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Abstract: On-line optimisation provides a means for maintaining a process around
its optimum operating plant. An important component of optimisation relies in data
reconciliation which is used for obtaining consistent data. On a mathematical point of
view, the formulation is generally based on the assumption that the measurement errors
have normally pdf with zero mean. Unfortunately, in the presence of gross errors, all
of the adjustments are greatly affected by such biases and would not be considered as
reliable indicators of the state of the process. This paper proposes a data reconciliation
strategy that deals with the presence of such gross errors. Application to size flowrates
and concentration data in mineral processing is provided.
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x, y process variables
x̃, ỹ process measurements
x̂, ŷ estimates
σ standard deviation
p probability density function
A incidence matrix
v number of streams
n number of nodes
q number of concentrations
Wx, Wy weighting matrix
w balancing factor
V variance matrix
λ, µ Lagrange parameters

Table 1. List of symbols

1. INTRODUCTION

The problem of obtaining reliable estimates of the
state of a process is a fundamental objective, these
estimates being used to understand the process be-
haviour. For that purpose, a wide variety of techniques
has been developed to perform what is currently
known as data reconciliation [Mah, 76], [Maquin, 91].
Data reconciliation, which is sometimes referred too
as mass and energy balance equilibration, is the ad-
justment of a set of data so the quantities derived
from the data obey physical laws such as material
and energy conservation. Since the pionner works de-
voted to the so-called data rectification, the scope of
research has expanded to cover other fields such as
data redundancy analysis, system observability, opti-
mal sensor positionning, sensor reliability, errors char-
acterization, measurement variance estimation. Many



applications are related in scientific papers involving
various fields in process engineering [Yi, 02], [Singh,
01], [Heyen, 99].

Unfortunately, the measurement collected on the pro-
cess may be unknowingly corrupted by gross errors.
As a result, the data reconciliation procedure can
give rise to absurd results and, in particular, the esti-
mated variables will be corrupted by this bias. Several
schemes have been suggested to cope with the cor-
ruption of normal assumption of the errors, for static
system [Narasimhan, 89], [Arora, 01] and also for dy-
namic systems [Abu-el-zeet, 01]. Methods to include
bounds in process variables to improve gross errors
detection have been developed. One major disadvan-
tage of these methods is that they give rise to situations
that it may impossible to estimate all the variable by
using only a subset of the remaining free gross er-
rors measurements. Alternative approach using con-
straints both on the estimates and the balance resid-
ual equations has been developped for linear system
[Ragot, 99], [Maquin, 04]. There is also an important
class of robust estimators whose influence function are
bounded and finit allowing to reject outliers [Huber,
81], [Hampel, 86]. Another approach is to take into
account the non ideality of the measurement error dis-
tribution by using an objective function constructed on
contaminated error distribution. In the following, we
adopt and develop this idea for the data reconciliation
problem.

Section 2 will be devoted to recall the background of
data reconciliation. In section 3, robust data reconcil-
iation is developped and will be illustrated through an
academic example in section 4.

2. DATA RECONCILIATION BACKGROUND

The classical general data reconciliation problem
[Mah, 76], [Hodouin, 89] [Crowe, 96], deals with a
weighted least squares minimisation of the measure-
ment adjustments subject to the model constraints.
Indeed the model process equations are taken as linear
for sake of simplicity :

Ax = 0, A ∈ IRn.v, x ∈ IRv (1)

wherex, with componentsxi is the state of the pro-
cess. The measurement devices give the information
:

x̃ = x + ǫ, p(ǫ) ∝ N(0, V ) (2)

where ǫ ∈ Rn is a vector of random errors char-
acterised by variance matrixV and p is the nor-
mal probability distribution (pdf). In the least square
sense, the well-known solution of this problem isx̂ =
(I−V AT (AV AT )−1A)x̃ [Maquin, 1991]. In fact, the
method doesn’t work in any situation, the main draw-
back being the contamination of all estimated values

by the outliers. For that reason robust estimators could
be preferred, robustness being the ability to ignore the
contribution of extreme data i.e. such as gross errors.
There are two approaches to deal with outliers. The
first one consists to sequentially detect, localise and
suppress the data which are contaminated and after to
reconcile the remaining data. The second approach is
global and reconcile the data without a preliminary
classification; in fact, weights in the reconciliation
procedure are automatically adjusted in order to min-
imise the influence of the abnormal data. In the rest of
the paper, we only focuse on this last strategy.

