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Two-Variable Logic on Words with Data*

Mikotaj Bojahczyk Anca Muscholl Thomas Schwentick Luc Segoufin
Dortmund University

Warsaw University LIAFA, Paris VII

Abstract— In a data word each position carries a
label from a finite alphabet and a data value from
some infinite domain. These models have been already
considered in the realm of semistructured data, timed
automata and extended temporal logics.

It is shown that satisfiability for the two-variable
first-order logic FO?(~,<,+1) is decidable over
finite and over infinite data words, where ~ is a
binary predicate testing the data value equality and
+1,< are the usual successor and order predicates.
The complexity of the problem is at least as hard as
Petri net reachability. Several extensions of the logic
are considered, some remain decidable while some
are undecidable.

I. INTRODUCTION

Finding decidable logics for models that handle
data values is an important problem in several
areas that need algorithmic procedures for prop-
erty validation. Examples can be found in both
program verification and database management. In
this paper we reconsider a data model that was
investigated both in verification (related to timed
languages [1] and extended temporal logics [4])
and in XML reasoning [16]. As in these papers,
data values are modeled by an infinite alphabet,
consisting of a finite and an infinite part. The logic
can address the finite part directly, while the infinite
part can only be tested for equality. As a first step,
this paper considers simple models: words, both
finite and infinite.

Our main result is that the satisfiability prob-
lem for two variable first-order logic extended by
equality tests for data values — FO?(~, <, +1) for
short — is decidable over word models. When more
variables are permitted, or when a linear order on
the data values is available, or when more than
two equivalence relations are present, the logic
becomes undecidable.

Following [1], a data word is a finite sequence
of positions having each a label over some finite
alphabet together with a data value over some
infinite alphabet. The logic admits the equality
test x ~ y, which is satisfied if both positions
carry the same data value. Moreover, there are two
navigational predicates on strings: the linear order
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< and the successor relation +1. (With only two
variables, the successor +1 cannot be defined in
terms of the order <.) As usual we also have a
unary predicate corresponding to each letter of the
finite alphabet.

Perhaps surprisingly, we show that the satisfia-
bility problem for FO?(~, <, +1) is closely related
to the well known problem of reachability for
Petri nets. More precisely we show that languages
formed by the projection onto the finite alphabet
of word models definable by an FO?(~, <,+1)
sentence are recognized by multicounter automata
(which are equivalent to Petri nets [7]). The con-
verse is also true, modulo an erasing inverse mor-
phism. Moreover, the correspondences are effec-
tive. We give a 2EXPTIME reduction of satisfia-
bility for FO*(~, <, +1) to emptiness for multi-
counter automata which is known to be decidable
[11], [14]. For the opposite direction we provide a
PTIME reduction from emptiness for multicounter
automata to satisfiability for FO?(~, <, +1). Since
there is no known elementary upper bound for
emptiness for multicounter automata (see e.g. [5]),
finding the exact complexity of satisfiability for
FO?(~, <, +1) formulas is a hard question.

The decidability of FO?(~, <, +1) immediately
implies the decidability of EMSO?(~, <, +1).
Without data values, EMSO?(+1) has the same
expressive power as MSO. Here EMSO? stands for
the closure of FO? under existential quantification
of sets of nodes. In this sense the decidability of
EMSO?(~, <,+1) can be seen as an extension of
the classical decidability result of monadic second-
order logic over strings.

We also show that the satisfiability problem for
FO?(~, <,+1) remains decidable over data w-
words. In this case we no longer recognize the
string projection of definable languages but we
show that, again using emptiness of multicounter
automata, it is decidable whether an FO?(~, <
,+1) formula is satisfied in a data w-word whose
string projection is ultimately periodic.

We then show that our decision procedure works
even when the logic is extended by predicates «1
and +2, +3, ... Here x1 is a binary predicate,
which relates two positions if they have the same



data value, but all positions between them have a
different data value. The +k binary predicate, on
the other hand, generalizes the successor predicate
+1 to the kth successor.

The paper is organized as follows. The main
result — a decision procedure for satisfiability of
FO?(~, <, +1)- is presented in Section 111. In the
proof, a concept of data automaton is introduced.
There are two steps: first we show in Section 1V
that each language definable in FO?(~, <, +1) can
be recognized by a data automaton; then we show
in Section V how emptiness for data automata
can be decided using multicounter automata. The
reduction from reachability of multicounter au-
tomata to satisfiability of FO?(~, <, +1) is shown
in Section VI. In Section VII, we extend the main
decidability result: first by adding new predicates,
second by considering w-words. In Section VIII,
we show that the logic becomes undecidable when:
a) three variables are allowed (even without the
order <); or b) a linear order on data values is
included. Finally, we conclude with a discussion
of the results. Because of space limitation some
proofs are missing and are available in the full
version of this paper.

