \leq n$, a one-parameter subgroup h_{i} of $\mathbb{G L}\left(V^{(i)}\right)$ such that $\mathcal{F}^{h_{i}}=\mathcal{G}^{(i)}$. Let $h=\left(h_{1}, \cdots, h_{n}\right)$. By combining the negativity of $\Lambda_{x}\left(\mathcal{F}^{h_{1}}, \cdots, \mathcal{F}^{h_{n}}\right)$ with (25), we obtain $\mu(x, h, L)<0$, so x is not semistable.

Proposition 6.7 below generalizes Proposition 2 of Tot96. The proof uses Lemma 6.6, which is equivalent to Lemma 3 of Tot96], or Lemma 1.1 of [RR84]. See [RR84] for the proof of the lemma.

Lemma 6.6 Let $n \geq 1$ be an integer and let \mathscr{T} be a finite non-empty family of linear forms on \mathbb{R}^{n}. Let $\Lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\Lambda(y)=\|y\|^{-1} \max _{l \in \mathscr{T}} l(y)$ for $y \neq 0$, and that $\Lambda(0)=0$. Suppose that the function Λ takes at least a strictly negative value. Then

1) the function Λ attains its minimum value, furthermore, all points in \mathbb{R}^{n} minimizing Λ are proportional;
2) if c is the minimal value of Λ and if $y_{0} \in \mathbb{R}^{n}$ is a minimizing point of Λ, then for any $y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\Lambda(y) \geq c \frac{\left\langle y_{0}, y\right\rangle}{\left\|y_{0}\right\| \cdot\|y\|} \tag{26}
\end{equation*}
$$

3) if in addition all linear forms in \mathscr{T} are of rational coefficients, then there exists a point in \mathbb{Z}^{n} which minimizes Λ.

Proposition 6.7 With the notation of Proposition 6.5, if x is not semistable for the action of G relatively to L, then the function Λ_{x} attains its minimal value. Furthermore, the element in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$ minimizing Λ_{x} is unique up to dilatation. Finally, if $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ is an element in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$ minimizing Λ_{x} and if c is the minimal value of Λ_{x}, then for any element $\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)$ in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$, the following inequality holds:

$$
\begin{equation*}
\sum_{i=1}^{n} \mathbb{E}\left[\mathcal{G}^{(i)}\right]-\lambda_{\mathcal{G}^{(1)} \otimes \cdots \otimes \mathcal{G}^{(n)}}\left(v_{x}\right) \geq c \frac{\left\langle\mathcal{F}^{(1)}, \mathcal{G}^{(1)}\right\rangle+\cdots+\left\langle\mathcal{F}^{(n)}, \mathcal{G}^{(n)}\right\rangle}{\left(\left\|\mathcal{F}^{(1)}\right\|^{2}+\cdots+\left\|\mathcal{F}^{(n)}\right\|^{2}\right)^{\frac{1}{2}}} \tag{27}
\end{equation*}
$$

Proof. For each integer $1 \leq i \leq n$, let $\mathbf{e}^{(i)}=\left(e_{j}^{(i)}\right)_{1 \leq j \leq r^{(i)}}$ be a basis of $V^{(i)}$. Let $\mathbf{e}=$ $\left(\mathbf{e}^{(i)}\right)_{1 \leq i \leq n}$. Denote by $\Lambda_{x}^{\mathbf{e}}$ the restriction of Λ_{x} on $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$. The space $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times$ $\cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$ is canonically embedded in $\mathbf{F i l}_{\mathbf{e}^{(1)}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}$, which can be identified with $\mathbb{R}^{r^{(1)}} \times \cdots \times \mathbb{R}^{r^{(n)}}$ through $\Phi_{\mathbf{e}^{(1)}} \times \cdots \Phi_{\mathbf{e}^{(n)}}$ (see Proposition 5.3). We extend natually $\Lambda_{x}^{\mathbf{e}}$ to a function $\Lambda_{x}^{\mathbf{e}, \dagger}$ on $\mathbf{F i l}_{\mathbf{e}^{(1)}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}$, whose numerator part is the maximal value of a finite number of linear forms with rational coefficients (see Proposition 5.2) and whose denominator part is just the norm of vector in the Euclidean space. Then by Lemma 6.6, the function $\Lambda_{x}^{\mathbf{e}, \dagger}$ attains its minimal value, and there exists an element in $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$ which minimizes $\Lambda_{x}^{\mathbf{e}, \dagger}$. By definition the same element also minimizes $\Lambda_{x}^{\mathbf{e}}$. Since the function $\Lambda_{x}^{\mathbf{e}}$, viewed as a function on $\mathbb{R}^{r^{(1)}+\cdots+r^{(n)}}$, only depends on the set

$$
\left\{S \subset \prod_{i=1}^{n}\left\{1, \cdots, r^{(i)}\right\} \mid v_{x} \in \sum_{\left(j_{1}, \cdots, j_{n}\right) \in S} K e_{j_{1}}^{(1)} \otimes \cdots \otimes e_{j_{n}}^{(n)}\right\}
$$