3. ROBUST DATA VALIDATION. THE LINEAR
CASE.

If the measurements contain random outliers, then
a single pdf described as in (2) cannot account for
the high variance of the outliers. To overcome this
problem let us assume that measurement noise is
sampled from two pdf, one having a small variance
representing regular noise and the other having a large
variance representing outliers [Wang, 02], [Ghosh,
03]. Thus, for each observatioñxi, we define the two
following pdf and the so-called contaminated pdf:

pj,i(xi | x̃i, σi) =
1√

2πσj

exp

(

−1

2

(

xi − x̃i

σj

)2
)

(3)
p(xi | x̃i, θ) = wp1,i +(1−w)p2,i 0 ≤ w ≤ 1 (4)

allowing to define the log-likelihood function of the
measurement set:

Φ = log

v
∏

i=1

p(xi | x̃i, θ) (5)

Minimising (5) in respect tox gives the estimatêx:

x̂ = (I − WxAT (AWxAT )−1A)x̃ (6a)

W−1
x = diag

i = 1..v

( w
σ2
1
p̂1,i + 1−w

σ2
2

p̂2,i

wp̂1,i + (1 − w)p̂2,i

)

(6b)

p̂j,i =
1√

2πσj

exp

(

−1

2

(

x̂i − x̃i

σj

)2
)

(6c)

where the diag operator allow to define a diagonal
matrix from the elements (pointed byi) of a vector.
Thus system (6) is clearly non linear and we suggest
the following direct iterative scheme:

x(0) = x̃ (7a)

p
(k)
j,i =

1√
2πσj

exp



−1

2

(

x
(k)
j − x̃j

σj

)2


 (7b)

(W (k)
x )−1 = diag

i = 1..v





w
σ2
1
p̂
(k)
1,i + 1−w

σ2
2

p̂
(k)
2,i

wp̂
(k)
1,i + (1 − w)p̂

(k)
2,i





(7c)

x̂(k+1) =
(

I − W (k)
x AT (AW (k)

x AT )−1A
)

x̃ (7d)



A stopping criterion must be chosen for implementing
the algorithm. For sake of simplicity, the proof for the
local convergence of the algorithm is omitted.

In order to appreciate how the weightW , which
should be compared to an influence function as ex-
plained in [Hampel, 86], are able to reject the data
contaminated by gross errors, figure 1 show the graph
of the function:

g(u) =

w
σ2
1
p1 + 1−w

σ2
2

p2

wp1 + (1 − w)p2

p1 =
1√

2πσ1

exp

(

−1

2
(

u

σ1
)2

)

p2 =
1√

2πσ2

exp

(

−1

2
(

u

σ2
)2

)

where σ1 = 0.5 and σ2 = 2 and wherew take
the indicated values. For a better comparison, the
graphs have been normalized, i.e. we have represented
g(u) = g(u)/g(0). For w = 1 we naturally obtain a
constant weight; thus all the data are equallly weighted
and, in particular, the optimisation criterion will be
sensitive to large magnitude of data, i.e. to outliers.
Taking w = 0.02 reduces the influence of outliers
since the weight decreases from1 for data around
the origine to0.63 for data with large magnitude.
Indeed, with the non restrictive hypothesisσ2 > σ1,
for large values ofu, the weighting functiong(u) can
be approximated by the non zero value:

ga(u) =
1

σ2
1

1 + ( 1−w
w

)(σ1

σ2
)3

1 + ( 1−w
w

)(σ1

σ2
)

where for small values ofu the approximation is
gb(u) = 1. Thus, it is possible to adjustσ1 andσ2 such
that the large values ofu would have a small influence
on the criterionΦ.
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Fig. 1. Influence function

4. EXTENSION TO BILINEAR SYSTEMS

We consider now the case of a process characterised
by two types of variables : macroscopic variables such
as flowratesx and microscopic variables such concen-
trationsy. Moreover, we will consider several species
and therefore several concentrations notedyc, c =
1..q. If the measurements contain random outliers,
then a single pdf described as in (2) cannot account
for the high variance of the outliers. To overcome
this problem let us assume that measurement noise is
sampled from two pdf, one having a small variance
representing regular noise and the other having a large
variance representing outliers. In order to simplify the
presentation, each measurementxi (resp.yi) are as-
sumed to have the same normalσx,1 (resp.σy,1) and
abnormalσx,2 (resp.σy,2) standard-deviation. This
hypothesis will be withdrawn later. Thus, for each
observatioñxi andỹc,i, we define the following pdf:

p(xi|x̃i, σx,j) =
1√

2πσx,j

exp

(

−1

2

(

xi − x̃i

σx,j

)2
)

