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This paper deals with the stability analysis of a system represented by a multiple model. Based on a multiquadratic Lyapunov function candidate (MQLF), new asymptotic stability conditions for continuous case are presented in linear matrix inequalities (LMI) form. These stability conditions, extended to the controller synthesis, are formulated in bilinear matrix inequalities (BMI). Examples will be given in the final version.

INTRODUCTION

Analysis and synthesis studies of multiple model [START_REF] Murray-Smith | Fuzzy regulators and fuzzy observers : relaxed stability conditions and LMI-Based designs[END_REF] based on quadratic Lyapunov functions lead to result which are often conservative (see for example [START_REF] Chadli | On stability analysis of a class of multiple model[END_REF], (Blanco et al., 2001a) and [START_REF] Murray-Smith | Fuzzy regulators and fuzzy observers : relaxed stability conditions and LMI-Based designs[END_REF]). To overcome these conservatism non quadratic Lyapunov functions may be used. Among these functions, we can quote the piecewise quadratic function. The stability analysis using this type of function was studied these last years by using the incertain system techniques [START_REF] Zhang | Stability analysis and systematic design of fuzzy control systems[END_REF], [START_REF] Cao | Analysis and design of fuzzy control systems using dynamic fuzzy state space models[END_REF], [START_REF] Cao | Stability analysis and design for a class of continuous-time. fuzzy control systems[END_REF]. This approach allows to reduce the conservatism of the quadratic method by taking into account the partition of the state space induced by activation functions with limited local support of the variables (for example trapezoidal or triangular activation functions) (Johansen et al., 1999).

In (Chadli et al., 2002a) another class of non quadratic Lyapunov functions of the form V (x (t)) = max (V i (x (t))) with V i (x (t)) = x (t)

T P i x (t), P i > 0, i ∈ {1, 2, .., n} where n is the number of local model, was also considered. The obtained results in the continuous and discrete domains are rather satisfactory in comparison with those obtained with quadratic method. The proposed stability condition in the continuous domain leads also to overcome the pessimism of those obtained by picewise quadratic Lyapunov functions (Johansen et al., 1999) when the activation functions have an infinite support (for example Gaussian activation functions). Some works also propose another type of non quadratic Lyapunov function called multiquadratic Lyapunov functions (MQLF) of the form V (x (t)) = x (t)

T n i=1 µ i (z (t)) P i x (t), P i > 0 [START_REF] Chadli | Stabilté et stabilisation de systèmes non linéaires en représenation multimodèle[END_REF], [START_REF] Blanco | LMI Approach to design of robust state observer for uncertain systems with time-delay perturbation[END_REF], [START_REF] Tanaka | A fuzzy Lyapunov approach to fuzzy control and design[END_REF], [START_REF] Daafouz | Parameter dependent Lyapunov function for discrete time systems with time varying parametric uncertainties[END_REF], [START_REF] Morère | Stabilité et stabilisation non quadratique de modèles flous discrets[END_REF], [START_REF] Johansen | Computation of Lyapunov function for smooth nonlinear systems using convex optimization[END_REF], [START_REF] Jadbabaie | A reduction in conservatism in stability and L2 gain analysis of Takagi-Sugeno fuzzy systems via linear matrix inequalities[END_REF]. The obtained results make it possible to also reduce the conservatism of the quadratic approach. However, it is interesting to notice the great difference between the results of the continuous domain and the discrete domain. If the results obtained for the discrete case are global and may be formulated into a LMI form [START_REF] Daafouz | Parameter dependent Lyapunov function for discrete time systems with time varying parametric uncertainties[END_REF], the results in continuous case are often local and in nonconvex form [START_REF] Chadli | Stabilté et stabilisation de systèmes non linéaires en représenation multimodèle[END_REF], [START_REF] Blanco | LMI Approach to design of robust state observer for uncertain systems with time-delay perturbation[END_REF], [START_REF] Tanaka | A fuzzy Lyapunov approach to fuzzy control and design[END_REF].

The objective of the paper is to formulate stability conditions in term of LMI form [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] using a MQLF approach. In the case when these conditions are nonlinear in the synthesis variables, a bilinear form easy to linearise by existing algorithm is given. In the stabilisation part, only the case when the input matrices are positively linearly dependant i.e. B i = β i B, β i > 0 will be considered.

