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We study the homogenization of a diffusion process which takes place in a binary structure formed by an ambiental connected phase surrounding a suspension of very small spheres distributed in an ε-periodic network. We consider the critical radius case with finite diffusivities in both phases. The asymptotic distribution of the concentration is determined, as ε → 0, assuming that the suspension has mass of unity order and vanishing volume. It appears that the ambiental macroscopic concentration is satisfying a Volterra integrodifferential equation and it is defining straightly the macroscopic concentration associated to the suspension.

Introduction

The present study reveals the basic mechanism which governs diffusion in a binary structure, formed by an ambiental connected phase surrounding an εperiodic suspension of small particles. For simplicity, the particles are considered to be spheres of radius r ε << ε, such that:

lim ε→0 γ ε = γ ∈]0, +∞[, (1) 
where γ ε := r ε /ε 3 , which corresponds to the well-known critical case of vanishing fine substructures homogenization [START_REF] Cioranescu | A strange term coming from nowhere[END_REF]. We balance this assumption, which obviously means that the suspension has vanishing volume, by supposing that the total mass of the suspension is of unity order. This simplified structure permits the accurate establishment of the macroscopic equations by the control-zone method [START_REF] Bentalha | Diffusion process in a rarefied binary structure[END_REF][START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF] of the homogenization theory for fine-scale substructures.

Diffusion occurs naturally in many industrial and geophysical problems, particularly in oil recovery, earth pollution, phase transition, chemical and nuclear processes. The study of diffusion in micro-periodic binary structures has a crucial point in the interaction between the microscopic and macroscopic levels and particularly in the way the former influences the latter. Always an appropriate choice of the relative scales is needed. To give a flavor of what may be considered, we refer to the pioneering work [START_REF] Cioranescu | A strange term coming from nowhere[END_REF] where the appearance of an extra term in the limit procedure is responsible for a change in the nature of the mathematical problem and is linked to a critical size of the inclusions. Later [START_REF] Casado-Diaz | Two-scale convergence for nonlinear Dirichlet problems in perforated domains[END_REF] showed how this could be generalized to the N -dimensional case for non linear operators satisfying classical properties of polynomial growth and coercivity. Since then, the notion of non local effects has been developed in a way that is closer to the present point of view in [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF], [START_REF] Briane | Fibered microstructure for some non-local Dirichlet forms[END_REF], [START_REF] Bentalha | Diffusion process in a rarefied binary structure[END_REF] and [START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF].

Since the fundamental work [START_REF] Cioranescu | A strange term coming from nowhere[END_REF], an important step in the homogenization of vanishing fine substructures was accomplished by [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF]. A slightly different approach [START_REF] Briane | Fibered microstructure for some non-local Dirichlet forms[END_REF] uses Dirichlet forms involving non classical measures in the spirit of [START_REF] Mosco | Composite media and asymptotic Dirichlets forms[END_REF]. However, the main drawback of this method lies in its essential use of the Maximum Principle, which was avoided in [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects[END_REF] for elastic fibers, and later in [START_REF] Bentalha | Diffusion process in a rarefied binary structure[END_REF] where the case of spherical symmetry is solved. The dependence on the geometrical symmetry was overcome in [START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF]. The asymptotic behavior of highly heterogeneous media has also been considered in the framework of homogenization when the coefficient of one component is vanishing and both components have volumes of unity order: see the derivation of a double porosity model for a single phase flow by [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF] and the application of two-scale convergence in order to model diffusion processes in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF].

The paper is organized as follows. Section 2 is devoted to the main notations and to the description of the functional framework ( 15)-( 19). In Section 3, we introduce the specific hypotheses on the control zone in relation with the assumption of finite diffusivities. The homogenization is performed in Section 4: while equation (58) easily follows from the variational formulation, the deduction of equation ( 67) is our main contribution, where the method reveals its potential.

