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On pseudo-random subsets of the

set of the integers not exceeding N

Cécile Dartyge (Nancy) and András Sárközy (Budapest) ∗

Abstract. The notion of pseudo-randomness of subsets of {1, 2, . . . , N} is defined, and the measures of

pseudo-randomness are introduced. Then three special examples are studied. In two cases it turns out that

the subset in question possesses strong pseudo-random properties, while the third example is a negative

one.
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1. Introduction

In many applications (cryptography, simulation, etc.) we need a random subset R
of the positive integers not exceeding a certain fixed integer N . (E. g. in [18] and
[22] large families of finite binary sequences with strong pseudo-random properties are
presented with potential use in cryptography, and in both constructions we start out from
polynomials f(n) of form f(n) =

∏

a∈A(n − a) where A is a random subset of a given
size of {1, 2, . . . , p} for some prime p.) In most cases we replace the random subset by a
pseudo-random (=PR) subset, i. e., by a subset which is of “random type”, which
“looks random”, and which has been constructed by a suitable algorithm. But when is a
subset a “good” PR subset, when it is “of random type”? Clearly, the subset R which
consists of the even integers not exceeding N , or, in case of subsets containing half of the
elements of the given set, subset R which never contains n, n+1 and n+2 simultaneously
cannot be considered as a “good” PR subset; if we end up with such a subset then it
must be discarded. Note that in both examples the special “non-random type” structure
is related to the ordering of the integers and, indeed, the starting point of the study of
pseudo-randomness of subsets of finite ordered sets must be their ordering. Clearly, it
suffices to study subsets of {1, 2, . . . , N}, the study of subsets of other finite ordered sets
can be reduced to this case. So we will study properties of subsets of {1, 2, . . . , N} which
are related to the ordering of the integers. Clearly, to do this, we will have to use number
theoretic tools intensively.

In the last 20 years numerous papers have been written on random structures. In
particular, random (Bollobás [2]), pseudo-random (Thomason [25], [26]) and quasi-random
graphs (Chung, Graham and Wilson [8], [9], Simonovits and T. Sós [23]), pseudo-random
(Haviland and Thomason [12], [13], [25], [26]) and quasi-random hypergraphs (Chung and
Graham [4], [5], Kohayakawa, Rödl and Skokan, [15]), quasi-random set systems (Chung
and Graham [6]), quasi-random subsets of Zn (Chung and Graham [7]) are studied.
In these papers typically structures without ordering are considered, correspondingly,
combinatorial tools dominate. The study of quasi-random subsets of Zn [7] is closest to
our subject, we will return to this question in a subsequent paper.

Pseudo-randomness of finite binary sequences has also been studied intensively, mostly
in connection with cryptography (see e. g., [19]); since the elements of sequences are
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ordered, thus this field is closer to our subject. Usually the pseudo-randomness of
algorithms generating sequences (“pseudo-random generators”) is studied and not that
of individual sequences, and the tools of computational complexity are used (see, e. g.
[11]). This approach has certain limitations and weak points which were analyzed in [21].
Thus in [16] Mauduit and Sárközy proposed another, more constructive approach. Later
this approach was used and extended in numerous papers (see the survey paper [21]). In
this field the number theoretic tools dominate (but combinatorial, probabilistic, algebraic
and analytic tools are also used). In this paper our goal will be to show that the tools
introduced in [16] and extended by Hubert and Sárközy in [14] can be adapted easily
to study the pseudo-randomness of subsets of {1, 2, . . . , N}. First in section 2 we will
introduce the measures of pseudo-randomness of subsets of {1, 2, . . . , N}. In the rest of
the paper we will study special examples; both positive and negative examples will be
presented.

2. The measure of pseudo-randomness of subsets of {1,2, . . . ,N}.
In [16] Mauduit and Sárközy introduced the following measures of pseudo-randomness

of finite binary sequences.
Consider a finite binary sequence

(2·1) EN = (e1, . . . , en) ∈ {−1, 1}N .