Related work. Automata on finite strings of
data values (without labels) were introduced in
[18], [9]. They used registers to store data values
and data values could be compared wrt. equality.
In [16] register automata and pebble automata
over such words were studied. Several versions
of these automata (one-way/two-way, determin-
istic/nondeterministic/alternating) were compared.
Most of the results were negative however, i.e.,
most models are undecidable. Register automata
have been also considered by Bouyer et al. [1] in
the context of timed languages. However, the au-
tomata considered therein have a limited expressive
power and cannot test data equality on arbitrary
two positions (they are one-way automata). In
particular the string projection of any language rec-
ognized by their automata is regular. As mentioned
above, this is not the case for the logic considered
in this paper.

In [4] an extension of LTL was given which
can manipulate data values using a freeze opera-
tor. Their decidable fragment is incomparable to
FO?(~,<,+1) as it can only process the word
left-to-right, but can express properties that FO?(~
, <,+1) cannot.

Restricting first-order logic to its two-variable
fragment is a classical idea when looking for
decidability [8]. Over graphs or over any relational
structures, first-order logic is undecidable, while

its two-variable fragment is decidable [15]. This
does not imply anything on the decidability of
FO?(~, <, +1), since the equivalence relation, the
successor relation and the order < cannot be ax-
iomatized with only two variables. A recent paper
generalized the result of [15] in the presence of
one or two equivalence relations [10]. Again this
does not apply to our context as we also have the
order and the successor relation. However [10] also
showed that FO? with three equivalence relations,
without any other structure, is undecidable. This
implies immediately that we cannot extend the
decidability result to data words with more than
two data parts.

In the context of XML reasoning we considered
FO?(~, +1) over unranked ordered data trees [2]
and showed the decidability of the satisfiability
question. In this context, the predicate +1 stands
for two successor predicates, one for the vertical
axis and one for the horizontal one. As data words
are special cases of data trees, this implies the
decidability of FO?(~, +1) over words. The com-
plexity for data trees is in SNEXPTIME but it be-
comes 2NEXPTIME when restricted to data words.
This should be contrasted with the complexity of
satisfiability of FO?(~, <, +1) which is not known
to be elementary.

On strings over a finite alphabet (without data
values), the FO?(<,+1) fragment of first-order
logic is very well understood. A characterization in
terms of temporal logic says that it is equivalent to
LTL restricted to the unary operators F, G, X and
their past counterparts [6]. In terms of automata,
FO?(<) is equivalent to partially-ordered, two-way
deterministic finite automata [17], while in terms of
algebra the logic corresponds to semigroup variety
DA [19]. The satisfiability question is NEXPTIME-
complete in [6] (using an arbitrary number of unary
predicates).

Il. PRELIMINARIES

Let 3 be a finite alphabet of labels and D an
infinite set of data values. A data word w =
wy -+ -wy IS a finite sequence over ¥ x D, i.e.,
each w; is of the form (a;,d;) with a; € ¥ and
d; € D. A data language is a set of data words, for
some Y. The idea is that the alphabet X is accessed
directly, while data values can only be tested for
equality. This amounts to considering words over X
endowed with an equivalence relation on the set of
positions. The string str(w) = aq - - - a,, is called
the string projection of A. The marked string
projection mstr(w) = (a1,b1) - - (an,bn) € (X X
{0,1})* of w adds a new coordinate, where b; = 1



on all positions ¢ with the same data value as
1 — 1. For a language of data words L, we write
str(L) for {str(w) | w € L} and mstr(L) for
{mstr(w) | w € L}.

A class is a maximal set of positions in a
data word with the same data value. For a class
with positions i; < --- < i the class string
is a;, ---a;, and the marked class string is
(aiy, biy) -+ (aq,, biy, ), With the b; as above.

Data words can be seen as models for first-order
logic, where the carrier of the model is the set of
positions in the word. Let FO(~, <,+1) be first-
order logic with the following atomic predicates:
x~y, <y, x=y+1,and a predicate a(z) for
every a € X.. The interpretation of a(x) is that the
label in position z is a. The order < and successor
+1 are interpreted in the usual way. Two positions
satisfy 2 ~ y if they have the same data value. We
write L(¢) for the set of data words that satisfy
the formula ¢. A formula satisfied by some data
word is satisfiable.

We write FO* for formulas using at most &
variables. Note that the following examples use 2
variables only.

Example: We present here a formula ¢ such that
str(L(¢)) is exactly the set of all words over {a, b}
that contain the same number of a’s and b’s.

o The formula ¢, says all a’s are in different
classes:

pa = VaVy(z #y Na(z) Na(y)) =z 2y .

Similarly we define .
o The formula 1, says each class with an a
also contains a b:

tap =VaIy(a(z) = (b(y) Az ~y)) .

Similarly we define 1) .

o Hence, in a data word satisfying ¢ = ¢, A
b Aa b Ay, the numbers of a and b-labeled
positions are equal.

This can be easily extended to describe data words
with an equal number of a’s, b’s and ¢’s, hence a
language with a non-context-free string projection.