The diffusion problem

We consider Ω ⊆ R 3 a bounded Lipschitz domain occupied by a mixture of two different materials, one of them forming the ambiental connected phase and the other being concentrated in a periodical suspension of small spherical particles. Let us denote

Y := - 1 2 , + 1 2 3 . 
(2)

Y k ε := εk + εY, k ∈ Z 3 . (3) 
Z ε := {k ∈ Z 3 , Y k ε ⊂ Ω}, Ω Yε := ∪ k∈Zε Y k ε . ( 4 
)
The suspension is defined by the following reunion

D ε := ∪ k∈Zε B k rε , B k rε = B(εk, r ε ), k ∈ Z ε , (5) 
where 0 < r ε << ε.

The fluid domain is given by

Ω ε = Ω \ D ε . (6) 
We also use the following notation for the cylindrical time-domain:

Ω T := Ω×]0, T [; (7) 
similar definitions for Ω T ε , Ω T Yε and D T ε . We consider the problem which governs the diffusion process throughout a binary mixture, where we consider that the density of the spherical particles is much higher than that of the surrounding phase, such that the volume of the suspension is vanishing while its mass is of unity order. This can be described by taking the relative mass density of the form:

ρ ε (x) = a/|D ε | if x ∈ D ε 1 if x ∈ Ω ε ( 8 
)
where a > 0.

Denoting by b > 0 the relative diffusivity of the suspension, then, assuming without loss of generality that |Ω| = 1, the non-dimensional form of the governing system is the following:

ρ ε ∂u ε ∂t -div(k ε ∇u ε ) = ρ ε f ε in Ω T (9) [u ε ] ε = 0 on ∂D T ε ( 10 
) [k ε ∇u ε ] ε n = 0 on ∂D T ε ( 11 
)
u ε = 0 on ∂Ω T (12) u ε (0) = u ε 0 in Ω ( 13 
)
where [•] ε is the jump across the interface ∂D ε , n is the normal on ∂D ε in the outward direction,

f ε ∈ L 2 (Ω T ), u ε 0 ∈ H 1 0 (Ω) and k ε (x) = b if x ∈ D ε , 1 if x ∈ Ω ε . (14) 
Let H ε be the Hilbert space L 2 (Ω) endowed with the scalar product

(u, v) Hε := (ρ ε u, v) Ω (15) 
As H 1 0 (Ω) is dense in H ε for any fixed ε > 0, we can set

H 1 0 (Ω) ⊆ H ε ≃ H ′ ε ⊆ H -1 (Ω) (16) 
with continuous embeddings.

As the form

k ε (u, v) = (k ε ∇u, ∇v) Ω , u, v ∈ H 1 0 (Ω) (17) 
is symmetric, bounded and coercive on H 1 0 (Ω), the weak formulation of the problem (9)-( 13) is the following:

Find

u ε ∈ L 2 (0, T ; H 1 0 (Ω)) such that ∂u ε ∂t + K ε u ε = f ε in L 2 (Ω T ), (18) 
u ε (0) = u ε 0 in C 0 ([0, T ]; H ε ), (19) 
where K ε is the operator associated with the form k ε by the first representation theorem in H ε .

Concerning this problem, we have a classical result of regularity (see [START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF], Chap. XV), which insures the existence and uniqueness of the solution of problem ( 18)-( 19).

Tools of the control-zone method

The set of control-sequences is defined by

R = {(R ε ) ε>0 , r ε << R ε << ε} that is (R ε ) ε>0 ∈ R iff lim ε→0 r ε R ε = lim ε→0 R ε ε = 0. ( 20 
)
We have to remark that R is an infinite set, this property being insured by the assumption [START_REF] Allaire | Homogenization and two-scale convergence[END_REF].

