Abstract numeration systems on bounded languages and multiplication by a constant

Emilie Charlier, Michel Rigo, Wolfgang Steiner

To cite this version:

Emilie Charlier, Michel Rigo, Wolfgang Steiner. Abstract numeration systems on bounded languages and multiplication by a constant. 2007. hal-00151512v1

HAL Id: hal-00151512
https://hal.science/hal-00151512v1
Preprint submitted on 4 Jun 2007 (v1), last revised 16 Sep 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Abstract numeration systems on bounded languages and multiplication by a constant

Emilie Charlier ${ }^{1}$, Michel Rigo ${ }^{1}$, Wolfgang Steiner ${ }^{2}$
${ }^{1}$ Institute of Mathematics, University of Liège, Grande Traverse 12 (B 37), B-4000 Liège, Belgium. \{echarlier,M.Rigo\}@ulg.ac.be
${ }^{2}$ LIAFA, CNRS, University Paris Diderot, case 7014, 2 place Jussieu, F-75251 Paris Cedex 05, France, steiner@liafa.jussieu.fr

Abstract

A set of integers is S-recognizable in an abstract numeration system S if the language made up of the representations of its elements is accepted by a finite automaton. For abstract numeration systems built over bounded languages with at least three letters, we show that multiplication by an integer $\lambda \geq 2$ does not preserve S-recognizability, meaning that there always exists a S-recognizable set X such that λX is not S recognizable. The main tool is a bijection between the representation of an integer over a bounded language and its decomposition as a sum of binomial coefficients with certain properties, the so-called combinatorial numeration system.

1 Introduction

Let us denote by $\mathcal{B}_{\ell}=a_{1}^{*} a_{2}^{*} \cdots a_{\ell}^{*}$ the bounded language over the alphabet $\Sigma_{\ell}=\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}$ of size $\ell \geq 1$. (For details on bounded languages, see for instance [5] and for a reference on automata and formal languages theory, see [3].) We always assume that $\left(\Sigma_{\ell},<\right)$ is totally ordered by $a_{1}<a_{2}<\cdots<a_{\ell}$. Therefore we can enumerate the words of \mathcal{B}_{ℓ} using the increasing genealogical ordering (also called radix order) induced by the ordering $<$ of Σ_{ℓ}. For an integer $n \geq 0$, the $(n+1)$-st word of \mathcal{B}_{ℓ} is said to be the \mathcal{B}_{ℓ}-representation of n and is denoted by $\operatorname{rep}_{\ell}(n)$. The reciprocal map $\operatorname{rep}_{\ell}^{-1}=: \operatorname{val}_{\ell}$ maps the n-th word of \mathcal{B}_{ℓ} onto its numerical value $n-1$. Notice that this map $\operatorname{val}_{\ell}$ is a special case of a diagonal function as considered for instance in [9]. Recall that a word x is genealogically less than a word y either if $|x|<|y|$ or if they have the same length and x is lexicographically smaller than y. A set $X \subseteq \mathbb{N}$ is said to be \mathcal{B}_{ℓ}-recognizable if $\operatorname{rep}_{\ell}(X)$ is a regular language over the alphabet Σ_{ℓ}, i.e., accepted by a finite automaton. This one-to-one correspondence between the words of \mathcal{B}_{ℓ} and the integers can be extended to any infinite regular language L over a totally ordered alphabet $(\Sigma,<)$. This leads to the general notion of abstract numeration system $S=(L, \Sigma,<)$ where $\operatorname{rep}_{S}(n)$ is the $(n+1)$-st word in the genealogically ordered language L and S-recognizable sets of integers are defined accordingly [7]. Thus \mathcal{B}_{ℓ}-recognizability is a special case of S-recognizability.

Example 1. Let $\Sigma_{2}=\{a, b\}$ with $a<b$. The first words of $\mathcal{B}_{2}=a^{*} b^{*}$ enumerated by genealogical order are

$$
\epsilon, a, b, a a, a b, b b, a a a, a a b, a b b, b b b, a a a a, \ldots
$$

For instance, $\operatorname{rep}_{2}(5)=b b$ and $\operatorname{val}_{2}\left(a^{*}\right)=\{0,1,3,6,10, \ldots\}$ is a \mathcal{B}_{2}-recognizable subset of \mathbb{N} (formed of all triangular numbers).

In the framework of positional numeration systems, recognizable sets of integers have been extensively studied since the seminal work of A. Cobham in the late sixties (see for instance [3, Chap. V]). Since then, the notion of recognizability has been studied from various points of view (logical characterization, automatic sequences, ...). In particular, recognizability for generalized number systems like the Fibonacci system has been considered [2, 12]. Here we shall consider recognizable sets of integers in the general setting of abstract numeration systems. It is well-known that the class of regular languages L splits into two parts with respect to the behavior of the function $n \mapsto \#\left(L \cap \Sigma^{n}\right)$ 13]. This latter function is either bounded from above by n^{k} for some k or, infinitely often bounded from below by θ^{n} for some $\theta>1$. In these cases, we speak respectively of polynomial and exponential languages.

Notice that usual positional numeration systems like integer base systems or the Fibonacci system are special cases of abstract numeration systems built on an exponential language. On the other hand, bounded languages are polynomial and this leads to new phenomena.

The question addressed in the present paper deals with the preservation of the recognizability with respect to the operation of multiplication by a constant. Let $S=(L, \Sigma,<)$ be an abstract numeration system, X be a S-recognizable set of integers and λ be a positive integer. What can be said about the S-recognizability of λX ? This question is a first step before handling more complex operations such as addition of two arbitrary recognizable sets.

This question is rather difficult. For exponential languages, partial answers are known (see for instance [2]). The case of polynomial languages has not been considered yet (except for $a^{*} b^{*}$ in $\left.[7]\right)$. Bounded languages are good candidates to start with. Indeed, an arbitrary polynomial language is a finite union of languages of the form $u_{1} v_{1}^{*} u_{2} v_{2}^{*} \cdots v_{k}^{*} u_{k+1}$ where u_{i} 's and v_{i} 's are words 13] and automata accepting these languages share the same properties that those accepting bounded languages. Therefore we hope that our results give the flavor of what could be expected for any polynomial languages.

Since rep_{ℓ} is a one-to-one correspondence between \mathbb{N} and \mathcal{B}_{ℓ}, multiplication by a constant $\lambda \in \mathbb{N}$ can be viewed as a transformation $f_{\lambda}: \mathcal{B}_{\ell} \rightarrow \mathcal{B}_{\ell}$ acting on the language \mathcal{B}_{ℓ}, the question being then to study the preservation of the regularity of the subsets of \mathcal{B}_{ℓ} under this transformation.
Example 2. Let $\ell=2, \Sigma_{2}=\{a, b\}$ and $\lambda=25$. We have the following diagram.

$$
\begin{array}{rlrl}
8 & \xrightarrow{\times 25} 200 & \mathbb{N} \xrightarrow{\times \lambda} & \mathbb{N} \\
\mathrm{rep}_{2} \downarrow & \downarrow \mathrm{rep}_{2} & \mathrm{rep}_{2} \downarrow & \downarrow \mathrm{rep}_{2} \\
a b^{2} \xrightarrow{\times 25} a^{9} b^{10} & \mathcal{B}_{\ell} \xrightarrow{f_{\lambda}} & \mathcal{B}_{\ell}
\end{array}
$$

Thus multiplication by $\lambda=25$ induces a mapping f_{λ} onto \mathcal{B}_{2} such that for $w, w^{\prime} \in \mathcal{B}_{2}, f_{\lambda}(w)=w^{\prime}$ if and only if $\operatorname{val}_{2}\left(w^{\prime}\right)=25 \operatorname{val}_{2}(w)$.

This paper is organized as follows. In Section 2, we recall a few results related to our main question. In particular, we characterize the recognizable sets of integers for abstract numeration systems whose language is slender, i.e., has at most c words of each length for some constant c. We easily get that in this situation, multiplication by a constant always preserves recognizability.