Example: For a € ¥ the formula below is satisfied
precisely by the first a which has an « in a different
class on its left, i.e., the first a in the second a-class.

a(z) ANy (y <z A aly) A x> y)A
Yy (y <z Aaly)) —
[xeyAVz ((z <y Aa(z))— z~y)

Note how in this example the variable z is reused.

[11. DECIDABILITY OF FO?*(~, <, +1)
The main result of this paper is:

Theorem 1 Satisfiability of FO?(~, <,+1) over
data word models is decidable.

The basic idea of the proof of Theorem 1 is to com-
pute for each formula ¢ a multicounter automaton
that recognizes str(L(y)). As an intermediate step,
we use a new type of finite automaton that works
over data words, called a data automaton (these
will be defined in Section V). Theorem 1 follows
immediately from the following three statements.

Proposition 2 Every language definable in
FO?(~, <,+1) is recognized by an effectively
obtained data automaton.

Proposition 3 From each data automaton we can
compute a multicounter automaton recognizing the
string projection of its recognized language.

Theorem 4 [11], [14] Emptiness of multicounter
automata is decidable.

Proposition 2 is shown in Section 1V, and Propo-
sition 3 is shown in Section V. Regarding com-
plexity, satisfiability of a FO*(~, <, +1) formula
is reduced in 2EXPTIME to the emptiness of a
multicounter automaton of doubly exponential size.

1V. DATA AUTOMATA

In this section we define data automatal, a
means to define data languages, and show that they
can recognize all languages of data words definable
in FO*(~, <, +1).

A data automaton D = (A, B) consists of

« a nondeterministic letter-to-letter string trans-

ducer A (the base automaton) with input
alphabet ¥ x {0,1}, for some ¥ and some
output alphabet T" (letter-to-letter means that
each transition reads and writes exactly one
symbol), and

« a nondeterministic string automaton B (the

class automaton) with input alphabet I".
A data word w = wy---w, € (X x D)* is
accepted by D if there is an accepting run of A
on the marked string projection of w, yielding an
output string by ---b,, such that, for each class
{z1,... 2k} C{1,...,n}, 21 < -+ < xy, the
class automaton accepts b, , . .., by, .

10ur data automata differ from what is called data automaton
in [1], which are essentially 1-way automata with one register.



As an example, consider the property: “w has
at least two classes with an «”. The data au-
tomaton for this property works as follows. The
base automaton nondeterministically chooses two
positions with an « and outputs 1 on each of them
and 0 everywhere else. If there are no such two
positions it rejects. The class automaton checks that
each class contains at most one 1, thus verifying
that the two positions were chosen from different
classes. We call below renaming a letter-to-letter
morphism, that is a morphism defined as 4 : ¥ —
Y, where X, ¥’ are alphabets.

Lemma 5 Languages recognized by data automata
are closed under union, intersection, and renaming.

Proof

Closure under union and intersection is obtained
using the usual product construction. Closure under
renaming is obtained using the non-determinism of
the base automaton. a

The same cannot be said about negation. Indeed,
if we were to have effective closure under negation,
then all data languages defined by monadic second-
order logic could be effectively translated into
data automata, as we show that data automata
recognize all of EMSO?(~, <, +1). This would be
a contradiction, since we show that emptiness of
data automata is decidable, while satisfiability is
undecidable for monadic second-order logic [16]
(even for first-order logic, see Proposition 20).

The following lemma presents a family of data
languages recognizable by data automata which
will be used later in the proof.

Lemma 6 For any given regular language L C
(X x {0,1})*, there is a data automaton accepting
all data strings w, for which each marked class
string belongs to L.

Proof

The base automaton just copies its input X x {0,1}
and the class automaton checks membership in L.
(I

One can also verify if some marked class string
belongs to L: for each position ¢, the base automa-
ton nondeterministically chooses to either output
the input symbol a; or a special symbol L. It
accepts, if it output at least one non-_L symbol.
The class automaton accepts the language L U L *.

A. Reduction to data automata

The goal of this section is to prove Proposition 2,
i.e. to transform a formula of FO?(~, <, +1) into

an equivalent data automaton of doubly exponential
size. The transformation is done in two steps, first
we rewrite the given formula into “intermediate
normal form”, and then we show that the normal
form can be recognized by data automata. Each
step gives an exponential blowup.

In the first step, we transform FO?(~, <, +1)
formulas into an intermediate normal form (we
denote as type below any conjunction of unary
predicates or their negations):

Definition 7 A formula is said to be in in-
termediate normal form if it is of the form
3Ry Ry (01 A -+ A B,), where 3Ry -+ Ry,
quantifies over unary predicates (sets of positions)
and each 6; is of one of the following kinds:

(1) Vavy [p(z,y) A alz) A By) Ad(e,y)] —
v(z,y)
(2 V2Idy alx) — [ﬂ(y) A S(z,y) A e(x,y)]
(3) Vavy o
where
e « and (3 are types,
e pr,y)=(@#y+1Ay#az+1Ax#y),
e O(z,y)isz ~yorzqidy,
o Y(z,y)isz <y, x>y,orff,and
ecx,y)ise+l <y z+1 =y x=uy,
r=y+1lorx>y-+1,
« 1 is a quantifier free formula in DNF that
doesn’t use ~.