For any (R ε ) ε>0 ∈ R, we define the control-zone of the suspension by:

D Rε := ∪ k∈Zε B k Rε , where B k Rε := B(εk, R ε ).
The specific operator of the method, G Rε : L 2 (0, T ;

H 1 0 (Ω)) → L 2 (Ω T ), is defined by G Rε (θ)(x, t) = k∈Zε - ∂B k Rε θ(y, t) dσ y 1 Y k ε (x). (21) 
We remind here two properties, already proved in [START_REF] Bentalha | Homogenization of a conductive suspension in a Stokes-Boussinesq flow[END_REF]:

Proposition 3.1 If (R ε ) ε>0 ∈ R, then for every θ ∈ L 2 (0, T ; H 1 0 (Ω)) we have |θ -G Rε (θ)| L 2 (Ω T Yε ) ≤ C ε 3 R ε 1/2 |∇θ| L 2 (Ω T ) . (22) 
Moreover:

|G Rε (θ)| 2 L 2 (Ω T ) = T 0 - Dε |G Rε (θ)| 2 . ( 23 
)
For any (R ε ) ε>0 ∈ R, we define w ε ∈ L 2 (0, T ; H 1 0 (Ω)), the key test-function associated to our control-zone, by

w ε (t, x) := W ε (t, |x -εk|), (t, x) ∈ (B k Rε ) T , k ∈ Z ε , 0, (t, x) ∈ (Ω \ D Rε ) T (24) 
where, denoting by

B Rε = B(0, R ε ), B rε = B(0, r ε ), C ε = (1 -r ε /R ε ) -1 and W ε 0 (y) =    C ε r ε |y| - r ε R ε , y ∈ B Rε \ B rε , 1, y ∈ B rε , we have W ε ∈ L 2 (0, T ; H 1 0 (B Rε ))
as the solution of the system:

ρ ε ∂W ε ∂t -div(k ε ∇W ε ) = 0 in B T Rε , (25) 
[W ε ] = [k ε ∇W ε ] • n = 0 on ∂B T rε , (26) 
W ε = 0 on ∂B T Rε , (27) 
W ε (0) = W ε 0 in B Rε . ( 28 
)
Remark 3.2 Denoting by ⋆ the convolution with respect to the time variable and by

α := 3a 4πγb , (29) 
straightforward computations yield:

W ε (t, y) = W ε 0 (y) + t 0 (h ε ⋆ S ε (y))(s)ds (30)
where, for p ∈ C, Re(p) > 0, h ε and S ε have the following Laplace transforms:

ĥε (p) = C ε (b -1) -bα √ p coth(α √ p) -C ε r ε R ε (R ε -r ε ) √ p tanh((R ε -r ε ) √ p) , Ŝε (p, y) =                        α √ p sinh(α √ p) , for y = 0, r ε |y| sinh(|y|α √ p/r ε ) sinh(α √ p) , for y ∈ B rε \ {0}, r ε |y| sinh((R ε -|y|) √ p) sinh((R ε -r ε ) √ p) , for y ∈ B rε \ B rε .
Moreover, we obtain

∇W ε (t, y)n = -C ε r ε R ε 2 F ε (t), for y ∈ ∂B Rε , (31) 
where F ε ∈ L ∞ (0, T ) is defined after its Laplace transform:

p Fε (p) = 1 + ĥε (p) (R ε -r ε ) √ p tanh((R ε -r ε ) √ p) . Proposition 3.3 For any (R ε ) ε>0 ∈ R, we have (w ε ) ε>0 is bounded in L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)), ( 32 
)
w ε → 0 in L ∞ (0, T ; L 2 (Ω)). ( 33 
)
Next, we remind the properties of the main operators used in the homogenization of vanishing fine substructures. Definition 3.4 Let m ε and M ε be defined for every ϕ ∈ L 2 (Ω) by:

m ε (ϕ)(x) := k∈Zε m k ε (ϕ)1 Y k ε , m k ε (ϕ) = - B k rε ϕ, M ε (ϕ)(x) := k∈Zε M k ε (ϕ)1 B k rε , M k ε (ϕ) = - Y k ε ϕ.
This definition obviously holds for every ϕ ∈ C c (Ω). It extends to ϕ ∈ L 2 (Ω) thanks to a density argument and to the following estimates:

|m ε (ϕ)| 2 Ω ≤ - Dε ϕ 2 (34) 
- Dε M ε (ϕ) 2 ≤ 1 |Ω Yε | |ϕ| 2 Ω Yε .
Moreover, both operators are linked through the following duality relation:

