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Abstract. Achieving good performance in biometrics requires matching the
capacity of the classifier or a set of classifiers to the size of the available train-
ing set. A classifier with too many adjustable parameters (large capacity) is
likely to learn the training set without difficulty but be unable to generalize
properly to new patterns. If the capacity is too small, the training set might
not be learned without appreciable error. There is thus advantage to control
the capacity through a variety of methods involving not only the structure of
the classifiers themselves, but also the property of the input space. Ths paper
proposes an original non parametric method to combine optimaly multiple
classifier responses. Highly favorable results have been obtained using the
above method.

1 Ensemble of classifiers

One recent trend in computational learning looks at what Valiant called “theory of
learnable” [24] . Suppose we have a set of n samples and use these to fit a finite
number M of classifiers from a family F of possible classifiers. Then the proba-
bility that a classifier g chosen is consistent with a training set yet having overall
error rate at least F,, is at most M (1 — E,,)". Using a single classifier has shown a
certain limitation in achieving satisfactory recognition performance and this leads
us to use multiple classifiers, which is now a common practice [15]. Readers can
find surveys in Ripley [21] and in Devroye et al. [5]. Some recent papers include
those proposing directional: mixtures of experts [12], boosting methods [6], bagging
methods [2], query by committee [8], stacked regression [25], distributed estimation
for data fusion [1,9,23]. These papers prove that the approach of multiple classi-
fiers produced a promising improvement in recognition performance. The efficacy
of the method is explained by the following argument: for instance, most classifiers
share the feature that the solution space is highly degenerate. The post-training
distribution of classifiers trained on different training sets chosen according to the
density of the samples p(z) will be spread out over a multitude of nearly equivalent
solutions. The ensemble is a particular sample from the set of these solutions. The
basic idea of the ensemble approach is to eliminate some of the generalization errors
using the differentiation within the realized solutions of the learning problem. The
variability of the errors made by the classifiers of the ensemble has shown that the
consensus improves significantly on the performance of the best individual in the
ensemble**. In [11], Hansen et al. used a digit recogntion problem to illustrate how

** This analysis is certainly true for situations described here wherein the classifiers of the
ensemble see different training patterns, it can be effective even when all the classifiers
are trained using the same training set [10].



the ensemble consensus outperformed the best individuals by 25%. The marginal
benefit obtained by increasing the ensemble size is usualy low due to correlation
among errors made by participating classifiers on an input z [10]: most classifiers
will get the right answer on easy inputs while many classifiers will make mistakes
on “difficult” inputs.

The number of classifiers can be very high (some hundreds) so it is difficult to un-
derstand their decision characteristics. Some of the above referenced papers used a
simple scheme of combination, which just cascade multiple classifiers. This scheme
results in a less larger robustness of the agregated classifier. This is due to classifiers
interdependencies that may reduce the recognition performance.

Our present interest is a new scheme to improve class separation performances in
combining multiple classifiers using information theoric learning.

The paper is organizes as follows. Section 2 explains the basic idea of wavelet de-
noising. Section 3 presents a theoretical sketch of bins-based classification (BBC).
Section 4 provides an independence measure based on mutual information to evalu-
ate the classifier combination. Section 5 presents an experiment where few samples
are available in the case of iris recognition and further investigations are finally
discussed.

2 Relations between independence and M-ary classifiers
collective decision

One can often read in literature the following sentence “to combined a set of clas-
sifiers, it is better to choose independent classifiers”, e.g. in Nadal et al. [17]. This
idea is vague and this is illustrated on the following example.

Ezxample 1. Consider a binary classification problem (with equiprobable classes w1 and
wz) with two classifiers C1 and C2 whose outputs are ¢; and ¢2. Suppose there is no reject
mechanism and that their performances are homogeneous for the two classes, i.e. their
probabilities of correct classification A1 and As are equal: p(s1 = wi|w1) = p(s1 = walwa) =
A1 and p(se = wilwi) = p(s2 = w2|w2) = A2. By evidence, p(s1 = wilw2) = p(a1 =
wawi) =1 — A1 and p(s2 = wi|wz) = p(s2 = wz|lw1) = 1 — A2. The probabilities of the
outputs ¢1 and ¢» are