(8a)

p(yc,i|ỹc,i, σyc,j
) =

1√
2πσyc,j

exp

(

−1

2

(

yc,i − ỹc,i

σyc,j

)2
)

(8b)

with j = 1, 2, i = 1..v, c = 1..q. In the rest of the pa-
per, we adopt the shortening notationpx,j,i andpyc,j,i

respectively forp(xi|x̃i, σx,j), andp(yc,i|ỹc,i, σyc,j)
where indexesi and j are respectively used to point
the number of data and the number of the distribution.
Then, the combination of these two pdf (for each type
of variable) is performed with the help of a weightw.
Quantity(1−w) can be seen as an a priori probability
of the occurence of outliers:

px,i = wpx,1,i + (1 − w)px,2,i i = 1..v (9a)

pyc,i = wpyc,1,i + (1 − w)pyc,2,i i = 1..v (9b)

Assuming independance of the measurements allows
to define the global log-likelihood function:

Φ = log

v
∏

i=1

px,i

q
∏

c=1

pyc,i (10)

Let us now define the optimisation problem consisting
in estimating the process variablesx andy. For that,
consider the Lagrange function:

L = Φ + λT Ax +

q
∑

c=1

µT
c A(x ⊗ yc) (11)

in which the parametersλ andµc allow to take into
account the mass balance constraints for total flowrate
and partial flowrate (for that last one the operator⊗
is used to perform the element by element product of
two vectors). The stationarity conditions of (11) are
expressed (the estimations are now notedx̂ andŷc):



W−1
x̂ (x̂ − x̃) + AT λ +

q
∑

c=1

(A ⊗ ŷc)
T µc = 0 (12a)

Wŷc

−1(ŷc − ỹc) + (A ⊗ x̂)T µ = 0 (12b)

A(x̂ ⊗ ŷc) = 0 (12c)

where the weighting matricesWx̂ andWŷc
are defined

by:

W−1
x̂ = diag

i = 1..v





wpx,1,i

σ2
x,1

+
(1−w)px,2,i

σ2
x,2

wpx,1,i + (1 − w)px,2,i





(13a)

W−1
ŷc

= diag
i = 1..v





wpyc,1,i

σ2
yc,1

+
(1−w)pyc,2,i

σ2
yc,2

wpyc,1,i + (1 − w)pyc,2,i





(13b)

Notice that if each measurementxi (resp. yi) has
a particular standard-deviation, formulas (13a) and
(13b) still hold by replacing the parametersσx,1 and
σx,2 (resp.σyc,1 andσyc,2) by σx,1,i andσx,2,i (resp.
σyc,1,i andσyc,2,i ). Using shortening notationsAx =
A diag(x) andAy = A diag(y), system (12) may be
directly solved and the solution may be expressed:

x̂ = (I − Wx̂AT (AWx̂AT )−1A)...

...(x̃ − Wx̂

q
∑

c=1

AT
ŷc

(Ax̂Wŷc
AT

x̂ )−1Ax̂ỹc) (14a)

ŷc = (I − Wŷc
AT

x̂ (Ax̂Wŷc
AT

x̂ )−1Ax̂)ỹc (14b)

System (14) is clearly non linear with regard to the
unknownx̂ andŷc, the weightWx̂ andWŷc

depending
on the pdf (8) which themselves depend on thex̂
and ŷc estimations (14a) and (14b). In fact (14) is an
implicit system in respect to the estimatesx̂ andŷc for
which we suggest the following iterative scheme:

Step 1: initialisation
k = 0
x̂(k) = x̃ ŷ

(k)
c = ỹc

choosew (for example between 0.9 and 0.99)
adjustσx,1 andσyc,1 from an a priori knowledge about
the noise distribution
adjustσx,2 andσyc,2 from an a priori knowledge about
the gross error distribution.

Step 2: estimation
Compute the quantities (forj = 1, 2, i = 1..v and
c = 1..q)

p
(k)
x̂,j,i =

1√
2πσx,j

exp



−1

2

(

x̂
(k)
i − x̃i

σx,j

)2




p
(k)
ŷc,j,i =

1√
2πσyc,j

exp



−1

2

(

ŷ
(k)
c,i − ỹci

σyc,j

)2




W−1
x̂ = diag

i = 1..v







wp
(k)

x̂,1,i

σ2
x,1

+
(1−w)p

(k)

x̂,2,i

σ2
x,2

wp
(k)
x̂,1,i + (1 − w)p

(k)
x̂,2,i







W−1
ŷc

= diag
i = 1..v







wp
(k)

ŷc,1,i

σ2
yc,1

+
(1−w)p

(k)

ŷc,2,i

σ2
yc,2

wp
(k)
ŷc,1,i + (1 − w)p

(k)
ŷc,2,i







A
(k)
x̂ = A diag(x̂(k)) A

(k)
ŷc

= A diag(ŷ(k)
c )

Update the estimation ofx andyc

x̂(k+1) =
(

I − W
(k)
x̂ AT (AW

(k)
x̂ AT )−1A

)

...