In Section 3, we compute $\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)$ and derive an easy bijective proof of the fact that any nonnegative integer can be written in a unique way as

$$
n=\binom{z_{\ell}}{\ell}+\binom{z_{\ell-1}}{\ell-1}+\cdots+\binom{z_{1}}{1}
$$

with $z_{\ell}>z_{\ell-1}>\cdots>z_{1} \geq 0$. Fraenkel called this system combinatorial numeration system and referred to Lehmer [8]. Even if this seems to be a folklore result, the only proof that we were able to trace out goes back to Katona [6] who developed different (and quite long) arguments to obtain the same decomposition.

In Section (1), we make explicit the regular subsets of \mathcal{B}_{ℓ} in terms of semilinear sets of \mathbb{N}^{ℓ} and give an application to the \mathcal{B}_{ℓ}-recognizability of arithmetic progressions.

In Section 5, we answer our main question about bounded languages and recognizability after multiplication by a constant. We get a formula which can be used to obtain estimates on the \mathcal{B}_{ℓ}-representation of λn from the one of n. Therefore, thanks to a counting argument and to the results from Section 4, we show that for any constant λ, there exists a \mathcal{B}_{ℓ}-recognizable set X such that λX is no more \mathcal{B}_{ℓ}-recognizable, with $\ell \geq 3$. Consequently, our main result can be summarized as follows. Let ℓ, λ be positive integers. For the abstract numeration system $S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)$, multiplication by $\lambda \geq 2$ preserves S recognizability if and only if either $\ell=1$ or $\ell=2$ and λ is an odd square.

We put in the last section some structural results concerning the effect of multiplication by a constant in the abstract numeration system built on \mathcal{B}_{ℓ}.

2 First results about S-recognizability

In this section we collect a few results directly connected with our problem.
Theorem 1. (才) Let $S=(L, \Sigma,<)$ be an abstract numeration system. Any arithmetic progression is S-recognizable.

Let us denote by $\mathbf{u}_{L}(n)$ (resp. $\left.\mathbf{v}_{L}(n)\right)$ the number of words of length n (resp. at most n) belonging to L. The following result states that only some constants λ are good candidates for multiplication within \mathcal{B}_{ℓ}.

Theorem 2. 14] Let $L \subseteq \Sigma^{*}$ be a regular language such that $\mathbf{u}_{L}(n)=\Theta\left(n^{k}\right)$, $k \in \mathbb{N}$ and $S=(L, \Sigma,<)$. Preservation of S-recognizability after multiplication by λ holds only if $\lambda=\beta^{k+1}$ for some $\beta \in \mathbb{N}$.

Recall that $f=\Theta(g)$ if there exist N and $C>0$ such that for all $n \geq N$, $f(n) \leq C g(n)$ (i.e., $f=\mathcal{O}(g)$) and also if there exist $D>0$ and an infinite sequence $\left(n_{i}\right)_{i \in \mathbb{N}}$ such that $f\left(n_{i}\right) \geq D g\left(n_{i}\right)$ for all $i \geq 0$.

As we shall see in the next section that $\mathbf{u}_{\mathcal{B}_{\ell}}(n)=\Theta\left(n^{\ell-1}\right)$, we have to focus only on multipliers of the form β^{ℓ}. The particular case of $\mathbf{u}_{L}(n)=\mathcal{O}(1)$ (i.e., L is slender) is interesting in itself and is settled as follows. Let us first recall the definition from [1] and the characterization from 10, 12] of such languages.
Definition 1. The language L is said to be d-slender if for all $n \geq 0, \mathbf{u}_{L}(n) \leq d$. The language L is said to be slender if it is d-slender for some $d>0$.

A regular language L is slender if and only if it is a union of single loops, i.e., if for some $k \geq 1$ and words $x_{i}, y_{i}, z_{i}, 1 \leq i \leq k$,

$$
L=\bigcup_{i=1}^{k} x_{i} y_{i}^{*} z_{i}
$$

Moreover, we can assume that the sets $x_{i} y_{i}^{*} z_{i}$ are pairwise disjoint.
Theorem 3. Let $L \subseteq \Sigma^{*}$ be a slender regular language and $S=(L, \Sigma,<)$. A set $X \subseteq \mathbb{N}$ is S-recognizable if and only if X is a finite union of arithmetic progressions.

Proof. By the characterization of slender languages, we have

$$
L=\bigcup_{i=1}^{k} x_{i} y_{i}^{*} z_{i} \cup F, x_{i}, z_{i} \in \Sigma^{*}, y_{i} \in \Sigma^{+}
$$

where the sets $x_{i} y_{i}^{*} z_{i}$ are pairwise disjoint and F is a finite set. The sequence $\left(\mathbf{u}_{L}(n)\right)_{n \in \mathbb{N}}$ is ultimately periodic of period $C=\operatorname{lcm}_{i}\left|y_{i}\right|$. Moreover, for n large enough, if $x_{i} y_{i}^{n} z_{i}$ is the m-th word of length $\left|x_{i} z_{i}\right|+n\left|y_{i}\right|$ then $x_{i} y_{i}^{n+C /\left|y_{i}\right|} z_{i}$ is the m-th word of length $\left|x_{i} z_{i}\right|+n\left|y_{i}\right|+C$. Roughly speaking, for sufficiently large n, the structures of the ordered sets of words of length n and $n+C$ are the same.
The regular subsets of L are of the form

$$
\begin{equation*}
\bigcup_{j \in J} x_{i_{j}}\left(y_{i_{j}}^{\alpha_{j}}\right)^{*} z_{i_{j}} \cup F^{\prime} \tag{1}
\end{equation*}
$$

where J is a finite set, $i_{j} \in\{1, \ldots, k\}, \alpha_{j} \in \mathbb{N}$ and F^{\prime} is a finite subset of L. We can now conclude. If X is S-recognizable, then $\operatorname{rep}_{S}(X)$ is a regular subset of L of the form (\mathbb{E}). In view of the first part of the proof, it is clear that X is ultimately periodic. The converse is immediate by Theorem 1.

Example 3. Consider the language $L=a b^{*} c \cup b(a a)^{*} c$. It contains exactly two words of each positive even length: $a b^{2 i} c<b a^{2 i} c$ and one word for each odd length larger than 2: $a b^{2 i+1} c$. The sequence $\mathbf{u}_{L}(n)$ is ultimately periodic of period two: $0,0,2,1,2,1, \ldots$.

Corollary 1. Let S be a numeration system built on a slender language. If $X \subseteq$ \mathbb{N} is S-recognizable, then λX is S-recognizable for all $\lambda \in \mathbb{N}$.

Finally, for a bounded language over a binary alphabet, the case is completely settled too, the aim of this paper being primarily to extend the following result.

Theorem 4. Let β be a positive integer. For the abstract numeration system $S=\left(a^{*} b^{*},\{a<b\}\right)$, multiplication by β^{2} preserves S-recognizability if and only if β is odd.

$3 \mathcal{B}_{\ell}$-representation of integers : combinatorial expansion

In this section we determine the number of words of a given length in \mathcal{B}_{ℓ} and we obtain an algorithm for computing $\operatorname{rep}_{\ell}(n)$. Interestingly, this algorithm is related to the decomposition of n as a sum of binomial coefficients of a specified form. Since we shall be mainly interested by the language \mathcal{B}_{ℓ}, we use the following notation.

Definition 2. We set

$$
\mathbf{u}_{\ell}(n):=\mathbf{u}_{\mathcal{B}_{\ell}}(n)=\#\left(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{n}\right) \quad \text { and } \quad \mathbf{v}_{\ell}(n):=\#\left(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{\leq n}\right)=\sum_{i=0}^{n} \mathbf{u}_{\ell}(i)
$$

The trim minimal automaton \mathcal{A}_{ℓ} of \mathcal{B}_{ℓ} has $\left\{q_{1}, \ldots, q_{\ell}\right\}$ as set of states (recall that an automaton is trim if it is accessible and coaccessible [3]). Each state is final, q_{1} is initial and for $1 \leq i \leq j \leq n$ we have a transition $q_{i} \xrightarrow{a_{j}} q_{j}$. For $i \in\{1, \ldots, \ell\}, \mathbf{u}_{q_{i}}(n)$ (resp. $\mathbf{v}_{q_{i}}(n)$) denotes the number of words of length n (resp. at most n) accepted from state q_{i} in \mathcal{A}_{ℓ}. In particular, $\mathbf{u}_{\ell}(n)=\mathbf{u}_{q_{1}}(n)$.