Therefore, there are only a finite number of functions on Euclidean space of dimension $r^{(1)}+$ $\cdots+r^{(n)}$ of the form Λ_{x}^{e}. Thus we deduce that the function Λ_{x} attains globally its minimal value, and the minimizing element of Λ_{x} could be chosen in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$.

Suppose that there are two elements in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$ which minimizes Λ_{x}. By Bruhat's decomposition, we can choose e as above such that both elements lie in $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times$ $\cdots \times \mathbf{F i l}_{\mathrm{e}^{(n)}}^{\mathbb{Q}}$. Therefore, by Lemma 6.6 they differ only by a dilation. Finally to prove inequality 27 , it suffices to choose \mathbf{e} such that $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ and $\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)$ are both in $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$, and then apply Lemma 6.6).

Although the minimizing filtrations $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ in Proposition 6.7 are a priori supported by \mathbb{Q}, it is always possible to choose them to be supported by \mathbb{Z} after a dilation.

In the rest of the section, let x be a rational point of $\mathbb{P}\left(W^{\vee}\right)$ which is not semistable for the action of G relatively to L. We fix an element $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Z}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Z}}$ minimizing Λ_{x}. Define

$$
\begin{equation*}
\widetilde{c}:=\frac{c}{\left(\left\|\mathcal{F}^{(1)}\right\|^{2}+\cdots+\left\|\mathcal{F}^{(n)}\right\|^{2}\right)^{\frac{1}{2}}} \tag{28}
\end{equation*}
$$

Note that $\widetilde{c}<0$. Moreover, it is a rational number since the following equality holds:

$$
\widetilde{c}=\frac{\Lambda_{x}\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)}{\left(\left\|\mathcal{F}^{(1)}\right\|^{2}+\cdots+\left\|\mathcal{F}^{(n)}\right\|^{2}\right)^{\frac{1}{2}}}=\frac{\mathbb{E}\left[\mathcal{F}^{(1)}\right]+\cdots+\mathbb{E}\left[\mathcal{F}^{(n)}\right]-\lambda_{\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}}\left(v_{x}\right)}{\left\|\mathcal{F}^{(1)}\right\|^{2}+\cdots+\|\mathcal{F}(n)\|^{2}}
$$

We suppose that $\mathcal{F}^{(i)}$ corresponds to the flag

$$
\mathscr{D}^{(i)}: V^{(i)}=V_{0}^{(i)} \supsetneq V_{1}^{(i)} \supsetneq \cdots \supsetneq V_{d(i)}^{(i)}=0
$$

and the strictly increasing sequence of integers $\lambda^{(i)}=\left(\lambda_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$. Let \widetilde{G} be the algebraic group

$$
\widetilde{G}:=\prod_{i=1}^{n} \prod_{j=0}^{d^{(i)}-1} \mathbb{G L}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)
$$

Let $\mathcal{F}=\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}$ and $\beta=\lambda_{\mathcal{F}}\left(v_{x}\right)$, which is the largest integer i such that $v_{x} \in \mathcal{F}_{i} W$. Let $\widetilde{W}:=\mathcal{F}_{i} W / \mathcal{F}_{i+1} W$ and let \widetilde{v}_{x} be the canonical image of v_{x} in \widetilde{W}. Notice that

$$
\widetilde{W}=\sum_{\substack{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)} \geq \beta}} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} / \sum_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}>\beta} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} \cong \bigoplus_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}=\beta} \bigotimes_{i=1}^{n}\left(V_{j_{i}}^{(i)} / V_{j_{i}+1}^{(i)}\right)
$$

So the algebraic group \widetilde{G} acts naturally on \widetilde{W}. Let \widetilde{x} be the rational point of $\mathbb{P}(\widetilde{W} \vee)$ corresponding to the subspace of \widetilde{W} generated by \widetilde{v}_{x}.

