N
N

N

HAL

open science

Form factors in magnetic scattering of thermal neutrons
Rafik Ballou

» To cite this version:

Rafik Ballou. Form factors in magnetic scattering of thermal neutrons. Collection SFN, 7, pp.69-122,
2007, Neutrons Polarisés, 10.1051/sfn:2007019 . hal-00151283

HAL Id: hal-00151283
https://hal.science/hal-00151283
Submitted on 3 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00151283
https://hal.archives-ouvertes.fr

J. Phys. IV France 1 (2007) Pri-1
© EDP Sciences, Les Ulis

Form Factors in Magnetic Scattering of Thermal Neutrons

R. Ballou!
L Laboratoire Louis Néel - C.N.R.S., BP 166X, F-38042 Grenoble Cedex 9, France

Abstract

This lecture addresses the concept of form factor in magnetic scattering of thermal
neutrons, analyzing its meaning, discussing its measurement by polarized neutrons and
detailing its computation for the ions by the spherical tensor operator formalism.

N
O1 INTRODUCTION
o

O\l Tt is an experimental fact that the magnetic scattering of thermal neutrons from a magnetic
C material can be detected only over a fraction of the accessible range of the scattering vector and,
—) unlike the nuclear scattering, vanishes out as this gets large. Ascribed to the spatial distribution

™ of the magnetic densities, which is modulated at the atomic scale and thus at the scale of the

) wavelength of the thermal neutrons, the underlying variation in the scattering amplitudes

1 is extracted out through form factors associated to ions. A concrete advantage is that these

] depend on radial integrals that can be computed at once and tabulated for each ion and valence

state. Within the so-called dipole approximation the only unknowns then are the proportions

O of the spin and orbital magnetic moments attached to the ions. A further interest is that the

7] expression of the differential scattering cross section is considerably simplified and adapted for

b the quantitative analysis of the static and dynamic correlation functions of magnetic moments.

S A number of magnetic phenomena thus can be investigated with more ease, for instance the

long range or short range magnetic orders with the associated magnetic transitions or crossovers

() and the magnon excitations emerging from these orders, the configurations and dynamics of

00 magnetic moments in spin glasses or in spin fluids, the excitation spectrum of low dimensional

magnets or of arrays of molecular nanomagnets, et cetera.

L)  With polarized neutrons, measurements can be performed at precisions which, interestingly,
 allow probing the actual spatial distribution of the magnetic densities. A wholly new set of
features associated to these then become available to analysis, for instance the quantum states
1 of the concerned ions, which requires the exact computation of the associated form factors,
but also the degree of covalency with neighboring ions or of hybridization with conduction
_C electrons or else the itinerant nature of the magnetic densities, which all might question about
the use itself of form factors associated to single ions, the spin delocalization and polarization
effects, which might inform about the exchange paths and mechanisms in magnets, et cetera.

We qualitatively examine in the following the concept of form factor, then describe the
method used for its precise measurement by polarized neutron in collinear magnets and finally
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provide with a survey of the algebra involved for their computation by the spherical tensor
operator formalism. The aim of the lecture was to refresh our mind with concepts and method-
ologies that are not new but unfamiliar because they are not of frequent use. Accordingly, there
is nothing in this manuscript that cannot be found elsewhere. Nevertheless, no attempt will be
made to exhaustively account for the literature, which instead will be limited to the minimum.

2 SCATTERING AMPLITUDES

The scattering amplitude A for a neutron-sample collision process, where the neutron spatial-
spin incoming state |k;v;) is transfered into the spatial-spin outgoing channel |ksv¢) while the
sample initial state |\;) is transformed into the final state |As), is computed equal to the matrix
element

— - My - —
A[{Ew)Ny ~ A} = =55 (R |V | (Ev)x)) (2.1)
in the Born approximation [1]. m, is the neutron mass !. 'V is the neutron-sample interaction
potential.

A first contribution to V is the neutron-nucleus nuclear interaction potential. Since its
range (~ 1.5 x 10715 m) and the nucleus radius (~ 10~ m) are several orders of magnitude
smaller than the wavelength of thermal neutrons, it essentially gives rise to isotropic s-wave
neutron scattering and thus is well approximated by the Fermi-Dirac pseudo-potential

VN =

m

2mh? . -
g b, 6(fh — R,p) (2.2)
" op

where ¢ is the Dirac delta generalized function, r,, the neutron position operator and pr the
p-th nucleus position operator. b, = A, 1, g, + By, £, - &, for the nuclear interaction between
two nucleons depends on their spin. 1, g is the unit operator in the p—th nucleous ® neutron
spin space, ¢, the p-th nucleus spin operator and %6" the neutron spin operator. The scattering
lengths A, and B, are complex numbers that vary from nucleus to nucleus and as a function
of the incident neutron energy, with the imaginary part representing radiative capture [2].

A second contribution to V, which naturally emerges from the non relativistic limit of the
neutron Hamitonian in an electromagnetic field [1], is the interaction potential

— —

Vit = —fi, - BE,) = — iy & B(F) (2.3)

of the neutron magnetic moment fi, = v, px & with the magnetic induction B(F,) created by
the sample at the neutron position 7. 7, = —1.91348 is the neutron gyromagnetic ratio and
pn the nuclear magneton 2. If the current density j(i*) engendering the magnetic induction

B(r,) is stationary then

> /= Ho Ky Fn -7 _,

T Arx n—

L my = 1.67492 10727 kg (939.57 MeV/c?) = 1838.62 me = 1.001375 mp, where me = 0.910956 10730 kg
(= 0.511 MeV/c?) is the electron mass and my, = 1.67261 10727 kg (= 938.28 MeV/c?) the proton mass. ¢ =
2.997925 108 ms~! is the light speed and h = % = 1.05459 10734 Js the Dirac constant (Planck constant/27).

2uN = ‘fr‘lh = 5.05095 10727 JT~!. e (electron charge) = —1.60219 10'° C.
P

2
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where p is the vacuum permeability 2 and Q any volume of the space with a boundary 09
strictly enclosing j(7) (cf. eq. (A7) and eq. (Ag)). An external magnetic induction also influ-
ences the neutron spatial-spin state, which allows guiding or rotating the neutron polarization
or else, in the case of strong gradients, channelling the neutron, but it affects the scattering
by modifying the neutron statistical ensemble and not through the neutron-sample scattering
amplitude.

A neutron also reacts to the electrostatic field E(f"n) of the nuclear and electron charge
densities through the first order relativistic corrections to the neutron Hamiltonian, namely
the Spin - Orbit (SO) 4+ Darwin Correction (DC) interaction potentials

Vso + Vpe = _Z; ’g & (E(F) ABn) — 2N 1Ve - B(f,) (2.5)

but these provide with negligibly small scattering amplitudes as compared to those nuclear
(V) and magnetic (V) and can be safely ignored [2]. A little attention should be paid only
to the N-SO elastic interference, bringing about, for initial neutron polarization 131-, a scattered
intensity o B; - (E A EZ) and, for null P;, a scattered polarization o k F A Ei, which might give
rise to detectable effects when the samples shows small nuclear coherent scattering, contains
strongly absorbing species or possesses a non centrosymmetric crystal structure [2].

The integration over the neutron space variable in the scattering amplitudes is straightfor-
ward, since (i, |k;) = exp{i(k; - @)} and (k:;c|§n> = exp{—i(ky-5,)} are plane waves. Appropri-
ately inserting the closure relation [ |7,)(7n| din = [ [50)(8a] dsn = [ |dn)(tn| ditn = --- =1
and making use of the Kronecker symbol d4.p to express that 4,5 =1 <= A = B and
0ap=0 <= A# B, we get

e for the nuclear scattering amplitude
2o (kg As)l VN [(Ravi)hi)) =

> {8 Sapni Gupun By Mgl 75 1N - (7] & i)} expli(%-Ry)} (2.6)

2h2

— —

bearing in mind that (5| §(Fa — Rp) [in) = (5l 0(n — Ry) = 6(5n — ) 8(in — Ry),

e for the magnetic scattering amplitude

— otz (A | Var | (R m) )= rl & 1) - & ()
Exyni () =Mt 2— i% A <Af‘ / 7) exp{i(3-7)} dF /\i> (2.7)
by using the identity & = —V (1) =~V (52 [ L exp{i(3- )} d3%) (cf. eq. (A.D)).

7=k — k_} defines the scattering vector. up is the Bohr magneton and ry the classical radius
of the electron .  and  are ordinary vectors so that

i3 N (Ag] / 7) exp{i(3-7)} di |A;) fz'ﬁ/\/ﬂ (Afl §(7) |\ exp{i(# - 7)} dF (2.8)

3o =47 1077 .
4 up = eh = —-9.27410 10724 JT-1. rg = £0 € — 981794 10~ 15

41T me
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The vector field (A j(7) |\:) can always be split into the sum of an irrotational component
f/{fy)\i(f') =-V; (Af] E(F) |As) and a solenoidal component j/\ 2, (1) = Vi A (Afl M(7) |As) :

Al 37 M) = =V gl B ) + Ve A gl M) A (2.9)

where

—

EGITEF R |< =

/\

ds

J(5) [Ai)
|

1“’31

—

(2.10)

Ol ¥ ) = 3= [ T8

/-\

Ce
/—\

ds

i(3) [Ai)
5

| —

(cf. eq. (A.9)). The irrotational component ﬁ 2, (7) does not at all contribute to the scattering
amplitude, since ¥V A j/\ 2, (7) = 0sothat —i 2 A [ ])\f x, (7) exp{i(3-7)} di" = 0. On the con-
trary, the solenoidal component jA By (7) is fully probed by the neutron, since V~ . j/\f A (F)=0
so that [, j/\f x, (P) exp{i ( -7)} dF is orthogonal to 3.

