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Data validation of uncertain dynamic systems
ALHAJ DIBO Moustapha, MAQUIN Didier, RAGOT Jos é1

Abstract. The methods of data validation which were developed
these last years largely call for the redundancy resulting from mod-
els. The case of models with certain parameters (static and/or dy-
namic) was analyzed and received many solutions. However, there is
relatively few work concerning the data validation in the presence of
model uncertainties. The aim of this communication is to present a
method of data validation for dynamic linear systems, which is able
to take into account the uncertainties of the model parameters. Firstly
we represent the dynamic model of the system in a static form by
piling the state and measurement vectors on an observation window.
Secondly, the elementary operations relating to the intervals make it
possible to propose a state estimation of the system taking into ac-
count the parameters uncertainties. As the uncertainties are supposed
to be bounded, the estimation’s result is provided in an interval form.
A sequential algorithm is used to obtain the state estimation by carry-
ing out the intersection between the estimation resulting from three
methods (Gauss elimination, Gauss-Seidel iteration and Krawczyk
iteration). By analyzing this estimation, we can detect and isolate the
data which are affected by gross errors as biases and propose a cor-
rection to make these data coherent with the model of the system.

1 INTRODUCTION

One of the most important tasks in process control is the extraction
of information concerning the state of the system, in order to be able
to evaluate its performances and, if necessary, to adjust the control
strategy. If this information is erroneous, any decision will provide
an unsuitable command. Thus, there is a need for data validation
which takes place between the phase of acquisition of the data
and those of decision-making. So ”data validation” is the action
of generating coherent information, which will be considered as
usable for the following treatments. This estimation can be carried
out either from the sensors measuring the process variables or from
the process model. The data validation can be realized ”on line” or
”off line”, according to the procedure of treatment carried out. In a
”off line” procedure, the data of the process are validated overall
a temporal horizon. In the case of the ”on line” approach, the data
of the process are validated at every sampling instant and allow an
”instantaneous” monitoring of the process operation.

The majority of the methods developed in this field use techniques
based on statistical considerations, where the noise affecting the
measurement devices is often characterized by a statistical distribu-
tion whose parameters are a priori known. The results obtained by
such methods are valid if the nature of the noise and the model of
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the system are perfectly known. However in main situations, this
knowledge is very difficult to obtain or is only partially available.
Thus, using uncertain model with bounded variables may constitute
a suitable approach.

Uncertainties which affect a system can be structural or paramet-
ric. In the first case, a way of taking them into account consists in
using a multiple-models representation obtained by the interpolation
of several local models, each local model being associated to a
particular regime of the process. In the second case, we can use a
model made up of vague behavioral relations. Let us note that the
uncertainties can affect the system itself and/or the measurement
system. In this article, we are interested with the case where the
uncertainties affect the system and the measurements simultaneously.

Taking into account the model uncertainties was the subject
of a certain number of work as well for the problems of data
validation as, for example, for those concerning the development
of state observer [10]. Often, these uncertainties are modeled by
using stochastic variables [8]. Another approach, called bounded
approach, represents these uncertainties by a set of possible values
for which we know only their bounds [1, 5, 11].

The interval analysis was initially developed to hold account on
the inaccuracies of the numbers. These inaccuracies come from data
resulting from a chain of instrumentation or from computing tool.
One of the first work in the diagnosis field is presented by [4]. Later
[12] proposes an interval technique for the detection and the isolation
of sensor faults in the case of a static linear model while [3] treats
the dynamic case. The reference [6] proposes a method for detecting
fault affecting the sensors of a Turbofan jet engine, while [7] treats
the problem of data validation in the case of certain systems with
uncertain measurements. We developed a method of data validation
for dynamic uncertain linear systems, based on a bounded approach,
where all the state variables of the system are measured [2]. Here the
proposed method treats the case where the state variables of the sys-
tem are partially measured. Section 2 is devoted to the presentation
of the model of the studied systems. Section 3 describes the state
estimation method. Section 4 shows the way to detect, isolate and
correct the data affected by faults. An academic example, illustrating
the method suggested, is presented in section 5.

