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Introduction

The general procedure for using an observer for fault detection and isolation consists of three main steps:

1. Estimating the output measurement of the system by using an adapted structure of the observer. 2. Comparing the estimated and the measured outputs, i.e. generating the so-called residuals. 3. Analyzing the residuals and deciding if a fault occurred or not.

The decision process may be based on a simple threshold test applied on the instantaneous value or on a moving average of the residuals. However, when the system under consideration is subject to unknown disturbances or unknown inputs, to properly achieve fault detection needs the effect of the disturbance to be de-coupled from the residual signal; that allows to avoid false alarms in the detection procedure. This problem is known in the literature as the robust fault detection problem which is mainly solved by using unknown input observers [START_REF] Patton | Observer-based fault detection and isolation robustness and applications[END_REF].

The problem of state estimation of linear systems subject to unknown inputs has received considerable attention [START_REF] Walcott | ✠✟ ☛✡ ✌☞ ✎✍ ✑✏ ✒✁ ✄✓ ✕✔ ✗✖ ✙✘ ✚✖ ✙✛ dynamical systems in the presence of bounded nonlinearities/uncertainties[END_REF] and [START_REF] Guan | A novel approach to the design of unknown input observers[END_REF]. However, a very few works have been developed for nonlinear systems [START_REF] Akhenak | Multiple observer with unknown inputs. Application to a three tank system[END_REF] and [START_REF] Koenig | Design of the class of reduced order unknown inputs nonlinear observer for fault diagnosis[END_REF]. The purpose of this work is to propose a methodology for the design of a nonlinear observer of this type of systems.

Sliding mode multiple observer

The concept of sliding mode emerged from the Soviet Union in the late sixties where the effects of introducing discontinuous control action into dynamical systems were explored. By the use of a judicious switched control law, it was found that the system states could be forced to reach and subsequently remain on a pre-defined surface in the state space. Whilst constrained to this surface, the resulting reduced-order motion -referred to as the sliding motion -was shown to be insensitive to any uncertainty or external disturbance signals which were implicit in the input of the system. This inherent robustness property has resulted in world wide interest and research in the area of sliding mode control. These ideas have subsequently been employed in other situations including the problem of state estimation via an observer.

The earliest work of Utkin is based on a discontinuous structure for the observer as described in [START_REF] Utkin | Principles of identification using sliding regimes[END_REF]. Walcott and

✁ ✄✂ ✆☎ ✞✝ ✠✟ ✡✁

Lyapunov-based approach to formulate and synthesize an observer which, under appropriate assumptions, exhibits asymptotic state error decay in the presence of bounded nonlinearities and uncertainties on the input of the system [START_REF] Walcott | ✠✟ ☛✡ ✌☞ ✎✍ ✑✏ ✒✁ ✄✓ ✕✔ ✗✖ ✙✘ ✚✖ ✙✛ dynamical systems in the presence of bounded nonlinearities/uncertainties[END_REF]. Edwards and Spurgeon propose an observer strategy, similar in style to that of Walcott and ☛ ☞ ✄✌ ✎✍ ✄✏ ✒✑ ✎✓ ✕✔ ✖✑ ✗✔ ✘✓ ✕✙ ✘✔ ✘✚ ✜✛ ✣✢ ✥✤ ✧✦ ✜★ ✪✩ ✫★ ✬✑ ✞✤ ✭✚ ✞✩ ✠✤ ✯✮ ✧✰ ✱☞ ✲✩ ✖✳ ✥✛ ✵✴ ✶✮ ✸✷ ✓ ✕✔ manipulation and offers an explicit design algorithm. Within the framework of the multiple model approach, the synthesis of regulators by using sliding mode was also considered [START_REF] Blanco | Sliding mode controller design using polytopic formulation[END_REF].

The presented work consists in conceiving a sliding mode multiple observer, capable of reconstructing the state and the output vectors of a system when some inputs are unknown, such as each local observer is modeled in the same way of Walcott's and ✹ ✞☞ ✄✌ ✺ ✻ observer (1988).

Multiple model representation

Let us consider a nonlinear system represented by the following multiple model (with r local models) with unknown inputs:

✼ x t t A x t B u t R u t D y t Cx t i i i i i i 1 r 6 1 6 2 7 1 6 1 6 1 6 2 7 1 6 1 6 = µ + + + = % & K ' K = ∑ ξ (1) 
where x t R n 1 6 ∈ is the state vector, u t R m 1 6 ∈ is the input vector, u t R q 1 6 ∈ the vector of unknown inputs and y t R p 

A 0i T P PA Q i i + = - 0 (2-a) C F PR T i T i = ∀ ∈ , ,..., i r 1 ; @ (2-b) are satisfied for some F R i q p ∈ × .
The proposed observer has the form: 

✝ ✞ ✝ ✝ ✝ ✝ x t t A
= µ + - - + = % & K ' K = ∑ ξ ν K t i (3) 
One can determine the matrices G i and the control variables ν i t 1 6, with ν i q t R 1 6 ∈ , which guarantee the exponential convergence of ✟

x t 1 6 towards x t 1 6.

