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1 Introduction

A geodesic lamination L on a closed hyperbolic surface S, when provided with
a transverse measure µ, gives rise to a “dual R-tree” Tµ, together with an
action of G = π1S on Tµ by isometries. A point of Tµ corresponds precisely to

a leaf of the lift L̃ of L to the universal covering S̃ of S, or to a complementary
component of L̃ in S̃. The G-action on T is induced by the G-action on S̃

as deck transformations. This construction is well known (see [Mor86]). It
is also known [Sko96] that conversely, for every small isometric action of a
surface group G = π1S on a minimal R-tree T there exists a “dual” measured
lamination (L, µ) on S, i.e. one has T = Tµ up to a G-equivariant isometry.

This beautiful correspondence has tempted geometers and group theorists
to investigate possible generalizations, and the first one arises if one replaces
the closed surface by a surface with boundary, and correspondingly the sur-
face group G by a free group FN of finite rank N ≥ 2. A first glimpse of
the potential problems can be obtained from two simultaneous but distinct

identifications FN

∼=
−→ π1S1 and FN

∼=
−→ π1S2, thus obtaining actions of π1S1

on a tree T2 which are dual to a measured lamination on S2, but in general
not dual to any measured lamination on the surface S1.

Worse, using the index of an R-tree action by FN as introduced in [GL95],
it is easily seen that for many (perhaps even “most”) small or very small R-
trees T with isometric FN -action there is no identification whatsoever of
FN with the fundamental group of any surface that would make T dual to
a lamination. An example of such trees are the forward limit trees Tα of
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certain irreducible automorphisms with irreducible powers (so called iwip
automorphisms) of FN . Much like pseudo-Anosov surface homeomorphisms,
such an iwip automorphism has precisely one forward and one backward limit
tree, Tα and Tα−1 respectively, and it induces a North-South dynamics on the
space CV N of projectivized very small FN -actions on R-trees (see [LL03]).
Note that, contrary to the case of pseudo-Anosov homeomorphisms, it is a
frequent occurence for an iwip automorphism α (see Corollary 5.7 below)
that its stretching factor λα is different from the stretching factor λα−1 of its
inverse.

In [CHL-II] for any R-tree T with isometric FN -action, a dual lamination
L(T ) has been defined, which is the generalization of the geodesic lamination
L for a surface tree Tµ as discussed above. The goal of the present paper
is to investigate the effect of putting an invariant measure µ on the dual
lamination L(T ), or, in the proper technical terms, considering a free group
current µ with support contained in L(T ). We prove here, if the FN -action
on T is very small and has dense orbits, that such a current defines indeed
an induced measure on the metric completion T of T .

In the special case considered above where T = Tµ is dual to a measured
lamination (L, µ) on a surface, then the transverse measure µ defines indeed
a current on L(Tµ), and the induced measure on T µ defines a dual distance on
Tµ which is precisely the same as the original distance on Tµ (i.e. the one that
comes from the transverse measure µ on L). For arbitrary very small trees
T with dense FN -orbits, the measure on T induced by a current µ on L(T )
defines also a metric on T , except that this dual metric dµ may in general
be in various ways degenerate (compare §5 below). In particular, the dual
distance may well be infinite for any two distinct points of T . Alternatively,
it could be zero throughout the interior T of T .

The main result of this paper is to show that these “exotic” phenom-
ena are not just theoretically possible, but that they actually do occur in
important classes of examples.

Let α ∈ Aut(FN) be an iwip automorphism, let Tα be the forward limit
tree of α. Then the dual lamination L(Tα) is uniquely ergodic (see Proposi-
tion 5.6): it carries a projectively unique non-trivial current µ. In this case
the dual metric dµ is simply called the dual distance d∗ on Tα or on T α.

Theorem 1.1. Let α ∈ Aut(FN) be an iwip automorphism with λα 6= λα−1.
Then the dual distance d∗ on the forward limit tree Tα is zero or infinite
throughout Tα.
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Geodesic currents have been introduced by F. Bonahon for hyperbolic
manifolds [Bon86, Bon88]. They turn out to be a powerful tool, and they
also admit generalizations to a much larger setting, compare [Fur02]. For free
groups and their automorphisms, the first serious application was given in
the thesis of M. Bestvina’s student R Martin [Mar95]. Recently, I. Kapovich
rediscovered currents and studied them systematically, see [Kap04, Kap03].
As Kapovich’s papers are very carefully written and very accessible to non-
experts, we will review geodesic currents here only briefly and refer for all of
the basic detail work to the papers of Kapovich.