∀ϕ, ψ ∈ L 2 (Ω), Ω m ε (ϕ)ψ = |Ω Yε | - Dε M ε (ψ). ( 35 
)
Remark 3.5 Using the Mean Value Theorem, we easily find that, for every

ψ ∈ C c (Ω), lim ε→0 |m ε (ψ) -ψ| L ∞ (Ω) = 0, lim ε→0 |M ε (ψ) -ψ| L ∞ (Dε) = 0. ( 36 
)
Lemma 3.6 For any ϕ ∈ L 2 (0, T ; C c (Ω)), we have:

lim ε→0 T 0 - Dε |ϕ -M ε (ϕ)| 2 dxdt = 0.
Proof. Notice that Proposition 3.7 There exists C > 0, independent of ε, such that for any θ ∈ L 2 (0, T ; H 1 0 (Ω)) there holds true:

- Dε |ϕ -M ε (ϕ)| 2 dx = 1 |D ε | k∈Zε B(εk,rε) |ϕ -- Y k ε ϕ dy| 2 dx. As card(Z ε ) ≃ |Ω| ε 3 , then |B(0, r ε )| card(Z ε ) |D ε | → |Ω| =
T 0 - Dε |θ| 2 dxdt ≤ C|∇θ| 2 L 2 (Ω T ) .
Our procedure apels to the following property, for which we present a simple proof; it can also be deduced from Lemma A2 of [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF].

Theorem 3.8 Assume (1) and let u ε ∈ L 2 (Ω) satisfy the following uniform estimate:

-

Dε |u ε | 2 ≤ C, ∀ε > 0. (37) 
Then, there exists v ∈ L 2 (Ω) such that:

- Dε u ε ϕ → Ω vϕ, ∀ϕ ∈ H 1 0 (Ω), (38) 
on some subsequence.

Proof. The hypothesis (37) implies that the sequence {m ε (u ε )} ε is bounded in L 2 (Ω) thanks to (34). Thus, there exists v ∈ L 2 (Ω) such that

m ε (u ε ) ⇀ v weakly in L 2 (Ω). ( 39 
)
Let ϕ ∈ C c (Ω). Then, using (35), we get

- Dε u ε ϕ = - Dε u ε (ϕ -M ε (ϕ)) + - Dε u ε M ε (ϕ) = I ε + 1 |Ω Yε | Ω m ε (u ε )ϕ
where

|I ε | = - Dε u ε (ϕ -M ε (ϕ)) ≤ C - Dε |ϕ -M ε (ϕ)| 2 1/2 ≤ C|ϕ-M ε (ϕ)| L ∞ (Dε) .
The second part in (36) yields that I ε → 0 and thus we have proved (38) for any ϕ ∈ C c (Ω). As C c (Ω) is dense in H 1 0 (Ω), the proof is completed by Proposition 3.7.

The homogenization procedure

In the following, we present the hypotheses under which we study the asymptotical behaviour of u ε (as ε → 0).

First, we assume that there exist f ∈ L 2 (Ω T ) and u 0 ∈ L 2 (Ω) such that

ρ ε f ε ⇀ f in L 2 (Ω T ), (40) 
u ε 0 ⇀ u 0 in L 2 (Ω), (41) 
and that there exist C > 0 (independent of ε) and v 0 ∈ L 2 (Ω) such that

- Dε |u ε 0 | 2 dx ≤ C (42) 1 |D ε | u ε 0 χ Dε ⇀ v 0 in D ′ (Ω) (43) 
where, for any D ⊂ Ω, we denote

- D • dx = 1 |D| D •dx.
Remark 4.1 As u ε 0 satisfies (42) then, from (38) it follows that (43) holds at least on some subsequence.

