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Abstract

This paper deals with the design of a sliding mode

multiple observer (an observer based on a multiple

model) allowing to estimate the state vector of a non

linear dynamical system. This latter is influenced by

unknown inputs which act on it through a known

transmission matrix. The state estimation and

consequently the output estimation can therefore be

classically used for detecting and isolating faults.

Keywords: multiple model, multiple observer, sliding

mode, state estimation, unknown inputs.

1 Introduction

The general procedure for using an observer for  fault

detection and isolation consists of three main steps:

1. Estimating the output measurement of the

system by using an adapted structure of the

observer.

2. Comparing the estimated and the measured

outputs, i.e. generating the so-called residuals.

3. Analyzing the residuals and deciding if a fault

occurred or not.

The decision process may be based on a simple threshold

test applied on the instantaneous value or on a moving

average of the residuals. However, when the system

under consideration is subject to unknown disturbances

or unknown inputs, to  properly achieve fault detection

needs the effect of the disturbance to be de-coupled from

the residual signal; that allows to avoid false alarms in

the detection procedure. This problem is known in the

literature as the robust fault detection problem which is

mainly solved by using unknown input observers [7].

The problem of state estimation of linear systems subject

to unknown inputs has received considerable attention [4]

and [11]. However, a very few works have been developed

for nonlinear systems [3] and [12]. The purpose of this

work is to propose a methodology for the design of a

nonlinear observer of this type of systems.

2 Sliding mode multiple observer

The concept of sliding mode emerged from the Soviet

Union in the late sixties where the effects of introducing

discontinuous control action into dynamical systems were

explored. By the use of a judicious switched control law, it

was found that the system states could be forced to reach

and subsequently remain on a pre-defined surface in the

state space. Whilst constrained to this surface, the

resulting reduced-order motion – referred to as the

sliding motion – was shown to be insensitive to any

uncertainty or external disturbance signals which were

implicit in the input of the system.

This inherent robustness property has resulted in world

wide interest and research in the area of sliding mode

control. These ideas have subsequently been employed in

other situations including the problem of state estimation

via an observer.

The earliest work of Utkin is based on a discontinuous

structure for the observer as described in [5]. Walcott and� ✁✄✂✆☎✞✝✠✟✡✁
Lyapunov-based approach to formulate and

synthesize an observer which, under appropriate

assumptions, exhibits asymptotic state error decay in the

presence of bounded nonlinearities and uncertainties on

the input of the system [4]. Edwards and Spurgeon

propose an observer strategy, similar in style to that of

Walcott and ☛ ☞✄✌✎✍✄✏✒✑✎✓✕✔✖✑✗✔✘✓✕✙✘✔✘✚✜✛✣✢✥✤✧✦✜★✪✩✫★✬✑✞✤✭✚✞✩✠✤✯✮✧✰✱☞✲✩✖✳✥✛✵✴✶✮✸✷ ✓✕✔
manipulation and offers an explicit design algorithm.

Within the framework of the multiple model approach,

the synthesis of regulators by using sliding mode was also

considered [10].

The presented work consists in conceiving a sliding mode

multiple observer, capable of reconstructing the state and

the output vectors of a system when some inputs are

unknown, such as each local observer is modeled in the

same way of Walcott’s and ✹✞☞✄✌ ✺ ✻ observer (1988).

2.1 Multiple model representation

Let us consider a nonlinear system represented by the

following multiple model (with r local models) with

unknown inputs:

✼
x t t A x t B u t R u t D

y t Cx t

i i i i i

i 1
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∑ ξ
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where x t Rn1 6 ∈  is the state vector, u t Rm1 6 ∈  is the input

vector, u t Rq1 6 ∈  the vector of unknown inputs and

y t Rp1 6 ∈  the vector of measurable output. For the ith

local model, A Ri
n n∈ ×  is the state matrix, B Ri

n m∈ ×  is

the matrix of input,  R Ri
n∈ ×q  is the distribution matrix

of the unknown inputs and D Ri
n l∈ ×  is a matrix



depending on the operating point. Moreover, C Rp n∈ ×  is

the matrix of output. It is assumed that the matrices R i

are perfectly known ; on the contrary the time evolution

of u t1 6  is unknown. Finally, ξ t1 6 represents the vector of

decision depending on the input and/or the measurable

state variables: the value of ξ t1 6 allows to specify what

are the active local models at time t.

The procedure that allows to obtain this structure and to

estimate its parameters is not developed here. Let us only

state that one can either uses techniques of parametric

estimation [8] or linearization techniques [9].