—

The substitution of —Vz (A\;| E(7) |A) + Vr A </\f| M(7) |)\> for (Af| j(7) |)\> in the
magnetic scattering amphtude results in re-formulating Ex: #. (7) in the eq. @

. 1 .
() = —vn 7 A M(7 (- 7)Y dr
5,\fﬁ,\1(%) Yn To ST %/\< f} /Q (F) exp{i(3-7)} dr

/\i> A3 (2.11)

M(7) is formally interpreted as the magnetic density operator since ij(F) = VA A M(7) |A)
is understood as the stationary current density in the sample in the state |\). All the other
contributions to the current density are necessarily irrotational, thus should be ascribed to
external sources to comply with charge conservation. We can safely ignore them although
they produce magnetic fields, for these might act solely on the neutron statistical ensemble.
A magnetic field FIM (7) of dipolar nature is also created by the magnetic density. Within the
sample it is equal to the opposite of the irrotational component of the magnetic density.

(A| M(7) |\) behaves as the customary conceived magnetic dipole densities that emerge from
the spatio-temporal coarse-graining of the Maxwell equations when the magnetic materials are
approximated by continuous media. At the difference of these, by essence macroscopic but
unequivocally defined, (A| M(7) |A) makes sense down to the subatomic scale but shows gauge
mvariance, since

Ve A M) A) + Vi (A (7) [N} = Ve A (A M) [A) (2.12)

whatever the scalar field operator ¥(#) with constant quantum average at the boundaries of
the sample and everywhere outside. This gauge freedom is a source of ambiguities for the
reconstruction of the magnetic densities from the neutron data [3]. It is not eliminated by
constraining the magnetic density to vanish outside the sample, where the solenoidal current
density is null, nor by imposing that its volume integration gives the magnetic moment of the
sample. It also survives over all the other electromagnetic equations for continuous media.
As an example, the magnetic field created by (Al M(7) |\ + Vi (A] U(7) |A) is computed
equal to HM+V\I/(F) — H NG R V= (A| ¥(7) |\), which shows that the magnetic induction
B(7) = po{H(7) + (\| M(7) |A)} does not depend on the gauge choice for (A| M(7) |A).

gauge can be fixed with the equation V- (A| M(7) |A) = 0 so as to retain only the Solen01dal
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component of the magnetic density, which is fully probed by the neutron, but then the concept
is often not intuitive. Other gauges might reveal themselves more insightful depending on the
physics under concern.

Actually, the spin magnetism is naturally described by continuous distributions of point-like
magnetic dipoles fi; at positions T

Mis(7) = 3 8(F; — 1A (2.13)

for these do exist objectively. All the other contributions to the magnetic density should be
considered through the convection current density operator

Jol®) = 5 32 4y 655 = 7)) +9,0(5; — ) (214)

of moving particles j of electric charge g;. T; is the position operator and V; the velocity
operator of the j—particle. V; = %[H, rj] = 65].7'[, where H is the Hamiltonian of the sample.

Nuclear magnetism is proportional to ux when electron magnetism is proportional to ug,
so can be disregarded. As a matter of fact, nuclear magnetism is rather probed through the
neutron-nucleus interaction potential Viy. We shall henceforth consider only pure electron
parameters : fi; = ge i S;, where go = 2.00232 = 2 is the electron gyromagnetic ratio, and
g; = e Vj. Assuming further that the p—dependent terms in the Hamiltonian are dominated

by the non relativistic kinetic energy, v; = %. Accordingly, &\ ;.2 (32) in the eq. (7)) writes

= . 1 L . .
Expni () = = 1o = 7z A <)\f Z [exp{i(32-T;)} 8] )\i> A7+
! (2.15)
T i oy = . i o
% T0 gr—g FN <)‘f > lexp{i(z- 1))} B; + B, exp{i(3-F))}] )\z’>

J
3 FORM FACTORS

Let us consider the concrete instance where the sample is a collection of kinematically indepen-
dent ions A, at the positions defined by the eigenvalues of R,. Any electron j then belongs to
a single ion, which implies that any sample state [\ ;) is the tensor product [As;) = @, [} ;)
of the ionic states [A} ;) and that (Ar|Ojea,[Ni) = (A}[Ojea,|A]) whatever the one-electron
operator Ojep, associated to the j—electron of the ion A,. We deduce

22

N . 1 - . . L o=
B =—un ¥ {5 20 By a2} eoli R} B
p

where

- N 1
Fapar (%) = s <>\?

/ M(7) exp{i(3-7)} dF
Q

)\§> (3.2)

defines the magnetic vector form factor of the ion A,. Using the spherical tensor operator
formalism, it may be computed exactly, but this necessitates defining a number of mathematical
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concepts and performing weighty algebraic manipulations, so will be detailed in the last section
and in the appendix. In this section rather qualitative and simplified aspects will be discussed.

Let T be the time inversion operator. T = Y K, where the unitary operator Y =
exp{—iméy -y, j S;} acts solely on the spin states and the antiunitary operator K of com-
plex conjugation acts solely on the spatial states [1]. Let X be a pure imaginary operator,
that is fully reversed by the time inversion: T X T~! = —X. It follows that (¢¢| X |¢;) =
(] T7IT X T7IT [¢fi) = — (| T7F X T |¢;) = —(Tops| X |Tehy)*, since, T being an-
tiunitary, (¥¢|T1x) = (¥¢|TTx) = (T¢f|x)*. Assuming that X acts solely on the spatial
states and that |1y ;|) are products of spatial states |{;,;) by spin states |(r;) or, if not, ex-
panding over such basis states, the spin degrees of freedom can be ignored. We then may
write (€] X |6) = —(K¢;| X [K&)* = —(K&| X [Kép) = — [ df [ d5 (&7 (7] X [5)(31¢))".
If the Hamiltonian is Hermitian and if the states {¢; are non degenerate then the wave-
functions (7¢s;) should be proportional to their complex conjugate, but K? = 1 so that
(FEfa)" = explips.i} (Fpa), in which case (€] X &) = —exp{ilis — po)Hesl X [6)". If
furthermore &y = ¢ then the matrix element is an imaginary number. Using this, we may
qualitatively infer that if the ionic states |\} ;) belong to a same electronic configuration (nl)
then there should be no contribution to the matrix element of the convective current density
from the radial degree of freedom of the electrons, since T Jc( 7) T = —Jc( ) but the di-
agonal elements of Jc(_') should be real measurable quantities. Explicit calculations confirm
this by more precisely showing that if ¥; = 2L then (nl| jo(7) |nl) = "l(r 1| jo(@) |,
where R, = (r|nl) is the radial wavefunction associated with the electronic conﬁguratlon. If
moreover the ionic states |)\? ) are in the same orbitally quenched state then for the same
reasons there also should be no contribution to the matrix element of the convection cur-
rent density from the angular degree of freedom of the electrons, in which case we may set

M(F) = Ms(7) = ge pB Y ; 6(F; — ) §; so that

fA?,Ag(ﬁ): <A§ > expli(#-F,)} §; )\§> (3.3)

JEAL

Using the closure relation », [nP)(nP| =1 over the ionic states, this rewrites

Far e <>\p > expli(- )} Zln n°| §; Af> =

JjEAL

<)\p Zexp{z z-7)} n®) Z §; )\p> (3.4)

JEAp

where the phase factor can be factorized because the matrix element of an one-electron operator
over electrons states of a same configuration, which are linear combinations of antisymmetrized
products of single electron orthogonal states, does not depend on which electron is chosen to
compute it. A pure spatial state is insensitive to pure spin operators, therefore, because of
the matrix element (7| >_.c, §; |A”), the closure relation 2o, [P ) (nP[ = 1 gets limited to
the ionic states nP with the same spatial component as the |)\§’c ;). It then is inferred that
(AZ] exp{i(32-1j,)} [nP) # 0 <= |A}) = [n). Accordingly,

Fa () = (N | exoli(%-,)) \A§><A§: Y s A§> =153 (N

JEAL

A§> (3.5)
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where SP is the total spin operator of the ion A,. f2 (%) = (N7] expli(32 - 1,)} [A}) defines
£ P )

the so called extracted scalar form factor. It is tempting to generalize this to non degenerate

spatial states as

<A§ /Q NI(7) dF

which presupposes that the intra-atomic magnetic density 1\7I(F) is collinear. This often is a
good approximation widely used in practice, in particular when the physical interest is rather
focussed at the inter-atomic magnetic correlation, but should be considered with some caution.
Non collinear magnetic densities are naturally expected in the presence of an antiferromagnetic
order or any non collinear magnetic order, for there is no reason to believe that the magnetic
orientation would abruptly change at well-defined inter-atomic boundaries. The non collinear
character of the intra-atomic magnetic densities even come out in collinear ferromagnets or in
paramagnets under magnetic field owing to the relativistic spin-orbit interaction which couples
the magnetic densities to the local environments. Clear experimental evidences are revealed in
precise measurements [4]. Strictly speaking, the concept of scalar form factors is limited.

/ NI(F) expli(%- 7)} dF
Q

) =1t (¥ SORNCY)

According to the exact computations detailed in the last section, the spherical components
of the quantity {25 A Fapap (32) A %} in the eq. (B.1)), for ionic states |A% ;) belonging to the

same electronic configuration (nl), can be put in the global form

Fo %) = DUk (9) Y Cheger (N X) Y8 (22) (3.7)
K K',Q'

where Ygl (Q5) are spherical harmonics over the spherical angles Q5 = (6, pz) of the scat-
tering vector and C}](, K.Q ()\?, A?) gather matrix elements between angular momentum states
and geometrical factors. At a first sight these appear algebraically complicated, involving coef-
ficients of fractional parentage and summations over Wigner symbols, but in fact are formally
not difficult to evaluate whatever the ionic states |\ ;). (jx(5)) are index K radial integrals :

(K () = /OOO r* Ry (r) ji(er) dr - (Ru = (rinl)) (3.8)

where R, = (r|nl) is the radial wavefunction associated with the electronic configuration.
These can be calculated at once and tabulated for each ion and valence by numerically solving
the Hartree-Fock problem for the electrons interacting with the nucleus and between them
in the one-electron central potential approximation. With the heavy ions the experimental
measurements are enough precise to evidence significant deviation due to relativistic effects,
for instance in the lanthanide or actinide series the f electrons are radially more expanded.
Accordingly, the radial integrals for these ions are numerically calculated from the relativistic
Dirac-Fock Hamiltonian [5,6]. This, in addition to the Dirac one-electron Hamiltonian and the
electron-electron Coulomb interaction, includes the Breit interaction, which is treated as a first
order perturbation, in order to partially take into account the relativistic character of the inter-
action between the electrons : the Coulomb interaction is not Lorentz covariant but emerges as
the leading term in an expansion of the interaction energy in powers of the fine structure con-
stant obtained by the methods of quantum electrodynamics. As to be consistent the scattering
amplitude also should be calculated on relativistic states from the relativistic expression of the
current density operator j(7) = >_jcedj o(f; — 1), where &; is the Dirac vector operator for
the j—electron (notice that in the non relativistic limit this split back into the sum of a spin
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and a convection current density operators) [1]. We shall not get into the details of the formu-
lation, which is too weighty to be account for in these notes but can be found elsewhere [7,8].
An effective operator approach is considered in these works which allows expressing the matrix
elements of relativistic operators over relativistic states as matrix elements of effective oper-
ators over non relativistic states. It has been argued that weak corrections might occur in
addition to the radial one, answerable primarily to the relativistic mass-correction term, which
decreases the convection current density in the high-kinetic-energy region near the nucleus thus
producing a more spatially extended current density, and secondarily to the relativistic spin-
orbit term, which slightly changes the effective electronic g. factor. In practice, these effects
are ignored and the relativistic scattering amplitude is obtained from the non relativistic one
by merely replacing the radial integrals by their relativistic counterpart.