Then the well-distribution measure of EN is defined as

(2·2) W (EN ) = max
a,b,t

∣

∣

t−1
∑

j=0

ea+jb

∣

∣,

where the maximum is taken over all a, b, t ∈ N such that 1 6 a 6 a + (t− 1)b 6 N , while
the correlation measure of order k of EN is defined as

(2·3) Ck(EN ) = max
M,D

∣

∣

M
∑

n=1

en+d1
en+d2

· · · en+dk

∣

∣,

where the maximum is taken over all D = (d1, . . . , dk) and M such that O 6 d1 < . . . <
dk 6 N −M . Then the sequence is considered as a “good” pseudo-random sequence
if both these measures W (EN ) and Ck(EN ) (at least for “small” k) are “small” in terms
of N (in particular, both are o(N) as N → ∞.) Indeed Cassaigne, Mauduit and Sárközy
[3] showed that for a “truly random” EN ∈ {−1,+1}N , both W (EN ) and, for fixed k,
Ck(EN ) are around N1/2 with “near 1” probability (see also [1]). Thus for a “really good”
PR sequence we expect the measures (2·2), (2·3) to be not much greater than N1/2.

The pseudo-randomness of a sequence of form (2·1) can be interpreted in the following
way: suppose ξ is a random variable distributed according to the law

(2·4) P (ξ = 1) = P (ξ = −1) =
1

2
;

e. g., we obtain such a ξ if we toss a coin and put +1 if it shows head, −1 if it is tail. Now
suppose that ξ1, ξ2, . . . , ξN are independent random variables each of distribution (2·4),
e. g., we toss the coin N times. We record the outcome of each coin toss, and let ei denote
the value of ξ, i. e., ei = +1 if the i-th coin toss is head and ei = −1 if it is tail. In this way
we get a binary sequence of form (2·1). The question is: what can we say about a “typical”
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sequence (e1, . . . , eN ) obtained in this way, what are its most important properties? We
say “important” in two senses: important in the applications, and also important in the
sense that our sequence possesses it with probability “near 1”. Definitions (2·2) and (2·3),
and the theorems of Cassaigne, Mauduit and Sárközy described above can be considered
as the answer to these questions.

Hubert and Sárközy [14] generalised this model and this notion of pseudo-randomness
in the following way.

Replace ξ in (2·4) by a random variable which again may assume two values only, but
now they are not equally probable. Suppose they occur with probability p, resp. 1−p, and
by technical reasons, let ξ be defined so that its mean value is 0. In other words, replace
(2·4) by, say,

(2·5) P (ξ = 1 − p) = p, P (ξ = −p) = 1 − p,

so that, once more, the expected value M(ξ) verifies

(2·6) M(ξ) = 0.

Then by (2·6), one may define the notion of p-pseudo-randomness (pseudo-randomness
with respect to the distribution in (2·5)) again by formulas (2·2) and (2·3). In other words,
Hubert and Sárközy [14] define the notion of p-pseudo-randomness in the following way.

Consider a finite binary sequence

EN = (e1, . . . , eN ) ∈ {1 − p,−p}N .

Then the p-well-distribution measure of EN is defined as

(2·7) W (EN , p) = max
a,b,t

∣

∣

t−1
∑

j=0

ea+jb

∣

∣,

while the p-correlation measure of order k of EN is defined as

(2·8) Ck(EN , p) = max
M,D

∣

∣

M
∑

n=1

en+d1
en+d2

· · · en+dk

∣

∣.

(The maximum in (2·7) and (2·8) is taken in the same way as in (2·2) and (2·3),
respectively.)

Then again the sequence is considered as a “good” p-pseudo-random sequence if
both these measures W (EN , p) and Ck(EN , p) (at least for “small ” k) are small in terms
of N . Again, this terminology is justified by the fact that, as it is proved in [14], for a
p-random EN both W (EN , p) and Ck(EN , p) are around N1/2. Clearly, this notion of
p-pseudo-randomness generalises the notion of pseudo-randomness.

The definition of p-pseudo-randomness can be adapted easily to define the pseudo-
randomness of subsets of {1, . . . , N}. Suppose we want to check a subset R ⊂ {1, . . . , N}
for pseudo-randomness. Let |R| = h. Then a random integer n ∈ {1, . . . , N} belongs
to R with probability h

N , which corresponds to the p = h/N = |R|/N case of pseudo-
randomness (but it is not identical with it!) Thus defining the sequence

(2·9) EN = EN (R) = (e1, e2, . . . , eN ) ∈
{

1 − |R|
N

,−|R|
N

}N
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by

(2·10) en =

{

1 − |R|
N for n ∈ R

− |R|
N for n 6∈ R

(n = 1, 2, . . . , N),

we may define the well-distribution measure and the correlation measure of order
k of the subset R by formulas (2·7), and (2·8) respectively:

(2·11) W (R, N) = W
(

EN (R),
|R|
N

)

= max
a,b,t

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

and

(2·12) Ck(R, N) = Ck

(

EN (R),
|R|
N

)

= max
M,D

∣

∣

M
∑

n=1

en+d1
· · · en+dk

∣

∣

where EN (R) is defined by (2·9) and (2·10).
One would expect and might like to show that these measures are “small” (are around

N1/2) for a “truly random subset” R of {1, . . . , N}; this fact does not follow from the
analogous results on p-pseudo-randomness, and there are difficulties in adapting their
proofs in [14]. We remark that here the natural definition of “truly random subset”
would be to take every R ⊂ {1, . . . , N} with uniform probability 2−N . However, in the
applications (e. g., in [18] and [22]) h = |R| is fixed, thus it is better to show the smallness
of the PR measures in the sharper form that we fix h (with h → +∞, N −h → +∞) and

then we consider the h-element subsets of {1, . . . , N} with uniform probability
(

N
h

)−1
. We

will return to this question in a subsequent paper.
We emphasize that the notions of “p-pseudo-randomness” and “pseudo-randomness of

subset” of {1, . . . , N} are very close but not identical. Indeed, we use the same tools and
formulas but, on the other hand, in the first case we study binary sequences while in the
second subsets. Besides, in the first case p is fixed, and then for a “good” p-pseudo-random
binary sequence the frequencies of the two elements need not be exactly p, resp. 1 − p,
it is enough if they are near these values; on the other hand, in the second case first we
consider a subset R ⊂ {1, . . . , N}, and then the associated p value is exactly p = |R|/N ,
so that the proportion of the elements selected is exactly p. Finally, in the first case we
typically consider a fixed p with ε < p < 1 − ε (for some ε >), while in the second case
typically we are interested also in subsets R with |R| = o(N) so that now |R|/N (which
corresponds to p) is o(1).

3. Subsets formed by mod p residues of polynomials

Let p be a prime number, Fp the field of modulo p residue classes, and F̄p its algebraic
closure.

The first “good ” pseudo-random sequence studied by Mauduit and Sárközy in [16] was
the sequence defined by the Legendre symbol:

en =
(n

p

)

for 1 6 n 6 p − 1.

They showed that this sequence has good PR properties, the well-distribution measure
(2·2) and the correlation measure of order k (2·3) are Ok(

√
p log p) (with a good and



On pseudo-random subsets of the set of the integers not exceeding N 5

explicite control of the dependance in k). In [17] they extended these results to sequences
of the form

en =

{
(

f(n)
p

)

if f(n) 6≡ 0 (mod p)

1 if f(n) ≡ 0 (mod p),

for 1 6 n 6 p where f is a permutation polynomial whose unique zero in Fp has odd
multiplicity. A permutation polynomial f ∈ Fp[X] is a polynomial whose associated
polynomial function x 7→ f(x) is a permutation of Fp. For example if (k, p − 1) = 1,
the monomial xk is a permutation polynomial (see [17] for other examples).

In this section we generalize this construction to power residues.
Let d|p − 1 and f be a permutation polynomial. The equation f(x) = 0 has a unique

solution x0 in Fp, and in F̄p we have the factorization:

f(x) = (x − x0)
r0(x − α1)

r1 · · · (x − αs−1)
rs−1 ,

where α1, . . . , αs 6∈ Fp. We suppose:

(3·1) (d, r0) = 1.

We will study the pseudo-random properties of the following set V

(3·2) V := {x ∈ Fp,∃y ∈ Fp r {0} : f(x) ≡ yd (mod p)}.

The cardinality of V is (p− 1)/d. The associated sequence E(V ) = {en}16n6p defined by
(2·9) and (2·10) satisfies:

(3·3) en =

{

1 − α if n ∈ V
−α if n 6∈ V ,

with

(3·4) α =
cardV

p
=

p − 1

dp
.

We will show that V has strong PR properties:

Theorem 3.1. Under (3·1), we have

(3·5) W (V, p) 6 1 + 9
(d − 1

d

)

s
√

p log p,

and for k > 2,

(3·6) Ck(V, p) 6 k + 9
(d − 1

d

)k(

1 +
1

p

)k
ks

√
p log p.

