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Abstract

Two recently developed methods for solving the molecular vibrational Schrödinger
equation, namely, the parallel vibrational multiple window configuration interaction
(P-VMWCI) and the vibrational mean field configuration interaction (VMFCI), are
presented and compared on the same potential energy surface of ethylene oxide,
c-C2H4O. It is demonstrated on this heptatomic system with strong resonances
that both approaches converge towards the same fundamental frequencies. This
confirms their ability to tackle the vibrational problem of large molecules for which
full configuration interaction calculations are not tractable.
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1 Introduction

The vibrational configuration interaction approach consists in diagonalizing
the molecular vibrational Hamiltonian in a finite dimensional subspace of the
Hilbert space associated to the system. This approximation method is known
as Galerkin’s method in mathematics. The variational principle insures that
the larger the subspace the more accurate the results will be. However, in prac-
tice the rate of convergence depends not only on the dimension but also on the
nature of the wave functions spanning the vector subspace. This dependency
is crucial, as can be easily understood by considering the limit case where the
variational subspace is the space spanned by the exact states searched for.
Then, the diagonalisation of the Hamiltonian in this subspace will give the
exact solution. Of course, this never happens in practice, however, clearly, it
is advantageous to get as close as possible to this ideal case.

This issue has triggered the two variational approaches which are studied in
this article, namely, the parallel vibrational multiple window configuration in-
teraction (P-VMWCI) method [1,2] and the vibrational mean-field configura-
tion interaction (VMFCI) method [3–5]. Our goal is to assess these approaches
on a molecular system out-of-reach of standard methods. We have chosen a
heptatomic molecule of astrophysical and exobiological interest [6–12], ethy-
lene oxide, c-C2H4O, see Figure 1.

Since a full CI reference calculation is not feasible to assess each method indi-
vidually, it is appropriate to evaluate them one against the other. As a matter
of fact, the variational space selection processes in the two CI methods are un-
related, so the two approaches can be considered as independent. Comparison
with the standard vibrational self-consistent field (VSCF)/vibrational config-
uration interaction (VCI) approach is also provided in order to demonstrate
the superiority of the new selection strategies.

The article is organized as follows: In the next section, we recall the molecular
vibrational eigenproblem and the two strategies we have developed to solve
it. Then, we evaluate the convergence of numerical computations on ethylene
monoxide. Finally, we conclude on the reliability of the two approaches and
the new insight they provide on experimental data.
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2 Two recently developed strategies to solve the molecular vibra-

tional eigenproblem

2.1 The molecular vibrational eigenproblem

In this work, we consider a vibrational Hamiltonian to quartic order expressed
as:

Hvib = Hharm + Vcubic + Vquartic (1)

where,

Hharm =

(

~

2

)

nvib
∑

s=1

λ1/2
s

(

p2
s + q2

s

)

, (2)

Vcubic =
nvib
∑

s,s′,s′′=1

ks,s′,s′′qsqs′qs′′ , (3)

Vquartic =
nvib
∑

s,s′,s′′,s′′′=1

ks,s′,s′′,s′′′qsqs′qs′′qs′′′ . (4)

In Eqs. (2) to (4), the qs’s are the scaled, mass-weighted, normal coordinates,
the ps’s their conjugate momenta, with s running from one to nvib, the number
of vibrational degrees of freedom.

The harmonic Hamiltonian, Hharm will be considered as the zero order Hamil-
tonian. For each degree of freedom, the wavefunctions and energies, solutions
of the harmonic vibrational equation, will be denoted by |ns〉 and E(0)

s (ns)
respectively, with,

〈n′
s|ns〉 = δns,n′

s
, (5)

and

E(0)
s (ns) = hcνs(ns +

1

2
), (6)

where νs is the harmonic wavenumber.

The tensor product functions |n1, n2, ..., nnvib
〉,

|n1, n2, ..., nnvib
〉 =

nvib
⊗

s=1

|ns〉 (7)
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are orthonormal and represent a base for the expansion of the vibrational wave
functions |Ψi〉, (i ∈ [1, N ]) that are searched for:

|Ψi〉 =
∑

n1,n2,...,nnvib

Ci
n1,n2,...,nnvib

|n1, n2, ..., nnvib
〉 . (8)

Generally, the anharmonic vibrational Schrödinger equation:

Hvib |Ψ〉 = E |Ψ〉 (9)

is solved with the help of variational [1–4,13–26], perturbational [27–31] (al-
though even for the one-dimensional quartic oscillator the perturbation series
is strongly divergent and particularly hard to renormalize [32]), or hybrid
methods [33–36]. Choosing one of these approaches is often related to the
numerical precision one wants to obtain.