When the inverse modulus ! of the scattering vector 3 is much larger than the mean
radius of the radial wavefunction of the unpaired electrons giving rise to the magnetic scattering
the magnetic vector form factor can be approximated by the very simplified expression

A§> = (| FGa | ) 39

where S and L are the total spin and total orbital angular momentum operators of the ion. As
discussed in the last section, this is inferred from the behavior of the spherical Bessel functions
for small arguments and defines the dipole approzximation to the scattering amplitude. Notice
that the form factor then is isotropic in the reciprocal space, that is it depends solely on the
modulus of the scattering vector and not on its spherical angles. If the unpaired electrons are in
an orbital singlet state then F () = (jo(5)) S, which gives a scalar form factor f(3%) ~ (jo(s))
at small scattering angle. This often applies to the d electrons of the 3d transition metal ions,
which, owing to their spatial extension, often experience strong crystalline electric field in the
materials. Generally, the quenching is partially raised by the spin-orbit interaction. This acts
as a perturbation weakly coupling the ground orbital state with excited orbital states, thus
inducing a small orbital moment. The total magnetic moment of the ion then differs slightly
from that of the spin contribution and comes out through a value of the electron gyromagnetic
ratio g different from that of the naked electron g.. In order to keep the spin operator as
the basic variable it is convenient so set (E + geg) = gg, which determines g, in which case

F(3) = H{{o(3)) g¢S + [(Jo(5)) + (ja(5¢))] L} is expressed in the form

1

Fgr () = (3] o) + 5 (o) + ) B

F(x) = %gf(%) J (3.10)

where
7(2) = Golo)) + (1 - %) (2()) (3.11)

Notice that we systematically set g. ~ 2. Unlike the d electrons of the 3d transition metal
ions the f electrons of the lanthanide ions are much less extended, thus are subject to weaker
crystalline electric field in the materials, whereas their spin-orbit interaction is strongly in-
creased, becoming dominant. Accordingly, the total spin S and total orbital L moments are
first coupled to form the angular moment J =S +L and the energy spectrum gets structured
in terms of the multiplets |[7LSJM) on which the crystalline electric field potential will act as
a perturbatlon Within each multiplet the Wigner-Eckart theorem allows writing 2§ = gSJ

= gLJ and 2S5+ L = gJJ where g5 = gs+ 91, gs and g1, are geometrically determlged from
gSJ2—2S-J—SQ+2S-L—J2—L2+SQ and gpJ? =L-J=T2+L.§ = £4L=8" ing
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the identity J2 = (S+ L)2 =82+ L2 +2S-L:
S(S+1)— L(L+1) 1 L(L+1)—S(S+1)
_ _1 3.12
gs =1+ JT+1) R N WY (312)

Thus, if the initial [\?) = [TLSJM;) and final [\7) = |TLSJMy) states belong to the same
multiplet (J; = Jy = J) then

F(x) = %g.]f(%) J (3.13)

where .

f(3e) = (jo(39) + g_J<j2(%)> (3.14)
If the initial |\}) = [7LS(JM);) and final [\}) = [7LS(JM)y) states belong to different
multiplets (J; # Jy) then (7LS(JM)¢|J|7LS(JM);) = 0 so that (rLS(JM)|S|7TLS(JM);) =
—(rLS(JM)|C|7LS(JM);). Tt in this case follows that

F () = %f(]]bl)f,(J]M)i(%) S (3.15)
where
ferany ;) (3) = (Jo(50)) — (j2(5)) (3.16)

So far the unpaired electrons giving rise to the magnetic scattering were assumed kine-
matically independent from atomic center to atomic center, but this, in the real magnetic
materials, is more the exception than the rule : the states of neighboring centers get mixed
by the inter-atomic exchange interactions, there may be covalent transfer from ligand ions
surrounding the magnetic ions, modifying the states of these and creating spin polarization on
the ligand ions, the electrons under concern may tend to participate to metallic bonding, et
cetera. The magnetic scattering then contains multi-center matrix elements and its compu-
tation become more difficult. We shall not get into the details of the different instances, for
these are quite varied, and shall only emphasize that the robustness of the one-center states
is such that the use of the ionic-like form factors is often a good approximation. Thus, in
most instances the intra-atomic exchange interactions are much larger than the inter-atomic
exchange interactions, freezing out atomic or ionic angular momentum states on which these
act as a perturbation, and the overlap mechanisms giving rise to these generally modify the
spatial wavefunctions at large radial distance. Accordingly, the electrons preserve an atomic or
ionic character and can be analyzed as if they were kinematically independent, at least at not
too small modulus s of the scattering vector. Actually, even when more significant effects on
the scattering amplitude might be expected, for instance in the presence of strong ion-ligand
covalent transfer, the single ion analysis is worth performing for it might allow assessing the
relevance of the multi-center contributions. The case of itinerant electrons must be treated
separately, using Wannier functions. These show strong atomic-like character in the case of
3d transition metals and 3d - 4f (or 5f) intermetallics and, ignoring the s electrons, spread
essentially over the z nearest neighbors. Labeling these with vectors g, the magnetic scalar
form factor fu (%) = fa(Z){(1 —2W?2 + W? >_5exp(i 7 - p)} can be assigned to each atomic
center, where W is a Wannier expansion coeflicient and f4(3) an ionic scalar form factor.
The interesting point is that if > is a reciprocal vector K then fuw (I?) = fA(I?), that is the
itinerant nature will not be seen by elastic scattering [2]. In the case of 4d, 5d and 6d itinerant
electrons, strong deviations from any ionic scalar form factor are generally found out even in
the elastic scattering, signaling that the atomic integrity of these electrons then gets destroyed.
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4 EXPERIMENTAL POLARIZATION RATIO METHOD

Neutron experiments give access to the differential scattering cross section. This is given by
the square modulus of the scattering amplitude A[{(kivi)\i} ~ {(kfv)Af)}], statistically
averaged over the initial states of the sample and spin states of the incoming neutron and
summed over all the final states of the sample and spin states of the outgoing neutron,

52 ks . - 2 | R(k] —K3)
POE; ~ 2P 2 A [{ErAg = {Epry] | o [27

Af,l/f

+Ei7Ef

mn
(4.1)
where the Dirac delta generalized function expresses the constraint of energy conservation. The
statistical weight py, of the initial states |A;) of the sample is generally given by the Boltzman
factor
o GXp{—Ei/k/’BT}
Py S exp{—Ei/kpT}

The statistical weights p,, of the spin states |v;) of the incoming neutron depends on the
incoming neutron beam polarization. This is evidenced by building up the density operator

p = |vi)pu (vl (4.3)

(4.2)

Its matrix representative over basis vectors in the neutron spin state space is a 2 X 2 non
singular matrix. Any such matrix is a linear combination of the unit 2 x 2 matrix and the
Pauli matrices (cf. eq. )), which altogether form a basis of the vector space of non singular
2 x 2 matrices. Accordingly, the density operator may write p = ul + ¥+ &, where 1 is the unit
operator in the neutron spin space and & the Pauli vector operator. The Cartesian components

om (m=x,y,2z) of & satisfy the commutation relations
[Om, on]=1ic"ay,

where ¢ = 1 if (m,n, 1) is co-cyclic to (x,y, z), = —1 if (m, n, 1) is anti-cyclic to (z,y, ) and
= 0 otherwise, (cf. eq. (IC.9)) and the anticommutation relations

OmOpn + 0,0, =20, 1.

Combining these we may also write 6,0, = 0l +1i), €™ gy, which, since Trlo,,] = 0,
straightforwardly gives

Tr(omon] = 20m ., and Tr(o 0,0 = 2i €™
Accordingly, u = TTT[p] and ¥ = TT—[’J]Tr[p&’], but Trlp] = >, py, = 1 then u = 1 and

2
U= %Tr[p&’], which precisely defines the polarization P of the incident neutron beam. Thus

1 5
The scattering amplitude, in view of the expressions of the different contributions to the

neutron-sample interaction potential (cf. eq. ([2.9), eq. (R.3) and eq. ©.9)), can always be
put in the form

AL} = L)Y = vy 03 0 1+ () 1 & i) (4.5)
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where the quantities a(3¢); and B(3) £, are matrix elements of a scalar operator a(#) and a

vector operator B(}?), which refer solely to the sample. Symbolizing a(32)1 + ,6( )- & by O,
it follows that

S Y A [(Err = (EvA}| = 3 10" o) 051Ol) =

= (lo (Z |Vi>pw<vz'|> O vs) =Tr[p OTO] (4.6)

nl

)

but, since Tr{op] =0, Tr[omon] = 20m n and Trjopmo,0] = 2i €™

[o+o o {a(@)1+B(2) -8} {1+ B(#) - ¢} = at (R)e(Z) +
—+ = =t

+87 (%)ﬂ(ﬂ?)Jra (#)(F-B(2) + (BB (R)a(z) +i P-(B () AB(R)) (47)

by understanding that the trace is to be taken over the neutron spin states only. Using the
identity

_ [~ : - (Ei — Ef)
d[hw+ E; — Ef] = ST /_OO dt exp{—i wt}exp{—i - } (4.8)
(cf. eq. (@)), where hw = % it finally is inferred that
2 00
aQ%Ef - ’Z—f i et wt}{ (at(@a(z0)+ (B (%) Bz 1) +

+{at ()P B0)) + (P BT (H)atn)+i P (B () A A1) } (4.9)

by defining (3, t) = exp { “& a8 i) exp { =% tH} and ,6' i,t) = exp { £ a8 } ﬁ ) exp { *ihm ,
where H is the hamiltonian of the sample and using the notation (- - ) for the statistical aver-
age over the initial states of the sample (summation over the final states is made by closure).