The novelty in the setup presented here is the relationship between cur-
rents and laminations, which we establish systematically through studying,
for any current µ, the support Supp(µ). The latter belongs to the space
Λ(FN) of laminations for the free group FN , which has been defined and
investigated in detail in [CHL-I]. This gives a rather natural map from the
space Curr(FN) of currents to the space Λ(FN). The space Curr(FN) of cur-
rents µ, as well as the resulting compact space PCurr(FN ) of projectivized
currents [µ], admit a natural action of the group Out(FN) of outer automor-
phisms of FN . The results derived in Proposition 3.1 and in Lemmas 3.2, 3.3
and 3.4 can be summarized as follows:

Theorem 1.2. The map Supp : Curr(FN) → Λ(FN) induces a map

PSupp : PCurr(FN) → Λ(FN)

which has the following properties:

1. PSupp is Out(FN)-invariant.

2. PSupp is not injective.

3. PSupp is not surjective. However, every lamination L ∈ Λ(FN) pos-
sesses a sublamination L0 ⊂ L which belongs to the image of the map
PSupp.

4. PSupp is not continuous. However, if (µn)n∈N is a sequence of currents
which converges to a current µ, then the sequence of algebraic lamina-
tions PSupp([µn]) has at least one accumulation point in Λ(FN), and
any such accumulation point is a sublamination of PSupp([µ]).
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Summing up, we believe that the results presented in this paper can be
interpreted as follows:

On the one hand, the complete correspondence between small R-trees and
measured laminations, as known from the surface situation, does not fully
extend to the world of free groups, very small R-tree actions and currents.
Unexpected degenerations seem to occure almost as a rule, and much further
research is needed before one can speak of a “true understanding”.

On the other hand, the spaces of currents, of R-tree actions, and of alge-
braic laminations for FN are naturally related, and although this relationship
is more challenging than in the surface case, there is clearly enough interest-
ing structure there to justify further research efforts. A small such further
contribution has already been given, in [CHL05], where algebraic laminations
where used to characterize R-trees up to FN -equivariant variations of their
metric.

Acknowledgements. This paper originates from a workshop organized at
the CIRM in April 05, and it has greatly benefited from the discussions started
there and continued around the weekly Marseille seminar “Teichmüller” (par-
tially supported by the FRUMAM).

2 Currents on FN

Let A be a basis of the free group FN or finite rank N ≥ 2, and let F (A)
denote the set of finite reduced words in A±1, which is as usually identified
with FN . A geodesic current for a free group FN can be defined in various
ways. In particular, there are the following three equivalent ways to introduce
them:

I. Symbolic dynamist’s choice: Consider the space ΣA of biinfinite re-
duced indexed words Z = . . . zi−1zizi+1 . . . in A±1, provided with the product
topology, the shift operator σ : ΣA → ΣA, and with the involution Z 7→ Z−1,
see [CHL-I]. A geodesic current is a non-trivial σ-invariant finite Borel mea-
sure µ on ΣA. We also require that µ is symmetric: the measure is preserved
by the involution of ΣA given by the inversion Z 7→ Z−1.

II. Geometric group theorist’s choice: Consider the space ∂2FN of pairs
(X, Y ) of boundary points X 6= Y ∈ ∂FN , endowed with the “product” topol-
ogy, with the canonical diagonal action of FN , and with the flip involution
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(X, Y ) 7→ (Y, X) as specified in [CHL-I]. A geodesic current is a non-trivial
FN - and flip-invariant Radon measure µ on ∂2FN , i.e. a Borel measure that
is finite on any compact set.

III. Combinatorist’s choice: A geodesic current is given by a non-zero
function µ : FN = F (A) → R≥0 with µ(w−1) = µ(w) for all w ∈ F (A),
which satisfies the left and the right Kolmogorov property: For all reduced
words w = y1 . . . yk ∈ F (A) one has

µ(w) =
∑

y∈A∪A−1r{y−1

k
}

µ(wy) =
∑

y∈A∪A−1r{y−1

1
}

µ(yw).