Ideally, the best variational approach would consist in diagonalizing the Hamil-
tonian Hvib in the space spanned by the |n1, n2, ..., nnvib

〉’s. However, this
becomes rapidly prohibitive as the number of degrees of freedom increases,
even if a finite but realistic set of functions per degree is used. It is nec-
essary to build variational subspaces of tractable dimensions on which the
projection of the vibrational wave functions of interest is as large as possible.
This issue has triggered the two variational approaches which are presented
hereafter, namely, the parallel vibrational multiple window configuration in-
teraction (P-VMWCI) method and the vibrational mean-field configuration
interaction (VMFCI) method.

2.2 P-VMWCI

Performing a full VCI in a reasonable basis set for a molecule of five or more
atoms is out-of-reach of present days’ computer capabilities. However, the
vibrational spectrum of molecules of this size becomes amenable to theoretical
calculations if the total spectrum is splitted into several windows of smaller
sizes.

The configuration space corresponding to a given window can be constructed
iteratively, starting with an initial space, S0, chosen by the user as a subset of
the N -dimensional full VCI space,

S =
{∣

∣

∣ni
1, n

i
2, . . . n

i
nvib

〉

; 1 ≤ i ≤ N
}

. (10)

Let A be the union of the set reduced to the identity and the set of all the
excitation operators and their Hermitian conjugate (de-excitation operators)
appearing with a significant coefficient in the anharmonic potential, Eqs.(3,4),
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if the latter is rewritten in second quantization. That is to say, denoting by
Q†

s, (respectively Qs), the creation, (respectively annihilation), operator for
mode s:

A = A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4

A0 = {1} , (no excitation)

A1 =
{

Q†
s, Qs, such that ∃s′, |ks,s′,s′| > ε ; 1 ≤ s, s′ ≤ nvib

}

∪
{

Q†
s

2
, Q2

s, such that ∃s′, |ks,s,s′,s′| > ε ; 1 ≤ s, s′ ≤ nvib

}

∪
{

Q†
s

3
, Q3

s, such that, |ks,s,s| > ε ; 1 ≤ s ≤ nvib

}

∪
{

Q†
s

4
, Q4

s, such that, |ks,s,s,s| > ε ; 1 ≤ s ≤ nvib

}

,

A2 =
{

Q†
sQ

†
s′ , Q

†
sQs′ , QsQs′ , such that, ∃s′′, |ks,s′,s′′,s′′| > ε ; s 6= s′ ; 1 ≤ s, s′, s′′ ≤ nvib

}

∪
{

Q†
s

2
Q

†
s′ , Q

2
sQ

†
s′ , Q

†
s

2
Qs′ , Q

2
sQs′ , such that, |ks,s,s′| > ε ; s 6= s′ ; 1 ≤ s, s′ ≤ nvib

}

∪
{

Q†
s

3
Q

†
s′ , Q

3
sQ

†
s′ , Q

†
s

3
Qs′ , Q

3
sQs′ , such that, |ks,s,s,s′| > ε ; s 6= s′ ; 1 ≤ s, s′ ≤ nvib

}

∪
{

Q†
s

2
Q

†
s′

2
, Q†

s

2
Q2

s′ , Q
2
sQ

2
s′ , such that, |ks,s,s′,s′| > ε ; s 6= s′ ; 1 ≤ s, s′ ≤ nvib

}

,

A3 =
{

Q†
sQ

†
s′Q

†
s′′ , QsQ

†
s′Q

†
s′′ , QsQs′Q

†
s′′ , QsQs′Qs′′ ,

such that, |ks,s′,s′′| > ε ; 1 ≤ s, s′, s′′ ≤ nvib all distinct }

∪
{

Q†
sQ

†
s′Q

†
s′′

2
, Q†

sQ
†
s′Q

2
s′′ , Q

†
sQs′Q

†
s′′

2
, Q†

sQs′Q
2
s′′ , QsQs′Q

†
s′′

2
, QsQs′Q

2
s′′ ,

such that, |ks,s′,s′′,s′′| > ε ; 1 ≤ s, s′, s′′ ≤ nvib all distinct } ,

A4 =
{

Q†
sQ

†
s′Q

†
s′′Q

†
s′′′ , QsQ

†
s′Q

†
s′′Q

†
s′′′ , QsQs′Q

†
s′′Q

†
s′′′ , QsQs′Qs′′Q

†
s′′′ , QsQs′Qs′′Qs′′′ ,

such that, |ks,s′,s′′,s′′′| > ε ; 1 ≤ s, s′, s′′, s′′′ ≤ nvib all distinct } , (11)

where, in general, ε = 0. However, a non negative value can be used in some
cases, to reduce the cardinal of A.