Using only these assumptions, we readily obtain: 

(u ε ) ε>0 is bounded in L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)). ( 44 
)
∃C > 0 such that -

Dε |u ε (t)| 2 ≤ C, ∀ε > 0, for a.a. t ∈ [0, T ]. ( 45 
)
Proof. Multiplying equation (18) by u ε and integrating over Ω t for any t ∈ ]0, T [, we get:

1 2 |u ε (t)| 2 Ωε + a - Dε |u ε (t)| 2 + b t 0 |∇u ε (t)| 2 Dε ds + t 0 |∇u ε (t)| 2 Ωε ds = = t 0 Ω ρ ε f ε (s)u ε (s)ds + 1 2 |u ε 0 | 2 Ωε + a - Dε |u ε 0 | 2 .
Notice that (42) yields:

|u ε 0 | 2 Ω + a - Dε |u ε 0 | 2 dx ≤ C.
Using the Poincaré-Friedrichs inequality in Ω and (40), we have:

t 0 Ω ρ ε f ε (s)u ε (s)ds ≤ C t 0 |ρ ε f ε | Ω |∇u ε | Ω ds ≤ C|∇u ε | Ω t .
There results:

|u ε (t)| 2 Ωε + a - Dε |u ε (t)| 2 + b t 0 |∇u ε | 2 Dε ds + t 0 |∇u ε | 2 Ωε ds ≤ C
and the proof is completed.

In order to prove the convergence of the homogenization process, we have to add the hypotheses which describe the behaviour of the data versus the key test-function associated to the control-zone:

There exist (R ε ) ε>0 ∈ R, w 0 ∈ C 0 ([0, T ]; L 2 (Ω)) and g ∈ L 2 (Ω T ) for which:

Ω ρ ε w ε (t)u ε 0 ϕ → Ω w 0 (t)ϕ, in C 0 ([0, T ]), ∀ϕ ∈ D(Ω), (46) 
Ω ρ ε (f ε ⋆ w ε )(t)ϕ → Ω t 0 g(s)ϕds in D ′ (0, T ), ∀ϕ ∈ D(Ω). (47) 
A preliminary result is the following:

Proposition 4.3 If u ε is the solution of the problem (18)-(19), then there exist u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)) and v ∈ L 2 (Ω T
) such that:

u ε ⋆ ⇀ u in L ∞ (0, T ; L 2 (Ω)) ( 48 
)
u ε ⇀ u in L 2 (0, T ; H 1 0 (Ω)) (49) G Rε (u ε ) → u in L 2 (Ω T ) (50) m ε (u ε ) ⇀ v in L 2 (Ω T ) (51)
on some subsequence.

Proof. From (44), we get, on some subsequence, the convergences (48) and (49). Moreover, we have:

|u -G Rε (u ε )| 2 Ω T = |u| 2 Ω T \Ω T Yε + |u -G Rε (u ε )| 2 Ω T Yε ( 52 
)
where:

|u -G Rε (u ε )| Ω T Yε ≤ |u -u ε | Ω T Yε + |u ε -G Rε (u ε )| Ω T Yε (53) ≤ |u -u ε | Ω T + |u ε -G Rε (u ε )| Ω T Yε
and ( 22) yields:

|u ε -G Rε (u ε )| 2 Ω T Yε ≤ C ε 3 R ε |∇u ε | 2 Ω T = C ε 3 r ε r ε R ε |∇u ε | 2 Ω T ≤ C r ε R ε and thus: lim ε→0 |u ε -G Rε (u ε )| 2 Ω T Yε = 0.
As (49) implies that

u ε → u in L 2 (Ω T ) ( 54 
)
the right-hand side of (53) tends to zero as ε → 0, that is:

lim ε→0 |u -G Rε (u ε )| Ω T Yε = 0.
After substitution into the right-hand side of (52), and taking into account that

lim ε→0 |Ω T \ Ω T Yε | = 0,
we obtain (50), that is,

G Rε (u ε ) → u in L 2 (Ω T ). ( 55 
)
In order to prove (51), we apply (39) of Theorem 3.8, and the proof is completed.