Let us note that equation (2) allows to isolate the unknown inputs.

In order to estimate the state vector of the system (1), we are going to proceed to two successive coordinate changes of the state vector.

First change of coordinates

Let us suppose that all the pairs A C i , 1 6 are observable.

As the outputs of the system are to be considered for the design of the observer, it is logical to effect a coordinates change so that the outputs directly appear as components of the new state vector. Without loss of generality, the output distribution matrix can always be written as:

C C C 1 2 = (4) where C R , C R and det C 0 1 p n p 2 p p 2 ∈ ∈ ≠ × - × 1 6
1 6 . The following change of coordinates is then operated: ~x t Tx t

1 6 1 6 = , T I 0 C C n p 1 2 = ! " $ # - ( 5 
)
where T is a non singular matrix. With respect to this new coordinate system, the new output distribution matrix can be written as:

~C = CT 1 - (6)
The other system matrices are written as:

~~~~~~~, ~~Ã = TA T A A A A , = TB B B = TD D D = TR R R i i 1 11i 12i 21i 22i i 1i 2i i 1i 2i i 1i 2i -= ! " $ # # = ! " $ # # = ! " $ # # = ! " $ # # B D R i i i (7) 
The Lyapunov matrices P Q i , 1 6 and the structural constraints (2) became, in the new coordinates, as follows:

~~P T PT T = - - 1 1 4 9 (8-a) ~~Q T Q T i T i = - - 1 1 4 9 (8-b) ~~C F PR T i T i = (8-c)
According to definitions (7), the system (1) can be rewritten under the following form:

✠ ~~~~x t A x t B u t R u t D y t x t i i i i 1 6 1 6 2 7 1 6 1 6 1 6 4 9 1 6 1 6 = µ + + + = % & K ' K = ∑ i i 1 r t ξ 2 (9)
where ~x Tx t t

1 6 1 6 = (10) 
Summarizing, the change of coordinates allows to express directly the output vector as a part of the state vector.

Isolating the unknown inputs

Now the result concerning the conception of a robust observer in the presence of unknown inputs established by Walcott and ✡ ☛ ✄☞ ✍✌ ✎☛ ✑✏ ✓✒ ✕✔ ✗✖ ✆✘ ✙✔ ✑✚ ✜✛ ✣✢ ✥✤ ✧✦ ★✘ ✪✩ ✙✔ ✑✘ ✫✖ ✜✬ ✮✭ ✯✦ ★✘ ✰✭ ✱✤ ✧✔ ✳✲ extended to the conception of a multiple observer.

Let the local models ~~~Ã , B , R ,

i i i C
4 9 defined by equation (9) where Ãi are stable matrices ∀ ∈ i r 1,..., ; @, and

A B R C i i i , , , 4 
9 be related to ~~~Ã , B , R ,

i i i C 4 
9 by a non- singular similarity transformation T , where x t Tx t

1 6 1 6 = ~.
Then, the system matrices are written in the new base as follows [START_REF] Walcott | ✠✟ ☛✡ ✌☞ ✎✍ ✑✏ ✒✁ ✄✓ ✕✔ ✗✖ ✙✘ ✚✖ ✙✛ dynamical systems in the presence of bounded nonlinearities/uncertainties[END_REF]:

A = TA T A A A A , = TB B B = TD D D = TR R R i i 1 11i 12i 21i 22i i 1i 2i i 1i 2i i 1i 2i ~, ~- - = ! " $ # # = ! " $ # # = ! " $ # # = ! " $ # # = % & K K ' K K B D R et C CT i i i 1 Proposition 1: let ~~~Ã , B , R , i i i C
4 9 be a local model for which there exists a pair ~, P F i 4 9 defined by constraints (8- c). Then, there exists a non-singular similarity transformation T so that the quadruple A B R C

i i i , , , 4 9 in 
the new coordinates exhibits the following properties: 

1. A A G C A A A A i i i i i i i 0 011 012 021 022 = - = ! " $ # # where A R i n p n p 011 ∈ -× -
∈ ∈ ∈ % & K ' K -× - -× × 1 6 1 6 1 6
Let us define the change of coordinates using the following transformation: = , ∀ ∈ × G R i n p (see property 3), the matrices A i 11 are also stable, so property 1 is proved. 

T P P I p = ! " $ # #
p = - ! " $ # # ! " $ # # - ! " $ # # = ! " $ # # - - - - - ~~~~~~~1 1 
0 ! " $ # # ! " $ # # + ! " $ # # ! " $ # # < ⇒ + < + < % & ' As A A G C A i i i i

Synthesis of a multiple observer

= µ + + - + = % & K K ' K K = ∑ ξ ν 1 (14) with G A A A and K P R i i i s i i = - ! " $ # # = ! " $ # - 12
= µ = µ + + - % & K K K ' K K K = - = ∑ ∑ ξ ξ ν A A A (17)

Lyapunov equation

In order to show the exponential convergence of this observer, let us consider the following Lyapunov function:

V e e e P e e P e

T T 1 2 1 1 1 2 2 2 , 1 6 = + (18)
Its derivative in respect to time, evaluated along the trajectory of the system by using equations ( 2) and ( 16), may be expressed as: A 11i T 11i

✁ V
Q P Q P Q i i T i i = + - A A 21 2 2
P P Q i 1 1 + = - Α (21) 
The derivative (19) can be shown to be:

✁ V e Q e e

Q e e A P e e P A e

e R e P R u i T i

T T i T T i T i i T i i r = µ - - + + + - = ∑ ξ ν 1 6 1 1 2 2 2 1 21 2 2 2 2 21 1 2 2 2 2 2 1 2 2
It is easy to verify that: 

e Q P e Q e Q P A
- - = - - + - - A A A A Q P A 2 -1 2 4 8 4 9 4 8 (22) 