This three viewpoints correspond to the three equivalent definitions given
in [CHL-I] of a lamination for the free group FN . We assume some famil-
iarity of the reader with these three settings and will freely consider that a
lamination is altogether symbolic (viewpoint I), algebraic (viewpoint II) and,
a laminary language (viewpoint III). Whenever necessary, we emphasize the
particular viewpoint used, by notationally specifying the lamination L in
question as symbolic lamination LA, algebraic lamination L2, or as laminary
language L respectively.

For currents, the transition between the three viewpoints is also canonical
(see [Kap04]), and we will freely move from one to the other without always
notifying the reader. To be specific, the Kolmogorov value µ(w) of a reduced
word w = y1 . . . yk ∈ F (A), from the viewpoint III, is precisely the measure
of the cylinder

CA(w) = {. . . zi−1zizi+1 . . . | z1 = y1, . . . , zk = yk} ⊂ ΣA

from viewpoint I, and also, corresponding to viewpoint II, equal to the mea-
sure of the algebraic cylinder C2

A(w) ⊂ ∂2FN given by

{(X, wX ′) | X = x1x2 . . . , X ′ = x′
1x

′
2 . . . ∈ ∂F (A), x1 6= y1, x

′
1 6= y−1

k } .

Note that the algebraic cylinder C2
A(w) is the image of the “symbolic” cylin-

der CA(w) under the map ΣA → ∂2FN , Z = Z− · Z+ 7→ (Z−1
− , Z+).

Remark 2.1. The reader should notice that in viewpoints I and III a basis
A of FN is crucially used, while II is “algebraic”. It is very important to
remember that basis change induces on the Kolmogorov function a more
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complicated operation than just rewriting the given group element in the
new basis B. The correct transition is given, for any reduced word w ∈ F (B),
by decomposing the algebraic cylinder C2

B(w) ⊂ ∂2FN into a finite disjoint
union of translates uiC

2
A(vi) of properly chosen algebraic cylinders C2

A(vi),
with ui, vi ∈ F (A), and posing:

µ(w) =
∑

i

µ(vi).

Similarly as for laminations (see §1 of [CHL-I]), every element w of FN r

{1} (or rather, every non-trivial conjugacy class) defines an integer current
µw, given (in the language of viewpoint I) as follows: If w = um for the
maximal exponent m ≥ 1, then the measure µw(C) of any measurable set
C ⊂ ΣA is equal to m times the number of elements of C∩LA(u), where LA(u)
is the finite set of biinfinite words of type . . . vv ·vv . . ., and v ∈ F (A) is any of
the cyclically reduced words conjugated to u or to u−1. Alternatively, (in the
language of viewpoint II) the current µw is given by an FN -equivariant Dirac
measure µw on ∂2FN , defined as follows: For every measurable set C2 ⊂ ∂2FN

the value of µw(C2) is given by the number of cosets g < w >⊂ FN which
contain an element v that satisfies v(w−∞, w∞) ∈ C2 or v(w∞, w−∞) ∈ C2. A
third equivalent definition of µw (corresponding to viewpoint III) is given by
a count of “frequencies”, see [Kap03]. The noteworthy fact that µw depends
only on the element w ∈ FN and not on the word w ∈ F (A) is obvious in
the second of these definitions, but rather puzzeling if one considers only the
first or the third.

A current is rational if it is a non-negative linear combination of finitely
many integer currents.

Remark 2.2. The above setup of the concept of currents in its various equiv-
alent forms, together with the canonical identification FN = F (A) for any
basis A of FN , provides the ideal means to see very elegantly that many of the
classical measure theoretic tools from symbolic dynamics do not depend on
the underlying combinatorics of the chosen alphabet, but are rather algebraic
in their true nature. Determining the exact point to which ergodic theory
tools can be “algebraicized” seems to be a worthy task but goes beyond the
scope of this paper.
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3 The space Curr(FN)

The set of currents on FN will be denoted Curr(FN). It comes naturally with
several interesting structures, which we will discuss briefly in this section. We
would like to stress that this space, as well as its projectivization, appears to
be a very interesting and useful tool for many fundamental questions about
automorphisms of free groups, and we expect that it will play an important
role in the future developpement of this subject.

First, the set Curr(FN) of currents carries the weak topology, which for
any basis A of FN is induced by the canonical embedding of Curr(FN) into
the vector space R

F (A), given by µ 7→ (µ(w))w∈F (A). In particular, a family
of currents µi converges towards a current µ ∈ Curr(FN) if and only if µi(w)
converges to µ(w) for every w ∈ F (A).