For all integers i, j such that $1 \leq i \leq n$ and $0 \leq j<d^{(i)}$, let $r_{j}^{(i)}$ be the rank of $V_{j}^{(i)} / V_{j+1}^{(i)}$ over K. We choose a strictly positive integer N divisible by all $r^{(i)}=\mathrm{rk}_{K} V^{(i)}$ and such that, for any integers i and j satisfying $1 \leq i \leq n$ and $0 \leq j<d^{(i)}$, the number

$$
a_{j}^{(i)}:=-\frac{N \widetilde{c} \lambda_{j}^{(i)}}{r^{(i)}}
$$

is an integer. This is always possible since $\widetilde{c} \in \mathbb{Q}$. The sequence $\left(\lambda_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$ is strictly increasing, so is $\mathbf{a}^{(i)}:=\left(a_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$. Finally we define $b_{j}^{(i)}:=\frac{N}{r^{(i)}}+a_{j}^{(i)}$.

We are now able to establish an explicit version of Proposition 1.12 in RR84 for product of general linear groups.

Proposition 6.8 Let $\widetilde{\pi}: \mathbb{P}\left(\widetilde{W}^{\vee}\right) \rightarrow$ Spec K be the canonical morphism and let

$$
\widetilde{L}:=\mathcal{O}_{\widetilde{W}^{\vee}}(N) \otimes\left(\bigotimes_{i=1}^{n} \bigotimes_{j=0}^{d^{(i)}-1} \widetilde{\pi}^{*}\left(\Lambda^{r_{j}^{(i)}}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)\right)^{\otimes b_{j}^{(i)}}\right) .
$$

Then the rational point \widetilde{x} of $\mathbb{P}(\widetilde{W} \vee)$ is semistable for the action of \widetilde{G} relatively to the G linearized line bundle \widetilde{L}.

Proof. For any integers i and j such that $1 \leq i \leq n$ and $0 \leq j<d^{(i)}$, we choose an arbitrary filtration $\mathcal{G}^{(i), j}$ of $V_{j}^{(i)} / V_{j+1}^{(i)}$ supported by \mathbb{Z}. We have explained in Subsection 5.5 how to construct a new filtration $\mathcal{G}^{(i)}$ of $V^{(i)}$ from $\mathcal{G}^{(i), j}$. Let

$$
\mathcal{G}=\bigotimes_{i=1}^{n} \mathcal{G}^{(i)}, \quad \widetilde{\mathcal{G}}=\bigoplus_{\substack{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}=\beta}} \bigotimes_{i=1}^{n} \mathcal{G}^{(i), j_{i}}
$$

From the construction we know that $\lambda_{\mathcal{G}}\left(v_{x}\right)=\lambda_{\tilde{\mathcal{G}}}\left(\widetilde{v}_{x}\right)$. Using (22), the inequality (27) implies:

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{r_{j}^{(i)}}{r^{(i)}} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]-\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{\widetilde{c} \lambda_{j}^{(i)} r_{j}^{(i)}}{r^{(i)}} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]-\lambda_{\tilde{\mathcal{G}}}\left(\widetilde{v}_{x}\right) \geq 0 \tag{29}
\end{equation*}
$$

where the constant \widetilde{c} is defined in (28). Hence

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} b_{j}^{(i)} r_{j}^{(i)} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]-N \lambda_{\widetilde{\mathcal{G}}}\left(\widetilde{v}_{x}\right) \geq 0 \tag{30}
\end{equation*}
$$

Let h be an arbitrary one-parameter subgroup of \widetilde{G} corresponding to filtrations $\mathcal{G}^{(i), j}$. By Propositions 6.3 and 6.4, together with the fact that $\mu(\widetilde{x}, h, \cdot)$ is a homomorphism of groups, we obtain

$$
\begin{aligned}
\mu(\widetilde{x}, h, \widetilde{L}) & =\mu\left(\widetilde{x}, h, \mathcal{O}_{\widetilde{W}^{\vee}}(N)\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} b_{j}^{(i)} r_{j}^{(i)} \mathbb{E}\left[\mathcal{G}^{(i), j}\right] \\
& =-N \lambda_{\widetilde{\mathcal{G}}}\left(\widetilde{v}_{x}\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} b_{j}^{(i)} r_{j}^{(i)} \mathbb{E}\left[\mathcal{G}^{(i), j}\right] \geq 0 .
\end{aligned}
$$

By Hilbert-Mumford criterion, the point \widetilde{x} is semistable for the action of \widetilde{G} relatively to \widetilde{L}.
Finally we point out the following consequence of the inequality (30).
Proposition 6.9 The minimizing filtrations $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ satisfy

$$
\mathbb{E}\left[\mathcal{F}^{(1)}\right]=\cdots=\mathbb{E}\left[\mathcal{F}^{(n)}\right]=0 .
$$

In other words, the equality $\sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)}=0$ holds, or equivalently, $\sum_{j=0}^{d^{(i)}-1} \lambda_{j}^{(i)} r_{j}^{(i)}=0$ for any $i \in\{1, \cdots, n\}$.