Taking into account (22), the expression of ✁ V becomes:

✁ ~Ṽ e Q A P Q P A e e Q e e R e P R u i T i i T i i T i T i i T i i r = µ - - - + - - = ∑ ξ ν 1 6 4 9 1 21 2 2 1 2 21 1 2 2 2 2 2 2 2 2 1 2 2 with ẽ e Q P e i i 2 2 2 1 2 21 1 = --A .
By using the equation (20), the derivative of the Lyapunov function becomes:

✂ ~Ṽ e Q e e Q e e R e P R u i T i i T i T i i T i i r = µ - - + - = ∑ ξ ν 1 6 4 9 1 1 1 2 2 2 2 2 2 2 2 1 2 2 
1. Let us suppose that the output error e 2 is different from zero. By using the expression (15) of ν i , the derivative of the function V becomes:

✄ ~Ṽ e Q e e Q e e P R e P R u i T i i T i T i T i i r = µ - - - - = ∑ ξ ρ 1 6 4 9 1 1 1 2 2 2 2 2 2 2 2 2 1 2 2
As the unknown inputs are bounded, then: ; @ ; @

1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2
1 1 1 2 2 2 1 1 2 0 0 1
Thus, we have demonstrated that the errors e t and e t 1 2

1 6 1 6 tighten towards zero in an exponential way.

In conclusion, the multiple observer of the system (1) can be written as follows: 

☎ ✄ ☎ ☎ ☎ ☎ x t t A
T i i T y T i y = - ! " $ # # = = - ≠ % & K ' K % & K K ' K K - - - - ~, ~4 9 
= - = ∀ ∈ ✆ , ,..., 2 1 

Example

The selected nonlinear system is represented on figure 1.

It results from a traditional benchmark [START_REF] Zolghadri | Design of nonlinear observers for fault diagnosis: a case study[END_REF] and schematizes a hydraulic process made up of three tanks. These three tanks T T and T , , with identical sections A, are connected one to each other by cylindrical pipes with identical sections S n . The output valve is located at the output of tank T 2 ; T 2 it ensures to empty the tank filled by the pump flows 1 and 2 with respectively rates Q t 

> >

; the process model is given by the equation (24). Indeed, taking into account the fundamental laws of conservation of the fluid, one can describe the operating mode of each tank; one then obtains a nonlinear model expressed by the following state equations [START_REF] Zolghadri | Design of nonlinear observers for fault diagnosis: a case study[END_REF] 

= - - = + - - = - - - + % & K K K K K ' K K K K K α α α α α / / / / / ( 
= µ + + + = % & K ' K = ∑ ξ 1 4
The matrices A B C and D i i i , , , are calculated by linearizing the initial system (24) around different points chosen in the operating range of the system. Four local models have been selected in an heuristic way. That number guarantees a good approximation of the state of the real system by the multiple model.

Simulation results

The simulation results are represented on the following figures. The convergence of the state vector of the multiple observer towards those of the multiple model is quite good. At the vicinity of t=0, the disparity between estimated and actual state is due to the choice of initial conditions. ; @, ensuring, on one hand, the stability of the observer and, on second hand, satisfying a structural constraint allowing to isolate the unknown but bounded inputs in a particular Of course, the existence of such matrices depends on the number of unknown inputs with regards to the number of the measurements and the rank of the different associated matrices ; this point has not precisely been discussed in this paper because of space lacking. A first attempt of using this type of observer for fault detection and isolation has been presented on a well known three tank system. The quality of the obtained results seems to be sufficient to allow faults to be detected despite the presence of unknown inputs. Future works will deal with magnitude estimation of the unknown inputs.

  thus P has the required block diagonal structure of property 4. ♦ Finally, as the Lyapunov matrix P related to A i 0 has been demonstrated to be block diagonal, the matrices A and A i i 011 022 are stable. Indeed, from equations (2-a) and (12), one obtains:

  a symmetric positive definite matrix, unique solution of the Lyapunov equation (21).

2 .

 2 Let us suppose now that the output error e 2 is zero; the function ✄ V is then written as:

6 .

 6 Two combinations of the three water levels are measured. The communication pipes between the tanks are equipped with manually adjustable ball valves, which allow the corresponding pump to be closed or open. The three levels x x and x
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 2 Figure 2: State estimation