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Abstract

Since several decades, researchers have been interested in various types of generalized regres-

sion models which admit changing parameter values at different time periods. The so-called

regime switching models have given a lot of application in the fields of modelling of complex

systems, robust identification, detection of behavior change and more generally in process diag-

nosis. Here, we examine the case where the change in regime cannot be directly observed but

may be estimated from observed variables (the input and the output of the process). For that

purpose, the well known EM (expectation-maximisation) approach may be applied; to take into

account the switches between the regimes, new variables (generally known as hidden or missing)

are introduced in order to construct a complete data likelihood function. In this paper, we show

(i) how to directly formulate the estimation problem without introducing new variables, (ii) a

natural way to solve the obtained equations using hierarchical calculus. An example is given to

illustrate how to use the proposed approach.

Keywords
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1 Introduction

Many physical systems undergo episodes in which their behavior seems to be characterized
by important changes. In this respect, one may define changing as a switch from one
regime to another ; this idea was first introduced by [11] in the case of independent
switches in a regression model. On a practical point of view, switching may be related
to local modeling. When it is not possible to describe a process on a large domain, it
is a natural way to examine the construction of local models only valid on a particular
range of operation. Generally local modeling is a simple task because, locally, there are
only a few number of phenomena and thus a few number of parameters to deal with. The
modeling framework, that is based on using a local model for each predefined operating
region, is called operating regime based model as introduced in [9]. For the identification
of such systems, there has been a large activity during the past years. In particular, many
interesting results have been reported in connection with multi-model [6] and/or multiple
models [7], hybrid systems [1], hinging hyperplanes [10], [2], hidden Markov models [4].

In the following, we focus the attention on piecewise linear models. As it will be pointed
out latter, if the partition of piecewise mapping is known, the problem of identification can
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easily be solved by using standard estimation techniques. However, when the partition
is unknown, the problem becomes much more difficult (see for example [6] in the field of
multi-models). Thus, there are two possibilities. Either a partitioning defining the local
domains in which the system is constant, is a priori defined or the partitioning has to be
estimated along with the local models. In the first case, the number of local domains has
to be chosen very large. If the amount of input-output data is sufficient in each domain,
the parameter estimation of local model is generally easy ; otherwise, problems of ill
conditioning often occurs. In the second case, a few number of local domains are used,
but the simultaneous estimation of their number and of the parameters of the local models
generally leads to potentially many local minima. Although the number of local models
may be fixed by the user based on additional knowledge on the system, the major difficulty
deals with the data partitioning. For a given number of local models, all possible disjoint
partitions of the data have to be known which generally forms an infinite set. However, for
discrete data, an enumerable subset may be found but the number of partitions increases
with the number of data. Instead of discontinuous transients between the local models
there is a temptation to use smooth transition ; that allows to describe the system under
consideration with a continuously differentiable approximation [5], [8]. Our contribution
is to illustrate this problem in the case where the structure and the number of local models
are known. Thus, we restrict the estimation problem to 1) the estimation of switching
between the local models, 2) the estimation of the parameters of the local models. In
section 2, some representations of switching systems are given, section 3 is devoted to our
approach and section 4 presents some numerical results.

2 Switching models

The basic idea of regime-switching models is that the process is time invariant conditional
on a regime variable indicating the regime prevailing at time t. Often, regime-switching
model characterizes a non-linear process as piecewise linear by restricting the process to
be linear in each regime:

x = φT aj + e (1)

where x is the variable to be explain, φ ∈ Rd the regression vector, aj ∈ Rd the parameter
vector for the particular regime j and e an error term. The error term will be consider as
a random variable with a pdf represented by a family of finite linear gaussian mixture of
the form :

p(e | σ) =

M
∑

j=1

αjpj(e | σj) (2a)

pj(e | σj) =
1√

2πσj

exp

(

− e2

2σ2
j

)

j = 1..M (2b)

M
∑

j=1

αj = 1 (2c)

where σ =
(

σ1 . . . σM

)T
and where M is a known positive integer. In the following, we
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will use the vectors α =
(

α1 . . . αM

)

and a =
(

aT
1 . . . aT

M

)T
. Let us notice, that from (1)

and (2) we have the pdf:

pj(x | θj) =
1√

2πσj

exp

(

−1

2

(

x − φTaj

σj

)2
)

(3a)

θj =
(

aj σj

)T
(3b)

p(x | Θ) =

M
∑

j=1

αjpj(x | θj) (3c)

Θ =
(

αT aT σT
)T

(3d)

Then θj collects the parameters of the jth local model while Θ collects the whole set
of parameters including the mixture parameters αj. The problem to be solved can be
stated as follows : given the number M of models, their respective orders and a set of
observations, we have to determine first the clusters of data associated with each regime
of functionning, second the parameters of each model.

