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Abstract

Let G be a group and let X be a finite subset. The isoperimetric method investigates
the objective function |(XB)\X |, defined on the subsets X with |X | ≥ k and |G\(XB)| ≥
k.

In this paper we present all the basic facts about the isoperimetric method. We improve
some of our previous results and obtain generalizations and short proofs for several known
results. We also give some new applications.

Some of the results obtained here will be used in a coming paper [23] to improve
Kempermann structure Theory.

1 Introduction

The starting point of set product estimation is the inequality |AB| ≥ min(|G|, |A| + |B| − 1),
where A,B are subsets of a group with a prime order, proved by Cauchy [4] and rediscovered
by Davenport [6]. Some of the generalizations of this result are due to Chowla [5], Shephedson
[45], Mann [37] and Kemperman [34].

Kneser’s generalization of the Cauchy-Davenport Theorem is a basic tool in Additive Number
Theory:

Theorem 1 (Kneser [36, 35, 38, 47]) Let G be an abelian group and let A,B ⊂ G be
finite nonempty subsets such that |AB| ≤ |A| + |B| − 2. Then |AB| = |AH| + |BH| − |H|,
where H = {x : ABx = AB}.

Among the numerous applications of Kneser’s Theorem, we mention one to the Frobenius
problem due to Dixmier [9].

Generalizing Kneser’s Theorem to non-abelian groups still a challenging problem. Several
attempts were made for this purpose. The first one is due to Diderrich:

Theorem 2 (Diderrich [8]) Let G be a group and let A,B ⊂ G be finite nonempty subsets
such that |AB| ≤ |A| + |B| − 2. Assume moreover that the elements of B commute. Then
|AB| = |AH| + |BH| − |H|, where H = {x : ABx = AB}.

∗Université Pierre et Marie Curie, Paris hamidoune@math.jussieu.fr
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It was observed in [16] that this generalization is equivalent to Kneser’s Theorem, c.f. Corol-
lary 16. More investigation and some examples, showing that the natural extension fails, can
be found in Olson [41].

The critical pair Theory is the description of the subsets A,B with |AB| = |A| + |B| − 1.
Vosper’s Theorem [48, 49, 36, 38] states that in a group with a prime order |AB| = |A| +
|B| − 1 ≤ |G| − 2 holds if and only if A and B are progressions with the same ratio, where
min(|A|, |B|) ≥ 2. More recently the authors of [27] obtained a description of sets A,B with
|AB| = |A|+ |B| ≤ |G| − 4, if |G| is a prime. For general abelian group the classical tools are
based on Kemperman’s critical pair Theory [33].

The results described above were proved using the transformations introduced by cauchy,
Davenport and Dyson [4, 6, 38, 47]. These transformations were generalized by Kemperman
to non-abelian groups [34]. In the non-abelian case only few results, proved using Kemperman
transformations, were known until recent years. These results are basically due to Kemperman
[34], Olson [39, 40, 41] and Brailowski-Freiman [3].

More recently Károlyi [32] used group extensions and the Feit-Thompson Theorem to obtain
a generalization of Vosper’s Theorem to the non-abelian case.

The exponential sums method in Additive Number Theory gives some sharp estimates for
|AB| in the abelian case if |A|, |B| are relatively small. The reader may found applications
of this method in the text books [38, 47] and the papers of Deshouillers-Freiman [7] and
Green-Ruzsa [11].

Another method in Additive Number Theory based on Nonstandard Analysis was introduced
by Jin. An example of the application of this method may be found in [31].

In this paper we are concerned with the isoperimetric method introduced by the author in
[13, 17, 20, 21]. Let us present briefly some special cases of this method:

Let Γ = (V,E) be a finite reflexive relation and consider the objective function X −→
|Γ(X) \X|, defined on the subsets X with |X| ≥ k and |V \Γ(X)| ≥ k. The minimal value of
this objective function is the kth–connectivity and a k–atom is a set with minimal cardinality
where the objective function achieves its minimal value. The main result proved in [20] implies
that distinct k–atoms of Γ intersect in at most k−1 elements or that distinct k–atoms of Γ−1

intersect in at most k − 1 elements. This result, which generalizes some previous results of
the author [13, 17, 21], has several applications in Additive number Theory as we shall see in
the present paper.

The strong connectivity, usually defined in Graph theory as the minimum cardinality of a
cutset, coincides with our first connectivity. The kth–connectivity was introduced in [20] in
connection with some additive problems.

Let B be a subset of a finite abelian group G with 1 ∈ B and B 6= G. As showed in [17], the
main result proved in [13] implies that the objective function X −→ |(XB) \ X|, defined on
the nonempty subsets X with XB 6= G, attains its minimal value on a subgroup. If |G| is
a prime this value is necessarily |B| − 1. The Cauchy-Davenport Theorem follows obviously
from this fact.

In this paper we shall present basic facts about the isoperimetric method. We shall improve
some of our previous results and obtain generalizations and short proofs for several known
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results. We also give some new applications.

The paper’s organization is the following:

In section 1, we present the terminology. In section 2, we introduce the concepts of kth–
connectivity, k–fragment and k–atom and prove some elementary properties of these objects.
In section 3, we give some basic properties of the intersection of fragments. The main result
of this section is Theorem 7 which gives conditions implying that the intersection of two k–
fragments is a k–fragment. This theorem generalizes results contained in [13, 14, 17, 21, 20].
In section 4, we obtain the structure of 1–atoms and give few applications. Most of the results
of this section were proved in [17, 21]. We prove them since they are needed in several parts
of this paper in order to make the present work self-contained. In section 5, we investigate
the inequality |AB| ≥ |A| + |B|/2 and its critical pairs. In section 6, Proposition 19 gives
the value of κ2 for sets with a small cardinality. As an application we generalize the result
of Károlyi [32] mentioned above. Theorem 22 determines the structure of the 2–atoms in the
abelian case. This result extends to the infinite case a previous result of the author [22]. The
proof given here is much easier than our first proof. In section 7, we prove more results on
the intersection of fragments. We apply these results in section 8 to give an upper bound
for the size of a 2–atom. This result could help in proving that a 2–atom containing 1 is a
normal subgroup. As an application we generalize to the infinite case a result proved in the
finite case by Arad and Muzychuk [1]. In section 8, we investigate minimal cutsets and the
corresponding saturated sets.

Some of the results obtained here will be used in a coming paper [23] to improve Kempermann
structure Theory.