First we prove (3·5). Recall that

W (V, p) = max
a,b,t

b+a(t−1)6p

∣

∣

∣

t−1
∑

j=0

eaj+b

∣

∣

∣
.

By definition of the sequence E(V ) we have:

(3·7)
t−1
∑

j=0

eaj+b = (1 − α)
t−1
∑

j=0
aj+b∈V

1 − α
t−1
∑

j=0
aj+b 6∈V

1.
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Next in (3·7) we use the formula

t−1
∑

j=0
aj+b 6∈V

1 = t −
t−1
∑

j=0
aj+b∈V

1,

and we obtain:

(3·8)
t−1
∑

j=0

eaj+b =
t−1
∑

j=0
aj+b∈V

1 − tα.

We introduce character sums to detect d-power residues. Let χ0 denote the principal
character modulo p. When (x, p) = 1, we have

(3·9)
∑

χd=χ0

χ(x) =

{

d if ∃y ∈ Fp r {0} : x = yd,
0 otherwise.

Thus we have:
t−1
∑

j=0

eaj+b =
1

d

∑

χd=χ0

∑

06j6t−1

χ(f(aj + b)) − αt.

The contribution of χ0 is t/d if aj + b 6≡ x0 (mod p) for all 0 6 j 6 t − 1 and t/d − 1
otherwise. We easily check that

∣

∣

∣

1

d

t−1
∑

j=0

χ0(f(aj + b)) − αt
∣

∣

∣
6 1.

Thus we have:

(3·10)
∣

∣

∣

t−1
∑

j=0

eaj+b

∣

∣

∣
6 1 +

1

d

∣

∣

∣

∑

χd=χ0

χ6=χ0

∑

06j6t−1

χ(f(aj + b))
∣

∣

∣
.

To evaluate the character sum we will use the following lemma:

Lemma 3.2. Suppose that p is a prime number, χ is a non-principal character modulo p
of order d (so that d|p−1), f(x) ∈ Fp[X] has the factorization f(X) = b(X−x1)

d1 · · · (X−
xs)

ds (where xi 6= xj for i 6= j) in F̄p with

(d, d1, . . . , ds) = 1.

Let X, Y be real numbers with 0 < Y 6 p. Then

∣

∣

∑

X<n6X+Y

χ(f(n))
∣

∣ < 9s
√

p log p.

This is Lemma 2 in [20], it is a slightly modified form of Theorem 2 in [16], and it was
derived from A. Weil’s theorem [28]. By Lemma 3.2 we obtain:

∣

∣

∣

t−1
∑

j=0

eaj+b

∣

∣

∣
6 1 +

1

d

∑

χd=χ0

χ6=χ0

9s
√

p log p

6 1 + 9
(d − 1

d

)

s
√

p log p,
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this ends the proof of (3·5).
Now we study the correlation measures. Let k > 2. We have to compute:

Ck(V, p) = max
M,D

∣

∣

∣

M
∑

n=1

en+d1
· · · en+dk

∣

∣

∣
,

with M and D = (d1, . . . , dk), 0 6 d1 6 . . . 6 dk such that M + dk 6 p.
If n 6≡ x0 − dj (mod p) for any 1 6 j 6 k, we have by (3·9)

en+d1
· · · en+dk

=
k

∏

j=1

[

(1 − α)
1

d

∑

χd=χ0

χ(f(n + dj)) − α
(

1 − 1

d

∑

χd=χ0

χ(f(n + dj))
)

]

.

=
k

∏

j=1

[1

d

∑

χd=χ0

χ(f(n + dj)) − α
]

=
k

∏

j=1

[1

d

∑

χd=χ0

χ6=χ0

χ(f(n + dj)) +
1

dp

]

=
1

dk

k
∏

j=1

[

∑

χd=χ0

χ6=χ0

χ(f(n + dj)) +
1

p

]

.

If there exists some j, 1 6 j 6 k such that n + dj ≡ x0 (mod p) then this j is unique
and

en+d`
=

{−α if ` = j
1
d

[

∑

χd=χ0

χ6=χ0

χ(f(n + d`)) + 1
p

]

if ` 6= j,

and

∣

∣

∣
en+d1

· · · en+dk
− 1

dk

M
∑

n=1

k
∏

j=1

[

∑

χd=χ0

χ6=χ0

χ(f(n + dj)) +
1

p

]
∣

∣

∣
6 | − α +

1

dp
| 6 1.

