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Abstract: In this paper, we consider a nonlinear system represented by a multiple
model, where a part of its inputs is unknown. Our objective is to estimate the
state variables and the unknown inputs of this system. For that, we propose the
synthesis of a multiple observer based on the elimination of these unknown inputs.
It is shown how to determine the gains of the local observers, these gains being
solutions of a set of linear matrix inequalities (LMI). The model of an hydraulic
system with three tanks is used to test the suggested procedure.
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1. INTRODUCTION

A physical process is often subjected to distur-
bances which have as origin the noises due to its
environment, uncertainty of measurements, fault
of sensors and/or actuators. These disturbances
have harmful effects on the normal behavior of
the process and their estimation can be used to
conceive a control strategy able to minimize their
effects. The disturbances are called unknown in-
puts when they affect the input of the process
and their presence can make difficult the state
estimation.

Several works were achieved concerning the esti-
mation of the state and the output in the presence
of unknown inputs. They can be gathered into
two categories. The first one supposes an a priori
knowledge of information on these nonmeasurable
inputs; in particular, Johnson (Johnson, 1975)
proposes a polynomial approach and Meditch
(Meditch et al., 1971) suggests approximating the

unknown inputs by the response of a known dy-
namic system. The second category proceeds ei-
ther by estimation of the unknown inputs, or by
their complete elimination from the equations of
the system.

Among the techniques that do not require the
elimination of the unknown inputs, that of Wang
(Wang et al., 1975) proposes an observer able to
entirely reconstruct the state of a linear system in
the presence of unknown inputs; Kobayashi (Koba
et al., 1982) and Lyubchik (Lyubchik et al., 1993)
use a method of model inversion to estimate the
state.

Among the techniques which allow the elimination
of the unknown inputs, that of Kudva (Kudva et

al., 1980) establishes, in the case of linear systems,
the existence conditions of the system observer
with unknown inputs while being based on the
technique of generalized inverse of matrix. Guan
carried out the elimination of the unknown in-



puts of the state equations of a continuous linear
system (Guan et al., 1991). Many of other alter-
natives exist, but most of them were developed
principally for linear systems.

However, the real physical systems are often non-
linear. As it is delicate to synthesize an observer
for a nonlinear system, we preferred to represent
these systems with a multiple model. The idea of
the multiple model approach is to apprehend the
total behavior of a system by a set of local models
(linear or affine), each local model characterizing
the behavior of the system in a particular zone of
operation. The local models are then aggregated
by means of an interpolation mechanism.

The motivation of this approach rises owing to
the fact that it is often difficult to design a model
which takes into account all the complexity of
the studied system. In 1985, Takagi and Sugeno
(Takagi et al., 1985), presented their fuzzy model
of a system described by a set of rules ” if
premise then consequence ”, such as the conse-
quence of a rule is an affine local model; the global
model is obtained by the sum of the local mod-
els weighted by activation functions associated to
each of them.

For state estimation, the suggested technique con-
sists in associating to each local model a local
observer. The global observer (multiple observer)
is the sum of the local observers weighted by their
activation functions, which are the same than
those associated with the local models (Patton et

al., 1998). Our contribution lies in the design of
this global observer by eliminating the unknown
inputs from the system. The stabilization of the
multiple observer is performed by the search of
suitable Lyapunov matrices and the improvement
of the performances of the multiple observer by
pole assignment is formulated in a LMI context.

2. ESTIMATION OF STATE AND UNKNOWN
INPUT OF A MULTIPLE MODEL

This section clarifies the construction of the ob-
server. This last has an analytical form result-
ing from the aggregation of local observers and
this form is particularly suitable for stability and
convergence study of the estimation error. The
numerical aspects concerning the determination
of the gains of the observers will be also treated.
A state observer can reconstruct the state of a dy-
namic system and has important applications such
as the realization of the command by feedback,
the monitoring system, and the diagnosis of faults.
The Luenberger observer and it’s variants are well
known in the literature of control. The Luenberger
observer works well when the dynamics of the
system is known. The state reconstruction of a
uncertain system or subjected to the influence

of the unknown inputs is a classic problem of
the automatic. However, the Luenberger observer
is not always adapted for the fault detection,
because the state estimation error given by this
observer for a system with unknown inputs does
not converge necessarily towards zero.
To improve these results within the framework
of linear systems, we can use observers of singu-
lar systems (Lewis, 1986) or observers with un-
known inputs (?). In the linear system framework,
observers can be designed for singular systems,
unknown input systems, delay systems and also
uncertain system with time-delay perturbations
(Fan et al., 2002). In the case of nonlinear sys-
tem with unknown inputs represented by multiple
model we have already proposed a technique for
the state estimation of this multiple model by
using a multiple observer with sliding mode (Akh
et al., 2003). Within the framework of the hybrid
systems one can cite (Alessandri et al., 2001) and
(Balucchi et al., 2001).