Then, the configuration space at order γ, is defined recursively to be the space,
Sγ, in direct interaction with Sγ−1. It is made of all the configurations coupled
by an operator of A with a configuration of Sγ−1:

Sγ = {| n1, n2, . . . , nnvib
〉 ∈ S, such that ∃α ∈ C;∃â ∈ A;∃ | m1, m2, . . . ,mnvib

〉 ∈ Sγ−1;

| n1, n2, . . . , nnvib
〉 = αâ | m1, m2, . . . ,mnvib

〉} . (12)

Note that with this definition, we have Sγ−1 ⊆ Sγ, and that a non negative
value for ε in Eqs.(11) can reduce the size of Sγ.

The construction of Sγ as defined in Eq.(12) is simple, for the action of the
operators of A on HO basis functions is straightforward. This is in contrast
with variation-peturbation methods [34,35], in which the iterative building of
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the configuration space is based upon perturbational criteria such as,

Sγ = {| n
j
1, n

j
2, . . . , n

j
nvib

〉 ∈ S such that, ∃ | ni
1, n

i
2, . . . , n

i
nvib

〉 ∈ Sγ−1;

and

∣

∣

∣

∣

∣

∣

〈

n
j
1, n

j
2, . . . , n

j
nvib

| Vcubic | ni
1, n

i
2, . . . , n

i
nvib

〉

Ei − Ej

∣

∣

∣

∣

∣

∣

> ε}. (13)

The construction of Sγ as defined in Eq.(13) is time consuming because the
matrix elements of every configuration in Sγ−1 with millions of configurations
of S have to be evaluated. Consequently, we reserve the use of the perturbative
filter of Eq.(13) to the case where the size of the VCI matrices becomes critical,
in order to eliminate weakly coupled configurations, and only when the last
iterative γ-step is reached.

For each order γ, p configuration spaces, Sk
γ , 1 ≤ k ≤ p, can be constructed

independently, corresponding to p spectral windows (as in Table 1). So, this
approach lends itself in a natural way to a parallel implementation. The con-
figuration spaces, Sk

γ , or cuts of them, can be distributed among a z-nodes
cluster, where the ith node is made of Pi, 1 ≤ i ≤ z, processors, within a
parallel SPMD (Single Program Multiple Data) scheme.

This method, that we call “parallel vibrational multiple window configura-
tion interaction” method, generates p VCI matrices, which are much smaller
than the full VCI one if γ and the Sk

0 , 1 ≤ k ≤ p, are properly chosen. More-
over, for each VCI matrix (or matrix block), the use of both MPI (Message
Passing Interface) and computational efforts on loops optimisation enable to
distribute tasks among the processors according to their respective clock speed
and workload. However, a given configuration can be involved in several win-
dows, specially as γ increases. This drawback is necessary to guarantee the
homogeneity of the treatment of the spectral windows regardless of the initial
choice, Sk

0 , 1 ≤ k ≤ p,. The latter, which is controled by the user with the only
restriction that ∀k, |0, · · · , 0〉 ∈ Sk

0 , makes the method particularly flexible.

The performances of the P-VMWCI algorithm are illustrated in Table 1 by
the calculation of the νCO stretching frequency of the H2CO molecule inves-
tigated in a previous work [37]. This table shows how the results converge
with γ, for two initial windows of different sizes; a large window covering the
0-3500cm−1 range and a minimal-size window of 1cm−1 around the targeted
νCO frequency. The results show that the computational costs are significantly
lower with the latter window, whereas the calculated wave numbers are within
a few tenth of cm−1 .

Note that for the sake of simplicity, we have omitted symmetry considerations
in our presentation. However, in practice we make use of symmetry to deal only
with symmetry-adapted matrix blocks and to reduce further the dimensions
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of the matrices to diagonalize. The same remark holds true for the method
presented in the next section.

2.3 VMFCI

Suppose that for a given partition P of the vibrational degrees of freedom of
an nvib oscillator system, the following two conditions are met:

(1) The vibrational Hamiltonian can be expanded in a factorized form:

Hvib = h0 +
nP
∑

j1=1

hj1(Ij1) +
∑

1≤j1<j2≤nP

hj1,j2(Ij1)hj1,j2(Ij2)+

· · · + h1,2,··· ,nP
(I1)h1,2,··· ,nP

(I2) · · ·h1,2,··· ,nP
(InP

), (14)

where,

P = (I1, I2, · · · , InP
) = ({i11, i

1
2, · · · , i1k1

}, {i21, i
2
2, · · · , i2k2

}, · · · , {inP
1 , inP

2 , · · · , inP

knP
}).

(15)
is a partition of the nvib degrees of freedom into nP subsets I1, I2, · · · , InP

, of
respectively k1, k2, · · · , knP

degrees, and where hj1,j2,··· ,jk
(Ijl

) denotes a vibra-
tional operator which only depends upon operators acting on the degrees in
subset Ijl

. Note that this condition is satisfied for all possible partitions with
the Hamiltonian of Eq.(1).