Remark 4.4 As a consequence of (51) and Theorem 3.8, we obviously have:

T 0 - Dε u ε ϕdxdt → Ω T vϕdxdt, ∀ϕ ∈ L 2 (0, T ; H 1 0 (Ω)), ( 56 
)
on the subsequence mentioned by Proposition 4.3. Taking into account ( 46) and (43), Theorem 3.8 implies also:

w 0 (0) = av 0 . ( 57 
)
We are in the position to state our first result: 48)-( 51) verify (in a weak sense) the following problem:

Theorem 4.5 The limits u ∈ L ∞ (0, T ; L 2 (Ω))∩L 2 (0, T ; H 1 0 (Ω)) and v ∈ L 2 (Ω T ) of (
a ∂v ∂t + ∂u ∂t -∆u = f in Ω T , (58) 
av(0) + u(0) = av 0 + u 0 in Ω (59)
Moreover, there holds u ∈ C 0 ([0, T ]; L 2 (Ω)) and v ∈ C 0 ([0, T ]; H -1 (Ω)); this is the sense of (59).

Proof. Multiplying (18) by ψη, where ψ ∈ D(Ω) and η ∈ D([0, T [), and integrating it over Ω T , we obtain:

-

Ω T ρ ε u ε ψη ′ + Ω T k ε ∇u ε (∇ψ)η = Ω T ρ ε f ε ψη + Ω ρ ε u ε 0 ψη(0). (60) 
let us notice that

Ω T ρ ε u ε ψη ′ = T 0 Ω χ Ωε u ε ψ(x)η ′ + a T 0 - Dε u ε ψη ′ .
Using Proposition 4.4, we easily get

lim ε→0 Ω T ρ ε u ε ψη ′ = Ω T uϕη ′ + a Ω T vψη ′ .
For the second term of (60), we have

Ω T k ε ∇u ε ∇ψη ′ = b Dε ∇u ε ∇ψη ′ + Ωε ∇u ε ∇ψη ′
where

Ω T ε ∇u ε ∇ψη ′ = Ω T 1 Ωε ∇u ε ∇ψη ′ → Ω T ∇u∇ψη ′ , and b D T ε ∇u ε ∇ψη ′ ≤ |∇u ε | Ω |∇ψ| Dε |η ′ | ∞ ≤ C|D ε | → 0, which proves that lim ε→0 Ω T k ε ∇u ε ∇ψη ′ = Ω T ∇u∇ψη ′ .
As for the right-hand side, using hypothesis (40), we have:

lim ε→0 Ω T ρ ε f ε ψη = Ω T f ψη.
Finally, noticing that

Ω ρ ε u ε 0 ψη(0) = Ωε u ε 0 ψη(0) + a - Dε u ε 0 ψη(0),
and using the hypotheses (41) and (43), we pass to the limit with the same arguments as above, obtaining:

lim ε→0 Ω ρ ε u ε 0 ψη(0) = η(0) Ω (u 0 + av 0 )ψ,
which achieves the proof.

Proposition 4.6 If u ε is the solution of the problem (18)-( 19), then we have on the subsequence of Proposition 4.3:

Ω ρ ε ∂u ε ∂t ⋆ w ε m ε (ϕ) - Ω u ε ⋆ ρ ε ∂w ε ∂t m ε (ϕ) ⇀ ⇀ a Ω ηvϕ - Ω w 0 ϕ weakly in L 2 (0, T ), ∀ϕ ∈ D(Ω). (61) 
Proof. Let ϕ ∈ D(Ω); we have

Ω ρ ε ∂u ε ∂t ⋆ w ε m ε (ϕ) = Ω ρ ε u ε ⋆ ∂w ε ∂t + w Rε u ε -w ε u ε 0 m ε (ϕ) = = Ω u ε ⋆ ρ ε ∂w ε ∂t m ε (ϕ)+a - Dε u ε m ε (ϕ)+ D Rε \Dε w Rε u ε m ε (ϕ)- Ω ρ ε w ε u ε 0 m ε (ϕ).
As

D Rε \Dε w Rε u ε m ε (ϕ) ≤ |u ε | L ∞ (0,T ;L 2 (Ω)) |m ε (ϕ)| D Rε \Dε ≤ C|D Rε | → 0, we obtain lim ε→0 D Rε \Dε w Rε u ε m ε (ϕ) = 0 in L 2 (0, T ).