p(s1 = w1) = p(s1 = wilwi)p(wi) + p(si = wilw2)p(ws) = A + (1= A)5 =
p(s2 = w1) = p(s2 = wi|wi)p(wi) + p(c2 = wi|w2)p(w2) =
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Suppose the two classifiers are independent, then we have p(¢1 = w1,¢ = w1) = p(s1 =
w1)p(sz = w1) = 33 = 1. Similarly, p(s1 = wi,6 = w2) = p(61 = wa, 62 = w1) = p(s1 =
w1)p(se = w2) = 33 = ;. Thus the performance of the ensemble is independent of the
performance of the individuals. This can be possible only if A1 = Xy = %, i.e. two classifiers

are independent if their are random (recognition rate at 50%) ! O

This example suggest that interesting classifiers should not be independent in the
classical sense. Still one class of probabilities consists of conditional probabilities
[20], e.g. we have to impose that classifiers be independent for each class. Conditional
densities of two random variables ¢; and ¢ conditioned by the class arise in the
following case :

p(s1 = wj, 6 = wew;) = p(61 = wj|wi)p(s2 = welw;),V1 < i, j, L < K. (1)

Suppose that prior probabilities p(w;) = 1/K,Vi and that both classifiers admit a
conditional probability and satisfy Eq. (1). Then,

P61 = wj, 62 = we) = p(61 = we)p(sa = wy),V1 < j, £ < K. (2)



where p(si = w;) = Y, pls1 = wjlwi)p(w;) = £ K p(st = wilw;) and p(ss =
wy) = Zflp( a1 = welwi)p(w) = % >0, P(€2 = we|w;). Hence, p(q = wj,¢2 =

we) = YK b6 = wj, 00 = welw)p(w;) = £ Xk, pls1 = wj, 62 = welw;). Eq. (2)
becomes:

| X K | X
EZ 1= wj, 2 = welw;) = Z a = wjlwi) 3 > pls = welwy), (3)
i=1 i=1 i'=1
| KX
=72 D> pla = wjlwi)ples = welw),  (4)
i=14i'=1
Replacing (1) in (4) glve 3K p(a = wj, 0 = welwi) = 25 Yi, pls1 = wjlwi)p(s2 =

welws) + 27 Yy 2o ;él p(s1 = wj|wi)p(sa = we|wyr) . At the end :

K K K
1)) plor = wj,0 = welws) =Y pler = wj|wi)p(sz = welws)  (5)
i=1

i=1 i'#i

Eq. (5) can be satisfied only if at least one of both conditions is true: p(¢; = wj|w;) =
1/K,V1<i,j < K or p(s1 = welw;) =1/K,V1<i,{ < K.

Ezxample 2. Consider once again our toy example restricted to binary classification and
decide that Ay = A2 = 1. Similarly, p(s1 = w2,¢2 = wi|wi) = 1 and p(s1 = wi|w1)p(se =
wi|wi) & A2 = 1. We conclude that the two classifiers performed well even they are
conditionaly independent.

Further, conditional independence will be the evaluation criterion of the classifiers.

3 Bins-based classification

Suppose that the classifiers of the ensemble are each trained on independently chosen
training sets of s samples selected according to p(xz). We have K classes, each
represented as w;,1 < i < K. Let p(w;|z) be the probability that z comes from
w;. The classifier has K possible categories to choose. It is well known that the
Bayes classifier represents the optimum measure of performance in the sense of the
minimal classification error [26]. The Bayes classifier selects the class w*(z) = wj if
p(wj|z) = arg max p(w;|z), where (2 is a partition of the feature space. Using Bayes’
’ p(aw;)p(w;)
it p(z|wi)p(wi)’
likelihood function of class w;) and p(w;) are usually unknown but can be evaluated
using the learning data set.

Suppose there are a number of classifiers C,1 < k < M, each of which produces
the output ¢ (z) (simplified for readibility in ¢;). Then the bayes formula gives

formula, this posterior probability is p(w;|z) = where p(z|w;) (the

p(wjlst, ..., sm) = II;(Q, -y Sm|w;)p(w;) )

> i1 PS1y - - Sarfwi)p(w;) ‘

Estimating the unknown likelihood p(si,...,sm|w;) is of primordial importance.
They could be estimated using some parametric model, but we have no prior infor-
mation on the collective functionning of the classifiers. This motivates us to search
for distribution-free performance of error estimation using a histogram-based rule
with a fixed partition, the number of bins in the partition being “not too large”.
Such learning algorithm is given in Table 1. The interesting point sets in the fact
that no prior knowledge is needed by the classifiers.