(2) We have nP basis sets of vibrational wave functions, φm
Ij

(qij
1

, · · · , qij
kj

)m∈{1,dj},

with 1 ≤ j ≤ nP , spanning the Hilbert subspaces of dimension dj, of physical
interest for the groups of degrees of freedom in the Ij’s.

Let Q be another partition coarser than or equal to P , that is to say:

Q = (J1, J2, · · · , JnQ
), with nQ ≤ nP ,

and ∀j ∈ {1, · · · , nP}, ∃k ∈ {1, · · · , nQ} such that, Ij ⊆ Jk.(16)

The subsets Jk are referred to as “contractions” whose components are the
Ij’s such that Ij ⊆ Jk. The number of components in Jk is denoted by lk.

A VMFCI calculation consists in defining for each contraction, Jk, a mean
field Hamiltonian obtained by averaging the vibrational Hamiltonian in the
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mean field of the other contractions Jl 6= Jk and by diagonalizing it in a basis
set of product functions,

ΦM
Jk

=
∏

Ij⊆Jk

φ
mj

Ij
(qij

1

, · · · , qij
kj

), (17)

where the superlabel M stands for the sequence of indices mj of the component
functions.

More precisely, one first builds a partial Hamiltonian by gathering all the
terms of Hvib that involve exclusively operators acting on the Ij ⊆ Jk,

Hk = h0 +
∑

j1 such that, Ij1
⊆Jk

hj1(Ij1) +
∑

j1<j2 such that, Ij1
,Ij2

⊆Jk

hj1,j2(Ij1)hj1,j2(Ij2)+

· · · +
∑

j1<···<jlk
such that, Ij1

,··· ,Ijlk
⊆Jk

hj1,··· ,jlk
(Ij1) · · ·hj1,··· ,jlk

(Ijlk
). (18)

Then, one averages Hvib − Hk over a given state, that we have chosen to be,
in this work, the product of the ground states,

∏

Ij*Jk
φ0

Ij
(qij

1

, · · · , qij
kj

), of all

the components of the “spectator” contractions (that is to say, not in the
contraction Jk). We obtain the mean-field Hamiltonian :

Hk + 〈
∏

Ij*Jk

φ0
Ij

(qij
1

, · · · , qij
kj

)|Hvib − Hk|
∏

Ij*Jk

φ0
Ij

(qij
1

, · · · , qij
kj

)〉. (19)

This Hamiltonian is diagonalized in the basis set of all product functions
of Eq.(17), or in a subset of the latter obtained by selecting the product
functions such that the sum of the energies of their components is below a
given threshold. Additionally, extra threshold can be applied to the energy of
any component.

In contrast with the traditional contraction method [38–42], where the mean
field term is omitted in Eq.(19), it is relevant to iterate a VMFCI calcula-
tion with the same partition, except of course in the VCI case correspond-
ing to the partition, ({1, 2, . . . , nvib}). This way, one can achieve a vibra-
tional self-consistent field configuration interaction (VSCFCI) calculation. The
simplest example is the VSCF case [43,44] corresponding to the partition
({1}, {2}, . . . , {nvib}), iterated until a chosen convergence criterion is met.

In summary, the VMFCI scheme is a particularly general variational method.
By carrying out a basis set truncation after such a calculation, one can system-
atically achieve a drastic reduction of the basis set size to be used in following
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calculations, corresponding to possibly coarser partitions, without affecting
the end result.

The efficiency of the mean field CI treatment is illustrated in Table 2 for the
low-lying vibrational levels of methane, calculated as in our previous work [5]
from the Lee, Martin, Taylor potential energy surface (PES) [45]. This table
compares 3 different “minimal symmetry preserving” (MSP) calculations to
a harmonic and a converged (see Table 13 of the supplementary material of
[5]) calculations. Let us recall that MSP calculations actually consist in con-
tracting degenerate components together, in order to ensure that no symmetry
breaking occurs, (in contrast with VSCF calculations). For methane, such a
calculation reduces the 9 modal basis sets to 4 product basis sets by contract-
ing together the modals (i.e. vibrational one-degree of freedom functions) of
the two components of the E mode and the modals of the three components
of the two T2 modes, the remaining mode carries the A1 representation, so
it is non degenerate. Each MSP calculation step then consists in 4 separate
diagonalizations of the Hamiltonian matrix within the latter basis sets. So,
their computational costs are in the same range. The MSP-CI, which corre-
sponds to the standard contraction method without mean field treatment, only
accounts for the intra-mode anharmonic coupling. It does not improve signifi-
cantly the harmonic results for modes 1 and 2 and goes in the wrong direction
for modes 3 and 4. Oppositely, MSP-VMFCI and MSP-VSCFCI calculations,
which introduce the mean field averaging with and without iterating, provide
significantly better results. MSP-VSCFCI results always go in the right direc-
tion, with modes 1 and 2 closer to the converged values than with MSP-CI.
Therefore, mean field contracted wave functions provide an efficient basis set
to be used in further contraction steps, which is not the case of the standard
contracted wave functions. The conclusions drawn from this example have
been verified in all other systems studied so far.