2 MODEL OF THE SYSTEM

We consider the class of dynamic systems represented by linear dis-
crete state equations. The uncertainties are described by bounded and
normalized variables, which modify the values of the coefficients of



matricesA, B andC used in the model :

x (k + 1) = A(ηA(k))x (k) + B(ηB(k))u (k)
y (k) = C(ηC(k))x (k)

(1)

wherex ∈ Rn is the state vector of the system,u ∈ Rq is the input
vector andy ∈ Rm is the output vector.ηA(k), ηB(k) andηC(k) are
bounded and normalized variables. The state transition matrix char-
acterizing the dynamic behavior of the systemA(ηA(k) ) ∈ R

n,n,
the control matrixB(ηB(k) ) ∈ R

n,q and the measurement matrix
C(ηC(k) ) ∈ R

m,n may be expressed as:

A(ηA(k)) = Ac + ∆AηA(k) ∈
[

A, A
]

, |ηA(k)| ≤ 1

B(ηB(k)) = Bc + ∆BηB(k) ∈
[

B, B
]

, |ηB(k)| ≤ 1

C(ηC(k)) = Cc + ∆CηC(k) ∈
[

C, C
]

, |ηC(k)| ≤ 1

Ac ∈ Rn,n, Bc ∈ Rn,q and Cc ∈ Rm,n are respectively the
center matrices (the center of an intervalϕ = [ϕ, ϕ] is defined

by ϕc =
ϕ+ϕ

2
) of interval matrices[A, A], [B, B] and [C, C].

∆A ∈ Rn,n, ∆B ∈ Rn,q and∆C ∈ Rm,n characterize the un-
certainty magnitudes of the matrices[A, A], [B, B] and[C, C]. It is
supposed that the observability matrix (2) is invariant on the field of
variation ofA(ηA(k)) andC(ηC(k)).

O(k) =











C(ηC(k))
C(ηC(k))A(ηA(k))

...
C(ηC(k))An−1(ηA(k))











(2)

Thus, the system (1) is observable at each sampling time.

For writing the dynamic model in a static form [1], the first equa-
tion of model (1) is formulated as follows:

[

A (ηA (k + j − 1)) −In

]

[

x (k + j − 1)
x (k + j)

]

=

−B (ηB (k + j − 1)) u (k + j − 1) , j ∈ N∗

(3)

Starting from this relation, by piling up the state and the input vec-
tors on an observation window[k, k + s], we obtain the expression:

Ã (ηA(k, s)) x (k, s) = B̃ (ηB(k, s − 1)) u (k, s − 1) (4)

with

Ã (ηA(k, s − 1)) =











A (ηA (k)) −In · · ·
0 A (ηA (k + 1)) · · ·
...

... · · ·
0 0 · · ·

0 0
0 0
...

...
A (ηA (k + s − 1)) −In











B̃ (ηB(k, s − 1)) =











−B (ηB (k)) 0
0 −B (ηB (k + 1))
...

...
0 0

· · · 0
· · · 0

...
· · · −B (ηB (k + s − 1))











andx(k, s) =
[

x(k)T · · · · · · x(k + s)T
]T

, x(k, s) ∈ R
sn

Ã (ηA(k, s − 1)) ∈ R
s.n,sn , B̃ (ηB(k, s − 1)) ∈ R

s.n,s.q,
sn = (s + 1)n

The measurement vectory(k) on the observation window[k, k+s]
can be written as a function ofx(k, s) :

y(k, s) = C̃(ηC(k, s))x(k, s) (5)

with y(k, s) = [y(k)T ...y(k + s)T ]T , y(k, s) ∈ Rst ,
C̃(ηC(k, s)) ∈ R

st,sn , st = (s + 1)m

C̃(ηC(k, s)) =







C(ηC(k)) 0 0

0
. . . 0

0 0 C(ηC(k + s))







By aggregation of the relations (4) and (5), the dynamic model (1) is
written in the following static form :

M(ηA(k, s − 1), ηC(k, s))x(k, s) = H(ηB(k, s − 1)) (6)

with

M(ηA(k, s − 1), ηC(k, s)) =

[

Ã(ηA(k, s − 1))

C̃(ηC(k, s))

]

H(ηB(k, s − 1)) =

[

B̃(ηB(k, s − 1)) 0
0 Ist

] [

u(k, s − 1)
y(k, s)

]

M(ηA(k, s − 1), ηC(k, s)) ∈ R
(s.n+st),sn ,

H(ηB(k, s − 1)) ∈ R
s.n+st

Based on (6), where the inputs and the outputs are known, the
objective is to estimate the state vectorx(k, s). To simplify the nota-
tions, the equation (6) is written as follows:

[M ]x(k, s) = [H] (7)

whereM(ηA(k, s − 1), ηC(k, s)) ∈ [M ] with [M ] = [M, M ]
andH(ηB(k, s − 1)) ∈ [H] with [H] = [H, H].

The brackets around the matricesM andH indicate that we are
concerned with time varying bounded matrices. It is supposed that
m(s+1) > n which means that the number of rows of[M ] is larger
than its number of columns, in order to obtain a redundancy of data.