Here, 4+ 1 < y is an abbreviation for < y Az +
1#£y.

Formally speaking, a formula in intermediate
normal form is a normal form of EMSO?(~, <
,+1), the extension of FO?(~, <, +1) by existen-
tial monadic second-order predicates quantification
in front of FO?(~, <, +1) formulas. Note that as
far as satisfiability is concerned FO?(~, <, +1)
and EMSO?(~, <, +1) are equivalent.

Lemma 8 Every formula of FO?(~, <,+1) can
be effectively transformed into an equivalent for-
mula in intermediate normal form of exponential
size, with exponentially many unary predicates R;.

Proof

The overall idea is classical: we reduce the quan-
tifier depth to 2, then we add unary predicates that
color certain distinguished positions, resp. classes
containing distinguished positions. These addi-
tional colors are then used to simplify the formulas.

The formal proof proceeds in three steps.

Step 1: Scott normal form

The first step is classical for two variable logics



(see e.g. [8]). It says that each FO?(~, <,+1)
formula ¢ is equivalent with respect to satisfiability
to a (linear size) formula ¢’ in Scott Normal Form,

YaVy x A /\Vxﬂy Xis

where x and each y; are quantifier-free. The sig-
nature of ¢’ is an extension of the signature of ¢
by (linearly many) unary predicates. Furthermore,
a data word satisfies o if and only if it can be ex-
tended by additional predicates to a word satisfying
¢’. In our setting, the additional unary predicates
are simply relations R; which are existentially
quantified by the formula. The additional relations
state which subformulas are satisfied at a given
position.

Hence, ¢ is equivalent to a formula of the form

3Ry -+ IRy (VaVy x A [\ Y2y xi).

Step 2: Dealing with VaVy x.
In the second step we show that the formula
VaVy x can be replaced by a formula

i=1,2,3

1 "HRm/\oi A

where the &; are again quantifier-free and each 6;
is of the form (1) (from Definition 7). Moreover,
the number of 6; is exponential.

To this end, we first rewrite VzVy x into the
following form:

VaVy (y=x+1 — ty—osi(z,y)

AN rz=y+1 —te—yii(z,y)
ANoox=y = ey(z,y)
A op(zy) = d(z,y)

where the ¢ formulas are quantifier-free and use
only ~, < and the unary predicates. They have the
same size as x. Over the (linearly ordered) models
considered in this paper this is logically equivalent
to:

vavy (p(, (z,9))
A VaIy (—|R|ast y =z+1 Npy= z+1))
A Vrdy (_'Rfl rst\ L (T=y+1 A= y+1))

AVaTy ((z =y A wz_w)

Here, we assume that Ry and R,y are two
extra predicates marking the first and last position
of the word, respectively. They can easily be en-
forced by a formula of the form (3). The last three
conjuncts give rise to &1, &2, {5 and we are left with
the first conjunct Vavy (p(z,y) — ¥,(z,y)). We

turn 7, into CNF (with an exponential blow-up)
and rewrite it as

N (a(@) 7 B(y) —
o,

where «,3 are types occurring in ,, and
Y(x,y) is a quantifier-free formula using only <
and ~. Finally, we rewrite the formula ¢ (x, y) into
the form:

Y(z,y) = YN @ =y — 72(z,9))

where ~1(x,y) and o (x,y) are x < y, x > y, ff
or tt.

Y(z,y)

(z~y —mle,

Step 3: Dealing with A\ Va3y xi.

In the last step, we "show that each formula
Va3y x can be rewritten into an equivalent formula
3R, --- 3R], A\, 0; with 6; of type (2) or (3) in Def-
inition 7. Moreover, the size of 9; and the number
n of additional predicates are both polynomial.

First, x can be written as a disjunction (of
exponential size)

V (a;(2) —

J
where the «;, 85,05, €; are of corresponding forms
as in (2). It only remains to eliminate the dis-
junction. To this end, we add for each conjunct
above a new unary predicate R, ; with the intended
meaning that R, ; holds at a position z if there is
a y such that o (z) A B;(y) A d;(x,y) Aej(z,y)
holds. Formally, we rewrite each Va3y x as

ARy1 Ry2-- (Vo \; Ryi(x)) A
A; Y23y (aj() A Ry () —
(B (y) A 85z, y) A€z, y))) -
By putting together the obtained formulas we get
a formula in intermediate normal form. [l

ﬂj(y) A 5j(xv Z/) A ej(x,y)),

We are now ready for the second step, where
the intermediate normal form is transformed into
a data automaton, thus completing the proof of
Proposition 2. Since data automata are closed under
renaming and intersection, it suffices to consider
just the conjuncts 6 in Definition 7. Note that the
Cartesian product gives an exponential blowup.