Notation: In this paper, X T denotes the transpose of the matrix X, X > 0 (X ≥ 0) means that X is a symmetric positive definite (semidefinite) matrix,

• denotes the scalar product, | • | denotes the absolute value, I s = {1, 2, .., s} and

n i =j:1 µ i (z) µ j (z) = n i:1 n j =i:1 µ i (z) µ j (z) n i<j:1 µ i (z) µ j (z) = n i<j:1 n j:1 µ i (z) µ j (z)

CONTINUOUS MULTIPLE MODEL

The continuous multiple model is represented as follows:

ẋ(t) = n i=1 µ i (z(t))(A i x(t) + B i u(t)) (1a) 
y(t) = n i=1 µ i (z(t))C i x(t) (1b)
where n is the number of local models,

x(t) ∈ R n is the state vector, u(t) ∈ R m is the input vector, y(t) ∈ R l is the output vector, z(t) ∈ R q
is the vector of the so-called decision variables,

A i ∈ R p.p , B i ∈ R p.m et C i ∈ R l.
p . The activation functions µ i (.) are such that :

     n i=1 µ i (z(t)) = 1 µ i (z(t)) ≥ 0, ∀ i ∈ I n (2)
The choice of the variable z(t) leads to different classes of models. It can depend on the measurable state variables, be a function of the measurable outputs of the system and possibly on the input. In this case, the system (1a) describes a nonlinear system. It can also be an unknown constant value, system (1a) then represents a PLDI.

STABILITY ANALYSIS

The considered MQLF depends only on the system state and has the form :

V (x (t)) = x (t) T P (x (t)) x (t) (3) with P (x (t)) = n i=1 µ i (x (t)) P i , P i > 0 (4)
Taking into account the properties of the matrices P i and those of the activation functions, the function (3) is a Lyapunov function candidate since :

c 1 x (t) 2 ≤ V (x (t)) ≤ c 2 x (t) 2 (5)
where c 1 and c 2 are positive scalars :

c 1 = max i∈In (λ min (P i )) , c 2 = min i∈In (λ max (P i )) (6)
The proposed method using this type of function needs a priori bound on the state variation. This hypothesis implies a bounded derived activation function dµi(x(t)) dt .

Assumption 1 : the activation functions µ i (x (t)) are continuously differentiable.

Considering the derivative time of the MQLF (3):

V (x (t)) = ẋ (t) T P (x (t)) x (t) + x (t) T P (x (t)) • ẋ (t) + x (t) T Ṗ (x (t)) x (t) (7) 
Taking definition (4) into account, the last term in the right member of (7) could be bounded as follows

x (t) T Ṗ (x (t)) x (t) = x (t) T n i=1 ∂µ i (x (t)) ∂x (t) , ∂x (t) ∂t P i x (t) ≤ x (t) T n i=1 ∂µ i (x (t)) ∂x (t) T ẋ (t) P i x (t) (8)
Let us now formulate the following assumption Assumption 2 : there exists a scalar ν > 0 such

that ∂µi(x(t)) ∂x(t) T ẋ (t) ≤ ν, ∀x (t) ∈ R p , i ∈ I n
Thus in this case the term ∂µi(x(t)) ∂x(t) T ẋ (t) is bounded independently from the state:

x (t) T Ṗ (x (t)) x (t) ≤ x (t) T ν n i=1 P i x (t) (9)
Consequently the time derivative of the MQLF (7) becomes :

V (x (t)) ≤ ẋ (t) T P (x (t)) x (t) + x (t) T P (x (t)) • ẋ (t) + x (t) T ν n i=1 P i x (t) (10) 
Based on the work of [START_REF] Chadli | Stabilté et stabilisation de systèmes non linéaires en représenation multimodèle[END_REF], [START_REF] Blanco | LMI Approach to design of robust state observer for uncertain systems with time-delay perturbation[END_REF], [START_REF] Tanaka | A fuzzy Lyapunov approach to fuzzy control and design[END_REF] and [START_REF] Jadbabaie | A reduction in conservatism in stability and L2 gain analysis of Takagi-Sugeno fuzzy systems via linear matrix inequalities[END_REF] the results, which will be presented thereafter in LMI formulation, use the bounded time derivative of the MQLF candidate (10). In order to improve the analysis result and then to obtain conditions less constraining as possible, the bound should be determined as precisely as possible. To achieve this goal, the following proposition a priori supposes certain knowledge on the coupling of the activation functions, i.e. the maximum number (r) of local models simultaneously activated at each time.