The reader may find some applications of the isoperimetric method in Serra’s survey [43].

2 Terminology and preliminaries

2.1 Groups

Let G be a group and let S be a subset of G. The subgroup generated by S will be denoted
by 〈S〉. Let A,B be subsets of G. The Minkowski product is defined as

AB = {xy : x ∈ A and y ∈ B}.

Let H be a subgroup. A partition A =
⋃

i∈I

Ai, where Ai is the nonempty intersection of some

left–H–coset with A will be called a H–left-decomposition of A. A right-decomposition is
defined similarly.

Let X be a subset of a group G. We write

Πr(X) = {x : Xx = X} and Πl(X) = {x : xX = X}.

Let G be a group and let S be a subset of G. The set S is said to be normal if for every
x ∈ G, xS = Sx. We shall say that S is semi-normal if there is a ∈ G such that for every
x ∈ G, xS = Sxa. Obviously S is semi-normal if and only if there is a ∈ G such that Sa is
normal.
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We use the following well known fact:

Lemma 3 ([36], Theorem 1) Let G be a finite group and let A,B be subsets such that
|A| + |B| > |G|. Then AB = G.

2.2 Graphs

The diagonal of V is by definition ∆V = {(x, x) : x ∈ V }. Let V be a set and let E ⊂ V × V .
The relation Γ = (V,E) will be called a graph. The elements of V will be called points or
vertices. The graph Γ is said to be reflexive if ∆V ⊂ E. The reverse of Γ is by definition
Γ−1 = (V,E−1), where E−1 = {(x, y) : (y, x) ∈ E}.

Let a ∈ V and let A ⊂ V . The image of a is by definition

Γ(a) = {x : (a, x) ∈ E}.

The image of A is by definition

Γ(A) =
⋃

x∈A

Γ(x).

The valency of x is by definition dΓ(x) = |Γ(x)|. We shall say that Γ is locally finite if dΓ(x)
is finite for all x. We put δ(Γ) = min{dΓ(x);x ∈ V }. The graph Γ will be called regular with
valency r if the elements of V have the same valency r.

Let Γ = (V,E) be a graph. For X ⊂ V , the boundary of X is by definition

∂Γ(X) = Γ(X) \ X.

When the context is clear the reference to Γ will be omitted. In this case we write

• ∂−(X) = Γ−1(X) \ X,

• Xf = V \ (X ∪ Γ(X)),

• Xg = V \ (X ∪ Γ−1(X)).

Most of the time we shall work with reflexive graphs. In this case we have Γ(X) = X ∪Γ(X).

Notice that there is no arc connecting X to Xf, since any arc starting in X must end in
X ∪ ∂(X). The reader should always have in mind this obvious fact.

A set T of the form ∂(F ), where F 6= ∅ and F ∪ ∂(F ) 6= V is called a cutset. Notice the
deletion of T destroys all the arcs connecting F to V \ (F ∪ ∂(F )).

Let Γ = (V,E) be a reflexive graph. We shall say that a subset X induces a k–separation if
|X| ≥ k and |Xf| ≥ k. We shall say that Γ is k- separable if some X induces a k–separation.

Observe that for every k, Γ is k-separable if V is infinite.

Notice that X induces a k-separation of Γ if and only if Xf induces a k-separation of Γ−1.
In particular Γ is k-separable if and only if Γ−1 is k-separable.

Intuitively speaking Γ is k–separable if there is a cutset(∂(X)) whose deletion disconnects a
set X of size ≥ k from another set ( Xf) of size ≥ k.
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2.3 Cayley graphs

Let Γ = (V,E), Φ = (W,F ) be two graphs. A map f : V −→ W will be called a homomor-
phism if (f(x), f(y)) ∈ F for all x, y ∈ V such that (x, y) ∈ E.

The graph Γ will be called point-transitive if for all x, y ∈ V , there is an automorphism f
such that y = f(x). Clearly a point-transitive graph is regular.

Let G be a group and let a ∈ G. The permutation γa : x −→ ax of G will be called left-
translation. Let S be a subset of G. The graph (G,E), where E = {(x, y) : x−1y ∈ S} is
called a Cayley graph. It will be denoted by Cay(G,S).

Let Γ = Cay(G,S) and let F ⊂ G. Clearly Γ(F ) = FS.

The following facts are easily seen:

• (Cay(G,S))−1 = Cay(G,S−1);

• For every a ∈ G, γa is an automorphism of Cay(G,S), and hence Cay(G,S) is point-
transitive.

3 The isoperimetric method revisited

In this section, we introduce the concepts of kth–connectivity, k–fragment and k–atom. We
also prove some elementary properties of these objects.

Let Γ = (V,E) be a locally finite k–separable reflexive graph. The kth–connectivity of Γ
(called kth–isoperimetric number in [20]) is defined as

κk(Γ) = min{|∂(X)| : ∞ > |X| ≥ k and |V \ Γ(X)| ≥ k}. (1)

A finite subset X of V such that |X| ≥ k, |V \ Γ(X)| ≥ k and |∂(X)| = κk(Γ) is called a
k–fragment of Γ. A k–fragment with minimum cardinality is called a k–atom. The cardinality
of a k–atom of Γ will be denoted by αk(Γ).

These notions, which generalize some concepts in [13, 14, 17, 21], were introduced in [20].

We shall now extend the above notions to non–k–separable graphs.

Let Γ = (V,E) be a non–k–separable graph with |V | ≥ 2k − 1. Then Γ is necessarily finite.
We set in this case κk(Γ) = |V | − 2k + 1. In this case, a k–fragment (resp. k–atom) is a set
with cardinality k.

A k–fragment of Γ−1 will be called a negative k–fragment. We use the following notations,
where the reference to Γ could be implicit:

• α−k(Γ) = αk(Γ
−1),

• κ−k(Γ) = κk(Γ
−1).

Lemma 4 Let Γ = (V,E) be a locally finite reflexive graph such that |V | ≥ 2k − 1. Then
κk(Γ) is the maximal integer j such that for every finite subset X ⊂ V with |X| ≥ k,
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|Γ(X)| ≥ min
(

|V | − k + 1, |X| + j
)

. (2)

Formulae (2) is an immediate consequence of the definitions. We shall call (2) the isoperi-
metric inequality. The reader may use the conclusion of this lemma as a definition of κk(Γ).

Remark. For any locally finite reflexive graph Γ = (V,E), we have κ1(Γ) ≤ δΓ − 1.