Let us also recall that the binomial coefficient $\binom{i}{j}$ vanishes for integers $i<j$.
Lemma 1. For all $\ell \geq 1$ and $n \geq 0$, we have

$$
\begin{equation*}
\mathbf{u}_{\ell+1}(n)=\mathbf{v}_{\ell}(n) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{u}_{\ell}(n)=\binom{n+\ell-1}{\ell-1} \tag{3}
\end{equation*}
$$

Proof. Relation (2) follows from the fact that the set of words of length n belonging to $\mathcal{B}_{\ell+1}$ is partitioned into

$$
\bigcup_{i=0}^{n}\left(a_{1}^{*} \cdots a_{\ell}^{*} \cap \Sigma_{\ell}^{i}\right) a_{\ell+1}^{n-i}
$$

To obtain (3), we proceed by induction on $\ell \geq 1$. Indeed, for $\ell=1$, it is clear that $\mathbf{u}_{1}(n)=1$ for all $n \geq 0$. Assume that (3) holds for ℓ and let us verify it still holds for $\ell+1$. Thanks to (2), we have

$$
\mathbf{u}_{\ell+1}(n)=\sum_{i=0}^{n} \mathbf{u}_{\ell}(i)=\sum_{i=0}^{n}\binom{i+\ell-1}{\ell-1}=\sum_{i=0}^{n}\binom{i+\ell-1}{i}=\binom{n+\ell}{\ell}
$$

Lemma 2. Let $S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)$. We have

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)=\sum_{i=1}^{\ell}\binom{n_{i}+\cdots+n_{\ell}+\ell-i}{\ell-i+1}
$$

Consequently, for any $n \in \mathbb{N}$,

$$
\left|\operatorname{rep}_{\ell}(n)\right|=k \Leftrightarrow \underbrace{\binom{k+\ell-1}{\ell}}_{\operatorname{val}_{\ell}\left(a_{1}^{k}\right)} \leq n \leq \underbrace{\sum_{i=1}^{\ell}\binom{k+i-1}{i}}_{\operatorname{val}_{\ell}\left(a_{\ell}^{k}\right)}
$$

Proof. From the structure of the ordered language \mathcal{B}_{ℓ}, one can show that

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)=\operatorname{val}_{\ell}\left(a_{1}^{n_{1}+\cdots+n_{\ell}}\right)+\operatorname{val}_{\left\{a_{2}, \ldots, a_{\ell}\right\}}\left(a_{2}^{n_{2}} \cdots a_{\ell}^{n_{\ell}}\right)
$$

where notation like $\operatorname{val}_{\left\{a_{2}, \ldots, a_{\ell}\right\}}(w)$ specifies not only the size but the alphabet of the bounded language on which the numeration system is built. To understand this formula, an example is given below in the case $\ell=3$. Notice that $\operatorname{val}_{\left\{a_{2}, \ldots, a_{\ell}\right\}}\left(a_{2}^{n_{2}} \cdots a_{\ell}^{n_{\ell}}\right)=\operatorname{val}_{\ell-1}\left(a_{1}^{n_{2}} \cdots a_{\ell-1}^{n_{\ell}}\right)$. Iterating the latter decomposition, we obtain

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)=\sum_{i=1}^{\ell} \operatorname{val}_{\ell-i+1}\left(a_{1}^{n_{i}+\cdots+n_{\ell}}\right)
$$

Moreover, it is well known that $\operatorname{val}_{\ell}\left(a_{1}^{n}\right)=\mathbf{v}_{\ell}(n-1)$. Hence the conclusion follows using relations (2) and (3).

Example 4. Consider the words of length 3 in the language $a^{*} b^{*} c^{*}$,

$$
a a a<a a b<a a c<a b b<a b c<a c c<b b b<b b c<b c c<c c c .
$$

We have $\operatorname{val}_{3}(a a a)=\binom{5}{3}=10$ and $\operatorname{val}_{3}(a c c)=15$. If we apply the erasing morphism $\varphi:\{a, b, c\} \rightarrow\{a, b, c\}^{*}$ defined by $\varphi(a)=\varepsilon, \varphi(b)=b$ and $\varphi(c)=c$ on the words of length 3 , we get

$$
\varepsilon<b<c<b b<b c<c c<b b b<b b c<b c c<c c c .
$$

So the ordered list of words of length 3 in $a^{*} b^{*} c^{*}$ contains an ordered copy of the words of length at most 2 in the language $b^{*} c^{*}$ and to obtain $\operatorname{val}_{3}(a c c)$, we just add to $\operatorname{val}_{3}(a a a)$ the position of the word $c c$ in the ordered language $b^{*} c^{*}$. In other words, $\operatorname{val}_{3}(a c c)=\operatorname{val}_{3}(a a a)+\operatorname{val}_{2}(c c)$ where val ${ }_{2}$ is considered as a map defined on the language $b^{*} c^{*}$.

The following result is given in [6]. Here we obtain a bijective proof relying only on the use of abstract numeration systems on a bounded language.

Corollary 2 (Combinatorial numeration system). Let ℓ be a positive integer. Any integer $n \geq 0$ can be uniquely written as

$$
\begin{equation*}
n=\binom{z_{\ell}}{\ell}+\binom{z_{\ell-1}}{\ell-1}+\cdots+\binom{z_{1}}{1} \tag{4}
\end{equation*}
$$

with $z_{\ell}>z_{\ell-1}>\cdots>z_{1} \geq 0$.
Proof. The mapping $\operatorname{rep}_{\ell}: \mathbb{N} \rightarrow a_{1}^{*} \cdots a_{\ell}^{*}$ is a one-to-one correspondence. So any integer n has a unique representation of the form $a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}$ and the conclusion follows from Lemma 2 .

The general method given in [7, Algorithm 1] has a special form in the case of the language \mathcal{B}_{ℓ}. We derive an algorithm computing the decomposition (4) or equivalently the \mathcal{B}_{ℓ}-representation of any integer.

Algorithm 1 Let n be an integer and 1 be a positive integer. The following algorithm produces integers $\mathbf{z}(1), \ldots, \mathbf{z}(1)$ corresponding to the z_{i} 's appearing in the decomposition (4) of n given in Corollary 8 .

```
For i=l,l-1,...,1 do
    if n>0,
        find t such that ( ( }\begin{array}{l}{\textrm{t}}\end{array})\leqn<(\begin{array}{c}{t+1}\\{i}\end{array}
        z(i)}\leftarrow
        n\leftarrown-(\begin{array}{l}{t}\\{i}\end{array})
    otherwise, z(i)\leftarrowi-1
```

Consider now the triangular system having n_{1}, \ldots, n_{ℓ} as unknowns

$$
n_{i}+\cdots+n_{\ell}=\mathbf{z}(\ell-i+1)-\ell+i, \quad i=1, \ldots, \ell .
$$

One has $\operatorname{rep}_{\ell}(\mathrm{n})=a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}$.
Remark 1. To speed up the computation of t in the above algorithm, one can benefit from methods of numerical analysis. Indeed, for given i and $n,\binom{t}{i}-n$ is a polynomial in t of degree i and we are looking for the largest root z of this polynomial. Therefore, $\mathrm{t}=\lfloor z\rfloor$.

Example 5. For $\ell=3$, one gets for instance

$$
12345678901234567890=\binom{4199737}{3}+\binom{3803913}{2}+\binom{1580642}{1}
$$

and solving the system

$$
\left.\begin{array}{rl}
n_{1}+n_{2}+n_{3} & =4199737-2 \\
n_{2}+n_{3} & =3803913-1 \\
n_{3} & =1580642
\end{array}\right\} \Leftrightarrow\left(n_{1}, n_{2}, n_{3}\right)=(395823,2223270,1580642),
$$

we have $\operatorname{rep}_{3}(12345678901234567890)=a^{395823} b^{2223270} c^{1580642}$.

4 Regular subsets of \mathcal{B}_{ℓ}

To study preservation of recognizability after multiplication by a constant, one has to consider an arbitrary recognizable subset $X \subseteq \mathbb{N}$ and show that $\beta^{\ell} X$ is still recognizable. To that end, we recall that the regular subsets of \mathcal{B}_{ℓ} are exactly the finite unions of sets of the form $a_{1}^{s_{1}}\left(a_{1}^{t_{1}}\right)^{*} \ldots a_{\ell}^{s_{\ell}}\left(a_{\ell}^{t_{\ell}}\right)^{*}$ with $s_{i}, t_{i} \in \mathbb{N}$.