The output space of the classifiers is a discrete space with K + 1 distinct points



LEARNING ALGORITHM

Inputs: {z1,...,Z0};

Init. Partition output space of C in gqx bins £¥, ..., C%,
Q= Hszl qr. sets of exactly K counters associated to the K classes, denoted®
ni o 1<i<K.
REPEAT
1 Compute the outputs <1 (z),...,sm(x) of the classifiers
2 For each Cy, find 4 such that ¢ (z) € £F,1 < i < g
3  Increment the counter of those indices n;}’”*/" matching the true class wirue Of
x
4  For each possible combination of indices i1,...,ix, 1 < i < g, collect the
agregated classification response y;,,....ix (T) as
. 'U)J _ Wy
Yir,osin (T) = R 12&5}% Titeeoiae >0
wo in the other case.
FOR EACH z € {z1,...,2Za}.

output: {¥iy,..ix (1), -5 Yin,.oig () }5

“41,...,im are the indices of the set of counters.
Table 1. “Poor man” BBC learning algorithm.

corresponding to the K possible classes, the supplementary one being the rejection
class***. The most natural division for such a space consists to consider each point
as a division, i.e.

L;={w;},1<i< K, et Lo = {wo}(rejection class). (7

The classification algorithm is given in Tab.2. If the objective is to provide subjective
probabilities and not to classify, the step 3 changes. Then, subjective probabilities

can be computed from n;’ , for each class by:

S FUSHLEY B T = P 0
P(wz) = ;\/1=1 "11] ----- im Lot ;é ’ (8)
0 in the other case.
In the case of a rank-classifier, the output is a K —dimensional vector ¢, = (rf,...,r%),

k
) ; J
is subdivided in gj; intervals L’f] which can be of different size, e.g. L’f’, 1<l < gy

where r;? is the output of the classifier £ corresponding to the class w;. Each axe r

is an interval defined by its lower and upper bounds by [Lfﬂ 1 ij ]. The index iy, in
the algorithm is computed by

iy = Z (ikj 1:[ %e) ; 9)
j=1 =1

where the indices i;; are such that rf € /.kajj

4 Independence measure of the classifiers ensemble

In section 2, we prove that conditional independence of two classifiers C; and Cs re-
quires that p(sy, sa|w;) = p(s1|w;)p(sa|w;). This is a desired property of the ensemble

*** If the objective is just to give subjective probabilities and not to classify, we just need

to collect the counter values nj/*c, .



CLASSIFICATION ALGORITHM
1 Compute the outputs <i(z),...,sm(z) for a given form x
2 For each ¢ (), find ik such that ¢ (z) € £ .
3 Compute yi,,...,i, () as the agregated classification response.
Table 2. Application of the BBC algorithm for a given input z.

performances. The Kullback-Leibler (KL) divergence can be considered as a kind of
distance! between two probability densities, because it is always non negative and
it is equal to zero iff the two distributions are equal* (see Hyvrinen et al. [19] for
more details). This is defined between two probability density functions (pdf’s) g
and f as
f(z
Dl = 3 1o 7z) (10)
g9(z)’
To apply the Kullback-Leibler divergence here, one might measure the independence
between the joint density p(s1, s2|w;) and the factorized density p(s1|w;)p(s2|w;), i.e.

p(s1, S2|w;)
p(si|wi)p(alw;)”

D(p(s1,s2|wi)l[p(si|wi)p(sa|wi)) = Y plsa, sa|wi) log (11)

$1,62

The more D(p(s1,s2|w;)||p(s1|w;i)p(s2|w;)) is small, the more the classifiers are in-

dependent given the class w;. For a finite number of class {wq, w1, ..., wx}:
D(z) = Zp w;) D (p(s1, s2|wi) ||p(s1|wi)p(sz |wi)) (12)
_Zp u)l Zp §17§2|wl logM (13)
1,62 p(st|wi)p(s2|w:)
DS, S2|w;
=3 bl g - ) ”
Wi 61,62 (§1|w,) (§2|’wi)

Rearranging (14) we find for a given x:

D(z) = =Y p(si,,wi)log [ p(s;lwi) + Y plsr, s, w:) logp(sr, 2 lwi) (15)

w; j=1 w;

2
=ZZHJ-—H(q,cz;wo,---,wk), (16)