The cross section for elastic scattering is obtained by taking the infinite time limit and that
for coherent scattering by averaging over the nuclear isotope distributions and nuclear spin
orientations. (a™(3#)a(3%,00)) = (at (%)) (a(3%,)), ---, since processes well separated in
time get uncorrelated while (a(3%,00)) = (a(3)) and (B(3%,00)) = (B(37)) under stationary
conditions. If there is no net nuclear spin polarization, which amounts to assume that the
temperature is not low enough to allow for nuclear spin order or that the hyperfine field is
sufficiently weak so that the electronic magnetism does not polarize the nuclear spins or else
if a magnetic field is present that this will not polarize the spins too importantly, then the
nuclear scattering will contribute only to (a(5¢)) by the interaction term A, independent on
the nuclear spins, averaged over the nuclear isotopes (cf. eq. ()) In the case of a crystal
with nuclei d at positions 74 + é, where the vectors 7y locate the nuclei in the unit cell and
the vectors R = >_;nydj, (n; € Z) define the lattice translations, we get

(a(32)) Z (Z Agexp{i - rd}> exp{i #- R} = ZFN - K) (4.10)

R
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where K is a reciprocal lattice vector and FN(I? ) defines the unit cell nuclear structure factor.
The magnetic contribution to the elastic scattering, according to the eq. (m) and the eq. (),
is given by

B(#) = —mm Ty —5 %/\ZP/\ <)\i

VI(7) exp{i(3%-7)} dF )\i>/\52 (4.11)

In the case of a crystal with spatially periodic magnetic density,

> o (X ) =SS U@ enli 7 By Y s, (A
A i T A

M(7 — R) ‘)\> (4.12)

we get

B) =33 U 6z K +7) (%AﬁM(K—?)Aﬁ) (4.13)
R 7

where
F (%) = —m Ty — Zm <>\Z- VI(7) exp{i(3 - 7)} dFf /\i> (4.14)
defines the unit cell (U. ) magnetic structure factor. If the magnetic periodicity is identical

to the nuclear, U(7) = §(T), then the coherent elastic scattering cross section reads
0o

5 = {FR(B)En () + Fi () - Fy () + F5, (R)(P - Fii () +

+ (B By (R) Fw(R) +i B (Bl (R) A g (R)) b 62— B) - (4.15)
where Fii(K) = K A Fy(K) A K. By Fourier inverting Fy;(K), we find

Z Px; </\i
Ai

where Vy ¢, is the unit cell volume, that is, up to gauge invariance, the magnetic density is
fully determined from the knowledge of the scattering amplitude at the reciprocal lattice points
only.

M(7)

Z->: 2 ZFM )exp{—i(E - 7)} (4.16)

—Yn To VU c.

The polarization dependent magnetic chiral contribution i P- (Fii* (K) A Fi (K)) to the coher-
ent elastic scattering cross section should be expected only for non collinear magnetic density
without center of symmetry. If this case is excluded and if the F N(I? ) can be accurately
determined from complementary measurements, for instance in the paramagnetic phase with-
out magnetic field or by X-rays scattering, then the polarization dependent nuclear-magnetic
interference contribution P - [F} (K)Fi (K) + Fy(K)Fi(K)*] can be used to allow for pre-
cision measurements of the F}fj (I? ) and thus of form factors. It indeed is an evidence that
weak F' Iﬁ(f(' ), amplified by Fiy (I? ), will much more accurately be detected than the non chiral
magnetic contribution F L (I? ) - F L (I? ), especially at large scattering angle where the form
factors tend to vanish out and where extreme sensitivity is often required to get insights about
fine details of the magnetic density. A necessary condition of course is that the interference
contribution itself does not cancel out, which is the case if Fiy (K) and Fi5(K) are not in phase
quadrature. The method applies to polarized paramagnets, to ferromagnets or ferrimagnets
and to in-cell antiferromagnets with in-phase unit cell magnetic and nuclear structure factors.
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Experimentally, the so-called polarization ratios R(I? ) between the scattered intensities for
two opposite initial polarizations +P and —P of the incident neutron beam are measured on a
series of reciprocal lattice points K (Bragg scattering). The extraction from these data of the
F}fj (I? ) in general is not straightforward, for these are complex vector quantities, the direction,
modulus and phase of which have to be determined, when only one real scalar quantity, R(ff ),
is measured. Models then must be worked out providing with calculated F, M(I? ) and, from
these, calculated R(I? ), to directly confront with the experimental values. A direct access to
the ﬁM(I? ) nevertheless is possible in collinear magnets with a centric crystal structure. In
this case, both Fy(K) and Fy(K) are real. If furthermore the polarization +P is set parallel
to the magnetization vector then

R(R) = 1+25?nza7(f:(:)+s%nza (W(I:(:))Q, V(R) = FN([f) (4.17)

1—2sin” a v(K) + sin” « (y(K))? Fy(K)

where « is the angle between the magnetization vector and the scattering vector K. This is
easily solved for Fy, (I? ), which, it should be emphasized, is not the modulus of F M(I? ) but
its algebraic value along the magnetization vector. In fact, we get two mathematical solutions,
but, in practice, it most often is evident to recognize which of the two is physical and which
is unphysical. The actual measurements are performed under strong magnetic fields, which
in the case of paramagnets allows inducing the largest magnetization and overcome eventual
significant magnetic anisotropy and in the case of a sample with a net global magnetic moment
allows avoiding depolarization by selecting a single magnetic domain and orient this along the
magnetic field direction. The experimental corrections to be considered are essentially extinc-
tion corrections, associated with amplitude coupling within perfect blocks (primary extinction)
and between perfect blocks (secondary extinction), which, increasing proportionally to |Ei|*3,
is accurately estimated from measurements at different incident neutron wavelength 27T|Ei|71.
Corrections which are identical for the two incident neutron polarization (absorption, ---) are
irrelevant and using filters the fractional wavelength contamination can be removed. Almost
perfect incident neutron beam polarization can be produced whereas depolarization by the
sample can be minimized by using samples elongated along the magnetization axis and cleanly
polishing the surfaces. No description of specific experiments will be given in these notes, but
overviews of investigations can be found in the literature [9]. Also of interest to consult is the
methodology inspired from the spherical neutron polarimetry to measure the form factor in
in-cell antiferromagnets with magnetic and nuclear structure factors in phase quadrature [10].

5 ALGEBRA OF IONIC FORM FACTORS

An in-depth quantitative analysis is provided in this section of the magnetic vector form factor

of atomic electrons, more precisely of the expression between the braces in the eq. () Calling

to mind that 7 A [P, f(F)] = # A {—ih Vgf(¥)} is null for f(¥) = exp{i(32-T)}, this also writes
1

= ANF (RN 7=

o |
:<)\? Z[exp{z(%-rjp)} (? %/\sj/\%—W}t/\pj)] )\E’> (5.1)
€A,

which distinguishes the contribution of the spin magnetic moments from the contribution of
the convection current density. r; = r; — R, is the position operator of an electron j of
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A, with respect to the position of the nucleus of A,. Using the spherical tensor operator
formalism [11,12], this quantity can be computed exactly [2,13-16]. The method basically
is not complex but the associated algebra is unwieldy. A fortunate fact is that we have to
deal only with matrix elements of sums of one-electron operators, which ultimately can be
deduced from the matrix elements of these operators between uncoupled single-electron states

|77?,i> = |(nlmlsms)?,i>.

5.1 Single Electron Spin Vector form Factor

Let us focus our attention on the spin vector form factor, which is associated with the operator
> jen, exp{i(3-Tj )} §; and examine the matrix element between uncoupled single-electron
states

—

,pp(7) = <(nzmlsms)l;\ expl{i(-1,)} § ](nzmlsms)§> (5.2)

We shall temporarily drop the indexes p and j for notation convenience (notice that the index
Jj is unnecessary for equivalent electrons since these cannot be distinguished from each other).
The spatial wavefunction associated with |n) = |nlm;sms) will be denoted (7 | nlm;sms) =
(r Qz | nlmysms) = Ruyi(r) Y1 (Q5) |smg) = Ru(r) [lmysm), where R, (r) is the radial com-
ponent and Y} (Q7) = (Qx | Im;) the angular component. Appropriately inserting the closure
relation [ |7)(7] dif = [ [r)(r| dr [q |Q7)(Q] dQr = 1 and using the multipole expansion

exp(i #-7) = 47722 Jr (er) [YQ (Qx )} YQ (Qr) (5.3)
KQ

to separate the variables 3 = (% 2) = (56,05, 0%) and 7 = (r, Q) = (1,0, ©7) (cf. eq. (B.23))
the spherical components of 677 ;.m: (%) can be expressed in the form

&%, 0 (7) = WZ 3 g [YE Q)] ((musmy) | YE sq | (bmusms)i) — (5.4)

where

Ui = [ T2 RE ) Riy(r) i (oer) dr (5.5)

are dubbed index K radial integrals. The 2K + 1 operators Yg are the components of the
spherical harmonic tensor operator Yg of order K. (Oz Yg Q7 = (67| Yg(ﬂ;) |Q7) =
5(—)F7QFYQI((QF) by definition. s_; = %(sz — i 8y), So = s, and s;1 = f%(si +1is,) are
the spherical components of the electron spin vector operator S. Applying the Wigner-Eckart
theorem separately to Y and to S,

((musmy)y | Y5 sg | (Imusmy)s) = ()" ( _ﬁ;;lf o m ) U 1 Y | 1)

<y (e sl s)

7me q ms-;

(5.6)

(cf. Appendix D.J) with the help of the eq. (D.1J) and the eq. (D.15) for the reduced matrix

elements, we get

&4, . (3) = (6m)2 Zz Gre (32)) .0 [YE ()] (=) 7 mes T8, 0 [y, K 1] %

lf K li lf K li Sf 1 S
X
0 0 —my, @ my, —Ms, q Mg,

(5.7)
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where [I{', 152, - - -] is a standard abbreviation for {(21; + 1) (2l + 1)< - -- }%. &, . (3) is null

unless K satisfies the symmetry condition [; + K + [; = even integer on the 3jm symbol with
all m null (cf. eq. (C.57)) and the triangular condition K =l +l;,lp +1; — 1,--- | lf —1; |.