Definition 3. If w is a word over $\Sigma_{\ell},|w|_{a_{j}}$ counts the number of letters a_{j} in w. The Parikh mapping Ψ maps a word $w \in \Sigma_{\ell}^{*}$ onto the vector $\Psi(w):=$ $\left(|w|_{a_{1}}, \ldots,|w|_{a_{\ell}}\right)$.

Remark 2. In this setting of bounded languages, $\operatorname{rep}_{\ell}$ and Ψ are both one-toone correspondences. Therefore, in what follows we shall make no distinction between an integer n, its \mathcal{B}_{ℓ}-representation $\operatorname{rep}_{\ell}(n)=a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}} \in \mathcal{B}_{\ell}$ and the corresponding Parikh vector $\Psi\left(\operatorname{rep}_{\ell}(n)\right)=\left(n_{1}, \ldots, n_{\ell}\right) \in \mathbb{N}^{\ell}$. In examples, when considering cases $\ell=2$ or 3 , we shall use convenient alphabets like $\{a<b\}$ or $\{a<b<c\}$.

Definition 4. A set $X \subseteq \mathbb{N}^{\ell}$ is linear if there exist $p_{0}, p_{1}, \ldots, p_{k} \in \mathbb{N}^{\ell}$ such that

$$
X=p_{0}+\mathbb{N} p_{1}+\cdots+\mathbb{N} p_{k}=\left\{p_{0}+\lambda_{1} p_{1}+\cdots+\lambda_{k} p_{k} \mid \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{N}\right\}
$$

The vectors p_{1}, \ldots, p_{k} are said to be the periods of X. The set X is k-dimensional if it has exactly k linearly independent periods over \mathbb{Q}. A set is semi-linear if it is a finite union of linear sets. The set of periods of a semi-linear set is the union of the sets of periods of the corresponding linear sets. Let $\mathbf{e}_{i} \in \mathbb{N}^{\ell}, 1 \leq i \leq \ell$, denote the vector having 1 in the i-th component and 0 in the other components.

The following result is obvious.
Lemma 3. A set $X \subseteq \mathbb{N}$ is \mathcal{B}_{ℓ}-recognizable if and only if $\Psi\left(\operatorname{rep}_{\ell}(X)\right)$ is a semilinear set whose periods are integer multiples of canonical vectors \mathbf{e}_{i}.

With such a characterization, it is not difficult to obtain an alternative proof of Theorem

Proposition 1. Let $p, q \in \mathbb{N}$. The set $\Psi\left(\operatorname{rep}_{\ell}(q+\mathbb{N} p)\right) \subseteq \mathbb{N}^{\ell}$ is a finite union of linear sets of the form

$$
p_{0}+\mathbb{N} \theta \mathbf{e}_{1}+\cdots+\mathbb{N} \theta \mathbf{e}_{\ell} \quad \text { for some } \theta \in \mathbb{N}
$$

Proof. We use the notation from Definition 2 about the minimal automaton of \mathcal{B}_{ℓ}. For any, $n_{1}, \ldots, n_{\ell} \in \mathbb{N}$, we have

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)=\sum_{i=1}^{\ell} \mathbf{v}_{q_{i}}\left(n_{i}+\cdots+n_{\ell}-1\right)
$$

Indeed, we have to count the words genealogically less than $a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}$ in the language. First we have the words of length less than $n_{1}+\cdots+n_{\ell}$, there are
exactly $\mathbf{v}_{q_{1}}\left(n_{1}+\cdots+n_{\ell}-1\right)$ words of this kind. Then amongst the words of length $n_{1}+\cdots+n_{\ell}$, there are $\mathbf{v}_{q_{2}}\left(n_{2}+\cdots+n_{\ell}-1\right)$ words starting with at least $n_{1}+1$ letters a_{1}. After that, there are $\mathbf{v}_{q_{3}}\left(n_{3}+\cdots+n_{\ell}-1\right)$ words starting with $a_{1}^{n_{1}}$ followed by at least $n_{2}+1$ letters a_{2} and so on.
For a given $i, 1 \leq i \leq \ell$, the sequence $\left(\mathbf{v}_{q_{i}}(n) \bmod p\right)_{n \in \mathbb{N}}$ is ultimately periodic, say of period π_{i} and preperiod τ_{i}. (Indeed, the sequence $\left(\mathbf{v}_{q_{i}}(n)\right)_{n \in \mathbb{N}}$ satisfies a linear recurrence relation with constant coefficients.) Let $P=\operatorname{lcm}_{i} \pi_{i}$ and $T=\max _{i} \tau_{i}$. Then, for all $i, 1 \leq i \leq \ell$, if $n_{1}, \ldots, n_{\ell}>T$,

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{i}^{n_{i}} \cdots a_{\ell}^{n_{\ell}}\right) \equiv \operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{i}^{n_{i}+P} \cdots a_{\ell}^{n_{\ell}}\right) \quad(\bmod p)
$$

We have just shown that for every $x=\left(x_{1}, \ldots, x_{\ell}\right) \in \mathbb{N}^{\ell}$ such that $T<\max _{i} x_{i} \leq$ $T+P, x$ belongs to $\Psi\left(\operatorname{rep}_{\ell}(q+\mathbb{N} p)\right)$ if and only if $x+n_{1} P \mathbf{e}_{1}+\cdots+n_{\ell} P \mathbf{e}_{\ell}$ belongs to the same set for all $n_{1}, \ldots, n_{\ell} \in \mathbb{N}$. The conclusion follows easily:

$$
\Psi\left(\operatorname{rep}_{\ell}(q+\mathbb{N} p)\right)=F \cup \bigcup_{\substack{\operatorname{val}_{\ell}\left(a_{1}^{x_{1}} \ldots a_{\ell}^{x} \ell\right) \in q+\mathbb{N} p \\ T<\sup x_{i} \leq T+P}}\left(x+\mathbb{N} P \mathbf{e}_{1}+\cdots+\mathbb{N} P \mathbf{e}_{\ell}\right)
$$

where the finite set F is $\left\{x \in \mathbb{N}^{\ell} \mid \operatorname{val}_{\ell}\left(a_{1}^{x_{1}} \cdots a_{\ell}^{x_{\ell}}\right) \in q+\mathbb{N} p\right.$ and $\left.\max _{i} x_{i} \leq T\right\}$.
Example 6. In Figure 1, the x-axis (resp. y-axis) counts the number of a_{1} 's (resp. a_{2} 's) in a word. The empty word corresponds to the lower-left corner. A point in \mathbb{N}^{2} of coordinates (i, j) has its color determined by the value of $\operatorname{val}_{2}\left(a_{1}^{i} a_{2}^{j}\right)$ modulo p (with $p=3,5,6$ and 8 respectively). There are therefore p possible colors. In this figure, we represent words $a_{1}^{i} a_{2}^{j}$ for $0 \leq i, j \leq 19$.

Fig. 1. $\Psi\left(\operatorname{rep}_{2}(q+\mathbb{N} p)\right)$ for $p=3,5,6,8$.

5 Multiplication by $\lambda=\beta^{\ell}$

In the case of a bounded language on ℓ letters, if multiplication by some constant preserves recognizability, then, by Theorem 2 and Lemma 11, this constant must be a ℓ-th power.

The next result gives a relationship between the length of the \mathcal{B}_{ℓ}-representations of n and $\beta^{\ell} n$, roughly by a factor β.