3 Performances, convergence, and comparison of P-VMWCI and

VMFCI approaches. An interesting test molecule: ethylene monoxyde.

Identified in the interstellar medium, ethylene monoxyde has been the subject
of numerous recent investigations [6–12]. Its IR spectrum has been studied by
many authors in the gas phase [47,48,51,52], the liquid phase [47], the solid
phase [49,50] and more recently in thin films and in amorphous water ice [12].
Assignment of some bands differs from a publication to another principally
because of Fermi resonances between A1 and B1 modes, and because of the
band vicinity in the 800-900 cm−1 area where are expected ring deformation
and the CH2 rocking and twisting modes. Up to now, only harmonic or scaled
harmonic force fields [49,51,53,54] have been calculated at ab initio, DFT and
semi-empirical levels of theory to support or validate the different experimental
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assignments. However, none of these harmonic studies allows one to dispel
experimental ambiguities.

In this work, we have used an anharmonic potential energy surface (PES)
which combines CCSD(T)/cc-pVTZ equilibrium geometry and harmonic con-
stants with B3LYP/6-31+G(d,p) cubic and quartic force constants [55,56].
The accurate results obtained in previous investigations on medium size sys-
tems [55,57] have validated this combined approach. Furthermore, our anhar-
monic force field was built by taking into account energies, gradients and even
hessians but only for selected distorted geometries [58,59]. All constants were
deduced from our EGH code [58].

In the present study, we have mainly focused attention on the fundamental
transition wave numbers. However, we have also paid attention to some specific
overtones expected to show up in the region around 3000 cm−1 where the CH2

stretching vibrations are observed. An exhaustive analysis of the complete
spectrum is in progress and will be published elsewhere.

The convergence of the P-VMWCI method is assessed in Table 3. This table
illustrates how crucial the choice of the vibrational configuration space, (de-
termined by its order γ), is for the accuracy of the results in the P-VMWCI
approach. Three iterations are at least needed in the construction of the con-
figuration space (see ν1 for example). This is because, on the one hand, the
force constants linking the fundamental and harmonic first excited states to
their overtones or to combination bands are not very strong. As a matter of
fact, in our C2H4O anharmonic force field, it is uncommon to find constants
that exceed 100 cm−1 . However, on the other hand, many overtones and com-
bination bands turn out to be quasi-degenerate, so, in the present case, it is
the γ = 2, indirectly interacting configurations, which bring the main con-
tribution to the description of the fundamental transitions. The P-VMWCI
results for γ = 3, (see Table 5 where they are repeated), are nearly the same
as the converged VMFCI ones for all the targeted vibrational levels.

Table 4 reports the results obtained with the VMFCI approach. All calcula-
tions start with a VSCF calculation, (there is no degenerate mode, so it is
the MSP-VMFCI calculation), which is converged to 10−6 cm−1 after 7 it-
erations. The first column of the table reports the results obtained from a
VCI contracting the 15 modes together directly after the VSCF, an energy
truncation at 8400 cm−1 being applied to the sum of VSCF modal energies.
The VMFCI results reported in the other columns are all obtained by apply-
ing the following 4-step contraction scheme :VSCF/VSCFCI(ν1-ν6-ν9-ν13, ν3-
ν5-ν12; 34072, 17000)/VSCFCI(ν1-ν6-ν9-ν10-ν13-ν15; 19464)/VCI(Z). The step
following the VSCF calculation introduces a separate contraction of the CH
stretching modes (ν1, ν6, ν9 and ν13) and of the ring modes (ν3, ν5, ν12). These
contractions were suggested by preliminary calculations based on the ZPE
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lowering criterion [5]. More precisely, VMFCI calculations were performed for
all possible binary (105) and ternary (456) contractions, and the results were
sorted by decreasing order of the ZPE stabilization with respect to the cor-
responding VSCF value. The larger effects clearly occured for binary (6.2 to
6.9 cm−1 ) and ternary (12.9 to 14.9 cm−1 ) contractions involving the CH
stretching modes, suggesting to contract in priority these modes together. The
importance of the ternary contraction of the ring modes also suggested to con-
tract these modes together. Note that at this stage, contracted modes are cal-
culated in the mean field of the others, and that truncation energy thresholds
of 34072 and 17000 cm−1 are applied to the stretching and ring mode contrac-
tions respectively. After achieving self-consistency (only one more iteration is
needed), we introduce two more modes (ν15 and ν10) into the CH stretching
contraction, applying an energy cut-off of 19464 cm−1 to the resulting contrac-
tion. Again, only two VMFCI steps are needed to reach self-consistency for
this contraction. Introducing the CH2 rocking mode ν15 is justified by the ZPE
stabilization of about 9 cm−1 of ternary contractions in which ν15 is coupled
with CH stretching modes. Addition of the CH2 twisting mode ν10 comes from
the comparison of the VCI(8400) and a VMFCI similar to the 4-step scheme
above but without contracting the ν10 mode and with a truncation at 7700
cm−1 in the final step, showing that an energy inversion occured between the
ν1 and the 2ν10 energy levels, with an energy difference between the levels as
large as ±50 cm−1 . A further analysis of the ν1 − ν10 contraction showed that
ν1 is strongly mixed with 2ν10 (found at 2959 cm−1 in our best calculation).
Note that ν13 and ν15 + 2ν4 (3045 cm−1 ) exhibited a similar inversion but
with a smaller energy splitting (±4 cm−1 ) not justifying the inclusion of ν4