Proof. Let $\left(u_{i}\right)_{1 \leq i \leq n}$ be an arbitrary sequence of integers. For all integers i, j such that $1 \leq i \leq n$ and $0 \leq j<d^{(i)}$, let $\mathcal{G}^{(i), j}$ be the filtration of $V_{j}^{(i)} / V_{j}^{(i+1)}$ which is supported by $\left\{u_{i}\right\}$. Note that in this case $\widetilde{\mathcal{G}}$ is supported by $\left\{u_{1}+\cdots+u_{n}\right\}$. The inequality (30) gives

$$
\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} b_{j}^{(i)} r_{j}^{(i)} u_{i}-N \sum_{i=1}^{n} u_{i}=\sum_{i=1}^{n} u_{i} \sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)} \geq 0
$$

Since $\left(u_{i}\right)_{1 \leq i \leq n}$ is arbitrary, we obtain $\sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)}=0$, and therefore $\sum_{j=0}^{d^{(i)}-1} \lambda_{j}^{(i)} r_{j}^{(i)}=0$.

7 A criterion of Arakelov semistability for Hermitian vector bundles

We shall give a semistability criterion for Hermitian vector bundles, which is the arithmetic analogue of a result due to Bogomolov in geometric framework (see Ray81).

Let \bar{E} be a non-zero Hermitian vector bundle over $\operatorname{Spec} \mathcal{O}_{K}$ and let $V=E_{K}$. We denote by r its rank. If $\mathscr{D}: V=V_{0} \supsetneq V_{1} \supsetneq \cdots \supsetneq V_{d}=0$ is a flag of V, it induces a strictly decreasing sequence of saturated sub- \mathcal{O}_{K}-modules $E=E_{0} \supsetneq E_{1} \supsetneq \cdots \supsetneq E_{d}=0$ of E. For any integer j
such that $0 \leq j<d$, let r_{j} be the rank of E_{j} / E_{j+1}. If $\mathbf{a}=\left(a_{j}\right)_{0 \leq j<d}$ is an element in $r \mathbb{Z}^{d}$, we denote by $\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}$ the Hermitian line bundle on $\operatorname{Spec} \mathcal{O}_{K}$ as follows

$$
\begin{equation*}
\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}:=\bigotimes_{j=0}^{d-1}\left(\left(\Lambda^{r_{j}}\left(\bar{E}_{j} / \bar{E}_{j+1}\right)\right)^{\otimes a_{j}} \otimes\left(\Lambda^{r} \bar{E}\right)^{\mathrm{V} \otimes \frac{r_{j} a_{j}}{r}}\right) \tag{31}
\end{equation*}
$$

If $\mathbf{a}=\left(a_{j}\right)_{0 \leq j<d} \in \mathbb{Z}^{d}$ satisfies $\sum_{j=0}^{d-1} r_{j} a_{j}=0$, we define $\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}:=\bigotimes_{j=0}^{d-1}\left(\Lambda^{r_{j}}\left(\bar{E}_{j} / \bar{E}_{j+1}\right)\right)^{\otimes a_{j}}$.
Proposition 7.1 If the Hermitian vector bundle \bar{E} is semistable (resp. stable), then for any integer $d \geq 1$, any flag \mathscr{D} of length d of V, and any strictly increasing sequence $\mathbf{a}=\left(a_{j}\right)_{0 \leq j<d}$ of integers either in $r \mathbb{Z}^{d}$, or such that $\sum_{j=0}^{d-1} r_{j} a_{j}=0$, we have $\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right) \leq 0\left(\operatorname{resp} . \widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right)<0\right)$.
Proof. By definition,