In this work, we consider the estimation of the
state vector and the unknown inputs of a nonlin-
ear system represented by a multiple model and
subject to the influence of unknown inputs, by
using a multiple observer. This multiple observer
is based on local Luenberger observers including
a sliding term to compensate the effect of the
unknown inputs.

We also present a criterion of stability of this mul-
tiple observer according to Lyapunov’s approach
(Chadli et al., 2003) and the LMI approach (Boyd
et al., 1994). Let us consider a nonlinear system
represented by the following multiple model (with
M local models) subject to unknown inputs:











ẋ =

M
∑

i=1

µi(ξ)
(

Aix + Biu + Riū + Di

)

y = Cx

(1)

such that:











M
∑

i=1

µi(ξ) = 1

0 ≤ µi(ξ) ≤ 1 ∀ i = {1, ...,M}

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm

is the input vector, ū(t) ∈ ℜq, q < n, the
vector of unknown inputs and y(t) ∈ ℜq the
vector of measurable output. For the ith local
model Ai ∈ ℜn×n is the state matrix, Bi ∈
ℜn×m is the matrix of input, Ri ∈ ℜn×q is
the matrix of influence of the unknown inputs
and Di ∈ ℜn×1 is a matrix depending on the
operating point. Finally, C ∈ ℜp×n is the matrix
of output. ξ represents the vector of decision
depending on the input and/or the measurable
state variables. The obtention of the multiple
model is out of purpose in this presentation but
for the interested reader, let us state that one can
either uses techniques of parametric estimation



(Gasso et al., 2001) or techniques of linearization
(Johanson et al., 2000).

The problem considered here is those of the recon-
struction of the state variable by using only the
information contained in the known inputs and
the measurable outputs.

2.1 General structure of the multiple observer

The proposed observer for the multiple model (1)
is a linear combination of local observers, each of
them having the structure proposed by Walcott
and Zak. In this part, we consider that the inputs
ū(t) are bounded, such as ‖ū(t)‖ ≤ ρ, where
ρ is scalar and ‖ · ‖ represents the Euclidean
norm. It is also assumed that there exists matrices
Gi ∈ ℜn×p, such that A0i = Ai − GiC have
stable eigenvalues and that there exists Lyapunov
pairs (P,Qi) of matrices and matrices Fi ∈ ℜm×p

respecting the following structural constraints:
{

AT
0iP + PA0i = −Q

CT FT
i = PRi, ∀i ∈ 1, ..., M

(2)

The proposed observer has the form:










˙̂x =

M
∑

i=1

µi (ξ)
(

Aix̂ + Biu + Gie + Riνi

)

y = Cx̂
(3)

where e(t) represent the state estimation error,
such as:

e (t) = x (t) − x̂ (t) (4)

The matrices Gi and the control variables νi,
with νi(t) ∈ ℜq must be determined in order
to guarantee the asymptotic convergence of x̂(t)
towards x(t). The terms νi (t) compensate errors
due to the unknown inputs. The set of residuals
is defined as follows:

r = y − ŷ = C (x − x̂) = Ce (5)

The dynamic of state estimation error is given as
follows:

ė =

M
∑

i=1

µi (ξ)
(

(Ai − GiC) e + Riū − Riνi

)

(6)

Theorem 1: The state estimation error between
the multiple model (1) and the robust state mul-
tiple observer (3) converges towards zero, if νi (t)
are given by the following equation:







if r (t) 6= 0, then νi (t) = ρ
Fir (t)

‖Fir (t)‖
if r (t) = 0, then νi (t) = 0

(7)

and if there exists a symmetric definite positive
matrix P which satisfies the following inequalities:

(Ai − GiC)T P + P (Ai − GiC) < 0,
i = {1, ..., M}.

(8)

Proof : In order to show the asymptotic conver-
gence of this multiple observer, let us consider the
following Lyapunov function:

V (e (t)) = eT (t)Pe(t) (9)

Its derivative in respect to time, evaluated along
the trajectory of the system by using equations
(5) and (6), may be expressed as:

V̇ =

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi

)

e

+ 2eT PRiū − 2eT PRiνi

)

(10)

where Āi = Ai − GiC.
Using the second part of constraint (2), the deriva-
tive of the Lyapunov function becomes:

V̇ =

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi

)

e

+ 2eT CT FT
i ū − 2eT CT FT

i νi

)

=

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi

)

e

+ 2rT FT
i ū − 2rT FT

i νi

)

≤

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi

)

e

+ 2ρ‖Fir‖ − 2rT FT
i νi

)

Using the relation (7), the derivative of the Lya-
punov function becomes as follows:

V̇ ≤

M
∑

i=1

µi (ξ)
(

eT (ĀT
i P + PĀi)e+

2ρ ‖Fir‖ − 2ρrT FT
i

Fir

‖Fir‖

)

V̇ ≤

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi

)

e
)

(11)

Then, the state estimation error of the robust
multiple observer (3) converges towards zero if the
relation (8) holds.