Next, the same formalism as explained in Remark 2.1 for a basis change
defines canonically an action by homeomorphisms of Out(FN) on the space
Curr(FN ), which is formally given, for any α ∈ Aut(FN) and any µ ∈
Curr(FN ), by α∗(µ)(C) = µ(α−1(C)), for every measurable set C ⊂ ∂2FN .
This convention defines a left action of Out(FN ):

α∗(β∗(µ))(C) = β∗(µ)(α−1(C)) = µ(β−1(α−1(C)))

= µ((αβ)−1(C)) = (αβ)∗(µ)(C)

For any integer current µw, with w ∈ FN r {1}, this gives (compare [Kap03,
Kap04]):

α∗(µw) = µα(w)

Every current µ defines naturally a lamination L(µ) for the free group
FN . L(µ) can be viewed as an algebraic lamination L2(µ), i.e. a non-empty
subset of ∂2FN which is closed and invariant under the FN -action and the
flip involution, compare [CHL-I]. In this setting, L2(µ) ⊂ ∂2FN is simply the
support Supp(µ) of the Borel measure µ on ∂2FN , i.e. the complement of the
biggest open set (= the union of all open sets) with measure 0. Alternatively,
L(µ) is given via its laminary language L(µ) = {w ∈ F (A) | µ(w) > 0}. We
refer to a current µ with support contained in a lamination L simply as an
invariant measure on L. Alternatively, one says that µ is carried by L.

A lamination L which has, up to scalar multiples, only one current µ

with support L(µ) = L, is called uniquely ergodic. The simplest examples
of non-uniquely ergodic laminations are given by the union L of two disjoint
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laminations L0 and L1, such that L0 and L1 are the support of currents µ0 and
µ1 respectively (for example rational laminations L0 = L(a) and L1 = L(b)
for distinct basis elements a, b ∈ A). For 0 < λ < 1 one obtains an interval
of pairwise projectively distinct currents

µ(λ) = λµ1 + (1 − λ)µ0 ,

all with support L.

Proposition 3.1. Recall that we assume N ≥ 2, and let Λ(FN) denote the
space of laminations for FN as introduced in [CHL-I]. The map

Supp : Curr(FN) → Λ(FN), µ 7→ L(µ)

is Out(FN)-equivariant, but not continuous and not surjective.

Proof. The Out(FN )-equivariance is a direct consequence of the definition of
the action of Out(FN) on Curr(FN ) and on Λ(FN).

To see that the map Supp is non-surjective it suffices to consider the
symbolic lamination L = L{a,b}(Z) generated by the biinfinite word Z =
. . . aaab · aaa . . .. It consists of the σ-orbit of Z and of the periodic word
. . . aa · aa . . ., as well as of their inverses. However, it is an easy exercise to
show that any Kolmogorov function µ on the associated laminary language
L{a,b}(Z), as it takes on values in R≥0 and not in R≥0 ∪ {∞}, must associate
the value 0 to any word that contains the letter b, so that all the measure of
µ will be concentrated on the sublamination L{a,b}(a) of L.

The fact that the map Supp is non-continuous can be seen from the
above defined family µ(λ) of currents with constant support L, by letting
the parameter λ converge inside the open interval (0, 1) to the value 0 (or 1):
For any such λ the support of µ(λ) is clearly the union L0 ∪L1, while for the
limit one gets L(µ(0)) = L0 (or L(µ(1)) = L1). ⊔⊓

The space Curr(FN) has some additional structures which are not matched
by corresponding structures in Λ(FN). For example, there is a canonical lin-
ear structure on Curr(FN), given simply by the embedding of Curr(FN) into
the real vector space R

F (A). Projectivization µ 7→ [µ] defines the space of
projectivized currents PCurr(FN). Both Curr(FN) and its projectivization are
infinite dimensional, but PCurr(FN) is compact. Clearly, the map Supp splits
over the projectivization, thus inducing a map PSupp : PCurr(FN ) → Λ(FN),
which by Proposition 3.1 is Out(FN)-equivariant, non-continuous, and non-
surjective. We obtain furthermore
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Lemma 3.2. The map PSupp : PCurr(FN ) → Λ(FN) is non-injective.