Lemma 5 Let Γ = (V,E) be reflexive finite graph with |V | ≥ 2k − 1. Then

κk = κ−k. (3)

Proof.

Observe that (3) holds by convention if Γ is non–k-separable. Suppose now that Γ is k–
separable, and let X be a k–fragment of Γ. We have clearly ∂−(Xf) ⊂ ∂(X). Therefore

κk(Γ) ≥ |∂(X)| ≥ |∂−(Xf)| ≥ κ−k.

The reverse inequality follows by applying this one to Γ−1.

Lemma 6 Let Γ = (V,E) be a locally finite k–separable reflexive graph. Let X be a k–
fragment. Then

∂−(Xf) = ∂(X), (4)

(Xf)g = X. (5)

In particular Xf is a negative k–fragment, if V is finite.

Proof.

X ∂(X) Xf

We have clearly ∂−(Xf) ⊂ ∂(X).

We must have ∂−(Xf) = ∂(X), since otherwise there is y ∈ ∂(X) \ ∂−(Xf). It follows that
|∂(X ∪ {y})| ≤ |∂(X)| − 1, contradicting the definition of κk. This proves (4).

We have Γ−1(Xf) = Xf ∪ ∂−(Xf) = Xf ∪ ∂(X) = V \ X. This implies obviously (5).

Assume now that V is finite. We have by Lemma 5, |∂−(Xf)| = |∂(X)| = κk = κ−k.

This proves Xf is a negative k–fragment.

Remark. Observe that (4) could be stated equivalently by saying that V \ (Γ−1(Xf)) = X.
Such a choice was made in [20, 22]. Our present choice is similar to the presentation in [21].
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We conclude this section by introducing an important notion:

Let Γ = (V,E) be a reflexive graph. We shall say that Γ is a Vosper graph if Γ is non–2-
separable or κ2 ≥ δ.

Clearly Γ is a Vosper graph if and only if for every X ⊂ V with |X| ≥ 2,

|Γ(X)| ≥ min
(

|V | − 1, |X| + δ
)

.

4 The intersection of fragments

We shall now formulate and prove some basic properties of the intersection of fragments. The
main result of this section is Theorem 7 which gives conditions implying that the intersection
of two k–fragments is a k–fragment. Theorem 7 implies that two distinct k–atoms intersect
in at most k − 1 elements if αk ≤ α−k or if the weaker condition αk ≤ |V |−κk

2
is satisfied.

The following result is proved in [21] in the special case κ2 = κ1. Indeed the paper [21] was
concerned only with Vosper graphs. The concept of κk was introduced two years later in [20].

Theorem 7 [21] Let Γ = (V,E) be a reflexive locally finite graph such that |V | ≥ 2k − 1.

Let X,Y be k-fragments such that |X ∩ Y | ≥ k and |Y f| ≥ |X|.

Then X ∩ Y and X ∪ Y are k-fragments.

Proof.

The result is obvious if Γ is non–k–separable since k–fragments are k–subsets. So we may
assume that Γ is k-separable.

Suppose that |X ∩ Y | ≥ k.

× Y ∂(Y ) Y f

X R11 R12 R13

∂(X) R21 R22 R23

Xf R31 R32 R33

By the definition of a k–fragment we have

κk = |∂(X)| = |R21| + |R22| + |R23|.

The following inclusion follows by an easy verification:

∂(X ∩ Y ) ⊂ R12 ∪ R22 ∪ R21.

We have clearly |V \Γ(X ∩Y )| ≥ |V \Γ(X)| ≥ k. By the definition we have |∂(X ∩Y )| ≥ κk.
It follows that
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|R21| + |R22| + |R23| = κk

≤ |∂(X ∩ Y )| (6)

≤ |R12| + |R22| + |R21|.

Therefore
|R23| ≤ |R12|. (7)

Now

|V \ (X ∪ Y )| = |R33| (8)

= |Y f| − |R23| − |R13|

≥ |X| − |R12| − |R13|

= |R11| ≥ k. (9)

By the definition of κk, we have
|∂(X ∪ Y )| ≥ κk.

It follows that

|R12| + |R22| + |R32| = κk

≤ |∂(X ∪ Y )|

≤ |R32| + |R22| + |R23|.

Therefore |R12| ≤ |R23|. By (7) we have |R12| = |R23|.

It follows that the inequality κk ≤ |∂(X ∩ Y )|, used in the proof of (6), is an equality and
hence X ∩ Y is a k-fragment of Γ.

It follows also that the inequality κk ≤ |∂(X ∪ Y )|, used in the proof of (10), is an equality
and hence X ∪ Y is a k-fragment of Γ.

The next consequence of Theorem 7 will be a main tool in this paper.

Theorem 8 [20] Let Γ = (V,E) be a reflexive locally finite graph such that |V | ≥ 2k− 1. Let

A be a k–atom and let F be a k-fragment such that |A ∩ F | ≥ k and αk ≤ |V |−κk

2
.

Then A ⊂ F

In particular distinct k-atoms intersect in at most k − 1 elements.

Proof. Let us show that |Ff| ≥ |A|. This holds clearly if V is infinite. Suppose that
|V | is finite. Now we have |V | = |A| + κk + |Af| ≥ |A| + κk + |Ff|. It follows that |Ff| ≥
|V | − κk − αk ≥ αk. The result follows now by Theorem 7.

The next lemma shows that αk ≤ |V |−κk

2
or α−k ≤ |V |−κ

−k

2
.
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Lemma 9 Let Γ = (V,E) be a reflexive locally finite graph such that |V | ≥ 2k − 1. If V is

infinite or αk ≤ α−k, then αk ≤ |V |−κk

2
.

Proof. The result is obvious if V is infinite. Suppose that V is finite. By Lemma 6 Af is
a negative fragment. We have |V | = |A| + κk + |Af| ≥ |A| + κk + α−k ≥ κk + 2αk.

5 Estimation of the size of a set product

Most of the results in this section are proved in [17, 21]. We prove them here since they are
needed in several parts of this paper in order to make the present work self-contained.

Let G be a group and let S be a subset of G with 1 ∈ S. We put

• αk(S) = αk(Cay(〈S〉, S));

• κk(S) = κk(Cay(〈S〉, S)).

We shall say that a subset S is k-separable (a Vosper subset) if Cay(〈S〉, S) is k-separable (a
Vosper graph). By a fragment of S we shall mean a fragment of Cay(〈S〉, S).