Lemma 4. For sufficiently large $n \in \mathbb{N}$, we have

$$
\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta\left|\operatorname{rep}_{\ell}(n)\right|+\left\lceil\frac{(\beta-1)(\ell+1)}{2}\right\rceil-i
$$

for some $i \in\{0,1, \ldots, \beta\}$.
Proof. Consider first $n=\operatorname{val}_{\ell}\left(a_{\ell}^{q}\right)$ for some sufficiently large $q \in \mathbb{N}$, and let

$$
\begin{aligned}
& \beta^{\ell}\left(\binom{q+\ell-1}{\ell}+\binom{q+\ell-2}{\ell-1}+\cdots+\binom{q}{1}\right) \\
& =\binom{z_{\ell}+\ell-1}{\ell}+\binom{z_{\ell-1}+\ell-2}{\ell-1}+\cdots+\binom{z_{1}}{1}
\end{aligned}
$$

for some integers $z_{\ell} \geq z_{\ell-1} \geq \cdots \geq z_{1} \geq 0$ (depending on q). Then we have

$$
\beta^{\ell}\left(\frac{q^{\ell}}{\ell!}+\frac{(\ell+1) q^{\ell-1}}{2(\ell-1)!}+\mathcal{O}\left(q^{\ell-2}\right)\right)=\frac{z_{\ell}^{\ell}}{\ell!}+\frac{(\ell-1) z_{\ell}^{\ell-1}}{2(\ell-1)!}+\frac{z_{\ell-1}^{\ell-1}}{(\ell-1)!}+\mathcal{O}\left(z_{\ell}^{\ell-2}\right)
$$

thus $z_{\ell}=\beta q+\mathcal{O}(1)$. Since $z_{\ell} \geq z_{\ell-1}$, we have $z_{\ell-1}=d \beta q+o(q)$ with $0 \leq d \leq 1$ and we obtain

$$
\begin{gathered}
\frac{\beta^{\ell}(\ell+1)}{2(\ell-1)!} q^{\ell-1}=\frac{\beta^{\ell-1}}{(\ell-1)!}\left(\left(z_{\ell}-\beta q\right)+\frac{\ell-1}{2}+d^{\ell-1}\right) q^{\ell-1}+\mathcal{O}\left(q^{\ell-2}\right) \\
z_{\ell}=\beta q+\frac{(\beta-1)(\ell+1)}{2}+1-d^{\ell-1}
\end{gathered}
$$

Set $c=(\beta-1)(\ell+1) / 2$ and assume first $c \notin \mathbb{Z}$. Then we have $d^{\ell-1}=1 / 2$, hence

$$
\left.\mid f_{\beta^{\ell}}\left(a_{\ell}^{q}\right)\right) \mid=z_{\ell}=\beta q+\lceil c\rceil .
$$

Since $\operatorname{val}_{\ell}\left(a_{1}^{q}\right)=\operatorname{val}_{\ell}\left(a_{\ell}^{q-1}\right)+1$, we have

$$
\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} \operatorname{val}_{\ell}\left(a_{1}^{q}\right)\right)\right| \geq \beta(q-1)+\lceil c\rceil=\beta q+\lceil c\rceil-\beta
$$

If $\left|\operatorname{rep}_{\ell}(n)\right|=q$, then $\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|$ is clearly between these two values.
Assume now $c \in \mathbb{Z}$. Then we have $d \in\{0,1\}$. Similarly to the computation of $c_{\ell-2}$ achieved in Remark 3 below, we obtain that

$$
\begin{aligned}
\binom{\beta q+c+\ell}{\ell} & -\beta^{\ell}\binom{q+\ell}{\ell} \\
& =\left(\frac{c^{2}}{2}+\frac{(\ell+1) c}{2}+\frac{\left(1-\beta^{2}\right)(3 \ell+2)(\ell+1)}{24}\right) \frac{(\beta q)^{\ell-2}}{(\ell-2)!}+\mathcal{O}\left(q^{\ell-3}\right) \\
& =\frac{c(\beta+1)}{12} \frac{(\beta q)^{\ell-2}}{(\ell-2)!}+\mathcal{O}\left(q^{\ell-3}\right)
\end{aligned}
$$

This means that the numerical value of the first word of length $\beta q+c+1$ is larger than $\beta^{\ell} \operatorname{val}_{\ell}\left(a_{1}^{q+1}\right)$ for large enough q. We infer that $d=1$ since

$$
z_{\ell}=\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} \operatorname{val}_{\ell}\left(a_{\ell}^{q}\right)\right)\right| \leq\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} \operatorname{val}_{\ell}\left(a_{1}^{q+1}\right)\right)\right|<\beta q+c+1
$$

As above, we have $\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} \operatorname{val}_{\ell}\left(a_{1}^{q}\right)\right)\right| \geq \beta q+c-\beta$, and the lemma is proved.

In certain cases, we can give a formula for the entire expansion of $\beta^{\ell} \operatorname{val}_{\ell}\left(a_{\ell}^{q}\right)$.
Lemma 5. Define $c_{\ell-1}, c_{\ell-2}, \ldots, c_{0}$ recursively by

$$
c_{k}=k!\left(\beta^{\ell-k}-1\right) \sum_{i=k}^{\ell} \frac{S_{1}(i, k)}{i!}-\sum_{i=k+2}^{\ell} \sum_{j=k+1}^{i} \frac{S_{1}(i, j) j!}{i!(j-k)!} c_{i-1}^{j-k}
$$

where $S_{1}(i, j)$ are the unsigned Stirling numbers of the first kind. Then we have

$$
\begin{align*}
& \beta^{\ell}\left(\binom{q+\ell-1}{\ell}+\binom{q+\ell-2}{\ell-1}+\cdots+\binom{q}{1}\right) \\
& \quad=\binom{\beta q+c_{\ell-1}+\ell-1}{\ell}+\binom{\beta q+c_{\ell-2}+\ell-2}{\ell-1}+\cdots+\binom{\beta q+c_{0}}{1} . \tag{5}
\end{align*}
$$

Moreover, if all c_{k} 's, $0 \leq k<\ell$, are integers and $c_{\ell-1} \geq c_{\ell-2} \geq \cdots \geq c_{0}$, then

$$
\operatorname{rep}_{\ell}\left(\beta^{\ell} \operatorname{val}_{\ell}\left(a_{\ell}^{q}\right)\right)=a_{1}^{c_{\ell-1}-c_{\ell-2}} a_{2}^{c_{\ell-2}-c_{\ell-3}} \cdots a_{\ell-1}^{c_{1}-c_{0}} a_{\ell}^{\beta q+c_{0}}
$$

for all $q \geq-c_{0} / \beta$, hence $\operatorname{rep}_{\ell}\left(\beta^{\ell} \operatorname{val}_{\ell}\left(a_{\ell}^{*}\right)\right)$ is regular.
Proof. The second part of the lemma is obvious. Thus we only have to show (5). Recall that the unsigned Stirling numbers of the first kind are defined by

$$
i!\binom{x+i-1}{i}=x(x+1) \cdots(x+i-1)=\sum_{j=1}^{i} S_{1}(i, j) x^{j}
$$

and satisfy the recursion

$$
S_{1}(i+1, j)=S_{1}(i, j-1)+i S_{1}(i, j) \quad \text { for } 1 \leq j \leq i
$$

with $S_{1}(i, j)=0$ if $i<j$ or $j=0$. Therefore we can write (5) as

$$
\begin{aligned}
& \beta^{\ell}\left(\sum_{k=1}^{\ell} \frac{S_{1}(\ell, k)}{\ell!} q^{k}+\sum_{k=1}^{\ell-1} \frac{S_{1}(\ell-1, k)}{(\ell-1)!} q^{k}+\cdots+q\right) \\
& =\sum_{j=1}^{\ell} \frac{S_{1}(\ell, j)}{\ell!}\left(\beta q+c_{\ell-1}\right)^{j}+\sum_{j=1}^{\ell-1} \frac{S_{1}(\ell-1, j)}{(\ell-1)!}\left(\beta q+c_{\ell-2}\right)^{j}+\cdots+\beta q+c_{0} \\
& \quad \beta^{\ell} \sum_{i=1}^{\ell} \sum_{k=1}^{i} \frac{S_{1}(i, k)}{i!} q^{k}=\sum_{i=1}^{\ell} \sum_{j=1}^{i} \frac{S_{1}(i, j)}{i!} \sum_{k=0}^{j}\binom{j}{k} c_{i-1}^{j-k} \beta^{k} q^{k} \\
& \quad \beta^{\ell-k} \sum_{i=k}^{\ell} \frac{S_{1}(i, k)}{i!}=\sum_{i=k}^{\ell} \sum_{j=k}^{i} \frac{S_{1}(i, j) j!}{i!(j-k)!k!} c_{i-1}^{j-k} \quad \text { for } 0 \leq k \leq \ell .
\end{aligned}
$$

Since the last equation holds for $k=\ell$ and

$$
\beta^{\ell-k} \sum_{i=k}^{\ell} \frac{S_{1}(i, k)}{i!}=\sum_{i=k}^{\ell} \frac{S_{1}(i, k)}{i!}+\frac{c_{k}}{k!}+\sum_{i=k+2}^{\ell} \sum_{j=k+1}^{i} \frac{S_{1}(i, j) j!}{i!(j-k)!k!} c_{i-1}^{j-k}
$$

for $0 \leq k<\ell$ by the definition of c_{k}, the lemma is proved.