Proof. Any non-uniquely ergodic lamination, in particular the above defined
family µ(λ) of currents with constant support L, shows that the map PSupp
is not injective. ⊔⊓

A second interesting example for the non-continuity of the map Supp,
other than the one given in the proof of Proposition 3.1, is given by the
rational currents 1

n
µabn which converge to µb, while their support L(abn)

converge to the lamination generated by . . . bba ·bb . . . and . . . bb ·bb . . ., which
is strictly larger than the lamination L(b).

This last example, as also the one given in the proof of Proposition 3.1,
indicates that a weaker statement than the continuity might be true for the
map Supp. Since this will be needed in §5 as an important ingredient for the
proof of Proposition 5.6, we formalize it here:

We say that a subset δ of Λ(FN) is saturated if δ contains with any
lamination also all of its sublaminations.

Lemma 3.3. Let δ ⊂ Λ(FN) be a closed saturated subset of laminations.
Then the full preimage ∆ ⊂ PCurr(FN ) of δ under the map PSupp is closed.

Proof. We consider a sequence of currents µk in Curr(FN), with L(µk) ∈ δ for
any µk. By the compactness of PCurr(FN) and of Λ(FN) we can assume, after
possibly passing over to a subsequence, that there is a current µ ∈ Curr(FN )
and a lamination L ∈ Λ(FN) with [µ] = lim

k→∞
[µk] and L = lim

k→∞
L(µk). By

properly normalizing the µk we can actually assume that µ = lim
k→∞

µk.

We now fix a basis A of FN and consider the value of the Kolmogorov
function µ(w) for any w ∈ FN r {1}. If µ(w) > 0, then by the topology on
Curr(FN ), for any ε with µ(w) > ε > 0 there is a bound k0 such that for
any k ≥ k0 one has |µk(w) − µ(w) | < ε. This shows for all k ≥ k0 that w

belongs to the laminary language L(µk). But this implies that w belongs to
the laminary language of L, which shows that µ is carried by L. Since by
hypothesis δ is closed and saturated, this shows that [µ] is contained in ∆,
so that the latter must be closed. ⊔⊓

A weaker statement than the surjectivity of the map Supp is crucially
used in §5, again in the proof of Proposition 5.6:
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Lemma 3.4. Every lamination L ∈ Λ(FN) contains a sublamination which
is the support of some current µ ∈ Curr(FN).

Proof. For some basis A of FN , let Z = . . . zi−1zizi+1 . . . be a leaf of the
lamination L. Let Zn = z−n . . . zn be the central subword of Z of length
2n + 1.

For every n ∈ N we define a “counting function” mn : F (A) → R≥0, by
setting, for any word w in F (A), mn(w) to be the number of occurences of
w as subword of Zn or of Z−1

n , divided by 4n + 2. It follows directly that
mn satisfies the equations that defines the right and the left Kolmogorov
property, up to possibly an error of absolute value less than 1

2n+1
. The total

value of mn on the set of words of length 1 is 1, for any n ∈ N. Moreover
mn(w) is non-zero only for subwords of Z.

For each word w in F (A) we can chose a subsequence of (mn)n∈N whose
value at w converges. By a diagonal argument we get a subsequence that
converges pointwise to a limit function µ which satisfies the Kolmogorov
laws while still having total value 1 on set of words of length 1, so that it is
non-zero.

By construction, we have mn(w) = mn(w−1) for all w ∈ F (A), so that
the same is true for µ. Hence µ is a current. Its support is contained in the
set of subwords of Z and thus, as a lamination, in L. ⊔⊓

A very interesting subspace M ⊂ PCurr(FN) has been introduced by
R. Martin in [Mar95] as closure of the Out(FN )-orbit of [µa], for any element
a of any basis A of FN . R. Martin shows that a projectivized integer current
[µw] belongs to M if and only if w is contained in a proper free factor of FN .
In contrast to the analogous situation for Out(FN)L(a) (compare Proposi-
tion 8.1 of [CHL-I]), for N ≥ 3 it has been shown in [KL06], Theorem B, that
M is the unique minimal subspace of Curr(FN) which is non-empty, closed
and Out(FN )-invariant.