Lemma 9 Every conjunct ¢ of a formula in inter-
mediate normal form can be recognized by a data
automaton with constantly many states.

Proof
The formula 8 may be in one of the three forms (1),
(2) or (3) from Definition 7. The case of formula



of the form (3) is no problem as it can easily be
checked using the base automaton. We consider
first the case of (1):

VaVy [(p(z,y) A alz) A Bly) A 6(z,y) —
V(@ y)]

The proof uses the data automaton for mark-
ing a fixed number of classes, say k for some
constant k. We explain this technique first.
The base automaton uses the output alphabet
I = {L,(1,1),...,(k,1),(1,0),...,(k,0)}. It
guesses, for each position 4 an output symbol b; €
T'x. It makes sure that, for each j, at most once
the symbol (j,1) is chosen. The class automa-
ton accepts then all strings of the form L* and
(1,1)(1,0)*, for some [. In this way, it is ensured
that, for each class, always the output symbol L is
chosen or the first output symbol is (,1) and all
others are (I, 0), for some [. As each (j,1) is used
at most once, it can not happen that two classes
share the same (4,0) (and (j,1)) symbols. Thus,
the base automaton can assume, for each position,
to which of the < k classes it belongs.

It remains to perform a case analysis on the
formulas 4, v and .

In the case where §(x,y) is = ~ y the formula 6
gives a regular condition that must be satisfied by
each class. Thanks to Lemma 6, we can use that
class automaton to verify 6.

If §(z,y) is x o y there are three subcases.

o y(z,y) = ff means that the data string may

not have an «- and a 3-position which are not
adjacent (or identical) and in different classes.
It is easy to see that the formula evaluates to
false if both o and 3 appear in the string and
there are at least 4 classes with an « or at
least 4 classes with a g.
Thus, it is sufficient that the base automaton
selects (at most) 6 classes, using the technique
explained above, and tests that (a) neither «
nor B occur outside these 6 classes and (b)
within the 6 classes 6 holds.

e v(z,y) =z < y. In this case only two classes
are involved.

Let Lst, be the position of the rightmost «
in the string and Llst, be the position of the
rightmost « that is in a different class than
Lst,,. Using this notation, ¢ holds if and only
if w (a) has no G up to position Llst, — 2;
and (b) the 3-positions between Llst, — 1 and
Lst, — 2 are in the same class as Lst,.
Thus, the base automaton simply guesses the
two classes containing Lst, and Llst, and
tests that (a) and (b) hold.

« The case where v(z,y) is > y is analogous.
It remains to consider formulas 6 of type (2):

Vedy a(z) — [Bly) A 8(z,y) A e(z,y)]

As before, the difficult case is when 6(x,y) is z %
y. If e(z,y)isoneof e +1 =y, v =y, x =
y—+1 then 6 can be verified by the base automaton.
Otherwise e(z,y) isz+1<yorz>y+1 We
describe the case of © + 1 < y, the other being
analogous.

In this case, 6 expresses that each a-position
needs a (-position in a different class to its right
(but not as its right neighbor). Since every a-
position before Llstz —2 is guaranteed to have such
a B-witness in a different class, it suffices to require
the following properties: a) from position Lstg — 1
on, the data word contains no «; and b) all a’s
between Llstg — 1 and Lsts — 2 are not in the same
class as Lstg. This involves checking 2 classes and
can be handled analogously as the cases above.

As for the size, it is easy to check that the
base and class automata have a number of states
bounded by a constant. The number of transitions
is bounded by the number of types (if we allow
also type negations in the transitions, the number
of transitions is also bounded by a constant). [

We would like to note that the converse of
Proposition 2 does not hold. There are two reasons
for this. First, a data automaton can verify arbitrary
regular properties of classes, which cannot be done
with first-order logic. For instance, no FO?(~, <
,+1) formula captures the language: “each class
is of even length”. This problem can be solved by
adding a prefix of monadic second-order existential
quantification. However, even with such a prefix,
it is difficult to write a formula that describes
accepting runs of data automata. The problem is
that describing runs of the class automata requires
comparing successive positions in the same class,
which need not be successive positions in the word.
That is why we consider a new predicate *1,
called the class successor, which is true for two
successive positions in a same class of the data
word. The following result easily follows from
Proposition 2 and the obvious extension of its proof
to include EMSO?(~, <, +1, x1):

Proposition 10 A language is recognized by a
data automaton iff it is definable in EMSO?(~, <
1, £1).

Proof
It is easy to extend the proof of Proposition 2 to the



logic EMSOQ(N, <, 41, £1). The other direction
follows immediately from the classical simulation
of automata in EMSO?(+1). 0

By translating a formula into a data automaton
and then back again into a formula, we can obtain
a certain normal form for EMSO2(~, <, 41, x1).
In the normal form, the formulas verify the correct-
ness of transitions in an accepting run. In particular,
the order < is not used.