$$
\begin{aligned}
\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right) & =\sum_{j=0}^{d-1} a_{j}\left[-\frac{\operatorname{rk}\left(E_{j}\right)-\operatorname{rk}\left(E_{j+1}\right)}{r} \widehat{\operatorname{deg}}(\bar{E})+\widehat{\operatorname{deg}}\left(\bar{E}_{j}\right)-\widehat{\operatorname{deg}}\left(\bar{E}_{j+1}\right)\right] \\
& =\sum_{j=0}^{d-1} a_{j}\left[\operatorname{rk}\left(E_{j}\right)\left(\widehat{\mu}\left(\bar{E}_{j}\right)-\widehat{\mu}(\bar{E})\right)-\operatorname{rk}\left(E_{j+1}\right)\left(\widehat{\mu}\left(\bar{E}_{j+1}\right)-\widehat{\mu}(\bar{E})\right)\right] \\
& =\sum_{j=1}^{d-1}\left(a_{j}-a_{j-1}\right) \operatorname{rk}\left(E_{j}\right)\left(\widehat{\mu}\left(\bar{E}_{j}\right)-\widehat{\mu}(\bar{E})\right) .
\end{aligned}
$$

If \bar{E} is semistable (resp. stable), then for any integer j such that $1 \leq j<d$, we have $\widehat{\mu}\left(\bar{E}_{j}\right) \leq \widehat{\mu}(\bar{E})\left(\right.$ resp. $\left.\widehat{\mu}\left(\bar{E}_{j}\right)<\widehat{\mu}(\bar{E})\right)$. Hence $\left.\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right)\right) \leq 0\left(\right.$ resp. $\left.\left.\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right)\right)<0\right)$.

Remark 7.2 The converse of Proposition 7.1 is also true. Let E_{1} be a saturated sub- $\mathcal{O}_{K^{-}}$ module of E. Consider the flag $\mathscr{D}: V \supsetneq E_{1, K} \supsetneq 0$ and the integer sequence $\mathbf{a}=(0, r)$. Then $\widehat{\operatorname{deg}}\left(\bar{L}_{\mathscr{D}}^{\mathbf{a}}\right)=r \operatorname{rk}\left(E_{1}\right)\left(\widehat{\mu}(\bar{E})-\widehat{\mu}\left(\bar{E}_{1}\right)\right)$. Therefore $\widehat{\mu}\left(\bar{E}_{1}\right) \leq \widehat{\mu}(\bar{E})\left(\right.$ resp. $\left.\widehat{\mu}\left(\bar{E}_{1}\right)<\widehat{\mu}(\bar{E})\right)$. Since E_{1} is arbitrary, the Hermitian vector bundle \bar{E} is semistable (resp. stable).

8 Upper bound for the degree of a Hermitian line subbundle

In this section, we shall give an upper bound for the Arakelov degree of a Hermitian line subbundle of a finite tensor product of Hermitian vector bundles. As explained in Section 11, we shall use the results established in Section 6 to reduce our problem to the case with semistability condition (in geometric invariant theory sense), which has already been discussed in Section 1 . We point out that, in order to obtain the same estimation as (13) in full generality, we should assume that all Hermitian vector bundles \bar{E}_{i} are semistable, as a price paid for removing the semistability condition for M_{K}.

We denote by K a number field and by \mathcal{O}_{K} its integer ring. Let $\left(\bar{E}^{(i)}\right)_{1 \leq i \leq n}$ be a family of semistable Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$. For any $i \in\{1, \cdots, n\}$, let $r^{(i)}$ be the rank of $E^{(i)}$ and $V^{(i)}=E_{K}^{(i)}$. Let $\bar{E}=\bar{E}^{(1)} \otimes \cdots \otimes \bar{E}^{(n)}$ and $W=E_{K}$. We denote by $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K the natural morphism. The algebraic group $G:=\mathbb{G L}_{K}\left(V^{(1)}\right) \times_{K} \cdots \times_{K} \mathbb{G L}_{K}\left(V^{(n)}\right)$ acts naturally on $\mathbb{P}\left(W^{\vee}\right)$. Let \bar{M} be a Hermitian line subbundle of \bar{E} and m be a strictly positive integer which is divisible by all $r^{(i)}$'s.

Proposition 8.1 For any Hermitian line subbundle \bar{M} of $\bar{E}^{(1)} \otimes \cdots \otimes \bar{E}^{(n)}$, we have

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}^{(i)}\right)+\frac{1}{2} \log \left(\text { rk } E^{(i)}\right)\right) .
$$

Proof. We have proved that if M_{K} is semistable for the action of G relatively to $\mathcal{O}_{W^{\vee}}(m) \otimes$ $\pi^{*}\left(\bigotimes_{i=1}^{n}\left(\Lambda^{r^{(i)}} V^{(i)}\right)^{\otimes m / r^{(i)}}\right)$, where m is a strictly positive integer which is divisible by all $r^{(i)}$, then the following inequality holds:

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{1}{2} \log r^{(i)}\right)
$$

If this hypothesis of semistability is not fulfilled, by Proposition 6.8, there exist two strictly positive integers N and β, and for any $i \in\{1, \cdots, n\}$,

1) a flag

$$
\mathscr{D}^{(i)}: V^{(i)}=V_{0}^{(i)} \supsetneq V_{1}^{(i)} \supsetneq \cdots \supsetneq V_{d^{(i)}}^{(i)}=0
$$

of $V^{(i)}$ corresponding to the sequence

$$
E^{(i)}=E_{0}^{(i)} \supsetneq E_{1}^{(i)} \supsetneq \cdots \supsetneq E_{d^{(i)}}^{(i)}=0
$$

of saturated sub- \mathcal{O}_{K}-modules of E,
2) two strictly increasing sequence $\lambda^{(i)}=\left(\lambda_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$ and $\mathbf{a}^{(i)}=\left(a_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$ of integers, such that
i) N is divisible by all $r^{(i)}$'s,
ii) for any integer i such that $1 \leq i \leq n, \sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)}=0$, where $r_{j}^{(i)}=\operatorname{rk}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)$,
iii) the inclusion of M in E factorizes through $\sum_{\lambda_{i_{1}}^{(1)}+\cdots \lambda_{i_{n}}^{(n)} \geq \beta} E_{i_{1}}^{(1)} \otimes \cdots \otimes E_{i_{n}}^{(n)}$,
iv) the canonical image of M_{K} in

$$
\widetilde{W}:=\sum_{\substack{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)} \geq \beta}} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} / \sum_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}>\beta} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} \cong \bigoplus_{\substack{(1) \\ \lambda_{j_{1}}+\cdots+\lambda_{j_{n}}^{(n)}=\beta}} \bigotimes_{i=1}^{n}\left(V_{j_{i}}^{(i)} / V_{j_{i}+1}^{(i)}\right) .
$$

is non-zero, and is semistable for the action of the group

$$
\widetilde{G}:=\prod_{i=1}^{n} \prod_{j=0}^{d^{(i)}-1} \mathbb{G} \mathbb{L}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)
$$

relatively to

$$
\mathcal{O}_{\widetilde{W}^{\vee}}(N) \otimes\left(\bigotimes_{i=1}^{n} \bigotimes_{j=0}^{d^{(i)}-1} \widetilde{\pi}^{*}\left(\Lambda_{j}^{r_{j}^{(i)}}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)\right)^{\otimes b_{j}^{(i)}}\right)
$$

where $\widetilde{\pi}: \mathbb{P}\left(\widetilde{W^{\vee}}\right) \rightarrow \operatorname{Spec} K$ is the canonical morphism, and $b_{j}^{(i)}=N / r^{(i)}+a_{j}^{(i)}$.

Note that $\bigotimes_{j=0}^{d^{(i)}-1}\left(\Lambda^{r_{j}^{(i)}}\left(\bar{E}_{j}^{(i)} / \bar{E}_{j+1}^{(i)}\right)\right)^{\otimes a_{j}^{(i)}}$ is nothing other than $\overline{\mathscr{L}}_{\mathscr{D}^{(i)}}^{\mathbf{a}^{(i)}}$ defined in (31).
Applying Theorem 4.2, we get

$$
\begin{aligned}
\widehat{\operatorname{deg}}(\bar{M}) & \leq \frac{1}{N} \sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N}{r^{(i)}}\left(\widehat{\operatorname{deg}}\left(\bar{E}_{j}^{(i)}\right)-\widehat{\operatorname{deg}}\left(\bar{E}_{j+1}^{(i)}\right)\right)+\frac{1}{N} \sum_{i=1}^{n} \widehat{\operatorname{deg} \overline{\mathscr{D}}_{\mathscr{D}}^{\mathbf{a}^{(i)}}}+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{r_{j}^{(i)} b_{j}^{(i)}}{2 N} \log r_{j}^{(i)} \\
& =\sum_{i=1}^{n} \widehat{\mu}\left(\bar{E}^{(i)}\right)+\frac{1}{N} \sum_{i=1}^{n} \widehat{\operatorname{deg}} \mathscr{\mathscr { L }}_{\mathscr{D}}^{\mathbf{a}^{(i)}}+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{r_{j}^{(i)} b_{j}^{(i)}}{2 N} \log r_{j}^{(i)} \\
& \leq \sum_{i=1}^{n} \widehat{\mu}\left(\bar{E}^{(i)}\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{r_{j}^{(i)} b_{j}^{(i)}}{2 N} \log r_{j}^{(i)},
\end{aligned}
$$

where the last inequality is because $\bar{E}^{(i)}$,s are Arakelov semistable (see Proposition 7.1). By Theorem 3.3, The semistability of the canonical image of M_{K} implies that $b_{j}^{(i)} \geq 0$. Therefore