The fact that currents behave somehow more friendly than laminations is
underlined by the following fact, proved in R. Martin’s thesis and attributed
there to M. Bestvina (compare to Proposition 6.5 of [CHL-I]):

Proposition 3.5 ([Mar95]). The set of projectivized integer currents [µw],
for any w ∈ FN , is dense in PCurr(FN).
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4 Geometric currents

A large class of very natural examples for a current µ ∈ Curr(FN) is given
by any geodesic lamination L ⊂ S, provided with a transverse measure µ′,
where S is a hyperbolic surface with boundary as considered in the section 3
of [CHL-I] and section 6 of [CHL-II]. In this case the measure µ on ∂2FN can
be nicely seen geometrically through the canonical identification of ∂FN with
the space ∂S̃ of ends of the universal covering S̃, which is embedded as subset
in the boundary at infinity S1

∞ = ∂H
2. Two disjoint intervals A, B ⊂ S1

∞,

with intersections A′ = A∩∂S̃, B′ = B∩∂S̃, define a measurable set A′×B′

of ∂2FN , and the measure µ(A′ ×B′) is precisely given by the measure µ′(β)

of an arc β in S which is transverse to L, and which lifts to an arc β̃ in
S̃ ⊂ H

2 that has its two endpoints on the two extremal leaves of L̃ ⊂ S̃

which bound the set of all leaves of L̃ that have one endpoint in A and one
endpoint in B.

5 The dual metric for R-trees

In this section we assume familiarity of the reader with the notions of [CHL-II],
from which we also import the notation without further explanations.

In the last section we have seen that every transverse measure µ on a
geodesic lamination L which is contained in a hyperbolic surface S, with
non-empty boundary and with an identification π1S = FN , gives rise to a
canonical current in Curr(FN) which we also denote by µ. In section 6 of
[CHL-II] we have discussed that (L, µ) determines an R-tree Tµ with isometric
FN -action, and that the support of the current µ and the dual lamination
of Tµ are the same: this lamination is precisely the lamination associated to
L ⊂ S.

One of the most intriguing aspects of the relationship between currents
and R-trees comes from the attempt to extend this correspondence, which
for surfaces is almost tautological, to more general R-trees T . Indeed, the
goal of this section is to understand better the true nature of the interaction
between the metric on T and an invariant measure µ carried by the dual
lamination L(T ) as defined in [CHL-II].

In the sequel we consider the dual lamination L(T ) as algebraic lamination
L2(T ), i.e. a non-empty, FN -invariant, flip-invariant and closed subset of
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∂2FN . From [CHL-II] we know that there is a map Q2 : L2(T ) → T which is
FN -equivariant and continuous (see Proposition 8.3 of [CHL-II]). Here T is
an element of the boundary ∂cvN of the unprojectivized Outer space cvN : in
particular, T is a non-trivial R-tree with minimal, very small FN -action by
isometries (see [CHL-II], §2). We also require that the FN -orbits of points are
dense in T (“T has dense orbits”), and we denote by T the metric completion
of T .

Corollary 5.1. For all T ∈ ∂cvN with dense orbits, the map Q2 : L2(T ) → T

is measurable (with respect to the two Borel σ-algebras on L2(T ) and on T ).
⊔⊓

We apply the last corollary in order to define an extended pseudo-metric
dµ on T , for any current µ which is carried by L(T ). An extended pseudo-
metric is just like a metric, except that distinct points P, Q may have distance
0, positive distance, or distance ∞.

Definition 5.2. Let T ∈ ∂cvN be with dense orbits, and assume that µ ∈
Curr(FN ) satisfies Supp(µ) ⊂ L(T ). One then defines, for any P, Q ∈ T ,
their µ-distance as follows:

dµ(P, Q) = µ((Q2)−1([P, Q])) [ = Q2
∗(µ)([P, Q]) ]

Clearly the function dµ is symmetric and, since T is a tree, it satisfies the
triangular inequality. For three points P, Q, R ∈ T with Q ∈ [P, R] one has
dµ(P, R) = dµ(P, Q) + dµ(Q, R) unless µ((Q2)−1({Q})) > 0, which of course
can happen (for example if Q has non-trivial stabilizer which carries all of
the support of µ).

We distinguish now three special cases (note that we always assume that
T is a minimal R-tree, so that it agrees with its interior): The metric dµ is
called zero throughout T if any two points in T have µ-distance 0. It is called
infinite throughout T if any two distinct points in T have µ-distance ∞. It
is called positive throughout T if any two distinct points in T have positive
finite µ-distance. Otherwise we call the µ-distance mixed.