3 STATE ESTIMATION

Equation (7) expresses clearly the dependance of the state in
respect to the measurements collected on the observation window.
Estimating the state for systems with certain parameters is a classical
problem. Here, the situation is more difficult according to the
presence of uncertainties.

There are several methods to calculate, by using the equation (7),
an estimation ofx(k, s) [9] and [5]. Unfortunately, no method can
be considered better than the others. In fact, the better method is



those which gives the smallest width of interval estimation.

Among the candidate methods, we choose the three following:
Gauss elimination, Gauss-Seidel iteration and Krawczyk iteration
[9]. These three methods, briefly explained in the appendix of this
document, are applicable and give good results if the matrixM is
square and preconditioned (a preconditioned interval matrix is a reg-
ular matrix with all diagonal elements different from zero). How-
ever, in our case, this matrix is not square and the procedure must be
adapted by using a sequential algorithm.

Step1

Consider the first square matrix[M1] = [M(i, j)] where i =
1 . . . sn, j = 1 . . . sn and [H1] = [H(i)] with i = 1 . . . sn.
Then, we calculate an estimation ofx(k, s) by solving the equa-
tion [M1]x(k, s) = [H1]. For that, we use successively the three
methods mentioned previously (after preconditioning). The intervals
[x̂1

G(k, s)], [x̂1
GS(k, s)] and[x̂1

K(k, s)] represent respectively the es-
timations calculated by Gauss elimination, by Gauss-Seidel iteration
and by the method of Krawczyk. To minimize the width of the es-
timation interval, the intersection between these three estimations is
carried out:

[x̂1(k, s)] = [x̂1
G(k, s)] ∩ [x̂1

GS(k, s)] ∩ [x̂1
K(k, s)]

Stepi, i = 2, . . . , st − n + 1

At step i a square matrix[M i] and the corresponding vector[Hi]
are built by replacing the rowsn in [M1] and[H1] by the rowsn + i
of [M ] and [H]. Thereafter, theith interval estimation[x̂i(k, s)] is
computed from the system defined by[M i] and[Hi] as indicated in
the step 1.

The final estimation ofx(k, s) is obtained through the intersection
of the different previous estimations:

[x̂(k, s)] =
st−n+1

∩
i=1

[x̂i(k, s)]

[x̂i(k, s)] = [x̂i
G(k, s)] ∩ [x̂i

GS(k, s)] ∩ [x̂i
k(k, s)]

(8)

In the case of normal operation of the system and when the
procedure of the state estimation on the first observation window
is finished, we slip the observation window for one sampling
period. The static form (7) is updated by using the data in the new
observation window, then we repeat the preceding steps and so on.

In the case of abnormal operation of the system (presence of one
or several faults), the intersection of the intervals obtained in (8) can
be empty. So, to calculate an estimation of state variables coherent
with the model of the system (1), we must detect and isolate these
faults and then correct the corrupted data. The faults can affect the
measurements and/or the system itself. In this presentation, we are
only interested by the measurement faults.

4 DETECTION AND ISOLATION OF FAULTY
MEASUREMENTS

The detection of an anomaly in a set of data is often carried out
through the generation of a Boolean indicator. For that, at each step
of calculation of the state estimation in the observation window, we
test the coherence between the estimation resulting from this step and
those resulting from the preceding steps.

At first, the dimensions of the observation window must be cho-
sen in order to avoid faulty data in the first step of the estimation
of x(k, s). This initial choice guarantees the inclusion of the actual
statex(k, s) inside the interval estimation[x̂1(k, s)] calculated by
solving the equation[M1]x(k, s) = [H1]. Thus the widths of the
observation window must verify the following constraint :

st + s.n ≥ sn + m ⇒ s ≥
n

m
, s ∈ N∗ (9)

with st = (s + 1)m andsn = (s + 1)n

In fact, as the first set of observations will be used as a reference
as it will be explained later, the optimal choice ofs would be to take
the smallest value which verify the condition (9). To implement the
method, we suppose that there are no faults in the temporal interval
[k0, k0 + s − 1] (k0 is the initial moment). This assumption makes
it possible to have, in the first step of the estimation ofx(k, s), a
matrix M1 and a vectorH1 not affected by faults, therefore this
estimation[x̂1(k, s)] can be viewed as a reference to compare the
forthcoming estimations in the following steps.

First, based on this idea of reference, the following interval[τ ] is
evaluated:

[τ ] = [x̂1(k, s)] ∩ [x̂j(k, s)] (10)

Let us note that the intersection between[x̂j(k, s)] and[x̂1(k, s)]
is empty if at least one of the intersections between two components
of the same index of these vectors is empty.