3 Finding model parameters via EM approach

Our objective in this section is to find the likelihood function for the unknown parame-
ters. The mixture density estimation problem for a given M sources involves fitting the
component density σj and mixing coefficients αj. For example, if we consider a switching
time series generated by a combination of two sources each source being activated for a
particular time interval, the problem to be solved consists in finding the models of the
two local series. More clearly, there are two major steps in the procedure. The first one
is the data allocation, i.e. the separation of the observed data into two groups, one group
corresponding to each active source. Data allocation may be considered as a problem of
classification and to perform this classification one needs to have the models of the time
series. The second step of the procedure deals with the identification of the parameters
of these models ; for that purpose we need to know what are the data to be used for each
model. It appears that we have entered a vicious circle. Now we try to explain this point
and we propose a natural way to solve the mentioned difficulty. We will suppose that
data vectors are independent and identically normally distributed. That allows to express
the resulting density for the whole sequence X of observations xi, i = 1 . . .N :

p(X | Θ) =
N
∏

i=1

p(xi | Θ) (4)

where p(xi | Θ) is deduced from (3c) using the particular measurement xi. Thus, using
(3c) and (4) allows to built the likelihood function of the parameters Θ:

L(Θ) =

N
∏

i=1

M
∑

j=1

αjpj(xi | θj) (5)
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where pj(xi | θj) is derived from (3a) with the particular observation xi. In the maximum
likelihood problem, our goal is to find Θ that maximises L(Θ) or equivalently its logarithm.
That is, we wish to find θ̂ where :

Θ̂ = arg max
Θ

N
∑

i=1

log

M
∑

j=1

αjpj(xi | θj) (6)

Obtaining the estimation (6) is not straightforward and most of the time there does
not exist explicit solutions. So far, the EM algorithm proposed in [3] has been the most
widely and iterative approach to the estimation of mixture distribution parameters. When
optimizing the likelihood function is analytically intractable, the underlying idea is to as-
sume the existence of values for additional but missing (or hidden) variables. The hidden
variables can, for example, be discrete component labels which represent class labels for
the observed data thus allowing their allocation to specific local models. Assuming a joint
relationship between the missing (Y ) and observed variables (X) allows to define a new
likelihood function L(Θ | X, Y ) called the complete likelihood. In the paper, we wish to
examine the optimisation problem defined in (4) without using the EM formulation and
without defined missing variables. The proposed procedure is the following.

• First we find the expression of the mixing parameters αj and for that we introduce
the Lagrange parameter λ for taking into account the normalization (3c) upon the
mixing parameters αj. Let us define the Lagrange function:

Φ =

N
∑

i=1

log

M
∑

j=1

αjpj(xi | θj) − λ

(

M
∑

j=1

αj − 1

)

(7)

The optimum value of αj has to satisfy ∂Φ/∂αj = 0 j = 1 . . .M that gives:

N
∑

i=1

(

pj(xi | θj)
∑M

j=1 αjpj(xi | θj)

)

− λ = 0 j = 1 . . .M (8)

Multiplying both sides of (8) by αj and summing for j leads to express system (8)
as:

N
∑

i=1

(

pj(xi | θj)
∑M

j=1 αjpj(xi | θj)

)

= N j = 1 . . .M (9)

Thus, (9) describes a system of M equations with M unknown parameters αj. It
should be noted that resolution of (9) needs to know pj(xi | θj) and therefore the
parameters θj . However, when pj(xi | θj) are known, and althougt (8) appears to be
non linear in regard to the parameters, the resolution is not difficult. The structure
of (9) allows to use efficient standard procedures for solving non linear equations
; with little more attention the particular structure of (9) may be used to develop
specific schemes of resolution. In particular a powerful iterative estimation scheme,
with guaranteed properties of convergence, may be proposed.
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• The second step of the estimation procedure consists in deriving the parameters σj .
Let us note that Φ, with (3a) may be written:

Φ =

N
∑

i=1

log

M
∑

j=1

(

αj

1√
2πσj

exp

(

−1

2
(
xi − φT aj

σj

)2

))

− λ

(

M
∑

j=1

αj − 1

)

(10)

Derivating (10) respect to σj allows to express the optimal value :

σj =

√

√

√

√

1

N

M
∑

i=1

pj(xi | θj)
∑M

j=1 αjpj(xi | θj)
(xi − φT

i aj)2 j = 1 . . .M (11)

• The third step is concerned with the estimation of the local model parameters aj.
Derivation of 10) in respect to the aj yields :

N
∑

i=1

αjpj(xi | θj)

σ2
j

φi(xi − φT
i aj)

∑M

j=1 αjpj(xi | θj)
= 0 (12)

With the following definitions :

Wj(θ) = diag

(

αjpj(xi | θj)
∑M

j=1 αjpj(xi | θj)

)

i = 1 . . .N (13)

we deduce from (12) :

aj = (HTWj(θ)H)−1HTWj(θ)x (14)

with H =





φT
1

. . .
φT

N



 and x =





x1

. . .
xN





Summarizing the three previous steps, the whole estimation (aj , σj , αj) is solved
through the following system:

N
∑

i=1

(

pj(xi | θj)
∑M

j=1 αjpj(xi | θj)

)

= N j = 1 . . .M (15a)

σj =

√

√

√

√

1

N

M
∑

i=1

pj(xi | θj)
∑M

j=1 αjpj(xi | θj)
(xi − φT

i aj)2 j = 1 . . .M (15b)

aj = (HTWj(θ)H)−1HTWj(θ)x (15c)

with the definitions:
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p(x | θj) =
1√

2πσj

exp

(

−1

2

(

x − φT aj

σj

)2
)

(16a)

θj =
(

aj σj

)

(16b)

W (θ) =
diag

i = 1..N

(

αjpj(xi | θj)
∑M

j=1 αjpj(xi | θj)

)

(16c)

Thus, despite the appparent complexity of the obtained system, we get a set of ana-
lytical implicit equation allowing to estimate the parameters of the local models aj , σj

and the mixing proportions αj . Solving (16) may be refered to global numerical analysis
techniques ; however, we suggest a hierachical procedure allowing to estimate sequentially
the different parameters. This hierarchical procedure uses the principle of direct iteration
on the different variables to be estimated. After an initialisation step (give initial values
to θj =(aj, σj)), a computation cycle is made up with successive steps :

• from (16a), knowing (θj), calculate pi(xi | θj)

• from (15a), knowing pi(xi | θj) deduce αj

• from (16c), knowing αj and pi(xi | θj), compute the weights W

• from (15b), knowing Wj and the measurementxi, update the model parameters aj

• from (15c), knowing αj , pj(xi | θj) and aj, update σj .

This cycle is started again unless a satisfaction terminal criterion has been reached i.e.
the classification of all the data does not change significantly.

4 Results

To verify the proposed algorithm and test its ability to identify switching systems, we
conducted several Monte-Carlo experiments with simulated data. Here, we present only
one result obtained for one data set. We generated a process of 300 points composed of two
segments of ARX processes with switches at time 40, 90, 150 and 240. The two processes
have the respective sets of parameters indicate in table 1 (line 2, true parameters). The
whole process is thus described by :

yt+1 = ajyt + bjuj

{

j = 1 if t ∈ [0, 40]
⋃

[90, 150]
⋃

[240, 300]
j = 2 if 41 ≤ t ∈ [41, 89]

⋃

[151, 239]
(17)

The input and output data of the process are shown on figure (1); the vertical lines
on the output graph indicate the switching times. Another way to describe the evolution
consists in using the coordinates yt+1/ut and yt/ut. With this change, the model is then
represented by two clusters of data belonging to the three lines :
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yt+1/ut = ajyt/ut + bj j = 1, 2, 3 (18)

Figure (2) shows the shape of these clusters. The left part of the figure shows the
points whose coordinate are yt+1/ut and yt/ut and we notice that it is somewhat difficult
to separate the two regime if the noise measurement is important. The right part of the
figure shows the preceding points and the true model. According to the algorithm derived
in section 3, we have to fix the number and the structure of local models ; here, no opti-
mization of these parameters has been done, and we used 2 local of first order. Moreover,
initial values of the model parameters have to be chosen ; here, random generator has been
used to select initial values (see numerical values in table 1, line 3), while σj = 1, j = 1, 2.