We shall consider only generating subset containing 1 in order to avoid degenerate situations
where κk = 0. Notice that κk(Cay(G,S))) = 0, if S generates a finite proper subgroup.
However κk(S) > 0 if |S| ≥ 2 and |〈S〉| ≥ 2k − 1. This easy fact was observed in [20].

Let us prove a lemma:

Lemma 10 Let S be a generating subset of a group G with 1 ∈ S. Let H be a 2-atom of
S with 1 ∈ H. Assume that α2 ≤ |G|−κ2

2
or α2 ≤ α−2. If H is right-periodic then H is a

subgroup.

Proof. By Lemma 9, we have always α2 ≤ |G|−κ2

2
. Put Q = Πr(H). Take a ∈ H. We have

aH ∩ H ⊃ aQ. By Theorem 8, aH = H. Then H2 = H and hence H is a subgroup.

The intersection property implies easily the following description of 1-atoms, obtained in
[17] in the finite case under the stronger assumption α1 ≤ α−1 which is enough for several
applications. The general case was given later in [21].

Proposition 11 [17, 21] Let S be a generating subset of a group G with 1 ∈ S. Let H be a

1–atom of S with 1 ∈ H and |H| ≤ |G|−κ1

2
. Then H is a subgroup generated by S ∩ H.

Proof. Let a ∈ H. The set aH is a 1–atom, since any left-translation is an automorphism
of the Cayley graph. Since |(aH) ∩ H| ≥ 1, we have by Theorem 8, aH = H. Therefore
HH = H. Hence H is a subgroup.

Let H0 = 〈H ∩ S〉. We have clearly H0S ∩ H ⊂ H0. Therefore ∂(H0) ⊂ H0S \ H ⊂ HS \ H.
It follows that H0 is a 1–fragment and hence H0 = H.

9



Corollary 12 [17, 21]

Let S be a generating subset of a group G with 1 ∈ S. Let H be a 1-atom and let K be a
negative 1-atom such that 1 ∈ H ∩ K.

• If |H| ≤ |K| or if |G| is infinite, then H is a subgroup.

• If |K| ≤ |H| and G is finite, then K is a subgroup.

In particular there is a finite subgroup H 6= G such that κ1 = min(|HS| − |H|, |SH| − |H|).

Proof.

Assume first |H| ≤ |K| or that G is infinite. By Lemma 9 and Proposition 11 H is a subgroup.
By the definition of a 1–atom we have κ1 = |HS| − |H|.

Assume now |H| > |K| and that |G| is finite. By Lemma 9 and Proposition 11 K is a subgroup.
By Lemma 5 and the definition of a negative 1–atom, we have κ1 = κ−1 = |KS−1| − |K| =
|SK| − |K|.

The next lemma could be useful when S generates a proper subgroup:

Lemma 13 Let G be group and let A,S be finite nonempty subsets of G with 1 ∈ S. Put
K = 〈S〉 and let A =

⋃

i∈I

Ai be a left K–decomposition of A. Put W = {i : |AiS| < |K|}. Then

|W | ≤
|AS| − |A|

κ1(S)
. (10)

Proof. For each i take ai ∈ Ai
−1.

By the isoperimetric inequality, we have |aiAiS| ≥ |Ai| + κ1 for all i ∈ W . Then

|AS| =
∑

i∈I

|AiS|

≥
∑

i∈I\W

|Ai| +
∑

i∈W

(|Ai| + κ1) = |A| + |W |κ1.

6 A universal for κ1

The main result of this section is Proposition 14. The bound κ1(S) ≥ |S|
2

holds for all point-
transitive graphs (where |S| is replaced by δ). This was proved [14] in the finite case. The
general case is proved in [21].

We give here a characterization of the sets S with κ1(S) = |S|
2

.
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Proposition 14 [14, 21] Let S be a finite generating subset of a group G with 1 ∈ S. Let H
be a 1–atom and let K be a negative 1–atom. Then

κ1(S) ≥
|S|

2
. (11)

Moreover κ1(S) = |S|
2

holds if and only if one of the following holds:

• |H| ≤ |K| or G is infinite, and there is a u such that S = H ∪ Hu;

• G is finite and |H| ≥ |K| and there is a u such that S = K ∪ uK.

Proof.

Assume first that |H| ≤ |K| or that G is infinite. By Corollary 12 H is a subgroup. We have

κ1(S) = |HS| − |H| ≥ |HS|
2

≥ |S|
2

, observing that |HS| ≥ 2|H| since S is a generating subset

with 1 ∈ S. Suppose now that κ1(S) = |S|
2

. We see that |HS| = 2|H|, and hence there is a u
such that S = H ∪ Hu.

Assume now that |H| ≥ |K| and that G is finite. By Corollary 12 K is a subgroup. By
Lemma 5, we have

κ1 = κ−1 = |KS−1| − |K| ≥ |SK|
2

≥ |S|
2

, observing that |SK| ≥ 2|K| since S is a generating

subset with 1 ∈ S. Suppose now that κ1(S) = |S|
2

. We see that |SK| = 2, and hence there is
a u such that S = K ∪ uK.

Zémor constructed in [50] a Cayley graph with α1 > α−1.

The above result suggests more constructions of this type:

Example Consider a finite group G of odd order and consider a non-normal subgroup H
and an element u such that uH 6= Hu. Put S = H ∪ Hu. By Proposition 14 H is a 1-atom
of S. Let Q be a negative 1-atom. Q can not be a subgroup since otherwise |Q| = |H| and

|QS−1| = 2|Q|, which is impossible. It follows that |Q| > |G|−κ1

2
.

Corollary 15 (Olson) [39, 40] Let A,B be finite nonempty subsets of a group G and put
K = 〈BB−1〉. Then

|Bj | ≥ min(|K|,
(j + 1)|S|

2
), and (12)

|AB| ≥ min(|AK|, |A| +
|S|

2
.) (13)

Proof. It would be enough to prove Formulae (13).

Take b ∈ B−1 and put S = Bb. Since BB−1 = SS−1 ⊂ 〈S〉 and S = Bb ⊂ BB−1 we have
K = 〈S〉.

11



Take a left–K–decomposition A =
⋃

i∈I

Ai. Suppose now that AB 6= AK. Then there is an

s such that |AsB| < |K|. Take an u ∈ A−1
s . By the isoperimetric inequality and by (11),

|AsB| = |uAsB| ≥ |As| +
|B|
2

. Then

|AB| =
∑

i∈I

|AiB| ≥
∑

i∈I\{s}

|Ai| + |AsB| ≥ |A| +
|B|

2
.