Owing to the behavior of the spherical Bessel functions for small arguments (cf. eq. (B.24)) it
is inferred that for 2 — 0 the expansion of &f , (5) over the spherical harmonics [Yé( Q)"
should be dominated by the K = 0, @ = 0 contribution, that is,

since V(@) = (1) and (0N ) = (0 G G, 1],

—mlf 0 my,
&5y ()0 & (Jo(3)) i Oty ti Oy e, ((505) 1 | 8¢ | (5725)i) (5.8)

which defines the dipole approximation to the spin vector form factor. Notice that this is null
if Iy # [;. Generalization to multi-electron ions is straightforward.

The spherical components &} f% (52) of the matrix element -3 A 6 v, o (3%) A 5 are given by
1 /= ) .
G%f i (%) Ggf ug % %‘1 Z 77f m(%) (5'9)

where 3, is the g—spherical component of the scattering vector. Calling to mind that Y (Q5) =

()2 cosfz and Y1, (Qz) = F(2)2(3)2 sin 0z exp{ips}, we may write 52, = 5 (47)2 Y, (Q5)

whence

%2 2% Z 77f 771(2) - (4%) qu (€2z) Z(f)qul (fo)G;fém(ﬁ) =

:(4@52(5)%(—)%@( . 10() ( . g)Y_KQ(Q )671 (%) (5.10)
K,Q

(cf. eq. (£.69)). The 3jm symbol with all m null is computed to —% for K = 0 and to \/Lﬁ
for K = 2 (cf. eq. (IC.76)). It is null by symmetry for K = 1 (cf. eq. ()) and by triangular

conditions for any other K. It then follows, thanks to the eq. (C.6), since Y (Q2x) = (&) 2

and taking into account the zero-sum condition ¢ + g+ @ = 0 on the second 3jm symbol, that
; ; L (87\? 11 2 i s
&1 () = gngf 0 () + (=) (?) Z( P >yq2+q(Q;f) 6,4, (%) (5.11)
q
Using for the 3jm symbol the algebraic form
1
. 2 N'(2—q—q 2
(1 12 >()qq{ 2+g+9!2—¢—q) } (5.12)
¢ ¢ —q¢—q 30(1-g)!(1+)!(1 -1+ )
(cf. eq. (C.67)) and for the spherical harmonics under concern the functional forms

YE(Qz) = (%); (1 — gsin2 9,;) (5.13)

15 15\
YA Q) =F <§> sin 6 cos Oz exp{tipz}, Yi(Qz)= <%> sin? 05 exp{£2ipz}
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(cf. eq. (B2)), it finally is found that

6L (%) =sin%0; &° () +

MM M

1 .
5 sin0z cos 0 ( I £ I v(ﬁ)) (5.14)

1
GE Lz = (1 -3 sin? 9,;) GEl ()

M nfs"Mi

1 1
———_sinfz cosfy et =G0 (ft)+§SIH 05 e¥e2GTl (%)

\/5 "M M

5.2 Single Electron Orbital Vector Form Factor

No more difficulties arise when dealing with the orbital vector form factm“ associated with the

operator D ., exp{i(3-Tj,)} (—75% %A DBj) = djen,l— Loexp{i(zz-1;)} (A v 5] and,
in particular, with the matrix element between uncouplied single-electron states

I L
L (7) = <(nlmzsms)l}’ {—; GXP{@(%'rjp)}%/\VFjp]

(nlmlsms)$> =

—

1 o .
—5(57%)?,(8,”5)? <(nlml)? ‘ 2 exp{i(x-Tj,)} %A VFjp

(ndmy)? > (5.15)

but the computations are a little lengthier. A detailed description of these when the states
ng and 7; belong to a same electronic configuration, that is for (nl); = (nl);, is provided at
several places in the literature [2,14-16] with only faint differences in the formulations. Let us
replicate one of the approaches and re-write the matrix element

—

= - 1 o
gni;f,mzi (Gt) =— <nlmlf = exp{i(;z-T)} (A V5z)

- 2*—%12 {{ntrm, ‘exp{i(ﬁ~ ) (2 A Vi) (5 A V5) exp{—i(3- F)}‘ nlmlf>*}
= o [ a7 el 1) Bulr) x
<A, @) ((ZAVR) Y, (99)) = Vi, (929) (A V) [V, (29)]7) }

nlmli> (5.16)

nlmli> - <nlmli

The indexes p and j are temporarily dropped and the spin quantum numbers temporarily
ignored for notation convenience. The second equality gets obvious when calling to mind
that Vny Vi, YO (n7]On:) = (7;/OF|ns)* and VO1 VO2 (0102)Jr = 0270;", where OF
symbolizes the adjoint of O and that [exp{z(% F)} Z AVt = =% A Vi exp{—i(%- 1)},
since (exp{i(5#-F)})t = exp{—i(%- T} and (V)T = —Vg. The third equality is derived by
appropriate insertion of the closure relation [ |[7)(7] & = [ [r)(r| dr [ |Q7)(Q| dQr = 1.

Using the spherical components of the vector operator 3 A 6;,

wﬁaq:i(—)lﬂﬁzquv@( Lo ) (5.17)

@1 @2 —q
1,2
(cf. eq. (D)) and the multipole expansion

exp(i - 7) = 47722 Jr (er) [YQ (Qx )} YQ (Qr) (5.18)
KQ
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0z, ¢5) and 7 = (r, Q) = (1,607, o7) (cf. eq. (B:23)),

can be expressed in the form

to separate the variables 3 = ( Qz) =

the spherical components of £ L Jom (3

q1,92

(5,
)

gat () = M g, ( L ) 47TZZ X (5.19)
Q

< [ ar o) Batr) YE @) {17, ;n*(v%zY@Haxa)fxﬁu(nf>(v@[YLW<QAF)}

As from the identity

1 -
Voo =5 [ V5 7, ] (5.20)
5 1 1 - 1 1 1
2 2 . 2
Vi = . O (0rr) + = Voo = - O (0rr) + = (mag (sinf Op) + — Qp>

and since spherical harmonics are eigenstates of the angular laplacian 63 o (cf. Appendix ),
Vi, YL(Qr) =11+ 1)V () (5.21)
we may write
1 1 1 1 N
(e, @) (Vo Vi, (@9) — Vi, m%vn%ﬂw)}
S, @) (92 [ Vi, 90)]) — Yk, (@) (V2 [res W, @]} (5:22)

1
but, substituting for ry, its expression r (TW) 2 Y1 (Q7) in spherical coordinates (r, 0z, o) and
taking into account the identities

(%W) : Y, (Q7) Y} (Qr) = ;(7)#5 Z%YSl(Q;) ( ;2 rln 1%1 ) .

+Z YT 4 1) Ygl(ﬂf)< (112 751 Hﬁ_l > (5.23)
(cf. eq. (C.69) and eq. (C.76)) and
V2 (r YA () = (% 0, (0,r) — @) (r Y5(92r) = _%(k; —1)(k+2) Y*5(25) (5.24)
it s inferred that
{1V, Q) (V2 [rax b, (©@7)]) = Vb, (@) (V3 [res [¥h,, (22)]°])
xz { . (Q)[zé(z—z)(z+1)yl 1(9)(;2 mlli lql)

—(z+1)51(1+3)Y131(QF)(1 ! 121)]_

q2  my,

1 I+14my
= (- rox
} T( )

—Y#l.(Q)[Z%(l—n(zH)yl1(9)(1 ! 111)_

q2 7mlf q

—(z+1)éz(z+3)yi;1(m)(1 : lfl)}} (5.25)

q2 7mlf q
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The angular part of the integral over 7 in ):gnf .m, (%) thus is reduced to integrals of products
of three spherical harmonics (cf. eq. ({C.63)) and therefore effortlessly found out to be

[ 0 YE©@a) {1V, @) (Tan Y (@) = Vi (09) (Van [V, @0))) } =

— i(7)1+1+mlf <(2K + 120+ 1)) 2 Z(i)

Y

X
2r 4

x { 20 —1)]% (1 —2)(1+1) (

K 1 1-1\(1 1 -1\ (K | 1-1
Q —-my, —q @ My q Q m, —q

)
—[(l+1)(2l+3)]%l(1+3)( K 1 1461 ) .
(5 4 50 4 54 )

K must be an odd integer, owing to the the symmetry condition K + [+ — 1 = even integer
on the 3jm symbol with all m null (cf. eq. ([C.57)). Using the identity

(1 1 1+1 K 1 11\
;()q<w @ q )(Qy —6)
soresmen s LR (5 %) (L1 E) o

(cf. eq. ()), where the triangular condition for the non vanishing of the 3jm symbols
imposes that K’ = K, K + 1, then finding out that K’ must be an odd integer because of the
factorization

l ! K'\_ l LK"Y\ o ek l l K’
(mli -my, Q' ) <_mlf m, Q >(1 (-) )< m, -, Q' > (5.28)

so that K’ = K only, and finally taking advantage of the algebraic expression for the 3jm sym-
bols with all m null (cf. eq. (C.76)) and the following formula for the 65 symbol (cf. eq. (C.89))

I K 2\, vk [204 K424 )(E+2-D(+2-K)(+K-z+1)]"
{1 -1 K}() [ 2K (2K + 1)(2K +2)(2z — 1)22(2z + 1) }