Remark: Using the same idea of the proof of

Proposition 2 one could show the following nor-

mal form for EMSO?(~, <,+1). Each formula

of EMSO?(~, <, +1) is equivalent to one where

the FO part is a Boolean combination of simple

formulas of the form (where « and [ are types):

(a) 6 is does not use ~ (i.e., a FO*(<,+1) for-
mula).

(b) Each class contains at most one occurrence
of a.

(c) Ineach class, all occurrences of « occur strictly
before all occurrences of S.

(d) In each class with at least one occurrence of
«, there must be a 3, too.

(e) If = is not in the same class at its successor
then it is of type a.

V. RECOGNIZING THE PROJECTION BY
MULTICOUNTER AUTOMATA

In this section, we show that the string projection
of a language recognized by a data automaton can
be recognized by a multicounter automaton.

We first introduce multicounter automata. An e-
free multicounter automaton is a finite automa-
ton extended by a finite set C = {1,...,n}
of counters. It can be described as a tuple
(@Q,%,C,4,qr, F). The set of states @, finite alpha-
bet ¥, initial state g; € @ and final states F' C @
are as in a usual finite automaton. The transition
relation ¢ is more involved — it is a finite subset of
Q x ¥ x (dec* (i) inc*(i))icc x Q.

The idea is that in each step, the automaton
can change its state and modify the counters, by
incrementing or decrementing them, according to
the current state and the current letter on the input.
In a step, the automaton can apply to each counter
i € C a sequence of decrements, followed by
a sequence of increments. Whenever it tries to
decrement a counter of value zero the computation
stops. Besides this, the transition of a multicounter
automaton does not depend on the value of the
counters. In particular, it cannot test whether a
counter is exactly zero. Nevertheless, by decre-
menting a counter k£ times and incrementing it

again afterward it can test whether the value of
that counter is at least k.

A configuration of such an automaton is a tuple
¢ = (q,(ci)iec) € Q x N™, where ¢ is the
current state and ¢; is the value of the counter 7. A
transition

(¢, a, (dec® (4)inc (i))icc, ¢') €6

can be applied if the current state is ¢, the current
letter is a and for every counter i € C, the value
c; is at least k;. The successor configuration is
d= (¢, (c(i)—ki+l;)icc). A run overaword w is
a sequence of configurations that is consistent with
the transition function §. The acceptance condition
is given by a subset R of the counters C' and the
final states. A run is accepting if it starts in the
state ¢y with all counters empty and ends in a
configuration where all counters in R are empty
and the state is final.

The key idea in the reduction from data automata
to multicounter automata, is that acceptance can be
expressed using the Shuffle(L) operation defined
below.

Definition 11 A word v € (¥ x {0,1}) is a
marked shuffle of n words uq,...,u, if its po-
sitions can be colored with n colors so that we
have:
1) for every i, the positions colored with color i
— read from left to right — give the word wu,,
2) a position of v is labeled by a symbol from
¥ x {1} iff its predecessor position has the
same color (neighborhood condition).
We write Shuffle(L) for the set of marked shuffles
of words from a language L C X*.

Proposition 12 Let D = (A, B) be a data automa-
ton. The string projection str(L(D)) is recognized
by a multicounter automaton of size O(|.A||B]).

Proof
By definition of data automata, a word

v = (G,l,ml) s (anamn) € (Z X {07 1})*

belongs to the marked string projection mstr(L (D))
if and only if it there is an accepting run of the
base automaton on v with output by ---b, such
that (by,mq) -+ (bn,my,) is @ marked shuffle of
the language accepted by the class automaton.
We will show in Proposition 13 that the set of
such words (by,mq) - - - (bn, my,) is recognized by
a multicounter automaton M of same size as 5.
Thus, it is sufficient to compose M with a non-
deterministic transducer which, on input a; - - - a,,



outputs a string (a1, m1) - - - (an, my), where each
m; € {0,1} is guessed independently, and which
simulates .A. We obtain a multicounter automa-
ton which on input a; - --a, constructs a string
(ar,m1) -+ (an, m,) which is read by A and
whose output in turn is the input for M. O

Thus it remains to prove the following propo-
sition which is an adaptation of Lemma (IV.6)
in [7], where the result is shown for the usual
shuffle operation (i.e., without marking explicitly
the positions where the coloring changes).

Proposition 13 If L C X* is regular then
Shuffle(L) is recognized by a multicounter au-
tomaton of size bounded by the size of an NFA
recognizing L.

VI.

In this section we show that satisfiability for
FO?(~, <,+1) is at least as hard as non-emptiness
of multicounter automata. The best lower bound
known for the latter problem is EXPSPACE [12]
and no elementary upper bound is known.

LOWER BOUNDS

Theorem 14 Emptiness of multicounter automata
can be reduced in PTIME to the satisfiability prob-
lem of FO?(~, <, +1).