There exists at most k integers n 6 M such that n + dj ≡ x0 (mod p) for some 1 6 j 6 k.
Thus we have (see also [17] section 8):

(3·11)
∣

∣

∣

M
∑

n=1

en+d1
· · · en+dk

− 1

dk

M
∑

n=1

k
∏

j=1

[

∑

χd=χ0

χ6=χ0

χ(f(n + dj)) +
1

p

]∣

∣

∣
6 k.

We define

Z =
1

dk

M
∑

n=1

k
∏

j=1

[

∑

χd=χ0

χ6=χ0

χ(f(n + dj)) +
1

p

]

.

We develop the above product:

Z =
1

dk

k
∑

r=0

1

pk−r

∑

16j1<...<jr6k

∑

χj1
6=χ0

χd
j1

=χ0

· · ·
∑

χjr 6=χ0

χd
jr

=χ0

M
∑

n=1

χj1(f(n + dj1)) · · ·χjr
(f(n + djr

)).
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To evaluate this sum we do the same operations as in [20] p. 382-384. We will not give
all the details. The only differences arise from the permutation polynomial f . Since F

∗
p is

cyclical we may write each χj`
like χj`

= χδ` where χ is a character of order p − 1.
Let δ = (δ1, . . . , δr), and δi = δDi for 1 6 i 6 r. Since χd

ji
= χ0, we have

dδi ≡ 0 (mod p − 1).
Thus

(3·12) δ ≡ 0 (mod (p − 1)/d).

We write χ∗ = χδ. It is proved in [20] (16), that χ∗ 6= χ0, more precisely, the order D of
χ∗ is D = (p − 1)/(p − 1, δ) and in our case, D|d. The computations p. 383 of [20] yield
to:

M
∑

n=1

χj1(f(n + dj1)) · · ·χjr
(f(n + djr

)) =
M−1
∑

n=0

χ∗(f(n + dj1)
D1 · · · f(n + djr

)Dr
)

.

We apply Lemma 3.2 with χ∗ instead of χ and with the polynomial F (n) = f(n +
dj1)

D1 · · · f(n + djr
)Dr . In F̄p we have

F (x) =
r

∏

i=1

(x + dji
− x0)

r0Di

s−1
∏

`=1

r
∏

i=1

(x + dji
− α`)

r`Dji .

Since (r0, d) = 1 and (D1, . . . , Dr) = 1, we have (d, r0D1, . . . , r0Dr) = 1, and since by
the assumptions of the theorem and the definition of x0 the α’s do not belong to Fp, the
condition of Lemma 3.2 is satisfied.

By Lemma 3.2 we obtain:

(3·13).
M−1
∑

n=0

χj1(f(n + dj1)) · · ·χjr
(f(n + djr

)) 6 9ks
√

p log p

We apply this upper bound in Z, and by (3·11) we end the proof of the theorem:

Z 6 9ks
√

p log p

k
∑

r=0

1

pk−r

(

k

r

)

= 9ks
√

p log p
(

1 +
1

p

)k
.

4. A construction using the index

In this section we will give a construction for subsets with strong PR properties which
will be based on the notion of index (discrete logarithm) and which is a variant of the
construction given in [20]. Thus we will refer to [20] repeatedly, and we will leave some
details to the reader.

Let p be an odd prime, g a fixed primitive root, and let ind a denote the modulo p index
(discrete logarithm) of a to the base g so that

gind a ≡ a (mod p)

and, to make the index unique,

1 6 ind a 6 p − 1.
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Theorem 4.1. Let h, ` be integers with 0 6 h < h + ` 6 p − 1, and define the subset R
of {1, . . . , p − 1} by

R = {n : 1 6 n 6 p − 1, h < indn 6 h + `}.

Then we have

(4·1) |R| = `,

(4·2) W (R, p − 1) < 2
√

p(log p)2

and, for all k ∈ N, k < p,

(4·3) Ck(R, p − 1) < 9k2k√p(log p)k+1.

Proof. The equality (4·1) is trivial. The proof of (4·2) is based on the Pólya-Vinogradov
inequality:

Lemma 4.2. If p is a prime number, χ a non-principal character modulo p and X, Y are
real numbers with X < Y , then we have

∣

∣

∑

X<n6Y

χ(n)
∣

∣ <
√

p log p.