Formulae (12) is proved by Olson in [39] as main tool in his proof that a subset of a finite group
G with cardinality ≥ 3

√

|G| contains some nonempty subset {a1, · · · , ak} with a1 · · · ak = 1,
a result conjectured by Erdős and Heilbronn [10]. Olson’s result improves results by Erdős-
Heilbronn [10] and Szemerédi [46]. A nice application of (12) to the Frobenius problem is
given by Rødseth [42].

Formulae (13) is proved by Olson in [40]. Applications of this formulae to σ–finite groups are
given by the authors of [26] and by Hegyváry [30].

The proof given here looks much easier that the proof of Olson [40].

Lemma 13 has the following consequence.

Corollary 16 [16] Diderrich Theorem 2 is equivalent to Kneser’s Theorem 1.

Proof. Diderrich Theorem implies clearly Kneser’s Theorem. Suppose now that any two
elements of B commute and let K be the subgroup generated by B. Observe that K is
abelian.

Without loss of generality we may assume that 1 ∈ B. Take a left–K–decomposition A =
⋃

i∈I

Ai. By Proposition 14 and Lemma 13 there is a j ∈ I such that AiB = AiK for all

i 6= j. Without loss of generality we may assume Aj ⊂ K. Since Πr((A \ Bj)B) = K,
we have H = Πr(AB) = Πr(AjB). Since K is abelian we have by Kneser’s Theorem 1,
|AjB| = |AjH| + |BH| − |H|. Therefore |AB| = |AH| + |BH| − |H|.

7 Some structural properties of the 2–atoms

In this section we start with some results dealing with non necessarily abelian groups. Propo-
sition 19 gives the value of κ2 for sets with a small cardinality. Theorem 22 determines the
structure of the 2–atoms in the abelian case. This result extends to the infinite case a previous
result [22]. The proof given here is much easier than our first proof.

The following lemma, which allows proofs by induction, is implicit in [20]:

Lemma 17 [20] Let S be a finite generating subset of a group G with 1 ∈ S and |S| ≥ 3. Let

H be a 2–atom with 1 ∈ H and |H| ≤ |G|−κ2

2
. Then one of the following holds:

(i) |H| ≤ |S| − 1.
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(ii) H is left-periodic.

Proof.

(i) holds clearly if |H| = 2. So we may assume |H| ≥ 3. For each x ∈ H, there is an ax ∈ H
such that a−1

x x ∈ S \ {1}, since otherwise ∂(H \ {x}) ⊂ ∂(H), and H \ {x} would be a 2-
fragment, a contradiction. Assume contrary to (i) that |H| ≥ |S|. By the pigeonhole principle
there are x, y ∈ H with x 6= y and a−1

x x = a−1
y y. It follows that ay, y ∈ aya

−1
x H. Therefore

by Theorem 8, H = aya
−1
x H and hence H is left-periodic.

Lemma 18 Let S be a finite generating subset of a group G with 1 ∈ S, |S| ≥ 3 and |S|−1 ≤

κ2(S) ≤ |S|. Let H be a 2–atom of S with 1 ∈ H, κ1(H
−1) = |H| − 1 and |H| ≤ |G|−κ2

2
. Then

one of the following holds:

(i) H is left-periodic,

(ii) κ2(H
−1) ≤ |H| + |S| − κ2(S).

Proof.

Put t = |S| − κ2(S). Notice that
0 ≥ t.

Take a ∈ H \ {1}.

Put L = 〈H〉 and take a right–L–decomposition S = S1∪· · ·∪Sj. Without loss of generality we

may assume |HS1| ≤ · · · ≤ |HSj |. Put W = {i : |HSi| < |L|}. By Lemma 13 |W | ≤ |H|
|H|−1

< 2.

Then we must have |HSi| = |L|, for i ≥ 2.

We must have
|HS1| ≥ |S1| + κ1(H

−1) = |S1| + |H| − 1, (14)

since otherwise by the isoperimetric inequality |HS1| = |L|. It would follow that HS = LS.
Then |HS| − |H| = κ2(S) ≤ |LS| − |L| = |HS| − |L|. Therefore |H| = |L|, hence H is a
subgroup, a contradiction.

We have

|S| + |H| + t = |HS|

≥ |S1| + |H| − 1 + (j − 1)|L|.

Therefore

|S| − |S1| ≥ (j − 1)|L| − t − 1. (15)

By (15) and Lemma 3, |{1, a}Si| = |L|, for all i ≥ 2. It follows that |S1| ≥ 2, since otherwise
|{1, a}S| = (j − 1)|L| + 2 = 2 + |S| + t. This would imply that {1, a} is a 2–atom of S a
contradiction.
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In order to prove that κ2(H
−1) ≤ |H|, we need to show that |HSj| ≤ |L| − 2. Suppose that

|HSj| ≥ |L| − 1. Then LS 6= G, since otherwise |HS| ≥ |G| − 1.

Now we have |S| + t = κ2(S) ≤ |LS| − |L| = (j − 1)|L| ≤ |S| − |S1| + t + 1 ≤ |S| + t − 1, a
contradiction.

Let p(G) denotes

• the smallest cardinality of a finite nontrivial subgroup of G if G is a torsion group,

• ∞ if G is a torsion free group.

Proposition 19 Let S be a generating subset of a group G with 1 ∈ S and |S| ≤ p(G). Then

(i) κ1(S) = |S| − 1,

(ii) κ2(S) = |S| − 1 if and only if S is a progression.

Proof. Put L = 〈H〉. By Corollary 12, there is a subgroup K with κ1(S) = min(|SK|, |KS|)−
|K| ≥ |K|, since S generates G and since 1 ∈ S. We must have |K| = 1, since otherwise
κ1(S) ≥ |K| ≥ p(G) ≥ |S|. Therefore κ1(S) = min(|S|, |S|) − 1 = |S| − 1.

We shall now prove (ii) by induction on |S|. Take a 2-atom H of S and a 2-atom K of S−1.
Suppose that κ2(S) = |S| − 1.

Case 1. |H| ≤ |K| or G is infinite (or both).

By Lemma 9, |H| ≤ |G|−κ2

2
.

Let us first prove that H is non-left-periodic. Suppose the contrary. Then QH = H, where
|Q| ≥ 2. It follows that |S| − 1 = κ2 = |QHS| − |QH| ≥ |Q| ≥ p(G) ≥ |S|, a contradiction.