Remark 3. The formula for c_{k} can be simplified using

$$
\sum_{i=k}^{\ell} \frac{S_{1}(i, k)}{i!}=\left\{\begin{array}{cl}
S_{1}(\ell+1, k+1) / \ell!\text { for } k \geq 1 \\
0 & \text { for } k=0
\end{array}\right.
$$

Note that $c_{\ell-1}$ is the constant c in the proof of Lemma

$$
c_{\ell-1}=(\beta-1) \frac{S_{1}(\ell+1, \ell)}{\ell}=\frac{(\beta-1)(\ell+1)}{2} \quad \text { for } \ell \geq 2
$$

Since $S_{1}(\ell+1, \ell-1)=S_{1}(\ell, \ell-2)+\ell \frac{\ell(\ell-1)}{2}=\frac{(3 \ell+2)(\ell+1) \ell(\ell-1)}{24}$, we have

$$
\begin{aligned}
c_{\ell-2} & =\left(\beta^{2}-1\right) \frac{(3 \ell+2)(\ell+1)}{24}-\frac{\ell-1}{2} c_{\ell-1}-\frac{1}{2} c_{\ell-1}^{2} \\
& =c_{\ell-1}\left(1-\frac{\beta+1}{12}\right)=\frac{(\beta-1)(\ell+1)}{2}-\frac{\left(\beta^{2}-1\right)(\ell+1)}{24} \quad \text { for } \ell \geq 3
\end{aligned}
$$

We now turn to our main counting argument that will be used to obtain that recognizability is not preserved through multiplication by a constant λ. Recall that $f_{\lambda}: \mathcal{B}_{\ell} \rightarrow \mathcal{B}_{\ell}$ is defined by $f_{\lambda}(w)=\operatorname{rep}_{\ell}\left(\lambda \operatorname{val}_{\ell}(w)\right)$.

Lemma 6. Let A be a k-dimensional linear subset of \mathbb{N}^{ℓ} for some integer $k<\ell$ and $B=\Psi^{-1}(A) \cap \mathcal{B}_{\ell}$ be the corresponding subset of \mathcal{B}_{ℓ}. If $\Psi\left(f_{\beta^{\ell}}(B)\right)$ contains a sequence $x^{(n)}=\left(x_{1}^{(n)}, \ldots, x_{\ell}^{(n)}\right)$ such that $\min \left(x_{j_{1}}^{(n)}, x_{j_{2}}^{(n)}, \ldots, x_{j_{k+1}}^{(n)}\right) \rightarrow \infty$ as $n \rightarrow \infty$ for some $j_{1}<j_{2}<\cdots<j_{k+1}$, then $f_{\beta^{\ell}}(B)$ is not regular.

Proof. Since A is a k-dimensional linear subset of \mathbb{N}^{ℓ}, we clearly have

$$
\#\{w \in B:|w| \leq n\}=\#\left\{x \in A: x_{1}+\cdots+x_{\ell} \leq n\right\}=\Theta\left(n^{k}\right)
$$

and, by Lemma $\#, \#\left\{w \in f_{\beta^{\ell}}(B):|w| \leq n\right\}=\Theta\left(n^{k}\right)$. Thus $f_{\beta^{\ell}}(B)$ is regular if and only if $\Psi\left(f_{\beta^{e}}(B)\right)$ is a finite union of at most k-dimensional sets as in Lemma 3. Since the sequence $x^{(n)}$ cannot occur in such a finite union, $f_{\beta^{\ell}}(B)$ is not regular.

The coefficients $c_{\ell-1}$ and $c_{\ell-2}$ (explicitely given in Remark 3) are rational numbers. In the next two propositions, we discuss the fact that these coefficients could be integers and we rule out all the possible cases.
Proposition 2. If $\frac{(\beta-1)(\ell+1)}{2} \notin \mathbb{Z}$ or $\frac{\left(\beta^{2}-1\right)(\ell+1)}{24} \notin \mathbb{Z}$ (and $\ell \geq 3, \beta \geq 2$), then $f_{\beta^{\ell}}\left(a_{\ell}^{*}\right)$ is not regular.
Proof. We use notation of the proof of Lemma 1
First case : $c_{\ell-1}=\frac{(\beta-1)(\ell+1)}{2} \notin \mathbb{Z}$
We have $z_{\ell}=\beta q+c_{\ell-1}+1 / 2, z_{\ell-1}=2^{-1 /(\ell-1)} \beta q+o(q)$, hence

$$
\begin{aligned}
\left|f_{\beta^{\ell}}\left(a_{\ell}^{q}\right)\right|_{a_{1}} & =\left(1-2^{-1 /(\ell-1)}\right) \beta q+o(q), \\
\sum_{j=2}^{\ell}\left|f_{\beta^{\ell}}\left(a_{\ell}^{q}\right)\right|_{a_{j}} & =2^{-1 /(\ell-1)} \beta q+o(q),
\end{aligned}
$$

and $f_{\beta^{\ell}}\left(a_{\ell}^{*}\right)$ is not regular by Lemma 6 .
Second case : $c_{\ell-1}=\frac{(\beta-1)(\ell+1)}{2} \in \mathbb{Z}$
We have $z_{\ell}=\beta q+c_{\ell-1}, z_{\ell-1}=\beta q+\mathcal{O}(1)$ and $z_{\ell-2}=d \beta q+o(q)$ with $0 \leq d \leq 1$. By comparing the coefficients of $q^{\ell-2}$, we obtain

$$
z_{\ell-1}=\beta q+c_{\ell-2}+1-d^{\ell-2}
$$

Since in this case $c_{\ell-2}=\frac{(\beta-1)(\ell+1)}{2}-\frac{\left(\beta^{2}-1\right)(\ell+1)}{24} \notin \mathbb{Z}$, we have $0<d<1$, hence

$$
\left|f_{\beta^{\ell}}\left(a_{\ell}^{q}\right)\right|_{a_{2}}=(1-d) \beta q+o(q), \quad \sum_{j=3}^{\ell}\left|f_{\beta^{\ell}}\left(a_{\ell}^{q}\right)\right|_{a_{j}}=d \beta q+o(q),
$$

and $f_{\beta^{\ell}}\left(a_{\ell}^{*}\right)$ is not regular by Lemma 6 .
Proposition 3. If $\frac{(\beta-1)(\ell+1)}{2} \in \mathbb{Z}$ and $\frac{\left(\beta^{2}-1\right)(\ell+1)}{24} \in \mathbb{Z}$ (and $\ell \geq 3, \beta \geq 2$), then $f_{\beta^{\ell}}\left(a_{1}^{*} a_{\ell}^{*}\right)$ is not regular.