(See, e. g., [10], p. 135 for a proof.)
Assume that

(4·4) 1 6 a 6 a + (t − 1)b 6 p − 1,

and define Ep−1 = (e1, . . . , ep−1) by (2·9) and (2·10) where now |R| = ` by (4·1), and
N = p − 1. Then the sum in (2·11) is

(4·5)

∣

∣

t−1
∑

j=0

eaj+b

∣

∣ =
∣

∣

∑

06j<t

(

∑

h<i6h+`

gi≡a+jb (mod p)

1 − `

p − 1

)
∣

∣

=
∣

∣

∑

06j<t

∑

h<i6h+`

gi≡a+jb (mod p)

1 − `t

p − 1

∣

∣.

By the formula

1

p − 1

∑

χ

χ̄(a)χ(b) =

{

1 if a ≡ b (mod p) and (a, p) = 1
0 otherwise,

here we have

∑

06j<t

∑

h<i6h+`

gi≡a+jb (mod p)

1 =
1

p − 1

∑

χ

t−1
∑

j=0

h+
∑̀

i=h+1

χ̄(a + jb)χ(gi).
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The contribution of the principal character is

1

p − 1

t−1
∑

j=0

h+
∑̀

i=h+1

1 =
`t

p − 1
.

Thus it follows from (4·5) that

(4·6)

∣

∣

t−1
∑

j=0

eaj+b

∣

∣ =
1

p − 1

∣

∣

∑

χ6=χ0

t−1
∑

j=0

h+
∑̀

i=h+1

χ̄(a + jb)χ(gi)
∣

∣

=
1

p − 1

∣

∣

∑

χ6=χ0

(

t−1
∑

j=0

χ̄(a + jb)
)(

h+
∑̀

i=h+1

χi(g)
)
∣

∣

6
1

p − 1

∑

χ6=χ0

∣

∣

t−1
∑

j=0

χ(aj + b)
∣

∣

∣

∣

h+
∑̀

i=h+1

χi(g)
∣

∣.

The first inner sum can be estimated by Lemma 4.2 as in (7) in [20], and we obtain

(4·7)
∣

∣

t−1
∑

j=0

χ(aj + b)
∣

∣ <
√

p log p,

and as in (8) in [20], the second inner sum is

(4·8)
∣

∣

h+
∑̀

i=h+1

χi(g)
∣

∣ <
2

|1 − χ(g)| .

By (4·7) and (4·8) we get from (4·6) that

(4·9)
∣

∣

t−1
∑

j=0

eaj+b

∣

∣ 6 2

√
p log p

p − 1

∑

χ6=χ0

1

|1 − χ(g)| .

By (10) in [20] the last sum is

(4·10)
∑

χ6=χ0

1

|1 − χ(g)| < (p − 1) log p.

It follows from (4·9) and (4·10) that

∣

∣

t−1
∑

j=0

eaj+b

∣

∣ < 2
√

p(log p)2.

This holds for every a, b, t satisfying (4·4) which, by (2·11), completes the proof of (4·2).

The proof of (4·3) is based on Lemma 3.2 stated in the previous section.

In order to prove (4·3) consider any D = (d1, . . . , dk) with non-negative integers
d1 < . . . < dk and positive integer M with M + dk 6 p − 1. Then, as in (4·5) and
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(4·6), the sum in (2·12) is

∣

∣

∣

M
∑

n=1

en+d1
en+d2

· · · en+dk

∣

∣

∣
=

∣

∣

∣

M
∑

n=1

k
∏

j=1

(

∑

h<i6h+`

gi≡n+dj (mod p)

1 − `

p − 1

)

∣

∣

∣

=
∣

∣

∣

M
∑

n=1

k
∏

j=1

( 1

p − 1

∑

χj

h+
∑̀

ij=h+1

χ̄j(n + dj)χj(g
ij ) − `

p − 1

)

∣

∣

∣

=
∣

∣

∣

M
∑

n=1

k
∏

j=1

( 1

p − 1

∑

χj 6=χ0

h+
∑̀

ij=h+1

χ̄j(n + dj)χj(g
ij )

)

∣

∣

∣

=
1

(p − 1)k

∣

∣

∣

∑

χ1 6=χ0

. . .
∑

χk 6=χ0

(

M
∑

n=1

k
∏

j=1

χ̄j(n + dj)
)

k
∏

j=1

(

h+
∑̀

ij=h+1

χj(g
ij )

)

∣

∣

∣

6
1

(p − 1)k

∑

χ1 6=χ0

. . .
∑

χk 6=χ0

∣

∣

∣

M
∑

n=1

k
∏

j=1

χj(n + dj)
∣

∣

∣

k
∏

j=1

∣

∣

∣

h+
∑̀

ij=h+1

χj(g
ij )

∣

∣

∣
.