=1 w;

where H; = =37 E]- log p(s;|w;)p(s1, 52, w;) is the entropy of the j—th classifier
and H(s1,;wo, ..., wk) denotes the total entropy onto the total set of classes
{wo, ..., wk}. From (16) and noting that D(x) > 0, we see that the inequality (17)

holds
H(c1,2;wo,. .., wk) < ZZHj) (17)
J o owi

with equality iff the conditional mutual information equals zero D(xz) = 0, i.e
the multivariate probabilities is fully factorized p(s1, s2|wi) = p(s1|w;)p(s2|w;). The
mutual information between the two classifiers C; and C2 measures the quantity of

t Although KT divergence does not satisfy the axiom of symmetry [16].
¥ This is a direct consequence of the (strict) convexity of the negative logarithm. This is
not a proper distance measure because it is not symmetric.



information that each classifier conveys about the other; this can be considered as
a measure of statistical correlation between the classifiers (see Cardoso [3] and Oja
[19]). In other words, suppose ¢» and D(z) are important, then the knowledge of ¢
does not give us much more information (most information in ¢ is already in ¢2).
Hence, a small value of D(z) is preferable for combination of classifiers.

4.1 Estimation of the independence measure

Let us denote nj?*, £ 37, ... 3, ni, . for simplicity. Note that such calculus

302500yt
requires only few arrangement from the proposed algorithm in section 3. The various

probabilities given in equation (14) can be estimated by the following marginals:

Ws
. nllﬂ2 18
p(§15 S2, wl) E E ( )
w; 11,12 21712
:'l;z,lé
p(s1, 2wi) = ﬁa (19)
i1,i2 11,12
Z. n¥i.
p(si|wi) = 2127“10’2’ (20)
11,22 11,02
Eh n:'liiiz
) = T w2 21
p(s2|wi) S (21)
By inserting Eqgs. (18-21) in (14), we obtain
nziﬂé
ZZ 11,12 log sz B a,ﬂ (22)
11)1 )
wi 1,02 Ew, E B a,ﬁ E ’I’Lh o na i2

Z na Z n
and, after some algebra manipulation:

D(z) = E p Zw Z Z ni'i, log nil“ﬂ: 5(§ ‘:L’;ﬁl N (23)

’ﬁ 11,2 W; )

5 Application to M-ary classifier to iris recognition

Iris recognition combines computer vision, pattern recognition, statistics. The purpose is
real-time, high confidence recognition of a person’s identity by mathematical analysis of
the random patterns that are visible within the iris of an eye from some distance. Because
the randomness of iris patterns has very high dimensionality, recognition decisions are
made with confidence levels high enough to support rapid and reliable exhaustive searches
through large-sized databases. Iris recognition technology identifies people by the unique
patterns of the iris - the colored ring around the pupil of the eye. Features extraction
used a 4 step protocole: (z) localisation of the eye regions in the face, (i7) detection of the
outlines of the eyes, (747) localisation of the pupils, (iv) extraction of the gradient vector
field.

The pupil detection used the luminance image of the face: the image of the face is divided
in 4 almost equal rectangles of size £/2 x L/2 where ¢ is the width of the face and L
its height. On each eye region, the luminance image is then computed and filtered by a
retinian filter (to correct local variations of light), from which one extract the norm and
the direction of the gradient. Conversion of an iris image into a numeric code that can
be easily manipulated is essential to its use. A first process developed by Daugman [4],
permits efficient comparisons based on information from a set of gabor wavelets, which



are specialized filters bank that extract information from a signal at various locations and
scales. Once the image have been obtained, an iris code is computed based on information
from a gradient field. Iris code derived from this process are compared with previously
learned iris code.
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Fig. 1. (a) Eye region detection. (b) Iris outlines extraction. (c) Iris vector field computed.

5.1 Data collection

A serie of experiments? was performed for both tasks (i) evaluating features, () evaluating
recognition performance by combining multiple classifiers. The database and features to
be used are as follows: let By = {(z1,w1),-- ., (n,wn)} be a n = 30 eye-images database,
x; a N-dimensional vector composed of a set of feature cells x;; identified by the pixel
P; = (a;,b;), 1 <j <N, w; the label attached to the i-th image. Two numerical features
that have good recognition performance in practice are used in this experiment: the first
feature called CGB ( Contour-Based Gradient Distribution) [13] is computed by computing
the Sobel operator onto the normalized mesh R and computing the gradient direction
distribution map. The second feature, called DDD (Directional Distance Distribution)
[18], is computed using distance information. Each pixel in the binary map R shoots rays
in eight directions and each ray computes the distance to the pixel with opposite color
(black or right). Both map CGB and DDD can be represented with a N = 256—dimensional
feature vector & = (21,...,zn). Due to the small size of the dataset n < N, performance
evaluation of the agregated classifier is done by bootstrap (see Kallel et al. [14] for details).
In this experiment, a M-ary classifier (M = 100) is trained on the basis of the algorithm
reported in Tab. 1: one half with CGD-based inputs, one half with DDD-based inputs. A
partial classifier is a classifier which takes into considerations only N’ —inputs, N' < N
(see [22]).