into the (ν1-ν6-ν9-ν10-ν13-ν15) contraction. The fourth and last step consists
in a VCI including all modes, with a global energy truncation at Z cm−1 .
Results collected in the four last columns of Table 4 obey to the contraction
scheme just described, showing the convergence with Z ranging from 8400 to
10721 cm−1 . This scheme is clearly more effective than the direct VCI after
the VSCF, as can been seen from the zero point energy (ZPE) convergence:
12501 for VCI(8400), 12464.5 for VMFCI(8400), then 12464 cm−1 for the other
VMFCIs (12463.7 cm−1 for VMFCI(10721) ) and by inspecting the stretching
modes in Table 4. The convergence of the fundamental wave numbers with
increasing Z values is clear. So, the ZPE convergence also means that the
excited energy levels have converged to about 1 cm−1 accuracy.

We have reported in Table 5 the best values of the P-VMWCI and VMFCI
approaches. They are tabulated along with the available experimental data.
The results of the two theoretical methods are very similar, the mean deviation
being smaller than 0.2% i.e. 3.5 cm−1 . The largest difference is found to be 6
cm−1 for the ν10 (σCH2

) and ν15 (ρCH2
) modes.
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4 Conclusion

The convergence of the two independent, theoretical approaches indicates their
reliability. It entitles us to claim that the accuracy of our theoretical wave
number values are essentially that of the CCSD(T)/B3LYP//cc-pVTZ/6-
31+G(d,p) PES.

On the ground of our theoretical wave number values, six points can be un-
derlined:

• Both ν6 and ν13 CH2 asymmetric stretching modes are fairly well reproduced
by our calculations (within 1% of the observed values). The gap calculated
between the two modes (9 and 14 cm−1 ) is in perfect agreement with the
observed value (12 cm−1 ) on ethylene oxyde crystals [50], if the lowest (and
most intense) wave numbers are retained. However, the sign of the gap is
the opposite in the most recent experiment on thin ethylene oxyde films
deposited at low temperature [12] (-12 cm−1 for the amorphous phase and
-15 cm−1 for the crystalline phase) .

• The CH2 symmetric stretching vibrations ν1 and ν9 are calculated 110 to
130 cm−1 below the asymmetric ν6 and ν13 modes in contrast with the ex-
perimental values. A large part of this gap (≈ 80 to 100 cm−1) is already
present at the harmonic level. A Morse function fit to our polynomial PES is
probably needed to remedy to these discrepancies. Moreover, several strong,
coupled bands are expected in this crowded area of the spectral range. The-
oretical investigations are in progress to analyse in more detail this issue.

• A perturbative treatment of the CH2 symmetric stretching vibrations not
reported here, has led to 3061 and 3015 cm−1 for A1 (ν1) and B1 (ν9) modes
respectively whereas the other wave numbers are close to the converged,
variational values. These particular discrepancies of the perturbational ap-
proach have to be linked with the presence of strong interactions between
cycle deformations and implying also hydrogen bending modes. Variational
calculations involving all the states of the fundamental and combination
bands located in the [500-10000] cm−1 area have revealed that the ν1 and ν9

fundamental bands are mainly mixed with the (ν5+ν7+ν8 and ν5+ν11+ν12)
A1 overtones and the (ν2+ν10, 2ν8+ν12,ν11+2ν15) B1 overtones respectively.

• All CH2 scissoring, rocking, twisting and wagging vibrations belonging to
A1, B1 and B2 symmetries, (i.e. infra-red active), are in very good agree-
ment with experimental data.

• The ring breathing (ν3) and the ring deformation (ν5) respectively calcu-
lated at 1271-1272cm−1 and 881-879cm−1 are in perfect agreement with the
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observed bands reported at 1270 and 877cm−1 in [49,51] for ethylene oxyde
in the gas phase; The last ring deformation ν12 computed at 820-823cm−1

supports Nakanaga’s assignment (822cm−1 [51]) against the weak absorp-
tion bands between 840 and 892cm−1 assigned by many workers [47,49] to
this vibration.