Proof sketch

Without loss of generality we assume that the
multicounter has a one-letter input alphabet, no
states (also known as vector addition system) and
it accepts when all counters are empty. This can
be done by adding one counter per states. Given a
multicounter automaton .4, we construct a FO?(~
,<,+1) formula whose models are exactly (the
encoding of) the accepting runs of the automaton.

Let C = {1,...,n} be the counters of the
automaton, and let § be its transition relation.
We define ¥ to be D4, Iy,...,D,,I,, and $.
An occurrence of D; (I;) codes a decrement (an
increment) of counter ¢. The idea is to use data
values to make sure that each decrement matches
a previous increment. We encode a transition ¢ =
(dec(i)*iinc(i)");cc € & by a data word enc(t) =
Dkvplv ... DEnTln § where each occurrence of I
have a new data value while each occurrence of
D; has the data value of the matching increment
of the counter.

We can now check in FO?(~, <, +1) that the
string projection belongs to {enc(¢) | t € §}*.
This is expressible in FO*(<,+1) by a formula
whose size is polynomial in . Then we enforce

by a FO?(~, <, +1) formula that each class string
is either $ or I, D, for some k.
(I

VI1I. DECIDABLE EXTENSIONS
A. More successors

It is often useful to be able to express in the
logic the existence of a given pattern in the string,
e.g. the existence of two positions x and y such that
x and y are in the same class and the substring
between z and y is abc. This does not seem to
be expressible in FO?*(~, <, +1). This kind of
properties becomes immediately expressible in the
presence of the predicates +% for any k& € N, where
x = y + k has the obvious meaning. We denote
by FO?(~, <, +w) the logic extending FO*(~, <
,+1) with all predicates +k. It turns out that this
does not affect the decidability of the logic. The
proof follows the lines of the of the proof for
FO?(~, <, +1) and will appear in the full version
of the paper.

Theorem 15 Satisfiability of FO?(~, <,4w) is
decidable.

B. Infinite words

Another extension which is useful in the context
of verification is the case of data w-words, i.e.,
infinite length data strings. In this section we show
the following result.

Theorem 16 It is decidable whether a sentence of
FO?(~, <, +1) has a data w-word model.

The proof is along very similar lines as that of
Theorem 1 but slightly departs as it does not reason
about the string projection str(L(¢)). Instead, the
basic idea is to show that each satisfiable formula
@ € FO*(~, <, +1) has a simple model of a given
shape and that it is decidable whether a formula has
a simple model. A data w-word z is call simple if
mstr(z) is of the form w - v* for some finite words
uw and v over X.

As an intermediate step we use data w-automata
which are defined in analogy to data automata.
We only mention the differences here. A data
w-automaton (A, By, B;) consists of (1) a base
automaton A which is a Bichi letter-to-letter
transducer with output over some alphabet I", (2)
a finitary class automaton 53¢ which is a finite
string automaton over I" and 3) an infinitary class
automaton B;, which is another Biichi automaton
over I'. A data w-word w is accepted if the base
automaton has an accepting run over the marked



string projection of w with output b1bs --- such
that for every finite class i1 < -+ < ig, b;, -~ b;,
is accepted by B; similarly, for every infinite class
i1 < iy < ---, the w-string b;, b;, - - - is accepted

Theorem 16 follows immediately from the fol-
lowing propositions.

Proposition 17 Every data w-language definable
in FO?(~, <,+1) is recognized by some data w-
automaton.

Proof sketch
The proof follows exactly the lines of the proof
of Proposition 2. Actually, the reduction to inter-
mediate normal form is literally identical, as the
proof of Lemma 8 does not assume finiteness.
For the transformation of the intermediate normal
form into a data w-automaton, it suffices again to
consider just the conjuncts 6 since data w-automata
are closed under renaming, union and intersection.

Thus, it only remains to show that every conjunct
6 of a formula in intermediate normal form can be
recognized by a data w-automaton.

This statement can be shown by a similar case
analysis as in the proof of Lemma 9. O

Proposition 18 If a data w-automaton accepts any
w-string it also accepts some simple w-string.

Proof sketch

Let w be a (data) w-string accepted by a data w-
automaton (A, By, B;). Let r = (ra,rs,,75;) be
an accepting run for w that we view as functions
from position to states. We call a position in w
which is in a different class than its successor a
border position. If w contains only finitely many
border positions we can find « and v analogously as
for classical (non-data) w-automata. We only have
to make sure that u contains all border positions.
We thus assume in the following that there are
infinitely many border positions in w.

A class ¢ overlaps a position = if ¢ contains
positions y < x and z > x. We say the class is
q-open at z if i, or vz, assigns the state ¢ to the
last position of ¢ occurring before z. For a border
position = of w, and for each state ¢, let m, denote
the number of ¢-open classes of w overlapping z.

The construction of « and v is based on the fact
that there exist two border positions = < ' of w
such that:

(1) ra(x) =ra(z’) and r4(y) € F, for some y,
r<y<a.

(2) For each ¢ € By and each g-open class ¢ of w
overlapping z there is a position z < y. < 2
of ¢ with 7 4(y.) accepting for B;.