The following estimate

Dε

w ε u ε 0 (m ε (ϕ) -ϕ) ≤ - Dε |w ε | 2 1/2 - Dε |u ε 0 | 2 1/2 |m ε (ϕ) -ϕ)| L ∞ (Dε) ≤ C|m ε (ϕ) -ϕ)| L ∞ (Dε)
and Remark 3.5 yield also

lim ε→0 Ω ρ ε w ε u ε 0 ϕ = Ω w 0 ϕ in L 2 (0, T ),
and the proof is completed.

Proposition 4.7 If u ε is the solution of the problem ( 18)-( 19), then, still on the subsequence of Proposition 4.3, we have for ∀ϕ ∈ D(Ω): 

Ω -div(k ε ∇u ε ) ⋆ w ε m ε (ϕ)-- Dε u ε ⋆(-b∆w ε )m ε (ϕ) - D Rε \Dε u ε ⋆ (-∆w ε )m ε (ϕ) ⇀ -4πγ Ω F α,b ⋆ u ϕ weakly in L 2 (0, T ), (62) where 
Remark 4.8 h α,b can be expressed in terms of the Theta functions of Jacobi (see [START_REF] Erdélyi | Tricomi[END_REF], [START_REF] Erdélyi | Higher Transcendental Functions[END_REF]). For instance, in the case b = 1, we find straightly that

h α,1 (t) = 1 α √ πt +∞ n=-∞ (-1) n exp(-n 2 α 2 /t).
Proof of Proposition 4.7. For ϕ ∈ D(Ω), we have:

Ω {-div(k ε ∇u ε ) ⋆ w ε m ε (ϕ)} = t 0 Ω k ε ∇u ε (t -s)∇w ε (s)m ε (ϕ) with b t 0 Dε ∇u ε (t -s)∇w ε (s)m ε (ϕ) = t 0 Dε u ε (t -s)(-b∆w ε (s))m ε (ϕ)+ + k∈Zε t 0 ∂B k rε u ε (t -s)(b ∂w ε ∂n (s))m k ε (ϕ), t 0 Ωε ∇u ε (t -s)∇w ε (s)m ε (ϕ) = t 0 D Rε \Dε u ε (t -s)(-∆w ε (s))m ε (ϕ)+ + k∈Zε t 0 ∂B k Rε u ε (t-s)( ∂w ε ∂n (s))m k ε (ϕ)- k∈Zε t 0 ∂B k rε u ε (t-s)( ∂w ε ∂n (s))m k ε (ϕ).
Notice that (31) yields

∂w ε ∂n (s, x) = ∂W ε ∂n (s, x -εk) = -C ε r ε R ε 2 F ε (s) on ∂B k Rε ,
and thus, there holds in L 2 (0, T ):

Ω -div(k ε ∇u ε ) ⋆ w ε m ε (ϕ)-- Dε u ε ⋆(-b∆w ε )m ε (ϕ) - D Rε \Dε u ε ⋆ (-∆w ε )m ε (ϕ) = -4πγ ε F ε ⋆ Ω G Rε (u ε )m ε (ϕ) (65) 
Using ( 1), (50) and noticing that Fε converges to Fα,b , then the proof is achieved by the Dominated Convergence Theorem because | Fε | is also uniformly bounded by some holomorphic function.

The homogenized system is completed by the next result. It appears that the main macroscopic concentration satisfies a Volterra integro-differential equation (see [START_REF] Gripenberg | Volterra integro-differetial equations with accretive nonlinearity[END_REF]) and it defines straightly the macroscopic concentration associated to the suspension. Theorem 4.9 If u and v are the limits of (48)-(51), then they satisfy:

∂u ∂t -∆u + 4πγ(u + u ⋆ h α,b ) = f -g - ∂w 0 ∂t in L 2 (Ω T ), (66) av 
-4πγu ⋆ F α,b = w 0 + t 0 g(s)ds in L 2 (Ω T ), (67) 
u(0) = u 0 in Ω. ( 68 
)
Remark 4.10 From (67), it follows that in fact v ∈ C 0 ([0, T ]; L 2 (Ω)).