A particular case, which is of special importance, is the following:

Definition 5.3. An R-tree T ∈ ∂cvN is called dually uniquely ergodic if the
dual lamination L(T ) is uniquely ergodic.
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We note that, in the case where T is dually uniquely ergodic, the µ-
distance is uniquely determined by T , up to rescaling. In this case we sup-
press the measure µ and speak simply of the dual distance d∗ on T .

Conjecture 5.4. If T is dually uniquely ergodic then the dual distance is
not mixed.

We finish this article by proving that the case of dual distances which
are infinite or zero throughout the interior does actually exist, and that it
occurs in a natural context. We assume from now on a certain familiarity
with some of the modern tools for the geometric theory of automorphisms
of free groups. Background material and references can be found in [Vog02].
In particular we will use below the following facts and definitions:

Remark 5.5. (1) An automorphism α of FN is called irreducible with irre-
ducible powers (iwip) if no non-trivial proper free factor of FN is mapped by
any positive power of α to a conjugate of itself.

(2) It is known (compare [LL03]) that for every iwip automorphism α there
is, up to FN -equivariant homothety, precisely one minimal forward limit R-
tree Tα ∈ ∂cvN which admits a homothety H : Tα → Tα with stretching
factor λα > 1 that twistedly commutes with α. By this we mean that

α(w)H = Hw : Tα → Tα

holds for every w ∈ FN . Note that both, the map H as well as the FN -
action on T , extend canonically to the metric completion T α, so that the last
statement holds also for T α instead of Tα.

(3) In terms of the induced action of Out(FN) on the non-projectivized closed
Outer space cvN (see [CHL-II], §9), the equation in (2) can be expressed by
stating

Tα∗ = α−1
∗ T = λαT ,

where λαT denotes the tree T rescaled by the factor λα.

(4) As a consequence of the equation in (2), the homothety H satisfies:

HQ2 = Q2α : L2(Tα) → Tα .

(5) There is no further fixed point of the α∗-action on CV N other than the
points [Tα] and [Tα−1 ] specified above. In [LL03] it is shown that any iwip
automorphism has North-South dynamics on CV N .
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(6) One knows from [Mar95], Theorem 30 (again attributed to M. Bestvina)
that, if α is not geometric, i.e. induced by a surface homeomorphism h :
S

≈
→ S via some identification FN

∼= π1S, then the α∗-action on PCurr(FN )
possesses precisely two fixed points, an attractive and a repelling one, and
that α∗ has a North-South dynamics on PCurr(FN).

(7) Let us denote by µα ∈ Curr(FN) a representative of the attracting fixed
point of the α∗-action on PCurr(FN). It satisfies α∗(µα) = λαµα, see [Mar95],
where λα is the stretching factor given in (2).

(8) Following [Mar95], the support of µα is contained in the so called legal
lamination Lα ∈ Λ(FN): Its leaves are represented, for any train track repre-
sentative f : τ → τ of α, by biinfinite legal paths in τ , and consequently by
non-trivial (in fact: biinfinite) geodesics in Tα (compare with the attractive
lamination defined in [BFH97]). In particular, it follows from the alternative
definition of the dual lamination, L(T ) = LQ(T ), given in Theorem 1.1 of
[CHL-II], that the two laminations Lα and L(Tα) are disjoint.

(9) Any iwip automorphism possesses a train track representative f : τ → τ

with transition matrix that is primitive. As a consequence, any edge e of τ

will have an iterate fk(e) which crosses over all other edges. The canonical
image in Tα (under the map i : τ̃ → Tα, see [LL03]) of any lift of fk(e) to
the universal covering τ̃ is a segment which has the property that the union
of its FN -translates covers all of Tα.

Proposition 5.6. For every non-geometric iwip automorphisms α ∈ Aut(FN),
the forward limit tree Tα is dually uniquely ergodic.