By Lemma 17, |H| ≤ |S|− 1 ≤ p(G)− 2. It follows by (i) that κ1(H
−1) = |H|− 1. By Lemma

18 κ2(H
−1) ≤ |H| − 1.

By the induction hypothesis there are u, k such that H−1 = {a, au, · · · , auk}. We have
|H ∩ uH| = k. Since H is non-left-periodic, we have by Lemma 9 and Theorem 8, k = 1.

Put H = {1, r}. It follows since |S| ≤ p(G) ≤ |〈r〉| that S is an r–progression.

Case 2. |H| > |K| and G is finite. By Lemma 5, we have κ2(S) = κ−2(S). The proof follows
as in Case 1.

Corollary 20 Let G be a group and let A,B be subsets of G such that |A|, |B| ≥ 2, 1 ∈ A∩B
and |B| ≤ p(G).

Assume that |AB| = |A| + |B| − 1 ≤ |K| − 1, where K = 〈B〉.

• If |A| + |B| = |K| then there is a such that A−1a = K \ B;
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• If |A| + |B| ≤ |K| − 1 then there is r such that B and A are r–progressions.

Proof. By Proposition 19, κ1(B) = |B|− 1. Take a left K-decomposition A = A1 ∪ · · · ∪Aj.
By Lemma 13, |{i : |AiB| 6= |K|}| ≤ 1. We have |K| − 1 ≥ |AB| > (j − 1)|K|, and hence
j = 1.

Assume first |A| + |B| = |K|. By the isoperimetric inequality |A| + |B| − 1 ≥ |AB| ≥ |A| +
|B| − 1 = |K| − 1. Take {a} = K \ AB. We have A−1a ⊂ K \ B. Since these two sets have
the same cardinality we must have A−1a = K \ B.

Assume now |A| + |B| ≤ |K| − 1.

Then B is 2-separable and κ2(B) ≤ |B| − 1 < p(G). By Proposition 19, B is a r–progression,
for some r. It follows easily that A is an r–progression.

Corollary 20 implies a result due to Brailowski-Freiman [3] since p(G) = ∞ for a torsion free
group. Corollary 20 implies the validity of Károlyi’s Theorem 4 [32] for infinite groups. In
the finite case Károlyi’s condition |A| + |B| ≤ p(G) is relaxed in Corollary 20 to the weaker
one |B| ≤ p(G) and |A|+ |B| ≤ |〈B〉|−1. Notice that Corollary 20 implies Vosper’s Theorem.

Lemma 21 Let S be finite subset of an abelian group G with 1 ∈ S. Then κk(S) = κ−k(S)
and αk(S) = α−k(S).

Proof. This follows since the map x −→ x−1 is an isomorphism from Cay(G,S) onto its
reverse Cay(G,S−1), in the abelian case.

The next result is proved for κ2 = |S| − 1 in [19], and for finite groups in [22].

Theorem 22 [19, 22]. Let S be a finite generating 2–separable subset of an abelian group G
with 1 ∈ S and κ2(S) ≤ |S|. Put t = κ2(S) − |S|. Also assume that |S| 6= |G| − 6 if t = 0.
Let 1 ∈ H be a 2–atom. If H is not a subgroup then |H| = 2.

Proof.

Put L = 〈H〉. The result holds clearly if κ2(S) ≤ |S| − 2, by Lemma 21 and Proposition 11,
since in this case a 2-atom is a 1-atom. So we may assume |S| ≥ κ2(S) ≥ |S| − 1. Therefor

−1 ≤ t ≤ 0.

The proof is by induction on |S|, the result being obvious if |S| = 2. Suppose that H is not
a subgroup. By Lemma 10, H is aperiodic.

By Lemma 21 and Theorem 8, for every a ∈ H \ {1},

|aH ∩ H| = 1.

Claim For every subgroup M of L with 3 ≤ |M | < |L| we have |MH| > |M | + |H|.
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Suppose the contrary and take a subset {1, b, c} ⊂ M of cardinality 3. Since 1 ∈ H and H
generates L, we have 2|M | ≤ |MH| ≤ |M | + |H| and hence |M | ≤ |H|. Then

|H| + |M | = |HM |

≥ |H + {1, a, b}|

≥ |H| + |Ha \ H| + |Hb \ (H ∪ Ha)|

≥ |H| + |H| − 1 + |H| − 2.

Therefore |M | = |H| = 3 and hence M = H. It follows that H is a subgroup, a contradiction.

We have κ1(H) = |H|−1 since otherwise by Lemma 21 and Proposition 11 there is a subgroup
M with 1 < |M | < |L| such |MH| ≤ |M | + |H| − 2, contradicting the claim.

By Lemma 17, |H| ≤ |S| − 1 and κ2(H) ≤ |H|. Let K be a 2–atom of H with 1 ∈ K. By the
claim K can not be a subgroup if |K| > 2.

By the induction hypothesis we have |K| = 2. Put K = {1, k}. We must have |kH ∩ H| ≥
2|H| − |KH| = |H| − 2 − t. Then |H| ≤ 3 + t. It follows that |H| = 2 if t = −1.

Assume t = 0. Then |H| ≤ 3.

Suppose |H| = 3 and put H = {1, c, d}. Since |Hf| ≥ |H|, we have by Lemma 21 and Theorem
7 that H ∪ cH is a 2-fragment.

Observe that |G| = |H| + κ2 + |Hf| ≥ 2|H| + |S| ≥ 6 + |S|.

Now we have |(H ∪ cH)f| ≥ |G| − (2|H| − 1) − |S| = |G| − |S| − t − 5 ≥ 2, since otherwise
|S| = |G|−6. We must have |(H ∪ cH)f| ≥ 3, since otherwise (H ∪ cH)f would be a negative
2-fragment by Lemma 6. It follows that 2 = α−2 = α2, a contradiction. By Lemma 21
and Theorem 7, |(H ∪ cH) ∩ dH| ≤ 1. Therefore |H2| = |H ∪ cH| + |dH \ (H ∪ cH)| ≥
2|H| − 1 + |H| − 1 = 7, a contradiction since |X2| ≤ 6 for every subset X of an abelian group
with |X| = 3.

Therefore |H| = 2.