Proof of Theorem 4.9. Let ϕ ∈ D(Ω). First notice that assumption (40) on f ε and the regularity of ϕ immediately yield

Ω ρ ε f ε ⋆ w ε m ε (ϕ) ⇀ Ω t 0 g(s)dsϕ weakly in L 2 (0, T ).
From Proposition 4.6 and 4.7, we deduce that

Ω ρ ε ∂u ε ∂t ⋆ w ε -div(k ε ∇u ε ) ⋆ w ε m ε (ϕ) ⇀ ⇀ a Ω vϕ - Ω w 0 ϕ -4πγ Ω F α,b ⋆ u ϕ weakly in L 2 (0, T ),
from which we infer (67). Substituting the result into (58), we obtain (66).

Notice that (67) also implies

av(0) = w 0 (0)
and thus, (57) and (59) lead to (68). which is the homogenization result that we already presented in [START_REF] Bentalha | Diffusion process in a rarefied binary structure[END_REF]. Proposition 4.12 The limit problem (66)-(68) admits a unique solution u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)). Proof of Proposition 4.12. By the linearity of (66)-(68) it suffices to verify that u ≡ 0 is the unique solution of the homogeneous problem. Indeed, multiplying (66) by u(t) and integrating over Ω × (0, t), we get, using (68): that is, u ≡ 0 in L ∞ (0, T ; L 2 (Ω)), which achieves the proof.

(p) = lim α→0   1 p - 1 p 1 + 3a 4πγα 2 (α √ p coth(α √ p) -1)   = = 1 p + 4πγ a F0 (p),

  1 and by the uniform continuity of ϕ on Ω it follows the convergence to 0 a.e. on [0, T ]. Lebesgue's dominated convergence theorem achieves the result.

Proposition 4 . 2

 42 If u ε is the solution of the problem (18)-(19), then from (40)-(43) it follows:

F

  α,b (t) = 1 + t 0 h α,b (s)ds (63) and h α,b is defined after its Laplace transform: ĥα,b (p) = 1 (b -1) -bα √ p coth(α √ p) .

Remark 4 . 11

 411 When b → +∞, then taking into account (29), we obtain lim b→+∞ Fα,b

  and hence F 0 (t) = exp(-4πγt/a). Then (67) becomesav = 4πγF 0 ⋆ u + w 0 + t 0 g(s)dsand we derive the system:∂u ∂t -∆u + 4πγ(u -v) = f -gin Ω T , u(0) = u 0 , v(0) = v 0 in Ω,

Remark 4 . 13

 413 It follows that the convergences (48)-(51) hold for the whole sequence u ε .

2 Ω

 2 b (τ )u(s -τ )u(t)dτ dt from which we deduce|u(t)| 2 ≤ C b (τ )||u(s -τ )||u(t)|dτ dt. = |u 2 | L ∞ (0,t;L 1 (Ω)) < +∞, ∀s ∈ [0, t],and consequently|u(s)| Ω |u(r)| Ω ≤ |u 2 | L ∞ (0,s;L 1 (Ω)) , ∀r ≤ s, which implies |u(s)| Ω |u| L ∞ (0,s;L 2 (Ω) ≤ |u 2 | L ∞ (0,s;L 1 (Ω)) , ∀s ≤ t. b (τ )||u(s)| Ω |u| L ∞ (0,s;L 2 (Ω)) dτ ds.Using (70) and setting η(s) = s 0 |h(τ )|dτ , there results|u(t)| 2 Ω ≤ C t 0 η(s)|u 2 | L ∞ (0,s;L (Ω)) ds, ∀t ∈ [0, T [.(71)As for any r ≤ t we have|u(r) 2 | Ω = |u(r)| 2 Ω ≤ C r 0 η(s)|u 2 | L ∞ (0,s;L 1 (Ω)) ds ≤ C t 0 η(s)|u 2 | L ∞ (0,s;L 1 (Ω)) ds,we find|u 2 | L ∞ (0,t;L 1 (Ω)) ≤ t 0 η(s)|u 2 | L ∞ (0,s;L 1 (Ω)) ds.(72)Applying Gronwall's Lemma, from (72) we obtain |u 2 | L ∞ (0,t;L 1 (Ω)) = 0 for any t ∈ [0, T ],
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