...

(

x̃ − W
(k)
x̂

q
∑

c=1

A
(k)T
ŷc

(A
(k)
x̂ W

(k)
ŷc

A
(k)T
x̂ )−1A

(k)
x̂ ỹc

)

ŷ(k+1)
c = (I−W

(k)
ŷc

A
(k)T
x̂ (A

(k)
x̂ W

(k)
ŷc

A
(k)T
x̂ )−1A

(k)
x̂ )ỹc

Step 3: convergence test
Compute an appropriate norm of the corrective terms:
τ

(k+1)
x = ‖x̂(k+1)−x̃‖ andτ

(k+1)
yc = ‖ŷ(k+1)

c −ỹc‖. If

the variationsτ (k+1)
x −τ

(k+1)
x andτ

(k+1)
yc −τ

(k+1)
yc are

less than a given threshold then stop, elsek = k + 1
and go to step 2.

Remark : for non linear systems, the initialisation re-
mains a difficult task, convergence of the algorithm
being generally sensitive to that choice. In our situa-
tion, measurements are a natural choice for initializing
the estimates (step 1 of the algorithm). The solution
given by classical least squares approach would also
provide an acceptable initialization although its sensi-
tivity to gross errors may be sometimes important; the
reader should verify that this solution may be obtained
by redefining the distributions (9) withw = 1.

5. EXAMPLE AND DISCUSSION

The method described in section 4 is applied to system
depicted by fig.2, for which 16 streams are considered;
each stream is characterized by a flowrate and two
concentrations. Random errors were added to the 16
variables but the gross errors were added only on some
of them.
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Fig. 2. Flowsheet

The performance results are given when three gross
errors (with magnitudes of 6, 8 and 8) affect the
measurement 3, 7 and 16; simultaneously, gross errors
of magnitude1.5 affect the measurement of the first
concentration for streams 1, 9 and 12, and gross errors
of magnitudes 4 and 2.5 affect the measurement of the



second concentration for streams 4 and 8. Comparison
of the proposed robust least square algorithm (RLS)
with the classical least squares (LS) algorithm is now
provided in table 2.

Columns 2 to 4 relate the row measures, columns
5 to 7 show the estimations obtained with RLS and
columns 8 to 10 the estimations obtained with LS
; analysing the estimation errors, for RLS estimator
clearly allows to suspect variables 3, 7 and 16 for
being contaminated by a gross error. Such conclusion
is more difficult to express with LS estimator. Table 3
gives explicitely the corrective termŝx − x̃ andŷ − ỹ
for RLS (row 3) and LS (row 4) approach; for a better
comparison, row 2 indicates the true value of the gross
error and thus we can appreciate the vicinity of the
corrective terms obtained with RLS with the true gross
errors.

x3 x7 x16 y1,1 y1,9 y1,12 y2,4 y2,8

T 6.0 8.0 8.0 1.5 1.5 1.5 4.0 2.5
RLS 8.69 7.61 7.09 1.55 1.69 1.64 3.71 2.54
LS 7.05 6.08 3.38 1.3 0.87 1.14 0.98 1.77

Table 3. Corrective terms

For another data set, figure 3 visualizes more clearly
the residuals (̂x − x̃ and ŷc − ỹc) both for RLS
(upper part) and LS (lower part). On each graph,
horizontal and vertical axis are respectively scaled
with the number of the data and the magnitude of the
absolute estimation error; the dashed horizontal line
is the threshold chosen to detect abnormal corrective
terms. Analysing figure 3 shows two advantages on
RLS upon LS approach: first, the corrective terms are
more precisely estimated, second, the scattering of the
gross errors is less (the corrective terms mainly affect
the variables affected by the gross errors and not the
others).
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Fig. 3. Corrective terms

Performances of the proposed approach be also anal-
ysed when using a great number of data. For that
purpose, the same process has been used with different
additive random noise on the data, the gross errors
being superposed to the same data as previous. 10000
runs have been performed, allowing to enumerate the

cases where the gross errors have been correctly de-
tected or not, both for RLS and LS method. Results,
expressed in percentage, are shown in table 4. Roughly
speaking, for the given example, the ability of gross er-
ror detection for RLS is twice of those of LS. This has
been confirmed by many other runs involving various
distributions of the measurement errors.