For a given classifier, N' randomly chosen positions in the gradient vector field of the mesh
R are memorized. For a new image, gradient values are collected at the same positions.
Other positions are randomly selected for a new classifier. Hence, we evaluate the M —ary
classifiers in supposing a “degenerate” feature space.

5.2 Method

Classically, if there are numerous data, the first step consists in the division of the supplied
data into two sets : a test set and a training set. This is not possible here due to the small
size of the dataset. Our last resort since no classical inference is possible due to the intrinsic

§ Private dataset, property iof the LIS.

T CGB contains the local information about the image because the edge operator can
extract only the local gradient direction information. On the contrary, DDD capture
the global information since directional distance information provides a rough sketch of
the global pattern.




complexity of the problem is to construct an estimate of the density function without
imposing structural assumptions. Using resampling methods such as bootstrap [7], the
information contained in the observed dataset Bo, drawn from the empirical distribution
Fo such that {(z1,w1),...,(zn,wn)} % Fo, is extended to many typical generated data
sets B*®,1 < b < B such that {(z}% wi®),..., (2, w:b)} “d F*b. These samples are called
bootstrapped samples (see [2]).

In our framework, B = 200 replications randomly drawn from the initial sample by re-
sampling with repetitions. Tab. 3 describes the training algorithm. We look then for the
winner class j represented by the code vector z; € ]RR’,

j = arg min llz — il (24)

The agregated classification response y;‘f’,___,iK (z) is then updated according to Tab. 1.

TRAINING ALGORITHM

input 30 Initial CGD and DDD R meshes

init. Bo=Empty list; By =Empty lists (1 < b < B);

FOR EACH C, 1 <k< M
1 Choose pixel P* = () 5¥)),1 < i < N’ « N randomly in the mesh R.
2 Get {z?,...,2%} with 20 Pi(k);

ENDFOR
3 Draw random samples B;,1 < b < B with replacement from By.

FoR EACH B;,1<b<B
4 Construct the classifier C;®,1 < k < M (see Tab.1)® using the bootstrap sample.
5 Collect the agregated classification responses y,*lbl « ().

ENDFOR

Table 3. Experimental protocole including bootstrap resampling method.

@ The choice of classifier type has few impact on the results.

At the end, in Tab.3, a new observation z is classified by majority voting using the pre-
dictions of all classifiers. Tab. 4 compares the recognition rates based on DDD, CDG and
mixed CGD-DDD based classifiers using the original samples Bo. It is apparent that the
CGD feature has a better recognition performance than the DDD feature, this means a
better discriminating power. Combination of both CGD-based and DDD-based classifiers
was also tested and show some improved performance. Further test show that these recog-
nition rates are improved in all case when the size of the pattern vector is larger. Although
3% may appear to be a small increase, it should be borne in mind that even small per-
centage increases are difficult to generate when the overall classification accuracy level
exceeds 80%. We can therefore conclude that bootstrap is a useful technique for improving
the performance of classifier. Thus, this algorithm forces the classification to concentrate
on those observations that are more difficult to classify. We can also conclude that the
rank-based classifiers produce significantly improvement over the class-based classifiers.
Note that no test step is necesary with bootstrap.

6 Conclusion

A non parametric method for multiple classifiers fusion was describe and evaluated
on a biometrics data. As our experimental results indicate good performance clas-
sification is archieved although there is room for improvement and although these
results are not comparable with the recognition rate proposed with industrial de-
vices (see [4]). The aggregated classifier scheme proposed exploits the simple fact



classifier RANK-BASED (%) CLASS-BASED (%)

CGD 99,521 +3,07 |96,65 +6, 40
DDD 99,492 +22,36(96,55 +6, 40
CGD+DDD (/99,638 +11,0 |96,98 +7,34

Table 4. Comparison of recognition rate (%) with
boostrap standard deviation (No rejection).

that consensus decision produce a significant improvement over the original clas-
sifiers. An important merit lies in the low computational cost. The method could
ten be used to speed up processing of larger datasets consisting of 100.000 cases or
more. The price paid, in terms of drop of accuracy was rather small.