• The two A2 CH2 twisting (ν7) and rocking (ν8) modes inactive in the
IR gas phase are calculated respectively at (1149-1152 cm−1) and (1019-
1024 cm−1). This latter value in agreement with the estimated wavenumber
(above about 1000cm−1) from microwave spectroscopy [48] differs by about
200 cm−1 from all the other IR assignments [12,47,49–51]. In the same way,
for the twisting mode (ν7) the difference between our results and the other
assignment is about 100 cm−1, see for example the wave number suggested
by Schriver et al [12] to characterize this mode in crystalline and amorphous
phases.
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[58] P. Carbonnière, D. Bégué, A. Dargelos, C. Pouchan, Chem. Phys. 300, 41
(2004).

[59] R. Dawes, D.L. Thompson, Y. Guo, A.F. Wagner, M. Minkoff, J. Chem. Phys
126, 184108 (2007).

16



List of Figure captions

Figure 1: Schematic representation of ethylene oxyde.
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[3500] [1]

γ Sγ
a Nop

b νCO Sγ
a Nop

b νCO

0 18(0.1) − 1781.2 2 − 1781.2

1 976(3.3) 7913 1754.8 336(1.1) 768 1755.2

2 6610(22.3) 554004 1750.8 3449(11.6) 180376 1750.9

3 17783(59.9) 3981840 1750.2 12526(42.2) 2062647 1750.4

4 26737(90.1) 10608135 1750.0 23329(78.6) 7550757 c 1750.2

Table 1
Comparison of P-VMWCI approach performances considering two spectral windows
with a decreasing density of states : Illustration with the νCO stretching mode of the
H2CO molecule, obtained from a potential function computed at the CCSD(T)/cc-
pVQZ level of theory [37]. The [3500] window, which covers the 0-3500 cm−1 spectral
area, is initially composed of 18 configurations. The second window, namely the [1]
window, is 1 cm−1 wide around the perturbational value of the νCO wave number
and only contains the νCO wave function (plus the ground state). Considering a
reduced-sized window enables to have 25% operations less. This also reduces the
problem size by 12% and CPU needs by 50%. Accuracy for the νCO mode is equal
to 0.17 cm−1 when γ = 4.

a Size of the variational matrix at step γ. Values in parenthesis are the percentage
of configurations contained in Sγ with respect to the total number N = 29680 of
configurations; N corresponds to 7 excitation quanta for the τCH2

and νCH2
modes,

and 6 excitation quanta for the ρCH2
σCH2

, νCO and νasCH2
modes. The P-VMWCI

automatically rejects configurations which do not meet theses criteria.
b The Nop column displays the number of operations required by the action of the
operators in A to build the configuration space of step γ.
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Harmonic level MSP-CI MSP-VMFCI MSP-VSCFCI Converged

ν4 1345 1356 1295 1318 1309

ν2 1570 1567 1527 1532 1528

2ν4 2691 2714 2591 2638 2588

2ν4 2691 2719 2597 2643 2610

2ν4 2691 2719 2597 2643 2622

ν1 3036 3013 2972 2972 2925

ν3 3157 3214 3176 3062 3027

2ν2 3141 3131 3051 3061 3051

2ν2 3141 3134 3054 3064 3054

3ν4 4036 4079 3896 3966 3868

3ν4 4036 4087 3905 3974 3905

3ν4 4036 4088 3905 3974 3915

3ν4 4036 4088 3906 3974 3929

3ν2 4711 4694 4573 4588 4573

3ν2 4711 4699 4579 4594 4579

3ν2 4711 4699 4579 4594 4579

Table 2
Contraction methods with and without mean field averaging. The wave numbers in
cm−1 of the vibrational levels of methane are tabulated for different minimal symme-
try preserving (MSP) methods (i.e. methods which contract degenerate components
together, otherwise the symmetry is broken [46]). MSP-CI, which correspond to the
traditional contraction method goes in the wrong direction for modes 3 and 4, that
is in half of the cases. MSP-VSCFCI always go in the right direction and modes 1
and 2 are closer to the converged value than with MSP-CI. (HO modal basis set
with quantum number less than in 10 all MSP calculations. The Lee, Martin, Taylor
PES was used [45]).
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P-VMWCI