Proposition 1 : taking into account the properties of the activation functions (2), the following inequalities hold, ∀ r ∈ {2, .., n} :

n i =j:1 µ i (z) µ j (z) ≤ 1 - 1 r (11) n i=1 µ 2 i (z) ≥ 1 r ( 12 
)
where r is the maximum number of local models simultaneously activated at each time.

Proof. : from the properties (2) of the activation functions one deduces :

1 = n i=1 µ i (z) 2 = n i=1 µ i (z) 2 + n i =j:1 µ i (z) µ j (z) (13) 
and then using [START_REF] Murray-Smith | Fuzzy regulators and fuzzy observers : relaxed stability conditions and LMI-Based designs[END_REF]:

n i=1 µ i (z) 2 ≥ 1 r -1 n i =j:1 µ i (z) µ j (z) (14)
we obtain the property (11). In the same way the inequality ( 12) is deduced directly from the inequality (11) and from the equality (13).

The following result supposes a priori bound (ν) on the state variation (assumption 2).

Theorem 1 : suppose that there exists symmetric matrices Q > 0, P i > 0, i ∈ I n , M and N which verify the following LMI :

P i > P j+r , i ∈ I r , j ∈ I n-r (15) 
A T i P i + P i A i ≤ M, ∀ i ∈ I n ( 16 
)
A T i P j + P j A i + A T j P i + P i A j ≤ 2N ∀ (i, j) ∈ I 2 n , i < j (17) M -N ≤ 0 (18) N + r -1 (M -N ) + ν r i=1 P i < -Q (19) 
with µ i (z (t)) µ j (z (t)) = 0, r is the maximum number of local models simultaneously activated at each time and ν is a bound related to the state variation (assumption 2). Then the equilibrium point of the unforced multiple model ( 1a) is globally exponentially stable.

Proof. : The derivative (10) of the MQLF, along the trajectory of the unforced multiple model (1a), taking into account the conditions ( 15), ( 16) and ( 17) with the assumption 2 is expressed :

V (x (t)) ≤ x (t) T ν r i=1 P i x (t) + x (t) T   n i=1 µ 2 i (x(t))M + 2 n i<j:1 µ i µ j N   x (t) (20)
or in an equivalent form :

V (x (t)) ≤ x (t) T ν r i=1 P i x (t) + x (t) T N + n i=1 µ i (x (t)) 2 (M -N ) x (t) (21)
The condition ( 18) and the property ( 12) allow to write

V (x (t)) ≤ x (t) T N + r -1 (M -N ) + ν r i=1 P i x (t) (22)
Consequently the condition ( 19) guarantees exponential stability of the unforced multiple model (1a).

Let us notice that when the activation functions are defined on an infinite support, i.e. r = n, the condition ( 15) is trivial.

CONTROLLER SYNTHESIS

In the case when the input matrices are positively linearly dependant i.e. B i = β i B, β i > 0, it is interesting to consider the control law [START_REF] Guerra | Control laws for takagi-Sugeno fuzzy models[END_REF] :

u (t) = - n i=1 µ i (z (t)) β i K i n i=1 µ i (z (t)) β i x (t) (23) 
With this control law, a closed loop continuous multiple model is then written as follows :

.

x (t) = n i=1 µ i (z (t)) G ii x (t) (24) 
with

G ii = A i -B i K i (25) 
Notice that in this case the closed loop continuous multiple model depend only on the dominant terms

G ii = A i -B i K i . The coupled terms G ij = A i -B i K j with i = j are ignored.
The derivative of the MQLF (10) along the trajectory of the multiple model ( 24) is expressed:

V (x (t)) = x (t) T R (x) x (t) + x (t) T Ṗ (x (t)) x (t) (26) with R (x) = n i=1 n j=1 µ i (x) µ j (x) S ij (27) 
S ij = G T ii P j + P j G ii (28) 
The term x (t) T Ṗ (x (t)) x (t) depends on the local gain K i , i ∈ I n :

x T Ṗ (x) x ≤ x T n i=1 ∂µ i (x) ∂x T ẋ P i x (29)
The following bound may be used :

∂µ i (x (t)) ∂x (t) T ẋ (t) ≤ ∂µ i (x (t)) ∂x (t) ẋ (t) ≤ ∂µ i (x (t)) ∂x (t) x (t) α (30) 
where

α = max i∈In ( G ii ) (31) 
Using the definition (25), the condition ( 31) is verified if the following LMI depending on α and K i are feasible:

αI (A i -B i K i ) T A i -B i K i αI ≥ 0, i ∈ I n (32)
Assumption 3 : there exits α, K i verifying (32) and η > 0 such that :

∂µ i (x (t)) ∂x (t) x (t) ≤ η, ∀x (t) ∈ R p (33) 
In this case the expression (29) can be bounded as follows:

x (t) T Ṗ (x (t)) x (t) ≤ αηx (t) T n i=1 P i x (t) , ∀x ∈ R p (34) 
Theorem 2 : suppose that there exists symmetric matrices Q > 0, P i > 0, i ∈ I n , M and N , matrices K i , i ∈ I n and a scalar α which verify the following constraints :

P i > P j+r , i ∈ I r , j ∈ I n-r (35) S ii ≤ M, i ∈ I n (36) S ij + S ji ≤ 2N, (i, j) ∈ I 2 n , i < j (37) M -N ≤ 0 (38) N + r -1 (M -N ) + αη r i=1 P i < -Q (39) αI (A i -B i K i ) T A i -B i K i αI ≥ 0, i ∈ I n (40) with µ i (z (t)) µ j (z (t)) = 0, S ij = (A i -B i K i ) T P j + P j (A i -B i K i ) and η a bound respecting (33).
Then the multiple model ( 24) is globally exponentially stable.

Proof. : The equality ( 27) can be written

R (x) = x T   n i=1 µ 2 i S ii + n i<j:1 µ i µ j (S ij + S ji )   x
With conditions ( 36) and (37), we obtain

R (x) ≤ x T N + n i=1 µ i (x (t)) 2 (M -N ) x (41) 
By using the proposition 1 with the assumption (34) and the constraints ( 35) and ( 40), the expression ( 26) is expressed as follows

V (x) ≤ x T N + r -1 (M -N ) + αη r i=1 P i x ( 
42) finally, with the result (39), we verify V (x (t)) < -x (t)

T Qx (t) , which ends the proof.

Remarks :

• In order to avoid obtaining non exploitable stabilisation conditions by numerical tools, the case of only two local models simultaneously activated (without any conditions on the input matrices B i ) is considered in (?). This case gives interesting results easy to linearise by existing technics. • Linearisation -The result obtained in theorem 2 are in BMI form in P i and K i . We know that BMI problems are not convex and may have multiple local solutions.

For solving this problem, we can use, for example, the path-following method, developed in [START_REF] Hassibi | A pathfollowing method for solving BMI problems in control[END_REF] (see (Chadli et al., 2003a) for more detail). For that purpose, let P i0 and K i0 be initial values and let P i = P i0 + δP i and K i = K i0 + δK i . The LMI formulation corresponds to substitue S ij by S ij = A T i P j0 + P j0 A i -K T i0 B T i P j0 -P j0 B i K i0 + A T i δP j + δP j A i -K T i0 B T i δP j -δP j B i K i0 -δK T i B T i P j0 -P j0 B i δK i (43) with the supplementary constraints

ζP i0 δP i δP i ζP i0 > 0, (ζ K i0 ) 2 δK T i δK i I > 0
(44) where 0 < ζ ≪ 1.

CONCLUSION

In this paper, the stability analysis of a nonlinear system described by a multiple model and also the controller synthesis are considered. Using the MQLF, sufficient conditions for global asymptotic stability are given using a LMI formulation. The results of stabilisation are given under BMI form. This set of inequality may be solved using a linearisation technique.