For that example, the data have been generated with noise and consequently the es-
timated parameter are in the vicinity of the true ones. The estimated parameters are
presented in table 1 (line 4) and they provide a good approximation of the true system
(see estimated model on figure (3) which looks like the true system of figure (2); so far
we have obtained an estimate of the affine local models, each model characterizing a par-
ticular regime of the system.

The final step is to look to the shape of the regions in which each local system is
working. The direct procedure has the drawback to present some time fluctuations of W
(16c), although the corresponding data are issued from the same regime of functionning.
To avoid or to reduce this effect, which causes instantaneous transitions among the local
models, we suggest to filter the pj(xi | θj). There are several techniques that can be used
and among them moving average, winsorizing moving average and boolean comparison of
the probabilities values.

• Moving average is proceeded on a window of length 2L+1 according to the following
definition :

p̃j(xi | θj) =

∑i+L

k=i−L pj(xk | θj)

2L + 1
j = 1 . . . 2 (19)

The user has to adjust the length 2L+1 of the window in order to get a compromise
between the quality of the data classification and the ability of the algorithm to avoid
spikes in the transitions.

• Winsorizing moving average computes the mean of 2L+1 values after the s smallest
values are replaced by the (s+1)st smallest value and the s largest values are replaced
by the (s + 1)st largest value (i.e. the values are winsorized at each end):

p̃j(xi | θj) =
1

L

(

spj(x(i−L+s) | θj) +

i+L−s
∑

k=i−L+s

pj(x(k) | θj) + spj(x(i+L−s) | θj)

)

(20)

where pj(x(i) | θj) represents the probability values, on the (2L + 1) length window,
sorted in ascending order.
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par. a1 b1 a2 b2

true 0.900 0.150 0.700 0.300
initial -0.208 1.208 -0.098 1.098

estimated 0.891 0.156 0.706 0.299

Table 1: Parameters

• Comparison, at each time, of the probabilities p1(xi, θ1) and p2(xi, θ2) allows to select
the most important probability to perform a boolean classification of the data xi to
one cluster. Thus the classification rule become:

p̃1(xi | θ1) = 1
p̃2(xi | θ1) = 0

}

if p1(xi, θ1) > p2(xi, θ2) (21)

p̃1(xi | θ1) = 0
p̃2(xi | θ1) = 1

}

if p1(xi, θ1) < p2(xi, θ2) (22)

The filtering effect allows to better classify the data in regard to the two cluster and
therefore to express what data are to identify the parameters of each model. It is also
possible to combine the effects of the different filters (19), (20), (21), (22).

After the algorithm has converged (for the given example, some 30 iterations), figure 4
shows the probabilities p1(xi, θ1) and p2(xi, θ2). As indicated, filtering allows to suppress
fluctuations and has only be used to present the final classification (figures 5, 6 and 7).
The vertical lines at 40, 90, 150 and 240 indicate the switching of the system; a good
approximation of the duration regime has been obtained excepted at the switching time
where some confusion appears (explained by the fact that the data may belong either to
the first regime or to the second).

5 Conclusion

This paper has presented an approach for data and signal segmentation and ARX mod-
eling of switching system. Assuming that the number of local models and their orders
is known, the estimation problem consists in finding the allocation of the measurement
data to each local model and finding the best local model for each cluster of data. The
combined estimation of the likelihood function is performed using a hierarchical iterative
resolution. In fact, the proposed procedure may be linked to the EM family algorithm
; however, the EM formulation involving hidden or missing variables is not used. The
extension of the proposed procedure to an unknown number of local models will be in-
vestigated. Further works will also be concerned with the optimal model orders selection.
At last, the effects of outliers on parameter estimates and on inference in linear models
has been studied quite extensively ; for nonlinear models, this is not the case and it would
be interesting to extend the definition of additive and innovation outliers to switching
models.
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Figure 1: Input and output measurement
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Figure 2: Input and output measurement
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Figure 3: Input and output measurement
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Figure 4: Model probabilities. Iteration
30
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Figure 5: Model probabilities. Iteration
30, filtering with winsorizing.
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Figure 6: Model probabilities. Iteration
30, boolean filtering
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Figure 7: Model probabilities. Iteration
30, boolean-winsorizing filtering
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