2.2 Multiple observer structure

The proposed observer for the multiple model (1), is a

linear combination of local observers, each of them having

the structure proposed by Walcott and � ✁✄✂✆☎
In this part, we consider that the inputs u t1 6  are

bounded, such as u t1 6 ≤ ρ, where ρ is scalar and ⋅
represents the Euclidean norm.

It is also assumed that there exists matrices G Ri
n p∈ ×

such that A A G Ci i i0 = −  have stable eigenvalues and

that there exists Lyapunov pairs P Qi,1 6 such that the

structural constraints:

A0i
T P PA Qi i+ = −0 (2-a)

C F PRT
i
T

i= ∀ ∈, ,...,i r1; @ (2-b)

are satisfied for some F Ri
q p∈ × .

The proposed observer has the form:

✝ ✞ ✝
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One can determine the matrices G i  and the control

variables νi t1 6 , with νi
qt R1 6 ∈ , which guarantee the

exponential convergence of ✟x t1 6  towards x t1 6 .

Let us note that equation (2) allows to isolate the

unknown inputs.

In order to estimate the state vector of the system (1), we

are going to proceed to two successive coordinate changes

of the state vector.

2.3 First change of coordinates

Let us suppose that all the pairs A Ci,1 6  are observable.

As the outputs of the system are to be considered for the

design of the observer, it is logical to effect a coordinates

change so that the outputs directly appear as components

of the new state vector. Without loss of generality, the

output distribution matrix can always be written as:

C C C1 2= (4)

where C R , C R and det C 01
p n p

2
p p

2∈ ∈ ≠× − ×1 6 1 6 . The

following change of coordinates is then operated:
~ ~
x t Tx t1 6 1 6= ,

~
T

I 0

C C

n p

1 2

=
�
! 

"
$#

−
(5)

where 
~
T  is a non singular matrix. With respect to this

new coordinate system, the new output distribution

matrix can be written as:

~ ~
C = CT 1−  (6)

The other system matrices are written as:
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(7)

The Lyapunov matrices P Qi,1 6 and the structural

constraints (2) became, in the new coordinates, as follows:

~ ~ ~
P T PT

T

= − −1 14 9 (8-a)

~ ~ ~
Q T Q Ti

T

i= − −1 14 9 (8-b)

~ ~~
C F PRT

i
T

i= (8-c)

According to definitions (7), the system (1) can be

rewritten under the following form:

~✠ ~ ~ ~ ~ ~

~

x t A x t B u t R u t D

y t x t

i i i i1 6 1 62 7 1 6 1 6 1 64 9

1 6 1 6

= µ + + +

=
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i 1

r

tξ

2

(9)

where ~
~

x Tx tt1 6 1 6= (10)

Summarizing, the change of coordinates allows to express

directly the output vector as a part of the state vector.

2.4 Isolating the unknown inputs

Now the result concerning the conception of a robust

observer in the presence of unknown inputs established

by Walcott and ✡ ☛✄☞✍✌✎☛✑✏✓✒✕✔✗✖✆✘✙✔✑✚✜✛✣✢✥✤✧✦★✘✪✩✙✔✑✘✫✖✜✬✮✭✯✦★✘✰✭✱✤✧✔✳✲
extended to the conception of a multiple observer.

Let the local models 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  defined by equation (9)

where 
~
A i  are stable matrices ∀ ∈i r1,...,; @ , and

A B R Ci i i, , ,4 9  be related to 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  by a non-

singular similarity transformation T, where x t Tx t1 6 1 6= ~
.

Then, the system matrices are written in the new base as

follows [4]:
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B
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Proposition 1: let 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  be a local model for

which there exists a pair 
~

,P Fi4 9 defined by constraints (8-

c). Then, there exists a non-singular similarity

transformation T so that the quadruple A B R Ci i i, , ,4 9  in

the new coordinates exhibits the following properties:



1. A A G C
A A

A A
i i i

i i

i i

0
011 012

021 022

= − =
�
!
 
 

"
$
#
#
 where

A Ri
n p n p

011 ∈ − × −1 6 1 6
 are stable that implies that

A Ri
n p n p

11 ∈ − × −1 6 1 6
 are stable.

2. R
P F

i
i
T=

�
! 

"
$#

0

22
*  where P Rp p

22
* ∈ ×  with P P

T

22 22 0* *= >4 8

3. C CT Ip= =−~ 1 0
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P

P
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�
!
 
 

"
$
#
#

− −1 1 1

2

0

0
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where  P R and P R
n p n p p p

1 2∈ ∈− × − ×1 6 1 6
.