(3) For each ¢ € B; and each g-open class ¢ of w
overlapping x there is a position y., * < y. <
x’ with r(y.) accepting for B;.

(4) for each ¢, my(x) = my(z’) = 0or 0 <
mq(z) < mq(w/)-

Let w, and w, the data subwords of w from
positions 1 to x and from z + 1 to a’, respectively.
Let v = mstr((w,)) and v = mstr((w,)). The
proof is completed by showing how to choose the
data values for uv*“ in order to get the desired data
w-word. O

Proposition 19 It is decidable whether a data w-
automaton accepts some simple w-string.

Proof sketch

We construct a multicounter automaton which tests,
for a string uv whether it can be marked and
extended by data values and a (partial) run such
that conditions (1) - (4) above are satisfied with z
the last position of w and z’ the last position of v.
If this automaton accepts some string uv we can
conclude that wv® is the string projection of an w-
string accepted by E. Otherwise, it can be shown
that F accepts no data string at all, in particular it
accepts no simple string. O

VI1Il. UNDECIDABLE EXTENSIONS

In this section we show that many immediate
extensions yields undecidability. In the context of
XML, nodes in the document may have several
different attributes which are accessed via the query
languages. Equality tests between node attributes
could be simulated using several equivalence rela-
tions. For instance checking that the nodes x and
y agree on attribute a could be written as x ~, v.
However, very recently Kierohski and Otto [10]
showed that two-variable logic with 3 equivalence
relations and some unary relations is undecidable.

Extending the model by allowing more variables,
even three, also gives undecidability.

Proposition 20 Satisfiability of FO3(~
undecidable.

,+1) is

Note that this implies the undecidability of FO?(~
, <), since the relation +1 is definable from < if
three variables are allowed.

Proof sketch

We reduce Post’s Correspondence Problem (PCP)
to the satisfiability of FO®(~, 4+1). An instance of



PCP consists of a finite number of pairs (u;, v;)
of words from X* and the question is whether
there exists a non-empty, finite sequence of indexes
20y .-y ln such that Ujg Wiy ** Wi,y = VigViq = V4,
Given an instance I of PCP, let ¥’ = X U X be
the alphabet consisting of two disjoint copies of X.
Consider a solution i, ...,%, such that w
Ui Wiy * -+ Wiy, = Vigs, -+ - v;, . We encode w by a
data word w € (X' x D)* satisfying the following:
o« The string  projection  str(w) is
U4y Uiy * - Wi, Vs, . IN particular, the sequence
of letters from X is w and the sequence of
letters from X is .
Each data value appears exactly twice, once
associated with a letter of X and once asso-
ciated with the same letter in 3. Moreover, if
a data value of @ occurs at position ¢ within
w then its second occurrence must be at the
same position 7 within .
It is possible to construct a formula ¢ of FO?(~
,+1) such that w is a solution of I iff «& is a model
of . O

Another possible extension is to suppose that
there is a linear order on the data values and
to include in the logic an extra binary predicate
< such that z < y if the data value of x is
smaller than the one of y. Unfortunately this yields
undecidability even for FO2.

Proposition 21 Satisfiability of FO?(~, <, +1, <
) is undecidable.

IX. DISCUSSION

We have shown that satisfiability of FO?(~, <
,+1) over data words is decidable. Actually we
have shown that the stronger logic EMSO?(~, <
,+1, £1) is decidable over such models.

In the absence of data values, FO?(+1, <) has
several equivalent characterizations, for instance it
corresponds to the fragment of LTL that uses only
unary temporal predicates. Still in the absence of
data values, EMSO?(+1, <) has the same expres-
sive power as MSO. In a sense the decidability of
EMSO?(~, <,+1) can be seen as an extension of
classical decidability result of MSO over strings.

An interesting side result is the connection be-
tween FO?(~, <, +1) and multicounter automata
(and therefore Petri nets). Indeed, if we project out
the data values, the languages defined by FO?(~
,<,+1) formulas are recognized by multicounter
automata. The converse is also true modulo an eras-
ing inverse morphism. It would be interesting to
understand better the connection between the two

10

formalisms. Because of the connection with Petri
nets pinpointing the complexity of satisfiability is
likely to be difficult.

Our reduction from the decidability of FO?(~
,<,+1) to emptiness multicounter automata, is
2NEXPTIME. We do not know whether this is
optimal or not.

When only one of the two predicates +1 and
< is present we can show that the decision prob-
lem is elementary. It is NEXPTIME-complete for
FO?%(~, <) and inside 2NEXPTIME for FO?(~
,+1). In [2] we studied in more details the logic
FO?(~, +1) and proved that it is decidable over
unranked ordered trees. We inferred from this result
many interesting consequences for XML reasoning.
Whether FO?(~, <, +1) is decidable over trees is
still an open question which was shown in [2]
to be at least as hard as checking emptiness of
multicounter automata over trees which is stated
as an open question in [3].
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