RLS gross error LS gross error
detection detection

V ar. x y1 y2 x y1 y2

w=0.10 92.5 99.9 91.4 41.4 57.2 55.2

Table 4. Performance of the approach

The sensitive known parametersw, σx,i andσyc,j of
the contaminated distribution may affect determina-
tion about outliers and therefore requires special atten-
tion. Typically, there is a range of sensible values for
these parameters that we can start with. In fact, due
to the structure of the function defining the weight,
we can reduce these parameters tow, σx,1/σx2

and
σyc,1/σyc,2. Table 5 presents some results of sensi-
tivity, expressed in percentage of correct detection,
using the same process. For each result of detection,
concerning a particular value ofw, f = σx,1/σx2 =
σyc,1/σyc,2, 10000 runs have been performed, each
run having the same outliers but specific random noise
affecting the measurements. It should be noted that all
gross errors may be correctly detected with a proper
choice of the parametersw andf , excepted the error
on the flowratex3. Thus, considering results in table 5,
it is relatively easy to adjust manually the parameters
w andσ of the method and a ”large” range of accept-
able values may be found. However, it is also possible
to use an adaptive algorithm for the adjusting of these
parameters.

w f x3 x7 x16 y1,1 y1,9 y1,12 y2,4 y2,8

0.02 25 1 1 1 100 1 1 1 99
0.05 25 1 1 0 100 0 1 1 100
0.30 25 5 45 3 100 0 2 0 100
0.02 50 72 99 99 100 75 100 41 100
0.05 50 77 100 100 100 96 100 59 100
0.30 50 76 100 100 100 100 100 90 100
0.02 75 76 100 100 100 100 100 99 100
0.05 75 76 100 100 100 100 100 100 100
0.30 75 76 100 99 100 100 100 100 100

Table 5. Performance of the approach

6. CONCLUSION

To deal with the issues of gross errors influence on
data estimation, the paper has presented a robust rec-
onciliation approach. For that purpose, we use a cost
function which is less sensitive to the outlying obser-
vations than that of least squares. The algorithm can
handle multiple biaises or outliers at a time and for the
given example, 8 outliers have been correctly detected
on 48 variables.
The results of reconciliation will clearly depend not
only on the data, but also on the model of the pro-
cess itself. As a perspective of development of robust



Measurement RLS estimate LS estimate
x y1 y2 x̂ ŷ1 ŷ2 x̂ ŷ1 ŷ2

1 55.88 3.93 3.53 56.50 2.38 3.46 57.30 2.63 3.58
2 65.31 2.73 3.70 65.07 2.71 3.70 65.80 2.89 4.16
3 61.68 2.48 3.54 52.99 2.52 3.58 54.63 2.73 4.16
4 8.38 4.83 9.01 8.57 4.83 5.30 8.50 4.62 8.03
5 44.15 2.13 3.16 44.42 2.07 3.24 46.13 2.38 3.45
6 55.90 2.45 3.57 55.30 2.52 3.51 56.85 2.67 3.68
7 39.05 2.87 3.74 31.44 2.87 3.76 32.97 3.23 3.49
8 23.90 2.05 5.72 23.86 2.05 3.18 23.88 1.91 3.95
9 20.58 3.75 3.34 20.55 2.09 3.32 22.25 2.88 2.91
10 10.33 4.35 4.60 10.89 4.34 4.60 10.72 3.95 4.69
11 12.40 3.57 4.16 12.08 3.54 4.25 11.17 3.68 4.15
12 17.66 5.11 4.32 17.49 3.47 4.27 19.85 3.97 4.30
13 2.66 8.92 6.91 2.27 8.92 6.90 2.71 8.45 6.90
14 19.38 4.18 4.66 19.76 4.10 4.57 22.56 4.51 4.61
15 12.42 3.45 4.24 12.08 3.54 4.25 11.17 3.68 4.15
16 14.77 4.95 5.01 7.68 4.98 5.07 11.39 5.33 5.06

Table 2. Measurements and estimations

reconciliation strategies, there is a need for taking ac-
count of model uncertainties and optimise the balanc-
ing parameterw. Moreover, for process with unknown
parameter, it should be important to jointly estimate
the reconciled data and the process parameters.
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