It is by no means clear, whether the same method could also be used in conjunction
with other types of classifiers. It could be expected that the BBC method when
used in conjunction with a k-NN classifer would not only deliver faster results, but
also archieve higher accuracies.

References

1. U. Beyer and F. Smieja. Learning from exemples, agent teams, and the concept of
reflection. International Journal of Pattern Recognition and Artificial Intelligence,
1994.

2. L. Breiman. Bagging predictors. Rapport technique TR-421, Statistics Department,
University of California, Berkeley, 1994.for our model.

3. J.F. Cardoso. Multidimensional independent component analysis, Proc. ICASSP’98,
4, pp. 1941-19944, 1998.

4. J. Daugman. high confidence visual recognition of persons by a test of statsitical
independence”, IEEE Trans. PAMI, 1, Nov. 1993, pp. 148-160.

5. L. Devroye, L. Gyrfi and G. Lugosi. A probabilistic theory of pattern recognition,
Application of Mathematics, Springer, 1991.

6. H. Drker, C. Cortes, L.Jackel, Y. Lecun and V. Vapnik. Boosting and other ensemble
methodes. Neural Computation, 6(6), pp. 1289-1301, 1994.

7. B. Efron (1979) The convex hull of a random set of points. Biometrika, 52, p 331-342.

8. Y. Freund, H. Seung, E. Shamir and N. Tishby. Information, prediction and query
commitee. Neural Information Processing Systems, S. Hanson, J. Cowan, C. Giles
ed., pp- 483-490, Denver, 1993.

9. J. Gubner. Distributed estimation and quantization. IEEE Trans. on Information
Theory, 39(4), pp. 1456-1459, 1993.

10. L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans. on PAMI, 12,
pp. 993-1001, 1990.

11. L.K. Hansen, C. Lsberg and P. Salamon. Ensemble methods for recognition of hand-
written digits. Proc. IEEE Signal Processing Workshop, S.Y. Kung, F. Fallside, J.A.
Sorensen and C.A. Kamm Ed.; Piscataway, NJ, pp. 540-549, 1992.

12. M.I Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6, pp. 181-214, 1994.

13. AK. Jain. Fundamentals of digital image processing, Prentice-Hall Inc., 1989.

14. R. Kallel, M. Cottrell and V. Vigneron. Bootstrap for neural model selection. Proc.
of the 8" European Symposium on Artificial Neural Networks, Bruges, 22-24 Avril,
2000.

15. J. Kittler and M. Hatef. Improving recognition rates by classifier combination. Proc.
IWFHR’96, pp. 81-101, 1996.

16. A.N. Kolmogorov and S.V. Fomin. Elements of the theory of functions and functional
analysis, Vol. 1, Graylock Press, 1957.

17. J.P. Nadal, R. Legault et C. Suen. Complementary algorithms for the recognition
of totally unconstrained handwritten numerals. 10* International Conference on
Pattern Recognition, pp. 443-446, Atlantic cit, 1990.



18.

19.

20.

21.

22.

23.

24.

25.
26.
217.

1.S. Oh, J.S. Lee and C.Y. Suen. Analysis of class separation and combination of class
dependent features for handwriting recognition, IJEEE Trans. on PAMI, 21(10), pp.
1099-1125.

A. Hyvrinen, J.Karhunen and E. Oja. Independent component analysis, John Wiley
& Sons, 2001.

J. Pearl , D. Geiger and T. Verma. Conditional independence and its representations.
Kybernetika, 25(2), 1989.

B.D. Ripley. Pattern recognition and neural networks, Cambridge University Press,
1996.

C.M. Soares, C.L. Frées da Silva, M. De Gregorio and F.M.G. Franca. A software
implmentation of the WISARD classifier, Proceeding of Brasilian Symposium on Ar-
tificial Neural Network, Belo Horizonte, MG, december 9-11, 1998, vol. II, 225-229.
K. Tumer and J. Ghosh. A framework for estimating performance improvements in
hybrid pattern classifiers. Proc. World Congress on Neural Networks, San Diego, pp.
220-225, 1994.

L.G. Valiant. A theory of the learnable. Communications of the association for com-
puting machinery, 27, pp. 1134-1142, reprint in Shavlik & Dietterich, 1990.

D. Wolpert. Stacked regression. Neural Networks, 5(2), pp. 241-260, 1992.

J.T. Tou and R.C. Gonzalez. Pattern recognition principles, Addison-Wesley, 1974.
A. Zapranis, A.-P. Refenes (1999) Principles of Neural Model Identification, Selection
and Adequacy, Springer, London.