2.2 Unknown input estimation

Several works were realized for the unknown in-
put estimation within the framework of linear
dynamic systems (Edwards et al., 2000). The orig-
inal method developed in this paper, is based on
the knowledge of matrices Ai, Bi, Di, Ri and the
output matrix C of the multiple model (1). By
knowing these matrices, one can suppose the exis-
tence of a fictitious multiple model of the following
form:











˙̄x =

M
∑

i=1

µi(ξ)
(

Aix̄ + Biu + Di

)

ȳ = Cx̄

(12)

We have previously shown that the convergence of
the multiple observer is guaranteed if the condi-
tion (8) and the constraints (2) are verified. In



steady state regime, the state estimation error
towards zero, then x(t) = x̂(t); by replacing x̂(t)
in the equation (1) we obtain:










˙̂x =

M
∑

i=1

µi(ξ)
(

Aix̂ + Biu + Ri ˆ̄u + Di

)

y = Cx̂

(13)

where ˆ̄u(t) represent the unknown inputs that are
to be estimated. We consider ε(t) the fictitious
state estimation error between the system (12)
and fictitious system (13), given as follows:

ε = x̂ − x̄ (14)

The dynamic of this fictitious state estimation
error is given by the following equation:

ε̇ = ˙̂x − ˙̄x =

M
∑

i=1

µi (ξ)
(

Aiε + Ri ˆ̄u
)

(15)

So, assuring the existence the generalized inverse
of the transmission matrix of the unknown inputs
ˆ̄u(t) allows to give estimation:

ˆ̄u =

(

M
∑

i=1

µi (ξ) Ri

)− (

ε̇ −

M
∑

i=1

µi (ξ)Aiε

)

(16)

2.3 Design of a multiple observer with relaxed

constraints

To establish the existence conditions of a multiple
observer for the multiple model subjected to the
influence of the unknown inputs, another method
may be proposed. The multiple observer has now
the following form:










˙̂x) =

M
∑

i=1

µi (ξ)
(

Aix̂ + Biu + Gie + νi

)

ŷ = Cx̂

(17)

It is necessary to note that the terms νi (t) com-
pensate the errors due to the unknown inputs.
In order to determine the matrices Gi and the
terms νi (t) ∈ ℜp which guarantee the asymptotic
convergence of x̂ (t) towards x (t), let us define the
state and the output estimation error:

e = x − x̂ (18)

r = y − ŷ = C (x − x̂) = Ce (19)

The dynamic of state estimation error is given by
the following equation:

ė =

M
∑

i=1

µi (ξ)
(

(Ai − GiC) e + Riū − νi

)

(20)

Lemma 1: For any matrices X and Y with
appropriate dimensions, the following property
holds:

XT Y + Y T X ≤ βXT X + β−1Y T Y, with β > 0
(21)

Theorem 2: The state estimation error between
the multiple model (1) and the robust multiple

observer (17) converges towards zero, if νi (t) are
given as follows:






if r 6= 0, then νi =
ρ2 β−1 ‖PRi‖

2

2 rT r
P−1CT r

if r = 0, then νi = 0
(22)

with β a positive scalar. P is a symmetric and pos-
itive definite matrix which satisfies the following
inequalities:

(Ai − GiC)
T

P + P (Ai − GiC) + βI < 0

i = {1, . . . , M}
(23)

Proof : In order to show the asymptotic conver-
gence of this multiple observer, let us consider the
following Lyapunov function:

V (e (t)) = eT (t)Pe (t) (24)

Its derivative in respect to time, evaluated along
the trajectory of the system by using equations
(19) and (20), may be expressed as:

V̇ =

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi

)

e+

2eT PRiū − 2eT Pνi

)

(25)

It is easy to verify that: 2eT PRiū = eT PRiū +
ūT RT

i Pe and by using the lemma (1), we obtain
the following inequalities:

eT PRiū + ūT RT
i Pe ≤ βeT e + β−1ūT RT

i PPRiū

≤ βeT e + β−1‖PRiū‖
2

≤ βeT e + β−1ρ2‖PRi‖
2

By using the relation (22), the fact that the
unknown inputs are bounded and the properties
of the lemma (1), the derivative of the Lyapunov
function may be bounded as follows:

V̇ ≤

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi + βI

)

e+

β−1ρ2‖PRi‖
2 − ρ2β−1‖PRi‖

2eT CT r

rT r

)

≤

M
∑

i=1

µi (ξ)
(

eT
(

ĀT
i P + PĀi + βIn×n

)

e
)

Thus, the state estimation error converges asymp-
totically to zero, if the conditions (22) and the
inequalities (23) are verified. Note that inequal-
ities (23) depend on the two unknown matrices
P and Gi which can be obtained by using LMI
techniques.