Second, a fault indicatorτ is built based on the analysis of the
previously computed interval:

1. If [τ ] 6= ∅, the estimations[x̂j(k, s)] and[x̂1(k, s)] are coherent.
In this case the values of the state variables belong simultaneously
to [x̂j(k, s)] and [x̂1(k, s)]. Thus we declare that the data inter-
vening in the equation[M j ]x(k, s) = [Hj ] are valid and the fault
indicatorτ is set to zero.

2. If : [τ ] = ∅, there is an inconsistency between the estimations
[x̂j(k, s)] and[x̂1(k, s)]. In this case, the values of the state vari-
ables belong to[x̂1(k, s)] only, because[x̂j(k, s)] is influenced by
a fault. In that case, the fault indicatorτ is set to one.

It is necessary now to eliminate the effect of the data (measure-
ments) declared as invalid, since they will be used to test the coher-
ence of the new measurement in the following observation windows.
In fact, after isolating the faulty data, we a posteriori correct them
”on line”. A faulty measurementyi(k + s), i = 1...m is a poste-
riori corrected by using the model of the system (1) and the estima-
tion considered as a reference[x̂1(k, s)]. The corrected measurement
yi,cor(k + s) must belong to the interval estimation[ŷi(k + s)] cal-
culated as follows:

yi,cor(k + s) ∈ [ŷi(k + s)] = [Ci, Ci][x̂
1(k + s)] (11)

where[Ci, Ci] is theith row of the matrix[C, C], [ŷi(k+s)] is the
interval estimation of the measurementyi(k + s) andyi,cor(k + s)
is the corrected measurement which will be used instead ofyi(k+s)
in the following steps of the estimation ofx(k, s) and also in the
forthcoming observation windows. Any value belonging to the
interval defined in (11) is satisfactory, however the simplest choice
consists to retain the center of the considered interval.



When the strategy described above has been applied to the set of
data of a given observation window, we slip this window for one sam-
pling step and update the static form (6) according to the data of this
new observation window. As we replaced the eventual corrupted data
in a given observation window by their corrected values, we are sure
that the forthcoming observation windows may contain faults only
on the data obtained at the new observation time. Thus it is possible
to apply the proposed strategy using sliding windows of observations
leading to the data validation on an overall time interval.

5 EXAMPLE

We consider a system described by the model (1) where :

[A, A] =





0.45 −0.29 [0.19, 0.21)
[−0.084, −0.076] 0.66 −0.08

0.12 [0.114, 0.126] 0.37



,

[B, B] =





1
−0.8

[0.949, 1.051]



,

[C, C] =

(

−5.25 [−1.576, −1.423] 1.2
[0.949, 1.051] 0.2 −5

)

The inputu(k) is represented on the figure 1. In the temporal in-
tervals [ 20, 30 ], [ 50, 60 ], intervene the faultsf1 on y1 andf2 on
y2, the outputs affected by these faults are represented on the figure
2.

0 10 20 30 40 50 60 70 80 90
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Evolution of the command u(k)

Figure 1. Input of the system

According to the equation (9),(s ≥ n
m

= 1.5), we choose the
dimension of the observation windows = 2. By piling up the state,
the input and the measurement vectors on the horizon[k, k + 2], we
obtain the static form (6):

[M ] =













[

A, A
]

−I 0

0
[

A, A
]

−I
[

C, C
]

0 0

0
[

C, C
]

0

0 0
[

C, C
]













,

[H] =













−[B, B]u(k)

−[B, B]u(k + 1)
y(k)

y(k + 1)
y(k + 2)













andx(k, 2) =





x(k)
x(k + 1)
x(k + 2)




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Figure 2. The measured and corrected outputs

By varyingk from 1 to 88, the equations (8), (7) and (11) allow to
detect the faults and isolate the measurements which are affected by
these faults. The figure 3 shows the fault indicators related toy1 and
y2. The faults are clearly detected and isolated.

The corrected measurements (according to the equation (11)) are
represented on the figure 2 by discontinuous line.

0 10 20 30 40 50 60 70 80 90
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0.5
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1.5
Detection on the output y1 

0 10 20 30 40 50 60 70 80 90
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0

0.5

1

1.5
Detection on the output y2 

Figure 3. Fault detection indicators

An interval state estimation, coherent with the model of the sys-
tem, is represented on the figure 4. It is clear that the real state (dis-
continuous line) is included inside the interval estimation.