Proof. If we choose q large enough with respect to p, e.g. $q=p^{3}$, then we have

$$
\begin{aligned}
& \beta^{\ell}\left(\binom{p+q+\ell-1}{\ell}+\binom{q+\ell-2}{\ell-1}+\binom{q+\ell-3}{\ell-2}+\cdots+\binom{q}{1}\right) \\
& =\binom{\beta(p+q)+c_{\ell-1}+\ell-1}{\ell}+\binom{\beta q-(\beta-1) \beta p+c_{\ell-2}+\ell-2}{\ell-1} \\
& +\binom{\beta q-\frac{(\beta-1) \beta}{2}(\beta p)^{2}+\mathcal{O}(p)}{\ell-2}+\mathcal{O}\left(q^{\ell-3}\right)
\end{aligned}
$$

Indeed, this equation holds for $p=0$ by Lemma 5. Therefore the coefficients of $q^{\ell} p^{0}, q^{\ell-1} p^{0}$ and $q^{\ell-2} p^{0}$ on the left-hand side are equal to those on the righthand side. It is easy to see that the same holds for $q^{\ell-1} p^{1}, q^{\ell-2} p^{2}$ and $q^{\ell-3} p^{3}$. For $q^{\ell-2} p^{1}$ and $q^{\ell-3} p^{2}$, consider the following equations:

$$
\begin{array}{ll}
(\ell-2)!\beta^{1-\ell}\left[q^{\ell-2} p^{1}\right]: & \beta \frac{\ell-1}{2}=c_{\ell-1}+\frac{\ell-1}{2}-(\beta-1) \\
(\ell-3)!\beta^{1-\ell}\left[q^{\ell-3} p^{2}\right]: & \beta \frac{\ell-1}{4}=\frac{c_{\ell-1}}{2}+\frac{\ell-1}{4}+\frac{(\beta-1)^{2}}{2}-\frac{(\beta-1) \beta}{2}
\end{array}
$$

If the $\mathcal{O}(p)$ term is chosen properly, then the coefficient of $q^{\ell-3} p^{1}$ vanishes as well and $\mathcal{O}\left(q^{\ell-3}\right)$ remains. Since $c_{\ell}, c_{\ell-1} \in \mathbb{Z}$, we have thus

$$
\begin{gathered}
\left|f_{\beta^{\ell}}\left(a_{1}^{p} a_{\ell}^{q}\right)\right|_{a_{1}}=\beta^{2} p+\mathcal{O}(1) \\
\left|f_{\beta^{\ell}}\left(a_{1}^{p} a_{\ell}^{q}\right)\right|_{a_{2}}=\frac{(\beta-1) \beta^{3}}{2} p^{2}+\mathcal{O}(p), \\
\sum_{j=3}^{\ell}\left|f_{\beta^{\ell}}\left(a_{1}^{p} a_{\ell}^{q}\right)\right|_{a_{j}}=\beta q+\mathcal{O}\left(p^{2}\right)
\end{gathered}
$$

and $\left.f_{\beta^{\ell}}\left(a_{1}^{*} a_{\ell}^{*}\right)\right)$ is not regular by Lemma 6 .

Example 7. We just illustrate some of the above computations. If $\ell=3$, then we have $c_{2}=2(\beta-1), c_{1}=2(\beta-1)-\left(\beta^{2}-1\right) / 6$ and

$$
c_{0}=-\frac{c_{1}}{2}-\frac{c_{1}^{2}}{2}-\frac{c_{2}}{3}-\frac{c_{2}^{2}}{2}-\frac{c_{2}^{3}}{6}=-\frac{\left(\beta^{2}-1\right)^{2}}{72}-\left(\beta^{3}-1\right)-\frac{\beta^{2}-1}{4}+2(\beta-1)
$$

If $\beta \equiv \pm 1(\bmod 6)$, then this gives

$$
f_{\beta^{3}}\left(a_{3}^{q}\right)=a_{1}^{\frac{\beta^{2}-1}{6}} a_{2}^{\frac{\left(\beta^{2}-1\right)^{2}}{72}+\beta^{3}-1+\frac{\beta^{2}-1}{12}} a_{3}^{\beta q-\frac{\left(\beta^{2}-1\right)^{2}}{72}-\left(\beta^{3}-1\right)-\frac{\beta^{2}-1}{4}+2(\beta-1)} .
$$

In particular, this latter formula shows that a_{3}^{*} cannot be used to prove that multiplication by β^{3} does not preserve recognizability when $\beta \equiv \pm 1(\bmod 6)$. Thanks to Proposition 2, $f_{\beta^{3}}\left(a_{3}^{q}\right)$ is regular if and only if $\beta \equiv \pm 1(\bmod 6)$.

Otherwise, i.e., if $1-\beta^{2} \equiv j(\bmod 6)$ with $j \in\{1,3,4\}$, then $z_{3}=\beta q+c_{2}$, $z_{2}=\beta q+c_{1}+1-j / 6$ and

$$
z_{1}=\frac{j}{6} \beta q+c_{0}-\frac{(1-j / 6)^{2}}{2}-(1-j / 6) c_{1}-\frac{1-j / 6}{2} .
$$

If we collect results from Theorems 2, 3, 4 and Propositions 2 and 3, we obtain the main result about multiplication by a constant.

Theorem 5. Let ℓ, λ be positive integers. For the abstract numeration system

$$
S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)
$$

multiplication by $\lambda \geq 2$ preserves S-recognizability if and only if one of the following condition is satisfied :
$-\ell=1$
$-\ell=2$ and λ is an odd square.
Proof. The case $\ell=1$ is ruled out by Theorem 3, the case $\ell=2$ is given by Theorem 1 Consider $\ell \geq 3$. Thanks to theorem 2, it suffices to consider λ of the β^{ℓ} and the conclusion follows from Propositions 2 and 3.

6 Structural properties of \mathcal{B}_{ℓ} seen through $\boldsymbol{f}_{\mathcal{\beta}_{\ell}}$

In this independent section, we inspect closely how a word is transformed when applying $f_{\beta^{\ell}}$. To that end, \mathcal{B}_{ℓ} (or equivalently \mathbb{N}) is partitioned into regions where $f_{\beta^{\ell}}$ acts differently. Thanks to our discussion, we are able to detect some kind of pattern occurring periodically within these regions. To have a flavor of the computations involved in this section, the reader could first have a look at Example 8. According to Lemma 4, we define a partition of \mathbb{N}.

Definition 5. For all $i \in\{0,1, \ldots, \beta\}$ and $k \in \mathbb{N}$ large enough, we define

$$
\mathcal{R}_{i, k}:=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{\ell}(n)\right|=k \text { and }\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta k+\left\lceil\frac{(\beta-1)(\ell+1)}{2}\right\rceil-i\right\}
$$

Lemma 7. If $\beta=\prod_{i=1}^{k} p_{i}^{\theta_{i}}$ where p_{1}, \ldots, p_{k} are prime numbers greater than ℓ and the θ_{i} 's are integers, then for any $u \geq \ell$, we have

$$
\binom{u}{\ell} \equiv\binom{u+\beta^{\ell}}{\ell} \quad\left(\bmod \beta^{\ell}\right)
$$

Proof. Let $u, v \geq \ell$. One has

$$
\binom{v}{\ell}-\binom{u}{\ell}=\frac{v(v-1) \cdots(v-\ell+1)-u(u-1) \cdots(u-\ell+1)}{\ell!} .
$$

The numerator on the r.h.s. is an integer divisible by ℓ !. Moreover, this numerator is also clearly divisible by $v-u$ (indeed, it is of the form $P(v)-P(u)$ for some polynomial P).
Notice that for $v=u+\beta^{\ell}$, the corresponding numerator is divisible by ℓ ! and also by β^{ℓ}. But since any prime factor of β is larger than $\ell, \ell!$ and β^{ℓ} are relatively prime. Consequently, the corresponding numerator is divisible by $\beta^{\ell} \ell$!.

An inspection of multiplication by β^{ℓ} using the partition induced by Lemma provides us with the following observation.