3. SIMULATION EXAMPLE

The chosen nonlinear system is represented on
figure 1. It results from a traditional benchmark
(Zolghadri et al., 1996) and schematizes a hy-
draulic process made up of three tanks. These
three tanks T1, T2 and T3, with identical sections



A, are connected one to each other by cylindrical
pipes with identical sections Sn. The output valve
is located at the output of tank T2 (T2 ensures
to empty the tank filled by the pump flows 1
and 2 with respective rates Q1(t) and Q2(t)).
Two combinations of the three water levels are
measured. The communication pipes between the
tanks are equipped with manually adjustable ball
valves, which allow the corresponding pump to be
closed or open. The three levels are governed by
the constraint x1 > x3 > x2; the process model
is given by equations (26). Indeed, taking into
account the fundamental laws of conservation of
the fluid, one can describe the operating mode
of each tank; one then obtains a nonlinear model
expressed by the following state equations:

❄ ❄

❄ ❄ ❄

❄

✻

✲T1 T2T3

Qf1 (t) ū(t) Qf3 (t) ū(t) Qf2 (t) ū(t)

x1

x3

x2

Q1(t) Q2(t)

Sn

Figure 1. Three tank system















































A
dx1

dt
= Q1 − α1Sn

√

2g (x1 − x3) + Qf1ū

A
dx2

dt
= Q2 + α3Sn

√

2g (x3 − x2)−

α2Sn

√

2gx2 + Qf2ū

A
dx3

dt
= α1Sn

√

2g (x1 − x3)−

α3Sn

√

2g (x3 − x2) + Qf3ū
(26)

where α1, α2 and α3 are constants. Qfi (t) ū(t), i ∈
{1, ..., 3} denotes additional mass flows caused by
leaks. The vector ū(t) constitutes the unknown
input. g is the gravity constant and the numerical
application are performed with:
{

g = 980 cm/sec2, A = 154 cm2, Sn = 0.5 cm2.
α1 = 0.9, α2 = 0.6, α3 = 0.8

The multiple model proposed (1), with ξ(t) =
u(t), which approximates the nonlinear system
(26), is described by:











ẋ =

2
∑

i=1

µi (ξ) (Aix + Biu + Riū + Di)

y = Cx

(27)

The matrices Ai, Bi, Ri, C et Di are calculated by
linearizing the initial system (26) around differ-
ent points chosen in the operating range of the

system. Two local models have been selected in
an heuristic way. That number guarantees a good
approximation of the state of the real system by
the multiple model. The numerical values of all
these matrices are:

A1 = 10−3





−18.5 0 18.5
0 −20.9 15.0

18.5 15.0 −33.5





A2 = 10−3





−22.1 0 22.1
0 −23.3 17.6

22.1 17.6 −39.5





R1 = 10−3





−0.57
−0.46
−0.52



 , R2 = 10−3





−0.57
−0.50
−0.54





B1 = B2 =
1

154

[

1 0 0
0 1 0

]T

D1 =





−0.225
−0.089
0.005



 , D2 =





−0.182
−0.141
0.003





The Lyapunov matrix P and the two matrices F1

and F2 have been obtained by solving (8) and the
second part of contraints (2):

P = 102





3.32 −0.04 3.14
−0.04 6.41 −0.16
3.14 −0.16 3.45





F1 =
[

−0.29 −0.07
]

F2 =
[

−0.31 −0.05
]

The simulation results are on the following figures:
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Figure 2. The inputs
(

Q2(t) -.-, and Q1(t), –
)

4. CONCLUSION

From a multiple model representation, we show
how to design a multiple observer using the prin-
ciple of the interpolation of local observers; more-
over, we have considered the case where certain
inputs of the system were unknown. The calcu-
lation of the gains of the multiple observer is
then returned to a calculation of gains of the
local observers. The stability of the global ob-
server requires however the consideration of cou-
pling constraints between these local observers;
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Figure 3. State x2(t)
(

true value, value given
by the multiple model, value given by the
multiple observer

)
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Figure 4. Unknown input and its estimate

these contraints lead to the resolution of a LMI
problem under structural constraints. Assuming
the existence of suited matrices, we showed that
the reconstruction of the state vector and the
unknown inputs of the multiple model is possible.
The results of simulation show that the estimation
of state and unknown inputs is very satisfactory.
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