(5.29)

to notice that

m(K,l)z[l(zz—n]%(IO( é 1_01){i 151 Il{}:

[(z+1)(zz+3)]5<§ : l#){i " lj(l} (5.30)
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we get the more compact expression
[0 ¥ @) (¥, @) (Vi ¥, (90)) = ¥, (99 (Tar [, (@00)7) } =

(1) o) s st (£ 2 %)

r ™ o

The radial part of the integration over " in the expression of 2% (52) is more straightfor-

my;

wardly found out to be

>
2K +1

/dr %jK(%T) Ry (r) = {Uk-100)) + (i +1(0)} (5.32)

where

Gire (30 = / T2 R2(r) i (oer) dr (5.33)

thanks to a recursion relation for the spherical Bessel functions (cf. eq. (B.29)). Gathering the
equations and using the multipole expansion

N

s, (Y5 (Q2)]" = (=) Y () [(2K + DK + 1)]* x

KQ
dt

o =
S
o =
N———
7 N
R =
|

o=
&
N———
@a‘
B
\Xi/
‘o
%)
N

(cf. eq. (C.69)) and the identity

Zo(gw o)l o )0 )
()K<g, g _lq){If ? 11(} (5.35)

(cf. eq. ()) it finally is inferred, exploiting the symmetries and triangle conditions of the
involved 3jm symbols, that

S5, () = (8m)% () 7] { Y T UR169) + (ke (o)} [KP] (K1) x

K0 \KQ

(5 h ST }(}<KQ'zmM|Zmlf><K—@KQ'|1q>} B YE (@) (5.30)

K = K £ 1 must be an even integer.

When 3 — 0 the expansion may be limited to the lowest K = 1 order, in which case K = 0,2
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(5.37)

SO e T

1 0 1 _ 1 1 _ 1 1 2 1 _ 2 1 2 1 _ 1
000) 3 1f 3 000) Vi 111 6
’ _ YotVal _(\1-Q' 2+Q -9!2-Q +9)! -
taking advantage of the symmetry properties given in the eqs. ((C.55)-(C.56) and ([C.83)-(IC.84))

and using the eqs. (C.67), (C.7q) and (£.89) to get the algebraic expression for the required
3jm symbols and 6j symbols as well as for the quantity 2(1,1). Considering then the functional

form of the spherical harmonics displayed in the eq. (b.13), and calling to mind the Wigner-
Eckart theorem to show, with the help of the eq. (D.14) for the reduced matrix element, that

(lmlf| le |lmli>
10+1)

where 1 is the spatial angular momentum operator of the electron, we get, by comparison with

the eq. (b.14),

(1Q'lmli | lmlf> = — (5.38)

&ty (o = 5 Lo () + (26N} (gl 2 ATAZ i) (539)

which defines the dipole approximation to the orbital vector form factor. The generalization
of this approximation to more than one electron is straightforward and gathering this with
the dipole approximation for the spin vector form factor immediately leads to the eq. (@)
This often is used for an estimation of the orbital contribution to the experimentally measured
magnetic density in magnetic materials and is the origin of the so-called (jo) — (j2) analysis.
An exact computation, for instance for the lanthanide ions in the ground multiplet level of
maximum azimuthal quantum number, shows that the obtained values may roughly be good
in some instances, as for Nd3* or Pr3t, but not always, as for Dy>t or Ho?t, owing to the
additional contributions to the coefficient of (j3), from the quadrupolar term (K = 2) in the
expansion of én?n?(%) and the octupolar term (K = 3, K = 2) in the expansion of En?n?(%)'

5.3 Multi Electron Magnetic Vector form Factor

Let now us generalize to correlated electrons within a same electronic configuration, that is to
equivalent electrons. Adopting the |} ,) = [(vVLMLSMs)} ;) quantization scheme, associated
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with the total orbital L = 3 ; f]— and total spin S = 3 ; §; kinetic moments of the equivalent
electrons, we are led to compute the matrix elements
I, =z A =
A fcfﬁ,cf(%) A= <(ULMLSMS)§Z

— X
272

‘ (vLMLSMg)?) =

1 .
= <(ULMLSMS Z {exp{ %-r)} (; }?/\5}/\5’:—#}?/\@)} (ULMLSMS)$>

€Ay

v groups additional quantum numbers, to be precise irreducible representations of certain
groups, discriminating between the states with identical LM SMgs quantum numbers. The
operator FL is the sum F+ = Z;\/ 1 FL of N one-electron operators. Using the concept of
fractional parentage coeflicients that emerge when building up a correlated n-electron state
from correlated (n-1)-electron states and single electron states, its matrix elements may be
calculated from the single electron matrix elements. The methodology details, too lenghty are
provided in the Appendix E and the Appendix E Use must be made of the eq. (@) for
the convection current density contribution since we have to consider a tensor operator acting
only on the orbital state space and of the eq. (@) for the spin current density contribution
because then we have to deal with double tensors, which behaves as a rank 1 tensor in the
spin space and as a rank K tensor in the orbital space owing to the spherical harmonic tensor
that emerge from the mulipole expansion of the exponential operator to separate the spatial
electron variables from the scattering vector parameter. The spin contribution reads

(WLMLSMs)h| > exp{i(Z-15,)} (8;)ql(WLMLSMg)P) = (6m)% (=) +Mss=Mrs [12] x
JEAL

S UCvE @K (o 0 oo )( ok, s oar ) (b 6 s )
KQ

N 6@ s { Y 5 T HE LY e
2 2

1
2

while the orbital contribution

<(ULMLSMS)? Z %/\pj) (ULMLSM5)$> =

q

(1 K K K K 1 L K Ly
0 0 0 1 1 K Mp; Q —Mpy

Y Oresmae{ }} K] vE©z2) a1)

0

X

These matrix elements can be computed in the [(vLSJM;)% ;) quantization scheme, either
directly or through the base transformation

(WLSTM)%,) = > (LMpSMs|JM)|(vLMLSMg)? ) (5.42)

My Mg
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What matters at this stage is actually not the exact and full expression of the different matrix
elements in the different quantization schemes, as these can be found at several places in the
literature [2,14-16], but rather to get aware that these essentially depend on the single electron
matrix elements and the few coefficients of fractional parentage. Although the calculation of
these coefficients may not be easy, it has, at any rate, to be done only once. Finally, it is in
principle not difficult to generalize the computations to the case where the scattering event
induces inter-configuration electron transfer.

APPENDIX

A FOURIER TRANSFORMS

Let T(®) be a tensor field of rank k over the 3-D real space R® with integrable components

Tl(k) (1= —k,—k+1,--- k). Tts Fourier transform F{T®)} is the tensor field of rank k over
R? — in fact over the dual of R® but identified with R® — the components F{T®}, (I =

—k,—k+1,--- k) of which are the Fourier transforms }“{Tl(k)} of the Tl(k), that is defined by

FIPY@D = [ 100 el (A1)
T00) = s [ FOYD exolita 1} dd

ql) Vg, if and

f{T } is angular independent in the dual space, f{T( )}((j) f{T }(q = |
| #]) V7, in which

only if Tl( ) is angular independent in the direct space, Tl( )( r) = T(lc (r=
case
4 oo
f{Tl(k)}(Q) = %/ rTl(k) (r)sin(qr) dr | T(k) / f{T q) sin(qr) dg.
0

As an example,

1 - 4 e
FEEH) = lim, f{%r")}@ = 7” lim [ exp(—er)sin(qr) dr =
€e— e—0 0
4 o iqr) — —i 4 1 1 1 4
=" Jim exp(—er) expiqr) 'exp( iqr) dr = -~ lim — — —)— = —7T,
qg <0 J, 2i q 0 ‘e—iq €+iq 2 ¢>
that is ) 4 1 1 .
T
- = = dq A2
FLI@O= | =g [ el ) d (A2)
®, =, - - - symbolizing scalar fields (k = 0), it is an easy matter to demonstrate that
1
F{ox =} = F{P}F{=} F{P=} = Wf{@} * F{=} (A.3)
where

@) = [ =92 &5 | F@}FEND = [ FONT-AFENR) di
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The neutral element for the field convolution * is the Dirac generalized function in the R? space
since by definition Vy fRs §(7 — 8)x(8) d§ = x(7), that is Vx § x x = x. We deduce

(271r)3 = (2;)3 /}R3 exp{—i(q-7)} dr (A.4)

F{6(MH}=1 and 4(q) =

—

G, H,--- symbolizing vector fields (k = 1) with components G;, H;,--- (I = —1,0, 1),
1

F{®+ G} = F{o}F{CG} F{oG} = (%)3?{@} « F{G} (A.5)
. _ I 1
F{Y _ Gi«H}=F{G} - F{H} F{G-H}= Ik > F{Gi} = F{H,}
1 1
S (G« e, = F{GHAF(H} F{GAT) = @ S E(G} 5 F{H )
l,m,n l,m,n
where /™" = 1 if (I,m,n) is co-cyclic to (1,2,3), = —1if (I,m,n) is anti-cyclic to (1,2, 3) and

= 0 otherwise.