This expression, apart from a missing factor 2k, is of nearly the same form as the upper
bound in (12) in [20] and, by using Lemma 3.2, it can be estimated in the same way. Thus
we end up with an upper bound less by a factor 2k than the one in [20]:

∣

∣

M
∑

n=1

en+d1
· · · en+dk

∣

∣ < 9k2kp1/2(log p)k+1

which, by (2·12) completes the proof of (4·3).

5. Subsets obtained by sifting

In this last section we will study a subset of {1, . . . , N} obtained by sifting: the subset
of the square free numbers. Let Q(N) be the set of the square free numbers less than N .
The cardinality of Q(N) is (see for example [24] section I.3.7)

(5·1) Q(N) =
6

π2
N + O(

√
N).

We define the rate

qN =
card Q(N)

N
.

We have

(5·2) qN =
6

π2
+ O

( 1√
N

)

.

By (2·9) and (2·10), the corresponding sequence is EN (Q(N)) = (e1, . . . , eN ) with

(5·3)

en =

{

1 − qN if µ2(n) = 1,
−qN if µ(n) = 0

= (1 − qN )µ2(n) − qN (1 − µ2(n))

= µ2(n) − qN .
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It is easy to see that this sequence does not have good PR properties. First the well-
distribution measure is large, for example for each n 6 N/4, we have e4n = −qN . Thus
we have

(5·4)
W

(

Q(N), N
)

>
∣

∣

[N/4]
∑

n=1

e4n

∣

∣

>
NqN

4
− 1.

More generally we can see by elementary means that this sequence is not well-distributed
in every arithmetic progression of modulus > 1:

Lemma 5.1. Let a > 2, b, t such that b + a(t − 1) 6 N . We have:

t−1
∑

j=0

eaj+b =
6t

π2
(F (a, b) − 1) + O

(
√

N
)

,

with

F (a, b) =







0 if there exists p such that p2|(a, b),
∏

p|a
(

1 − 1
p2

)−1 ∏

p|(a,b)

a6≡0 (mod p2)

(

1 − 1
p

)

otherwise.

By this lemma we see that W (Q(N), N) is given by the arithmetic progression modulo
4.

Corollary 5.2. For N > 2, we have:

W (Q(N), N) =
3N

2π2
+ O(

√
N).

Proof of Corollary 5.2. By Lemma 5.1, we have

W (Q(N), N) = max
b+a(t−1)6N

( 6t

π2
|F (a, b) − 1|

)

+ O
(
√

N
)

= max
a,b

(N − b)

a

6

π2
|F (a, b) − 1| + O(

√
N).

By (5·2) and (5·4), to prove Corollary 5.2, it is sufficient to show that

(5·5) |F (a, b) − 1|1
a

6
1

4
.

By the definition of F , it is clearly the case when F (a, b) = 0. We see that the possible
other large values of |F (a, b) − 1| are obtained for b = 1 and we have

0 6
F (a, 1) − 1

a
6 (

π2

6
− 1)

1

a

which is less than 1/4 for all a > 3 and we have (F (2, 1) − 1)/2 = 1/6. This proves that
Corollary 5.2 is a consequence of that Lemma 5.1.

Proof of Lemma 5.1. We have by (5·3)

t−1
∑

j=0

eaj+b =
t−1
∑

j=0

µ2(aj + b) − tqN .
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Next we use the formula
µ2(n) =

∑

d2|n
µ(d),

and exchange the order of summations:

t−1
∑

j=0

eaj+b =
t−1
∑

j=0

∑

d2|aj+b

µ(d) − tqN

=
∑

d26a(t−1)+b

µ(d)
∑

06j6t−1

aj+b≡0 (mod d2)

1 − tqN .

The congruence aj + b ≡ 0 (mod d2) has a solution if and only if (a, d2)|b and we have

t−1
∑

j=0

eaj+b =
∑

d26a(t−1)+b

(d2,a)|b

µ(d)t(a, d2)

d2
− 6t

π2
+ O(

√
N).