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n} \widehat{\mu}\left(\bar{E}^{(i)}\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{r_{j}^{(i)} b_{j}^{(i)}}{2 N} \log r^{(i)}
$$

Since $\sum_{j=0}^{d^{(i)}-1} r_{j}^{(i)} a_{j}^{(i)}=0$ for any integer i such that $1 \leq i \leq n$ (see Proposition 6.9), we have proved the proposition.

Corollary 8.2 The following inequality is verified:

$$
\begin{equation*}
\widehat{\mu}_{\max }\left(\bar{E}^{(1)} \otimes \cdots \otimes \bar{E}^{(n)}\right) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}^{(i)}\right)+\log \left(\operatorname{rk} E^{(i)}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]} . \tag{32}
\end{equation*}
$$

Proof. Since the Hermitian line bundle \bar{M} in Proposition 8.1 is arbitrary, we obtain

$$
\widehat{\mathrm{udeg}}_{n}\left(\bar{E}^{(1)} \otimes \cdots \otimes \bar{E}^{(n)}\right) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}^{(i)}\right)+\frac{1}{2} \log \left(\mathrm{rk} E^{(i)}\right)\right)
$$

Combining with (11) we obtain (32).

9 Proof of Theorem 1.1

We finally give the proof of Theorem 1.1.
Lemma 9.1 Let K be a number field and \mathcal{O}_{K} be its integer ring. Let $\left(\bar{E}_{i}\right)_{1 \leq i \leq n}$ be a finite family of non-zero Hermitian vector bundles (non-necessarily semistable) and $\bar{E}=\bar{E}_{1} \otimes \cdots \otimes$ \bar{E}_{n}. Then the following inequality holds:

$$
\widehat{\mu}_{\max }(\bar{E}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(E_{i}\right)+\log \left(\operatorname{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]}
$$

Proof. Let F be a sub- \mathcal{O}_{K}-module of E. By taking Harder-Narasimhan flags of E_{i} 's (cf. Bos96), there exists, for any i such that $1 \leq i \leq n$, a semistable subquotient $\bar{F}_{i} / \bar{G}_{i}$ of E_{i} such that

1) $\widehat{\mu}\left(\bar{F}_{i} / \bar{G}_{i}\right) \leq \widehat{\mu}_{\max }\left(\bar{E}_{i}\right)$,
2) the inclusion homomorphism from F to E factorises through $F_{1} \otimes \cdots \otimes F_{n}$,
3) the canonical image of F in $\left(F_{1} / G_{1}\right) \otimes \cdots \otimes\left(F_{n} / G_{n}\right)$ does not vanish.

Combining with the slope inequality (10), Corollary 8.2 implies that

$$
\begin{aligned}
\widehat{\mu}_{\min }(\bar{F}) & \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{F}_{i} / \bar{G}_{i}\right)+\log \left(\operatorname{rk}\left(F_{i} / G_{i}\right)\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]} \\
& \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\operatorname{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]}
\end{aligned}
$$

Since F is arbitrary, the proposition is proved.
Proof of Theorem 1.1 Let $N \geq 1$ be an arbitrary integer. On one hand, by Lemma 9.1, we have, by considering $\bar{E}^{\otimes N}$ as $\underbrace{\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{1}}_{N \text { copies }} \otimes \cdots \otimes \underbrace{\bar{E}_{n} \otimes \cdots \otimes \bar{E}_{n}}_{N \text { copies }}$, that

$$
\widehat{\mu}_{\max }\left(\bar{E}^{\otimes N}\right) \leq \sum_{i=1}^{n} N\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\mathrm{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]} .
$$

On the other hand, by Corollary 2.5, $\widehat{\mu}_{\max }\left(\bar{E}^{\otimes N}\right) \geq N \widehat{\mu}_{\max }(\bar{E})$. Hence

$$
\widehat{\mu}_{\max }(\bar{E}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\mathrm{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2 N[K: \mathbb{Q}]}
$$

Since N is arbitrary, we obtain by taking $N \rightarrow+\infty$,

$$
\widehat{\mu}_{\max }(\bar{E}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\operatorname{rk} E_{i}\right)\right)
$$

which completes the proof.