In the case where |G| is a prime, a proof of Theorem 22 using the Davenport’s transform was
obtained by the authors of [27]. In [44] Serra and Zémor proved that a 2–atom of S has size
= 2 if |G| is a prime and |S| <

(

4+κ2−|S|
2

)

. A short proof of the last result was given by the
authors of [28]. A generalization of this result to arbitrary finite abelian groups was obtained
by the authors of [29] when κ2 − |S| ≤ 4.

An example given by Serra and Zémor [44] shows that in the prime case the 2-atom may have
size = 3 if |S| = |G| − 6.

8 More intersection properties of fragments

In this section we prove more results on the intersection of fragments that we shall need in
the next section.

We first prove a result concerning the intersection of an atom and the dual of negative atom.
In the finite case this result follows by Theorem 7.
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Theorem 23 Let Γ = (V,E) be a reflexive locally finite graph such that |V | ≥ 2k − 1. Let X
be a k–fragment and let Y be a negative k-fragment such that |Y | ≥ |X| and |X ∩ Y g| ≥ k.
Then X ∩ Y g is a k–fragment. In particular X ⊂ Y g if X is a k–atom.

Proof.

The result is obvious if Γ is non–k–separable since k–fragments are k–subsets. So we may
assume that Γ is k-separable.

Suppose that |X ∩ Y g| ≥ k.

× Y g ∂−(Y ) Y

X R11 R12 R13

∂(X) R21 R22 R23

Xf R31 R32 R33

By the definition of a k–fragment we have

κk = |∂(X)| = |R21| + |R22| + |R23|.

The following inclusion follows by an easy verification:

∂(X ∩ Y g) ⊂ R12 ∪ R22 ∪ R21.

We have clearly |V \Γ(X∩Y g)| ≥ |V \Γ(X)| ≥ k. By the definition we have |∂(X∩Y g)| ≥ κk.
It follows that

|R21| + |R22| + |R23| = κk

≤ |∂(X ∩ Y g)|

≤ |R12| + |R22| + |R21|.

Therefore
|R12| ≥ |R23|. (16)

Now

|Xf ∩ Y | = |R33| = |Y | − |R23| − |R13|

≥ |X| − |R12| − |R13|

= |R11| ≥ k.

By the definition of κ−k we have

|∂(Xf ∩ Y )| ≥ κ−k.

It follows that
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|R12| + |R22| + |R32| = κ−k

≤ |∂(Xf ∩ Y )|

≤ |R22| + |R23| + |R32|.

Therefore |R12| ≤ |R23|. By (16) we have |R12| = |R23|.

It follows that the inequality κk ≤ |∂(X ∩ Y g)|, used in the proof of (16), is an equality and
hence X ∩ Y g is a k-fragment of Γ.

Notice that the last proof is similar to the proof of Theorem 7. A common proof of these two
results is given [21] in the special case κk = κ1. We gave a direct proof in order to avoid the
introduction of the unnecessary notion of a cofinite fragment.

Lemma 24 Let Γ = (V,E) be a locally finite k–separable reflexive graph. Let X and Y be
k–fragments. Then X ⊂ Y if and only if Y f ⊂ Xf.

Proof. Assume first that X ⊂ Y. Then

Xg = V \ Γ(X) ⊃ V \ Γ(Y ) = Y g

Assume now that Y g ⊂ Xg. Then

X = V \ Γ−1(Xg) ⊂ V \ Γ−1(Y g) = Y.

Lemma 25 Let Γ = (V,E) be a reflexive locally finite k–separable graph with k ≥ 2. Let
A,F be k–fragments such that |A| ≤ |Ff| and |A ∩ F | ≥ k − 1. Then

|A ∩ ∂(F )| ≤ |∂(A) ∩ Ff|, (17)

|Γ(A) ∩ Γ(F )| ≤ |A ∩ F | + κk and (18)

|Ff \ Af| ≤ |A \ F | + κk − κk−1. (19)

Proof.

× F ∂(F ) Ff

A R11 R12 R13

∂(A) R21 R22 R23

Af R31 R32 R33
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Suppose that (17) is false. Then |R12|+ |R22|+ |R21| > κk = |R23|+ |R22|+ |R21|, and hence

|R12| > |R23|.

It follows that

|Ff ∩ Af| = |Ff| − |R23| − |R13|

> |A| − |R12| − |R13|

= |R11| ≥ k − 1,

Now we have

|R32| + |R22| + |R23| ≥ |∂(A ∪ F )| ≥ κk

= |R23| + |R22| + |R21|,

and hence |R23| ≥ |R21| a contradiction proving (17). Now we have

|Γ(A) ∩ Γ(F )| = |A ∩ F | + |R12| + |R21| + |R22|

≤ |A ∩ F | + |R23| + |R21| + |R22

= |A ∩ F | + κk.

This proves (18).

Since |A ∩ F | ≥ k − 1, we have

|R12| + |R22| + |R21| ≥ κk−1

= κk − (κk − κk−1)

= |R21| + |R22| + |R23| − (κk − κk−1).

It follows that
|R23| ≤ |R12| + κk − κk−1.

Hence

|Ff \ Af| = |R13| + |R23|

≤ |R13| + |R12| + κk − κk−1

= |A \ F | + κk − κk−1.

This proves (19).
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9 More structural properties of the 2–atoms

In this section we investigate the number of 2–atoms containing a given element and obtain
an upper bound for the size of a 2–atom.

We obtain some applications including a generalization to the infinite case a result proved in
the finite case by Arad and Muzychuk [1].

The smallest number j (possibly null) such that every element x ∈ V belongs to j pairwise
distinct k–atoms will be denoted by ωk(Γ). We shall write ωk(Γ

−1) = ω−k(Γ). We also write
ωk(S) = ωk(Cay(〈S〉, S)). The next result is a basic tool in the investigation of the 2-atoms
structure. The case κ2 = κ1 of this result is proved in [21].

Theorem 26 Let Γ = (V,E) be a reflexive locally finite graph. Let H be a 2–atom and let

K be a negative 2–atom with |K| ≥ |H| ≥ 3. Also assume that |K| ≤ |G|−κ−2

2
. Then one of

the following holds:

(i) ω2 ≤ 2 or ω−2 ≤ 2,

(ii) |H| ≤ 3 + max(κ2 − δ, κ−2 − δ−).

Proof.

Suppose contrary to (i) that ω2 ≥ 3 and ω−2 ≥ 3. We have α1 = α−1 = 1, since otherwise
a 2–atom containing x is a 1–atom containing x and is unique by Theorem 8, contradicting
ω2, ω−2 ≥ 3.