Proof. From the Out(FN)-equivariance of the map λ2 : ∂cvN → Λ(FN) in
Proposition 9.1 of [CHL-II], together with Remark 5.5 (3) above, it fol-
lows that the dual lamination L(Tα) is fixed by α. Hence the set ∆(α) ⊂
PCurr(FN ), which consists of all preimages under the map PSupp of the lam-
ination L(Tα) and any of its sublaminations, is invariant under the action of
α∗ (by the equivariance of the maps Supp and PSupp, see Proposition 3.1).
As the set of all sublaminations of a given lamination is closed, see Proposi-
tion 6.4 of [CHL-I], it follows from Lemma 3.3 that ∆(α) is closed. Further-
more ∆(α) is non-empty, by Lemma 3.4. Thus ∆(α) is the non-empty union
of closures of α∗-orbits, so that it must contain the closure of at least one
α∗-orbit in PCurr(FN). From the North-South dynamics of the α∗-action on
PCurr(FN ) (Remark 5.5 (6)) it follows that either ∆(α) consists of precisely
one of the two fixed points [µα] or [µα−1 ], or else it contains both of them.
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But according to Remark 5.5 (8) the support of µα is contained in the
legal lamination Lα, which in turn is disjoint from L(Tα). Hence [µα] is
not contained in ∆(α), which proves that the latter consists precisely of
the point [µα−1 ]. This shows that L(Tα) supports only one (projectivized)
current, namely [µα−1 ]. ⊔⊓

We can now give the proof of our main result as stated in §1:

Proof of Theorem 1.1. From Proposition 5.6 and its proof we know that the
forward limit tree Tα has dual lamination L(Tα) which carries an (up to
homothety) unique current, and that this current is equal to µα−1 .

We now calculate, for any P, Q ∈ Tα (using Remark 5.5 (4) to get the
third, and (7) to get the sixth of the equalities below):

d(H(P ), H(Q)) = λαd(P, Q)

and
d∗(H(P ), H(Q)) = µα−1((Q2)−1([H(P ), H(Q)]))

= µα−1((HQ2α−1)−1([H(P ), H(Q)]))
= µα−1(α((Q2)−1([P, Q])))
= α−1

∗ (µα−1)((Q2)−1([P, Q]))
= λα−1µα−1((Q2)−1([P, Q]))
= λα−1d∗(P, Q)

Assume now that some points P 6= Q ∈ Tα have finite dual distance. By
iterating H one finds an interval [Hn(P ), Hn(Q)] with the property that the
union of its FN -translates covers all of Tα (compare Remark 5.5 (9)). This
implies that any two points in Tα have finite dual distance. If the dual
distance function is furthermore non-zero, by the same argument it follows
that any two points have non-zero distance. Thus the dual metric d∗ on
Tα defines a non-trivial R-tree T ∗

α with free FN -action, and hence, since the
equation in Remark 5.5 (2) carries over from Tα to T ∗

α, the R-tree T ∗
α defines

a fixed point [T ∗
α] of the α∗-action on ∂CVN (see §2 and §9 of [CHL-II]).

By Remark 5.5 (5) the point [T ∗
α] must agree with either [Tα] or [Tα−1 ].

But this cannot be because we computed above that the streching factor of
the α∗-action on T ∗

α is equal to λα−1 and hence bigger than 1 (which rules
out [T ∗

α] = [Tα−1 ]), but different from λα (thus ruling out [T ∗
α ] = [Tα], by

Remark 5.5 (3)).
Hence the dual metric d∗ must be either zero or infinite throughout Tα.

⊔⊓
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A concrete example of an automorphism that satisfies the properties
stated in Theorem 1.1 as hypotheses is given in [ABHS05] by the automor-
phism

a 7→ ab

b 7→ ac

c 7→ a

of F3, which has streching factor 1, 84 . . ., while its inverse

a 7→ c

b 7→ c−1a

c 7→ c−1b

has streching factor 1, 39 . . ..

An iwip automorphism α ∈ Aut(FN) is called parageometric, if α is not
geometric, but Tα is a geometric tree (see [GL95, GJLL98]). It has been
proved recently in [HM04], see also [Gui04], that in this case the iwip au-
tomorphism α−1 is not parageometric, and that its stretching factor λα−1

is strictly smaller than λα (compare [Gau05]). A family of such automor-
phisms, one for any N ≥ 3, has been exhibited and investigated in[JL98].
We summarize:

Corollary 5.7. The dual metric on the forward limit tree of any parageo-
metric iwip automorphism of FN , or of its inverse, is always infinite or zero
throughout.

References
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13397 Marseille 20
France
Thierry.Coulbois@univ-cezanne.fr
Arnaud.Hilion@univ-cezanne.fr
Martin.Lustig@univ-cezanne.fr

18