8TéTl(k) (7) symbolizing the derivation of Tl(k) (7) with respect to 7s = é-7 (e.g. re = 3,9, 2)
and assuming that Tl(k) (7) tends algebraically to zero at infinity,

Fo. 1D = [ [0.1006)] expl=i(a- ) ar -
= [T exp{=ita-M}] - / T @) [0y exp{=i(q- )] dF = (i e @) FT )@,
We find in particular that

F{Vz @} =i §F{Q}, F{L; &} =—¢* F{D}, (A.6)
F{V# G} =iq - F{G}, F{ViAGl=ignF{C}

These formulas are helpful for solving a number of partial differential equations. An example
is Ay ®(F) = —4m6(7), which is immediately solved as ®(7) = 1. Another example is the pair
of maxwell equations

—

Vi AB(7) = poj(F) Ve B(f) =0 (A.7)

which must be solved to find the magnetic induction ﬁ(f’) created by a time independent
current density j(7). We get in the dual space

i §NF{B} = poF{j} i §- F{B} =0.
(cf. eq. ([A.)) The second equation, which merely is gauge fixing for ﬁ(f’), tells that there always
exists a vector field A(7) such that F{B} = i §A F{A}, or equivalently B(7) = VA A(F). The

first equation then gives

iGN G GNF{AY) = (i §- F{A}) i §+ ¢* F{A} = noF{j},
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since V(@,7,@) @A (FA®T) = (@ @)0— (@-0)w. A(F) by definition is subject to gauge
invariance and we are free to fix this as ¢ ¢- F{A} = 0, or equivalently V- A(F) = 0. We
deduce

F{A} = Ho g 7:{.1} poy - 7:{ } i}

FIBY =22 i A FCVFG) = 22 i gaFL Ty = B2 R (T AL )
(cf. eq. (AD), eq. (@) and eq. (@)), that is

i -t s F-5
Ko TS g Al
/RJF 7 in Joo VO e © (4.8)

Any vector 4 is the unique sum of its longitudinal component - L(q- @) ¢ and its transverse

component —5 L (A @ A Q) over the vector ¢. On transposing this to the Fourier transform of a
vector field G, we find

— —

F{G} = 1@ F{GY 7+ (@A F{G} A q)
= — F{=}=i GG q-F{GH + (i GA (i A F{G}))]
«Vs- G +i q Aoz f{%*ﬁg/\é})
V i% *;A%%*%A@)},

—

that is G is the unique sum G = G; + Gg of an irrotational component(Vy A G7(7) = 0) and
a solenoidal component (V- Gg(F) =

~~

G(F) = G1(") + Gs(F) = —=Vz T(7) + Vz A S(7) (A.9)
where L . .
. 1 Vz-G(5) . = 1 VeAG(8)
T(F) = — Y& S) _ Vs nals)
=1 /]R s L SO =g [T #

T is determined up to a real constant and S up to the gradient of an arbitrary scalar field.

B MULTIPOLE EXPANSIONS

A multipole expansion by definition is performed over the collection {Y},} _j<m<i, 1=0.1.2.... of
spherical harmonics and by essence is substantiated from the Sturm-Liouville spectral problem

(Vi +AM(0,0)=0 (B.1)

on the unit 2-sphere Ss with the boundary condition that f must be finite everywhere on Ss.
This belongs to a wide class of mathematically solved problems, but can also be approached
more intuitively by interpreting the operator

=9 1 - 2
—Vio=— (m&g (sinf 9p) + 92 —=0,
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as the square L2 of an orbital moment L and the operators

L.=—id, and Ly = +exp(+iy) {ae + ZCOSZ@} (B.2)
1n

as the components of L on the polar axis (z) of S3 and on the two associated orthogonal helicity
axes (£). [V3 ,L.] = 0, which implies that 3 Y2 : V2 YA = —AY2 and L.V} = mY2.
[L.,Li] = +Ly sothat L, (LyY,2) = (mil)(Linﬁ), which suggests that L4 are indeed ladder
operators. [63 . L.] = 0, which tells that Y"‘} and Ly Y"‘} belong to the same eigenspace labeled

by A. [Ly,L_]=2L, and =V}, = $(LyL_ + L_L;) +L? then LyLy = -V}, — L2 ¥ L,
and

T 27
0< / sin @ df / dp [LiY2(0,¢)] Lov2(0,¢) = (LeYALaYd) = (VAL LY =
0 0
T 21
= (V= V3, - EEF LY = (A —m(m £ 1)) [ sing a0 [ dp [V20.0)] VA6,
0 0

which indicates that if Y} is normalized then so are Y,*,; and that once A is fixed m is
bounded. If [ is the upper positive bound then (L;YA_|Li YA ) =0s0 A =1(l+1) and the
lower negative bound is necessarily —I, hence the more appropriate notation Y,., (=1 < m <1).
An outcome is that V Y}, 3Ipe N3 ¢ge N: LY} =0and L1Y}, =0, that is m 4+ p = [ and
m —q = —I, which implies that 2m = p—¢ € N and 2l = p+ ¢ € N. Since LY}, = —i9, Y, =
mY,L the functlonal form of V!, should be Y (6, ¢) = Al (0)exp(imep). Accordingly, if we
further require that Y;! must be a 27 —periodic functlon in the angle ¢ then m itself must be
an integer and so 1 as well : the allowed values of A are [(I+1),  =0,1,2,--- and for each [ the
allowed values of m are —l < m = 0,£1,42,--- <[. Negative | are irrelevant because [(I+1) is
invariant under the | — —(I 4 1) transformation. Each (I,m) distinguishes a single Y;!, which
means that the operators 63 " and L, form a complete set of commuting operators. Now from

LiY!, = 0 it is inferred that gAY, (0) = 12228 AL ,(0) so Y_,,(0,¢) = Cyysin’ @exp(ily),

sin 6
where |C4|? is fixed from the normalization condition (Y1, |Y1)) = 2r|Cyy|? [ sin® ' 0 d6 = 1
and C4; from the phase convention C; = (—)I|Cil|. It is then advantageous to make use of
the identity

2 I 2!
22141 g i 22241 A1t 22! , . , i —
2/0 cos 0 sin“*?"" 0 df = CETE VzjeC: R(zj)>-1 (j=1,2) (B.3)

which is easily deduced from the double integral [;~ [~ 2%y exp(—(2* + y?)) dady by per-
forming at first the (v = 22, v = y?) variable change then the (m = rcos@ y = rsinf)
variable change : we are led to the equality & [ u's exp(—u) du 1 [ v S " exp(—v) dv =
Jo o ¢t exp(—r?) dr fog cos¢ 0sin® 0 dO from which the identlty immediately follows, with
¢ =2z +1 and £ = 229 + 1, by calling to mind that z — fooo t* exp(—t) dt = 2! defines
the factorial function : ¢* = (R()expS()loe(®) and | [* ¢ exp(—t) dt| < [~ %) exp(—t) dt
so [, t* exp(—t) dt makes sense for all complex numbers z with real part R(z) > —1 while
integrating by parts the functional relation z! = z(z — 1)! is recovered and in fact might be
used to extend by analytic continuation the concept of factorial to the whole field C of complex
numbers. When z; = —zy = z with —1 < R(z) < 1, the identity (B.J) reads

z

2 (=)l = /02(cot29)z d(sin?0) = /OOO (1—1:7@@2 dw =T
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where w = cot?6. Z can be evaluated by integration over the complex plane : the analytic
function s € C — g(s) = )2 s I admits —1 as a pole of second order and 0 as a branching
point. g(s) is made uniform by cutting the complex plane along the positive real axis so that
0 < arg(s) < 2w and s* = |s|* exp{iz arg(s)} with arg(s) =07 at the upper adherence to the
cut. Let ® be the domain formed by a disk of radius R centered about s = 0 from which the
cut along the positive real axis and a small disk of radius r centered about s = —1 are removed
and let € be the external and ¢ the internal closed contours limiting ®, oriented anticlockwise,
then

ver<R/€ ()ds:/ (s) ds
but /G()dsml(lexp{z%rz} and —/ ) ds =% (expf{i 7 2})(—2)

since |g(s)| ~ |s|R*) 2 « l_i\ (IR(2)] < 1) when R — oo and g(s = —1+€) = exp{i 7 z}(lz—;)z =
exp{i m z}(& — Z+---) when r — 0. As a result

Tz

'(—2)! = B.4
2 (=2) sinz (B.4)
true for all z in C by analytic continuation. We in particular have ($)! (—3)! = %, which implies
that (—%)! = /7 and (%)' — YT gince (%)' = %(—%)' and (—%)! > 0. When z; = 25 = 2

with R(z) > —1, the identity (@) reads

z 212 1 B 1 VT 2!
. 2241 o _ . 2z+1 _
2/0 (sinf cos §) do = i 2222+1 /0 (sin ) dp = 22:+1 (z 4 1)1

from which it is inferred that

VT (22 + 1)1 = 227 2 (er%)! or /T (22)! 2% 2! <z%)' (B.5)

true for all z in C by analytic continuation.

Let us focus our attention back to the functional form of the spherical harmonics. Up to phase
convention

Loy, = [0 +1) = m(m £ DYy = [0 F m)(Em+ DY
since L, (L1Y!) = (m £ 1)(LyY}) and (LiY i |LoYl) = (1(1+ 1) — m(m £ 1)(Y,L|Y,L), while

cosf

L.Y,,, (0, ¢) = + exp{£ip}(9p + i———0,) AL, (6) exp(imyp) =

cos
né

= +exp{tip}(0y F m- ) AL () exp(imep) = £ exp{=ip}(sin™™ 0 dp sinT™ 0) YL (6, )

Accordingly,

p times
L+m)!llFm—p)l " ——
y! = ( L L. ---L.Y! —

- \/E; i 23:8 I Z +§§: {(:F) sintmp) g o osinT™o exp{:l:zpcp}} (6, 0) (B.6)
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where Oqos9 = m@e = fﬁae. We deduce Y{ (0, ¢) = \/ﬁ (;ll)' 21+1 8(l;ose sin2 0 and
Y0, 9) = 8;5;,’ (—)Psin? 0 92, exp{ipp} Y{(0,¢). A more standard expression is
m l l—m
Y6, 9) = (—) El n m§ P! (cos ) exp(imep) (B.7)
where
! L=2®)% i 2 l
P.(z) = Taz (% —=1) (B.8)

are dubbed order m associated functions of the Legendre polynomial P! of degree I.

l
oltm(a? 1) =>" 71@!(([ tm)! [Or@ =D o Mat+ ) ] =

k
zl: L+ m)(ID2(z — )R (2 + )R pm)

phl 2 —m (l + m)' l—m (.2 l
2 k'l+m (L — k)(k —m)! = @y % e )
thus ( y
PLa@) = (" i Pa@) | VG0 = (Y (¢0) (B.9)
Argument symmetry properties : Y. (¢, —) = [ (CJ/’H Yi(=¢ ) = (=)mYL(C ),
YL(=C—) = YL, (Cw), Yi(r — Cv) = (=)FYh(C,), ;! (G +4) = (2)YE (W),
63790 and L, are self-ajoint operators, which implies that the Y, are orthonormal, namely
™ 27
/ sin6 do / dp [Y(0,0)]" YF(8.0) = G1kbomg (B.10)
0 0

Let £2 be the vector space of square integrable functions on Ss, E%Q (N) the subspace engen-
dered by {VL} Zi<m<i, 1=0,1,2,-.. x and £ (N)* its supplement : £% = £3 (N)@ LE (N)*.