Take v ∈ V and choose two distinct 2–atoms M1,M2 such that v ∈ M1 ∩M2. By Theorem 8,
we have M1 ∩ M2 = {v}.

× M2 ∂−(M2) Mf

2

M1 v R12 R13

∂−(M1) R21 R22 R23

Mf

1 R31 w

We have Mf

1 6⊂ Mf

2 , by Lemma 24.

Take w ∈ M1
f \ Mf

2 , and take three pairwise distinct negative 2-atoms L1, L2, L3 such that
w ∈ L1 ∩ L2 ∩ L3.

Assume first that for some i 6= j we have Li ∪ Lj ⊂ Mf

1 .

By Theorem 23, |Li ∩ Mf

2 | ≤ 1, for every i.

Then we have using (19)
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|H| + κ2 − δ = |M1 \ M2| + κ2 − κ1

≥ |(M1
f \ Mf

2 ) ∩ (Li ∪ Lj)|

= |Li ∪ Lj | − |(Li ∪ Lj) ∩ Mf

2 |

≥ |Li ∪ Lj | − 2

= 2|K| − 3 ≥ 2|H| − 3,

and hence (ii) holds.

We can now assume without loss of generality that

L1, L2 6⊂ Mf

1 .

By Lemma 24, we have M1 6⊂ Lg

i for 1 ≤ i ≤ 2. By Theorem 23, |M1 ∩ (Lg

1 ∪Lg

2 )| ≤ 2. Then
|M1 ∩ Γ−1(L1) ∩ Γ−1(L2)| ≥ |M1| − 2.

Now Γ−1(L1)∩Γ−1(L2) ⊃ (Γ−1(L1)∩Γ−1(L2)∩M1)∪Γ−1(w). Observe that Γ−1(w)∩M1 = ∅.

Then we have by (18)

δ− + |H| − 2 ≤ |Γ−1(w)| + |M1 ∩ Γ−1(L1) ∩ Γ−1(L2)|

≤ |Γ−1(L1) ∩ Γ−1(L2)|

≤ 1 + κ−2.

Therefore |H| ≤ 3 + κ−2 − δ−.

Let us apply this result in the symmetric case.

Corollary 27 Let S be a finite generating subset of a group G with 1 ∈ S and S = S−1. Let
H be a 2-atom of S such that 1 ∈ H. If |H| ≥ κ2 − |S| + 4, then H is left-periodic.

Proof. Since S = S−1, H is also a negative 2–atom. Also κ2 = κ−2. Take a 3–subset
{a1, a2, a3} contained in H.

By Theorem 26 ω2 ≤ 2. Hence two of the 2–atoms a−1
1 H,a−1

2 H,a−1
3 H must be equal and

hence H is left-periodic.

Let us now formulate on lemma:

Lemma 28 Let S be a finite generating semi-normal subset of a group G with 1 ∈ S. Then
F−1 is a negative k–fragment for any k-fragment F . Moreover

(1) κk = κ−k,

(2) αk = α−k,
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(3) ωk = ω−k.

Proof. We have |F−1S−1| = |SF | = |FS| = |F | + κk. It follows that κk ≥ κ−k. The
inequality κk ≤ κ−k follows by duality and hence (1) holds. It follows easily that αk = α−k.

The next result extends to the infinite case Arad-Muzychuk Theorem 3.1 of [1]. Our termi-
nologies differ slightly:

Corollary 29 Let S be a finite generating semi-normal subset of a group G with 1 ∈ S. Let
H be a 2-atom of S such that 1 ∈ H. If |H| ≥ κ2 − |S| + 4, then H is subgroup of G and
[G : NG(H)] ≤ 2.

Proof. By Lemma 28, α2 = α−2, κ2 = κ−2 and ω2 = ω−2.

By Theorem 26, ω2 ≤ 2.

Take a 3–subset {a1, a2, a3} contained in H. Then two of the 2–atoms a−1
1 H,a−1

2 H,a−1
3 H

must be equal and hence H is left-periodic. By Lemma 28 H−1 is a negative 2–atom which
is right-periodic. By Lemma 10, H is a subgroup.

Clearly xHx−1 is a 2–atom for every x. If xHx−1 = H, for every x then NG(H) = G.
Suppose that there is a such that aHa−1 6= H,

We have [G : NG(H)] ≤ 2, since for every x ∈ G, we have xHx−1 = H or xHx−1 = aH,
otherwise ω2 ≥ 3, a contradiction.

10 Saturated subsets

In this section we present a more general formalism.

Let Γ = (V,E) be a locally finite graph and let X be a subset of V . A Γ-saturation of a
subset X is a maximal subset X ′ ⊃ X such that Γ(X ′) = Γ(X). Such a subset exists and
is clearly unique if X is finite or cofinite. We shall denote it by X⋆

Γ. The subset X will be
called Γ-saturated if X = X⋆

Γ.

The reference to Γ will be omitted when it is clear from the context. Let G be a group and
let S be a subset of G. A subset X is said to be saturated with respect S if it is saturated in
Cay(G,S).

It is an easy exercise to show that a k–fragment is a saturated subset.

Our notion of ”saturated subset” coincides with the notions of ”a cell” in Balandraud [2] and
”non-extendible” in Grynkiewicz [12].

Lemma 30 Let Γ be a locally finite graph on a set V and let X be a finite subset. Then

X⋆
Γ = Xfg

. (20)

Moreover the intersection of two saturated subsets is a saturated subset.
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The proof is left to the reader.

Let Γ = Cay(G,S).

Then (20) may be formulated equivalently: X⋆ = G \ ((G \ XB)B−1). The last formulae is
proved in [2].

Lemma 31 Let Γ be a locally finite graph on a set V and let X be a finite saturated subset.
Then

∂−(Xf) = ∂(X), (21)

(Xf)g = X. (22)

Moreover Xf is a Γ−1–saturated subset.

The proof is similar to the proof of Lemma 6. Let Γ = Cay(G,S). Then (22) may be
formulated equivalently: G \ ((G \ XB)B−1) = X.

This formulae is proved in [2, 12]. Our formalism used here is very close to a proof given in
[13].

It was observed in [18] that Kneser’s Theorem implies that in an abelian Cayley graph
Cay(G,S) any minimal cutset with cardinality ≤ |S| − 2 is periodic.

A much precise result was proved recently by Balandraud [2]. Actually Balandraud’s result
implies a strong form of Kneser’s Theorem.
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