It remains to compute the sum over d:

∑

d26a(t−1)+b

(d2,a)|b

µ(d)(a, d2)

d2
=

∑

(d2,a)|b

µ(d)(a, d2)

d2
+ O

(

∑

d>
√

at+b

µ(d)2(a, d2)

d2

)

.

The error term above is clearly less than O(
√

a/t). Let

f(d) =

{

µ(d)(a,d2)
d2 if (d2, a)|b

0 otherwise.

This function is multiplicative and we have

f(p) =











−1 if p2|(a, b)
− 1

p2 if (p, a) = 1

− 1
p if p‖a and p|b

0 otherwise.

We have
∑

(d2,a)|b

µ(d)(a, d2)

d2
=

∑

d

f(d) =
∏

p

(1 + f(p)) =
6

π2
F (a, b).

This ends the proof of (Lemma 5.1).

The correlation measures are also large for every k.

Lemma 5.3. For all k > 2, we have

Ck

(

Q(N), N
)

Àk N.

Proof.

Let M and d1, . . . dk be some positive integers such that 0 6 d1 < d2 < . . . < dk and
M + dk 6 N . We have to evaluate

C(M, d1, . . . , dk) =
M
∑

n=1

en+d1
· · · en+dk

.



14 Cécile Dartyge and András Sárközy

By (5·3) we have:

C(M, d1, . . . , dk) =
M
∑

n=1

k
∏

j=1

(

µ2(n + dj) − qN

)

.

We take the term-by-term product:

C(M, d1, . . . , dk) = (−qN )kM +
∑

16r6k

(−qN )k−r
∑

16j1<...<jr6k

M
∑

n=1

r
∏

i=1

µ2(n + dji
).

This sum will be estimated with this following result of Tsang [27]:

Lemma 5.4. Let d1, . . . , dr be distinct integers such that |di| 6 cx for 1 6 i 6 r,
r 6 log x/(25 log log x), and c an absolute constant. For any x > 3, we have

(5·6)
∑

n6x

µ2(n + d1) · · ·µ2(n + dk) = A(d1, . . . , dr)x + Oc(x
7/11(log x)8),

where

A(d1, . . . , dr) =
∏

p

(

1 − u(p, d1, . . . , dr)

p2

)

,

and u(p, d1, . . . , dr) is the number of distinct residue classes modulo p2 represented by the
numbers d1, . . . , dr. The implied constant in the error term in (5·6) depends only on c.

This is a slightly weaker form of Theorem 2 of Tsang [27].
By Lemma 5.4 we have for dk 6 cM :

C(M, d1, . . . , dk) =
(−6)k

π2k
M + M

∑

16r6k

(−6)k−r

π2(k−r)

∑

16j1<...<jr6k

A(dj1 , . . . , djr
)

+ O(krM7/11(log M)8).

For z > 2 we define Dz =
∏

p<z p2. We take dj = jDz for j = 1, . . . , k so that for p < z,
u(p, d1, . . . , dr) = 1. We have

A(d1, . . . , dr) =
∏

p<z

(

1 − 1

p2

)(

1 + O(
k

z
)
)

=
6

π2

(

1 + O(
k

z

)

.

Finally we obtain with this choice of d1, . . . , dr:

C(M, d1, . . . , dk) =
(−6)k

π2k
M +

6M

π2

(

1 + O(
k

z
)
)

∑

16r6k

(−6)k−r

π2(k−r)

(

k

r

)

+ O(k2M7/11(log M)8)

= M
[

(−6

π2

)k(

1 − 6

π2

)

+
6

π2

(

1 − 6

π2

)k
]

(1 + o(1)).

This ends the proof of Lemma 5.3.
We may also ask if in general, the subset obtained by sifting condition has poor PR

properties. This is clearly the case for the distribution if we sieve with small numbers.
For example the set of the integers which are sums of two squares is poorly distributed
modulo p for p ≡ 3 (mod 4) and the correlation are not small either.
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[14] P. Hubert and A. Sárközy, On p-pseudorandom binary sequences, Periodica Math. Hungar. 49

(2004), 73-91.
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BP 239
54506 Vandœuvre Cedex
France
dartyge@iecn.u-nancy.fr

András Sárközy
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