6 CONCLUSION

The majority of physical systems present one or more uncertain
parameters whose bounds are supposed to be known in general. In
order to analyze the functioning of such systems and eventually to
adjust the control parameters, it is important to correctly estimate
the state from the collected measurements. However, due to uncer-
tainties, the data validation resulting from such systems is delicate
to realize. The uncertainties on the parameters of the system make
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Figure 4. Actual state and its estimation interval

the data validation even more complicated in the presence of faults
(acting on the measurement devices for example).

The suggested method presents a new approach for the detection
and isolation of faulty measurements, moreover it allows to correct
these measurements a posteriori. Thus we realize the data valida-
tion in the presence of faults on the measurements for systems with
uncertain parameters, where the bounds of uncertainties are known.
The method does not use a priori any knowledge on the statistical
distribution of the faults affecting the measurements. The suggested
method is easy to implement and uses only operations on intervals.
It can be applied to all uncertain dynamic linear systems. In future
works it will be important to extend the proposed method to certain
class of non linear systems. Moreover, attention will be given to the
characterization of the uncertainties and mainly to the estimation of
their bounds.

APPENDIX

Gauss elimination

Consider an interval linear model[A]x = [b] where[A] ∈ R
n.n is a

regular matrix. The calculation ofx by Gauss elimination is done by
using a LU factorization, which transforms the matrix[A] into two
triangular matrices, lower[L] and upper[U ] with [A] ⊆ [L][U ]. Thus
the original system becomes[L][U ]x ⊇ [b]. As for certain systems,
the solution is obtained by solving the following two subsystems:

[L] y ⊇ [b]
[U ] x ⊇ [y]

The elements ofL andU are obtained using the following iterative
calculus:

[li,j ] =

(

[ai,j ] −
∑j−1

k=1 [li,k][uk,j ]
)

[uj,j ]
, 0 /∈ [uj,j ], j = 1...i − 1

and
[ui,j ] = [ai,j ] −

∑i−1

k=1
[li,k][uk,j ] j = 1...n

From the known matrices[L] and[U ], the solution of the first tri-
angular system :











1 0 · · · 0
[l2,1] 1 · · · 0

...
...

. . .
...

[ln,1] [ln,2] · · · 1





















y1

y2

...
yn











⊇











[b1]
[b2]

...
[bn]











is obtained according to the relation :

[yi] ⊇ [bi] −
i−1
∑

j=1

[li,j ][yj ] i = 1...n

The solution[x] of the second triangular system:











[u1,1] 0 · · · [u1,n]
...

... · · ·
...

0 0 [un−1,n−1] [un−1,n]
0 0 · · · [un,n]





















x1

x2

...
xn











⊇











[y1]
[y2]

...
[yn]











is obtained in the same way using the formula:

[xi] ⊇

[yi] −
n
∑

j=i+1

[ui,j ][xj ]

[ui,i]
i = n...1

Gauss-Seidel iteration

The principle of this method consists to develop the interval linear
model, described in the preceding method, row by row as follows :

[ai,1]x1 + [ai,2]x2 + .... + [ai,n]xn = [bi] i = 1...n

By solving theith equation in respect tovi gives :

[xi] =
[bi] − [vi]

[ai,i]

where :
[vi] = [ai,1]x1 + .... + [ai,i−1]xi−1 + [ai,i+1]xi+1.... + [ai,n]xn

If we suppose thatx belongs to a paving[X], in other words each
xj belongs to an interval[Xj ], then we can write the preceding ex-
pression in the form :

xi ∈ [yi] =
[bi] − [wi]

[ai,i]

where :

[wi] = [ai,1][X1] + ... + [ai,i−1][Xi−1] + [ai,i+1][Xi+1]...+
.... + [ai,n][Xn]

To ensure that each component belongs to the research interval, we
add the constraint:

xi ∈ [xi] = [yi] ∩ [Xi]

The resolution can be improved by using in the subsequent steps the
partial results obtained after a particular step. Thus, solving theith

equation leads to a solution interval[xi] which, in general, is smaller



than[Xi]. This intermediate results can be used in the expression of
[yi] :

[yi] =
1

[ai,i]

(

[bi] −
i−1
∑

j=1

[ai,j ] [xj ] −
n

∑

j=i+1

[ai,j ] [Xj ]

)

[xi] = [yi] ∩ [Xi]

We perform again this calculation until we cannot minimize any
component of the vectorx compared to the old value of this vector.

Krawczyk method

Krawczyk method is also an iterative method of resolution based on
the following formula:

[xj+1] = (A−1
c [b] + (I − A−1

c [A])[xj ]) ∩ [xj ]

This iterative calculus is stopped when the estimation has converged,
i.e. [xj+1] = [xj ]. For more details on the three methods, the reader
is invited to consult [9] and [5].
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