References

[ABP73] M. Atiyah, R. Bott, and V. K. Patodi. On the heat equation and the index theorem. Inventiones Mathematicae, 19:279-330, 1973.
[BK07] J.-B. Bost and K. Künnemann. Hermitian vector bundles and extension groups on arithmetic schemes. I. geometry of numbers. preprint, 2007.
[Bos94] J.-B. Bost. Semi-stability and heights of cycles. Inventiones Mathematicae, 118(2):223-253, 1994.
[Bos96] J.-B. Bost. Périodes et isogenies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz). Astérisque, (237):Exp. No. 795, 4, 115-161, 1996. Séminaire Bourbaki, Vol. 1994/1995.
[Bos97] J.-B. Bost. Hermitian vector bundle and stability. Talk at Oberwolfach, Conference "Algebraische Zahlentheorie", July, 1997.
[Bos01] J.-B. Bost. Algebraic leaves of algebraic foliations over number fields. Publications Mathématiques. Institut de Hautes Études Scientifiques, (93):161-221, 2001.
[CH88] M. Cornalba and J. Harris. Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 21(3):455-475, 1988.
[Che06] H. Chen. Positivité en géométrie algébrique et en géométrie d'Arakelov : application à l'algébrisation et à l'étude asymptotique des polygones de Harder-Narasimhan. Doctoral thesis, École Polytechnique, December 2006.
[CL02] A. Chambert-Loir. Théorèmes d'algébricité en géométrie diophantienne (d'après J.B. Bost, Y. André, D. \& G. Chudnovsky). Astérisque, (282):Exp. No. 886, viii, 175-209, 2002. Séminaire Bourbaki, Vol. 2000/2001.
[dS] E. de Shalit. f-isocrystals. Lecture notes.
[dSP06] E. de Shalit and O. Parzanchevski. On tensor products of semistable lattices. Preprint, 2006.
[Fal89] G. Faltings. Crystalline cohomology and p-adic Galois-representations. In Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), pages 25-80. Johns Hopkins Univ. Press, Baltimore, MD, 1989.
[Fon79] J.-M. Fontaine. Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate. In Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, volume 65 of Astérisque, pages 3-80. Soc. Math. France, Paris, 1979.
[Gas00] C. Gasbarri. Heights and geometric invariant theory. Forum Mathematicum, 12:135153, 2000.
[Gau07] É. Gaudron. Pentes de fibrés vectoriels adéliques sur un corps globale. Rendiconti del Seminario Matematico della Università di Padova, 2007. à paraître.
[Gie73] D. Gieseker. Stable vector bundles and the Frobenius morphism. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 6:95-101, 1973.
[Gie77] D. Gieseker. Global moduli for surfaces of general type. Inventiones Mathematicae, 43(3):233-282, 1977.
[Gra84] D. Grayson. Reduction theory using semistability. Comment. Math. Helv., 59(4):600634, 1984.
[Gra00] P. Graftieaux. Formal groups and the isogeny theorem. Duke Mathematical Journal, 106(1):81-121, 2000.
[Kem78] G. R. Kempf. Instability in invariant theory. Annals of Mathematics, (108):299-316, 1978.
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994.
[NS65] M. S. Narasimhan and C. S. Seshadri. Stable and unitary vector bundles on a compact Riemann surface. Annals of Mathematics. Second Series, 82:540-567, 1965.
[Ray81] M. Raynaud. Fibrés vectoriels instables - applications aux surfaces (d'après Bogomolov). In Algebraic surfaces (Orsay, 1976-78), volume 868 of Lecture Notes in Math., pages 293-314. Springer, Berlin, 1981.
[Rou78] G. Rousseau. Immeubles sphériques et théorie des invariants. Comptes Rendus Mathématique. Académie des Sciences. Paris, 286(5):A247-A250, 1978.
[RR84] S. Ramanan and A. Ramanathan. Some remarks on the instability flag. The Tohoku Mathematical Journal. Second Series, 36(2):269-291, 1984.
[Stu76] U. Stuhler. Eine bemerkung zur reduktionstheorie quadratischen formen. Archiv. der Math., 27:604-610, 1976.
[Tot96] B. Totaro. Tensor products in p-adic Hodge theory. Duke Mathematical Journal, 83(1):79-104, 1996.
[Wey97] H. Weyl. The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Their invariants and representations, Fifteenth printing, Princeton Paperbacks.

[^0]: * CMLS, Ecole Polytechnique, Palaiseau 91120, France. (huayi.chen@polytechnique.org)