Proof: Let us consider the pairs 
~

,P Fi4 9 associated to the

local model 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  and the Lyapunov matrix 

~
P

written as follows:

~
~ ~

~ ~P
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Let us define the change of coordinates using the

following transformation:

T
P P

Ip

=
�

!
 
 

"

$
#
#

~ ~
11 12

0
(11-a)

which is non-singular since det det
~

T P4 9 4 9= ≠11 0 because

~ ~
P PT

11 11 0= > . In the new coordinate system,

C CT Ip= =−~ 1 0  and thus property 3 is satisfied. ♦

From equation (8), one obtains 
~ ~ ~
R P C Fi

T
i
T= −1 . If 

~
P−1  is

expressed as 
~ * *

* *
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P P

P P
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and so property 2 is proved ♦
If there exists a Lyapunov matrix 

~
P  which satisfies

constraints (8), then the matrix P T PT
T

= − −1 14 9
~

 is a

Lyapunov matrix for A i0  and satisfies the structural

constraints C F PRT
i
T

i=  ∀ ∈i r1,...,; @ . Using the

partitioning of 
~
P and T , a direct computation leads to:
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where P P P P PT
2 22 12 11

1
12= − −~ ~ ~ ~

 and thus P has the required

block diagonal structure of property 4. ♦
Finally, as the Lyapunov matrix P  related to A i0  has

been demonstrated to be block diagonal, the matrices

A and Ai i011 022  are stable. Indeed, from equations (2-a)

and (12), one obtains:
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As A A G C Ai i i i011 11
11

11= − =4 9  and since G Ci4 9
11

0= ,

∀ ∈ ×G Ri
n p  (see property 3), the matrices A i11  are also

stable, so property 1 is proved. �

2.5 Synthesis of a multiple observer

Let us suppose that there exists a pair of Lyapunov

matrices 
~

,
~

P Qi4 9 checking the constraint (8) for each local

model described by 
~ ~ ~ ~
A ,B ,R ,i i i C4 9 . Then, there is a non-

singular transformation T from which the multiple model

with unknown inputs can be written in the following

form:

✁
x t t A x t B u t R u t D

y t x t

i i i i i

i

r

1 6 1 62 7 1 6 1 6 1 64 9
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1

2

(13)

or in a developed form:

✁

✁

x t t A x t A x t B u t D

x t t
A x t A x t B u t

R u t D

y t x t
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Notice that x t11 6  does not depend explicitly upon the

unknown inputs u t1 6 .

According to equation (13), the proposed multiple

observer has the following form:

✂ ✁ ✂
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y t Cx t

i
i i i

i y i i
i

r

1 6 1 62 7 1 6 1 6
1 6 1 6

1 6 1 6

= µ + + −
+

�
��

�
��

=

%
&
KK

'
KK

=
∑ ξ ν

1
(14)

with G
A

A A
and K

P R
i

i

i
s i

i

=
−

�
!
 
 

"
$
#
#

=
�
! 

"
$#−

12

22 22 2
1

2

0

where 
✂
x t1 6  represents the estimated state vector. As

22  is a

stable matrix and the discontinuous vector functions νi t1 6
are defined as follows:

ν ρ
i

i
T

i i
T

y
T

i yt
E E E e t P R if e t

elsewhere
1 6 4 8 1 6 1 6= − ≠%

&K
'K
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2 2 0
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(15)

with: e t y t y t E e t R i ry i y
T

i1 6 1 6 1 6 1 6 ; @= − = ∀ ∈
✂

, , ,...,2 1  and

P Rp p
2 ∈ ×  is the unique symmetric positive definite

solution of the Lyapunov equation:

P P Qs s
T

2 22 22 2 2A A+ = −4 8  (16)



Let us denote state estimation and output errors as

e t x t x t1 1 11 6 1 6 1 6= −
�

 and e t e ty21 6 1 6= . By direct time

derivative, their dynamic evolutions check:
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Lyapunov equation

In order to show the exponential convergence of this

observer, let us consider the following Lyapunov function:

V e e e P e e P eT T
1 2 1 1 1 2 2 2,1 6 = + (18)

Its derivative in respect to time, evaluated along the

trajectory of the system by using equations (2) and (16),

may be expressed as:
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Proposition 2: there exists a symmetric positive definite

matrix P2 checking (16), such that the dynamical errors

(17) are asymptotically stable.