Proposition 4. Let $m_{i, k}=\min \mathcal{R}_{i, k}$ for $k \geq 0$ and $i \in\{0, \ldots, \beta\}$. If β satisfies the condition of Lemma 亿, then

$$
\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} m_{i, k}\right)\right|_{a_{j}}=\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} m_{i, k+\beta^{\ell-1}}\right)\right|_{a_{j}}
$$

for all k large enough and $j \in\{2, \ldots, \ell\}$. Furthermore,

$$
\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} m_{i, k+\beta^{\ell-1}}\right)\right|_{a_{1}}=\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} m_{i, k}\right)\right|_{a_{1}}+\beta^{\ell}
$$

If $i<\beta$, then $m_{i, k}=\left\lceil C_{i}(k) / \beta^{\ell}\right\rceil$ with

$$
C_{i}(k)=\operatorname{val}_{\ell}\left(a_{1}^{\beta k+\frac{(\beta-1)(\ell+1)}{2}-i}\right)=\binom{\beta k+\frac{(\beta-1)(\ell+1)}{2}-i+\ell-1}{\ell}
$$

Proof. For $i=\beta$, we clearly have $m_{\beta, k}=\operatorname{val}_{\ell}\left(a_{1}^{k}\right)$ if $\mathcal{R}_{\beta, k}$ is non-empty, and it is easily verified that $\mathcal{R}_{\beta, k}$ is non-empty if k is large enough (and $\ell \geq 2$).
For $i<\beta$, note first that $(\beta-1)(\ell+1)$ is even since β satisfies the condition of Lemma 7. Thus we have

$$
C_{i}(k) \leq \beta^{\ell} m_{i, k}<C_{i-1}(k)
$$

Since $m_{i, k}-1 \in \mathcal{R}_{i+1, k}$, we also obtain

$$
C_{i+1}(k)+\beta^{\ell} \leq \beta^{\ell} m_{i, k}<C_{i}(k)+\beta^{\ell}
$$

Therefore $m_{i, k}=\left\lceil C_{i}(k) / \beta^{\ell}\right\rceil$ and there exists a unique integer $\mu_{i}(k)$ such that

$$
\beta^{\ell} m_{i, k}=C_{i}(k)+\mu_{i}(k) \quad \text { and } \quad 0 \leq \mu_{i}(k)<\beta^{\ell} .
$$

In particular, there exists also a unique integer $\mu_{i}\left(k+\beta^{\ell-1}\right)$ such that

$$
\beta^{\ell} m_{i, k+\beta^{\ell-1}}=C_{i}\left(k+\beta^{\ell-1}\right)+\mu_{i}\left(k+\beta^{\ell-1}\right) \quad \text { and } \quad 0 \leq \mu_{i}\left(k+\beta^{\ell-1}\right)<\beta^{\ell} .
$$

From Lemma 7, we deduce that $C_{i}(k) \equiv C_{i}\left(k+\beta^{\ell-1}\right)\left(\bmod \beta^{\ell}\right)$ and consequently, $\mu_{i}(k)=\mu_{i}\left(k+\beta^{\ell-1}\right)$. From Lemma 2, we deduce that

$$
\operatorname{rep}_{\ell}\left(\beta^{\ell} m_{i, k}\right)=a_{1}^{t} \operatorname{rep}_{\left\{a_{2}, \ldots, a_{\ell}\right\}}\left(\mu_{i}(k)\right)
$$

where t is such that $\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} m_{i, k}\right)\right|=\beta k+\frac{(\beta-1)(\ell+1)}{2}-i$, and

$$
\operatorname{rep}_{\ell}\left(\beta^{\ell} m_{i, k+\beta^{\ell-1}}\right)=a_{1}^{t+\beta^{\ell}} \operatorname{rep}_{\left\{a_{2}, \ldots, a_{\ell}\right\}}\left(\mu_{i}(k)\right)
$$

Remark 4. In the previous proposition, we were interested in the first word in $\mathcal{R}_{i, k}$ but we can even describe how multiplication by β^{ℓ} affects representations inside $\mathcal{R}_{i, k}$. With notation of the previous proof, for any $n \in \mathcal{R}_{i, k}$ (and k large enough), we have

$$
\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)=a_{1}^{t} \operatorname{rep}_{\left\{a_{2}, \ldots, a_{\ell}\right\}}\left(\mu_{i}(k)+\beta^{\ell}\left(n-m_{i, k}\right)\right)
$$

with t such that $\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta k+\frac{(\beta-1)(\ell+1)}{2}-i$.
Example 8. Let $\ell=3$ and $\beta=5$. The number 171717 (resp. 172739) is the first element belonging to $\mathcal{R}_{4,100}$ (resp. $\mathcal{R}_{3,100}$). We have

$$
\begin{aligned}
& \operatorname{rep}_{3}(171717)=a^{95} b^{3} c^{2} \text { and } \operatorname{rep}_{3}\left(5^{3} 171717\right)=a^{490} \mathbf{b}^{14} \mathbf{c}^{\mathbf{0}} \\
& \operatorname{rep}_{3}(172739)=a^{55} b^{41} c^{4} \text { and } \operatorname{rep}_{3}\left(5^{3} 172739\right)=a^{493} \mathbf{b}^{\mathbf{0}} \mathbf{c}^{\mathbf{1 2}}
\end{aligned}
$$

Therefore $\mu_{4}(100)=\operatorname{val}_{\{b, c\}}\left(b^{14}\right)=105\left(\right.$ resp. $\left.\mu_{3}(100)=\operatorname{val}_{\{b, c\}}\left(c^{12}\right)=90\right)$. The number 333396 (resp. 334986) is the smallest element in $\mathcal{R}_{4,125}$ (resp. $\mathcal{R}_{3,125}$),

$$
\begin{aligned}
& \operatorname{rep}_{3}(333396)=a^{119} b^{6} c^{0} \text { and } \operatorname{rep}_{3}\left(5^{3} 333396\right)=a^{615} \mathbf{b}^{\mathbf{1 4}} \mathbf{c}^{\mathbf{0}} \\
& \operatorname{rep}_{3}(334986)=a^{69} b^{41} c^{15} \text { and } \operatorname{rep}_{3}\left(5^{3} 334986\right)=a^{618} \mathbf{b}^{\mathbf{0}} \mathbf{c}^{\mathbf{1 2}}
\end{aligned}
$$

We have $\# \mathcal{R}_{4,100}=1022, \# \mathcal{R}_{4,125}=1590$ and get the following table.

j	$\Psi\left(\mathrm{rep}_{3}\left(5^{3}\left(m_{4,100}+j\right)\right)\right)$	$\Psi\left(\operatorname{rep}_{3}\left(5^{3}\left(m_{4,125}+j\right)\right)\right)$	$\Psi\left(\operatorname{rep}_{\{b, c\}}\left(\mu_{4}(100)+5^{3} j\right)\right)$
0	$(490,14,0)$	$(615,14,0)$	$(14,0)$
1	$(484,0,20)$	$(609,0,20)$	$(0,20)$
2	$(478,22,4)$	$(603,22,4)$	$(22,4)$
\vdots	\vdots	\vdots	\vdots
1021	$(0,34,470)$	$(125,34,470)$	$(34,470)$
1022	\times	$(124,415,90)$	$(415,90)$
\vdots	\vdots	\vdots	\vdots
1589	\times	$(0,34,595)$	$(34,595)$

Acknowledgments

We thank P. Lecomte for fruitful discussions during the elaboration of this paper.

References

1. M. Andraşiu, G. Pǎun, J. Dassow, A. Salomaa, Language-theoretic problems arising from Richelieu cryptosystems, Theoret. Comput. Sci. 116 (1993), 339-357.
2. V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability, Theoret. Comput. Sci. 181 (1997) 17-43.
3. S. Eilenberg, Automata, Languages, and Machines vol. A, Academic Press, New York, (1974).
4. A. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), 105-114.
5. S. Ginsburg, E. H. Spanier, Bounded ALGOL-like languages, Trans. Am. Math. Soc. 113 (1964), 333-368.
6. G. Katona, A theorem on finite sets, Theory of Graphs, Proc. Colloquium, Tihany, Hungary (1966), 187-207.
7. P.B.A. Lecomte, M. Rigo, Numeration systems on a regular language, Theory Comput. Syst. 34 (2001), 27-44.
8. D. H. Lehmer, The machine tools of combinatorics, in Applied Combinatorial Mathematics (E. F. Beckenbach Ed.), Wiley, New York, (1964), 5-31.
9. J. S. Lew, L. B. Morales, A. Sánchez-Flores, Diagonal polynomials for small dimensions, Math. Systems Theory 29 (1996), 305-310.
10. G. Păun, A. Salomaa, Thin and slender languages, Discrete Appl. Math. 61 (1995), 257-270.
11. M. Rigo, Numeration systems on a regular language: arithmetic operations, recognizability and formal power series, Theoret. Comput. Sci. 269 (2001), 469-498.
12. J. Shallit, Numeration systems, linear recurrences, and regular sets, Inform. and Comput. 113 (1994), 331-347.
13. A. Szilard, S. Yu, K. Zhang, and J. Shallit, Characterizing regular languages with polynomial densities, Mathematical foundations of computer science 1992 (Prague, 1992), Springer, Berlin, 1992, pp. 494-503.