Assignment γ = 1 γ = 2 γ = 3

A1 ν1 3056 2977 2922

ν2 1502 1501 1499

ν3 1272 1272 1271

ν4 1136 1136 1120

ν5 882 881 881

A2 ν6 3042 3032 3027

ν7 1157 1154 1152

ν8 1026 1025 1024

B1 ν9 3012 2912 2908

ν10 1474 1474 1474

ν11 1131 1131 1130

ν12 824 822 820

B2 ν13 3057 3046 3041

ν14 1152 1151 1151

ν15 802 801 800

Table 3
Convergence of the P-VMWCI scheme. Fifteen minimal (±1cm−1 around each se-
lected wave number) initial windows are used for the calculation of the fundamental
wave numbers. Every tensor product of HO modals up to ns = 7 for each mode s

has been included in the iterative selection process. At order γ = 3, the VCI matri-
ces have a size of about 50000 × 50000. They have been diagonalized by a recently
implemented block-Davidson algorithm.
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Assignment VSCF/VCI(8400) VMFCI(8400) VMFCI(9200) VMFCI(10000) VMFCI(10721)

(42113bf) (46525bf) (91052bf) (172204bf) (298194bf)

A1 ν1
a 2994 2927 2921 2920 2919

ν2 1501 1500 1500 1497 1497

ν3 1273 1274 1273 1271 1272

ν4 1128 1128 1126 1123 1123

ν5 881 881 879 879 879

A2 ν6 3093 3040 3034 3033 3032

ν7 1153 1153 1151 1149 1149

ν8 1024 1024 1020 1019 1019

B1 ν9 3040 2922 2915 2914 2913

ν10 1473 1471 1471 1468 1468

ν11 1130 1130 1128 1125 1125

ν12 825 825 823 823 823

B2 ν13
a 3105 3052 3044 3042 3041

ν14 1151 1151 1149 1147 1147

ν15 801 796 794 793 794

Table 4
Convergence of the VMFCI scheme with the final step truncation threshold: the
VMFCI(Z) scheme used in this study is: VSCF/VSCFCI(ν1-ν6-ν9-ν13, ν3-ν5-ν12; 34072,

17000)/VSCFCI(ν1-ν6-ν7-ν9-ν10-ν13; 19464)/VCI(Z), that is to say, after a VSCF, the CH
stretching modes, ν1, ν6, ν9, ν13, have been contracted together in the mean field
of the other modes with a truncation threshold on the sum of the energies of prod-
uct basis function components equal to 34072 cm−1 , at the same step the ring
modes, ν3, ν5, ν12, have been contracted together with a truncation threshold of
17000 cm−1 ; after achieving self-consistency (only one more iteration was needed)
the CH stretching modes have been contracted with ν7 (CH2 twist) and ν10 (CH2

scissor) with truncation of the basis set at 19464 cm−1 (self-consistency achieved in
two steps); finally, all the modes were contracted with truncation at Z cm−1 . This
scheme proved more effective than the direct VCI after the VSCF.

a In the VMFCI calculations ν1 was strongly mixed with 2ν10 (2959 cm−1 ), and ν13 with ν15 +2ν4 (3045
cm−1 ), so that, our assignment is only indicative.
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Gaz phase Liquid phase Solid Phase Computed

Assignment IR Raman amorphous crystalline type of motion

[51] [49] [47] [12] [50] [12] P-VMWCI VMFCI

ν1 - 3018 3005 3011 3024 3005 2922 2919 νs,CH2

ν2 1497 1498 1490 1492 1481-1495 - 1499 1497 σCH2

A1 ν3 1270 1270 1266 1267 1266-1268 1266 1271 1272 Ring breath.

ν4 - 1148 1120 - 1119-1129 1147 1120 1123 ωCH2

ν5 877 877 867 856 857-875 854 881 879 Ring deform.

ν6 - ia 3063 3073 3050-3051 3073 3027 3032 νas,CH2

A2 ν7 ia ia (1345) 1043 1043-1046 1046 1152 1149 τCH2

ν8 1020 a ia 807 821 837-851 818 1024 1019 ρCH2

ν9 - 3006 3005 3001 2996-3006 2995 2908 2913 νs,CH2

B1 ν10 1470 1472 - 1467 1455-1467 1467 1474 1468 σCH2

ν11 - 1151 1150 1169 1159-1169 1152 1130 1125 ωCH2

ν12 822 840 867 - 816-825 859 820 823 Ring deform.

ν13 3065 3065 3063 3061 3062-3075 3058 3041 3041 νas,CH2

B2 ν14 - 1142 1150 - 1146-1161 1160 1151 1147 τCH2

ν15 808 821 - 794 794-798 796 800 794 ρCH2

Table 5
Experimental and calculated wavenumbers (in cm−1) for the ethylene oxide com-
pound. ia: inactive, νs: symmetrical stretching, νas: asymmetrical stretching, ρ: rock-
ing, σ: scissoring, τ : twisting, ω: wagging, breath.: breathing, deform.: deformation.

a From ref.[48] according to [51]. Actually Yoshimizu et al. [48] assigned this wave
number to ν7, however their results support a value for ν8 above about 1000 cm−1
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Figure 1. Bégué, Journal of Chemical Physics

23