Proof: let Q Ri
n p n p

1 ∈ − × −1 6 1 6
 and Q Rp p

2 ∈ ×  some definite

positive matrices, and consider the matrices
�

Q Ri
n p n p∈ − × −1 6 1 6

 defined by:

�

Q P Q P Qi i
T

i i= +−A A21 2 2
1

2 21 1 (20)

which are symmetric and definite positive too.

Let P R
n p n p

1 ∈ − × −1 6 1 6
 a symmetric positive definite matrix,

unique solution of the Lyapunov equation (21).

A11i
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The derivative (19) can be shown to be:
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It is easy to verify that:
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Taking into account (22), the expression of 
✁

V  becomes:
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e e Q P ei i2 2 2

1
2 21 1= − − A .

By using the equation (20), the derivative of the

Lyapunov function becomes:
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1. Let us suppose that the output error e2  is different

from zero. By using the expression (15) of νi , the

derivative of the function V becomes:
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As the unknown inputs are bounded, then:
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2. Let us suppose now that the output error e2  is zero; the

function 
✄

V  is then written as:

✄
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Thus, we have demonstrated that the errors

e t and e t1 21 6 1 6 tighten towards zero in an exponential

way.

In conclusion, the multiple observer of the system (1) can

be written as follows:
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☎

☎
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where

e t Cx t y t and E e t R i ry i y
T

i1 6 1 6 1 6 1 6 ; @= − = ∀ ∈
✆

, ,...,2 1

3 Example

The selected nonlinear system is represented on figure 1.

It results from a traditional benchmark [6] and

schematizes a hydraulic process made up of three tanks.

These three tanks T T and T1 2 3, , with identical sections A,

are connected one to each other by cylindrical pipes with

identical sections Sn . The output valve is located at the

output of tank T2 ; T2 it ensures to empty the tank filled

by the pump flows 1 and 2 with respectively rates Q t11 6
and Q t21 6 . Two combinations of the three water levels are

measured. The communication pipes between the tanks



are equipped with manually adjustable ball valves, which

allow the corresponding pump to be closed or open. The

three levels x x and x1 2 3,  are governed by the constraint

x x x1 3 2> >  ; the process model is given by the equation

(24).

Indeed, taking into account the fundamental laws of

conservation of the fluid, one can describe the operating

mode of each tank; one then obtains a nonlinear model

expressed by the following state equations [6]:

A
dx t

dt
Q t S g x t x t

A
dx t

dt
Q t S g x t x t

S g x t

A
dx t

dt
S g x t x t

S g x t x t Qf t
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(24)

where α α α1 2 3, and  are constants. Qf t1 6  denotes an

additional mass flow caused by a leak that constitutes the

unknown input and g is the gravity constant.

The multiple model (1), with ξ t u t1 6 1 6= , which

approximates the nonlinear system (24), is described by:

�

x t t A x t B u t R t D

y t Cx t

i i i i i

i

u1 6 1 62 7 1 6 1 6 1 62 7

1 6 1 6

= µ + + +

=

%
&
K

'
K =

∑ ξ
1

4

The matrices A B C and Di i i, , ,  are calculated by

linearizing the initial system (24) around different points

chosen in the operating range of the system. Four local

models have been selected in an heuristic way. That

number guarantees a good approximation of the state of

the real system by the multiple model.

Simulation results

The simulation results are represented on the following

figures. The convergence of the state vector of the

multiple observer towards those of the multiple model is

quite good. At the vicinity of t=0, the disparity between

estimated and actual state is due to the choice of initial

conditions.
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1 0
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x  1 0 - 5 Q 1 ( t )
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Figure 1: Multiple model inputs
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Figure 2: State estimation

4 Conclusion

In that paper, the design of a sliding mode non linear

observer based on a multiple model has been proposed.

The design of such observer relies on the existence of

some matrices, namely P Q F i ri i, , , ,...,= 1; @ , ensuring,

on one hand, the stability of the observer and, on second

hand, satisfying a structural constraint allowing to

isolate the unknown but bounded inputs in a particular

T1

T2
T3

Qf t1 6

Sn

Q1

x1 x3

Q2

Schema 1 : Three tank system

x2



part of the state vector.

Of course, the existence of such matrices depends on the

number of unknown inputs with regards to the number of

the measurements and the rank of the different

associated matrices ; this point has not precisely been

discussed in this paper because of space lacking. A first

attempt of using this type of observer for fault detection

and isolation has been presented on a well known three

tank system. The quality of the obtained results seems to

be sufficient to allow faults to be detected despite the

presence of unknown inputs. Future works will deal with

magnitude estimation of the unknown inputs.
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