144y

1
Vge Ly, hn=g-»_ Y (Vhlg) V), € LE(N)*

=0 m=—1

(hx| = V3 ) : = VELh
SO <hN—|hl\;§ Z (N =+ 1)(N —+ 2) Z 0 since fei‘,anN)L W = (N + 1)(N =+ 2)
but  (hx| = V3 hn) = (9] = V5 ,9) — Z Z (Yl P +1) < (9] = V3 ,.9)

=0 m=—1

then, (g|— V2 _g) being N-independent, 0< lim (hx|hy) < lim @V—M =
? 3P ’ ~ N—ooo ~ N—oo (N+1)(N+2) ’

which establishes the completeness of the semi-infinite set {Y,},} _i<m<i, 1=0,1,2,... in £%_, to be

precise

[e'S) l

vger, g0,0)=> 3 {/ sin¢ dc/O e [Yé(c,w)]*g(c“,w)} YL(0,¢) (B.1)

=0 m=—1
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. . . . . . . . . 2
An equivalent form of the completeness relation which avoids specifying any function g in £g,
is

[e%) l
SN VLG YhO.9) = =50 C) d(p — ) (B.12)

=0 m=—1

sin 0

where 4 is the Dirac generalized function defined on the 0 < 6, ¢ < 7 and 0 < ¢, ¢ < 27
compact domains. Notice that —=0( — ) = 6(cosf — cos¢) and more generally if f is a
uniform function with derivative 9, f and if {a;} are the roots of the equation f(x) = 0 then
f(x)] =>, mé(z —a;). 0 in compact domains D of the real space R and § in compact
domains D3 of the 3-D real space R? are defined such that Vf In, 6(z —u)f(x) dz = f(u) and
Vo ng 0(F— 8)®(7) df = ®(5). If (r,0, ) are the spherical coordinates of 7 and (s, ¢, 1) those
of §then dif = —r? dr dcos(f) dp and §(F — §) = & 5(r —s) 8(cos® — cos¢) 6(p — ). We
immediately deduce that

[eS) l
57— )= g 5 —5) 330 VG w)] Vh6.e) (B.13)

=0 m=—1

On more general grounds it can be shown that the solutions of any Sturm-Liouville spectral
problem always form an orthonormal and complete set in the background vector space of the
problem. Thus, the semi-infinite set of the Legendre polynomials {Pol}l:071,27... are the solutions
for the eigenvalues A = [(I + 1) of the Sturm-Liouville spectral problem

{0a1(1 = 2*)0,] + A} f(z) = 0 (B.14)

on the real interval [—1,1] with the boundary condition that f must be finite everywhere on
[—1,1]. As such this set then is orthonormal and complete in the vector space 5[2_1 1] of square
integrable functions on [—1, 1] and allows for series expansion in this space. We more concretely
have

/ Pl(x)Pr(x) (z + %) de =61 | Z (z + %) Pl(z)Pl(y) = 6(z —y) (B.15)
-1 1=0

When dealing with the functions f(7,72), which depend on two vectors 7 (r1, 601, 1) and
72 (12, 02, v2), the multipole expansions must be performed over the collection of bi-polar spher-
ical harmonics. These are obtained by irreducible tensor product of the spherical harmonics
with different arguments

(Y (01, 01) ® (Y202, 00))ear = D, (limalama|LM) Y12 (01, 01) Y02 (62,2)  (B.16)

miy,msa

and form a complete orthonormal set in E%QX s, (limilama|LM) is a Clebsch-Gordan coef-
ficient (cf. Appendix [C.3). Generalization to the functions of more than two vectors and to
multi-polar spherical harmonics is straightforward [17]. If f(7,72) is invariant under rotation
of coordinate systems then it depends only on r1, ro and 7 - 75 = 1173 cos w12, where coswis =
cos 1 cos B2 4 sin 0y sin B2 cos(p1 — @2), and its multipole expansion contains only the zero rank
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bi-polar spherical harmonic (Y, (61, v1)®Y1, (02, ©2))oo = \/(#(Yll (01, ¢1)-Y1, (02, 92)) 61y 1,
where the scalar product

l
Yi(01, 1) - Yi(02,02) = Z (Y (01,01)] Y (02, 02) = ?Po(coswu) (B.17)

m=—I1

The last equality expresses the addition theorem for the spherical harmonics, proven as follows:

Pl(coswia) = Z aim Yy, (02, 02)

m=—

4 2o . o "
where a, = [ —— / sin 6o d92/ dpo [Y,fl(t%, ©2)] Y§ (w12, 712)
l 20+1 0 0
but ¥L(0 Z by Y (w ) —— YL (01, 01) = <21 +1 and
25 502 1g¥q (W12, 712 wiz—0 ™ bt Yi0(0:m2)=0 am

T 271' A .
bio =/ sinwia dw12/ dy12 [ (w12,712)] 01(92,902) S0 Qim = (21 ) [Y,fl(é’l,(pl)}

the angular variables (w12, 7v12) and (62, p2) in the evaluation of b;y being exchangeable.

Let now us focus our attention on the series expansion of exp(izy) over the Legendre polyno-
mials Pl(y) :

exp(izy) Z c(x (B.18)
1=0

al0) = [ exptionri) (1+5) dy:(iift;) / explia) [0 s” — 1)1 dy

. 2

Integration | times by parts we get

) = D) [ explian) -9 dy =24 1))/ s o)

-1

where

M@= o (5) / explizy)(1— )t dy (B.19)

Jo,(z) defines the Bessel function of index v and is a particular solution of the Bessel equation
2+lo, 4 17”—2 f(z)=0 (B.20)
Tt z? B '

The general solution Z,(z) can be apprehended on representing the function g(z) = 27" f(x)
by the generalized Laplace integral

g(z) = /Pexp(zz) v(z) dz
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and searching for analytic functions v(z) and paths P in the complex plane that verify the
equation [z02 + (2v + 1)0, + z] g(x) = 0, that is such that

0=_2v+ 1)/Pexp xz) zv(z) dz +/Pexp(:cz) (14 2%)(2) dz

= (2v+ 1)/Pexp(zz) zv(z) dz — 7)exp(x,z) 9. [(1+2*)(2)] dz+| exp(zz) (14 2°)v(2) |p

or equivalently

zu(2)
2+1

/ exp(zz) [(2v + 1) — Oyu(z)] dz — | exp(zz) u(z) |p =0

P

where u(z) = (1 + z%)v(z). It suffices that the integral and the integrated term in this last
expression are separately null. This implies that (2v + 1)?551) — O,u(z) = 0, that is u(z) =
C(1+22)"*2. So

Z,(x) = C’x”/PeXp(xz) 1+ 22)”7% dz (B.21)

with a path P such that the variation of exp(zz) (1 + 22)”*2 over it is null. The solution
Z,(x) = J (z) is deduced by observing that (1 + 22)**2 = 0 for z = +i provided that
R(v) > —3, which suggests to take for P the straight line from —i to 7 and to perform the
z =1y varlable change. A recipe to retain is that the method of Laplace integral in the complex
plane works for all the homogeneous linear differential equations where the coefficients are linear
functions of the variable.

x~"J,(x) is an analytic and even function of x, which thus admits a series expansion every-
where convergent over even integer powers of x. This allows forming a series for J, (x), which
necessarily is convergent, and by analytic continuation defining J, (x) for any v. Concretely,

1 1
/ exp(izy)(1 —y?)" "7 dy = 2/ cos(zy)(1 — y?)" "% dy =
0

-1

o 2k2k >
=23 [l 5 20

0 y=sin 6

cos2” Osin®* 0 dh =

00 le/——'\/_
-3 i Gl DY

= 22k (v + k)!

(cf. eq. (B-3) and eq. (B.9)), therefore

Mg

k:O k' z/+k: ( )U+2k (B.22)

Let 7 be a vector in the real space R® with spherical coordinates (r,6,, ,), ¢ a vector in the
dual space R? with spherical coordinates (q, 6y, p,) and w the angle between them. If gr is
substituted for x and cosw for y in the expansion of exp(izy) over {P}}i=01.2... then, using
the addition theorem for the spherical harmonics (cf. eq. (@)), we find

l

exp(i ¢-T) = 47TZiljl(q7°) Z [Yl (Hq,goqﬂ Y (6, 0r) (B.23)
=0 m=—1
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where j;(z Vos Jip1 +1 ) defines the spherical Bessel function of index . As from the series
expansion of x="J, () over even integer powers of z (cf. eq. (B:29)) and by making use of the

identity (cf. eq. (B.9))
V(22 4 1)1 = 227 H 1) (z + %)'

it is inferred that

sinx 201
j = d §i(2)pmo ~ ——— 2 B.24
Jo(w) = —= and ji(2)s—o I (B.24)
Also useful is the recursion relation
. ) 204+ 1Y .
(@) +imo) = ()i, 121 (B.25)

which also is deduced from the series expansion of x~".J, () over even integer powers of x
(cf. eq. (B-29)) by merely observing that

2

) 00 Qv T\ 2v+2k
0wl Tu(@)) = 3 G (3)

=
Il
=]

e v—142k

so that

C ANGULAR MOMENTA

C.1 Definition and Properties

Angular momenta by definition are infinitesimal generators of the state transformations asso-
ciated with the spatial rotations. We shall symbolize these

[¥) = [¢) = Ulw, @)[¢) (C.1)

for a quantum system subject to the rotation R(w, @) about the unit vector @ through an angle
w. U(w, &) materializes a mapping of the state space of the quantum system over itself which is
bijective and preserves the modulus of the scalar product so, by virtue of a Wigner theorem, is
either a unitary or an anti-unitary operator up to phase factors. We can exclude the eventuality
of the anti-unitarity for this changes the sign of the commutators, which would be inconsistent
with the infinitesimal transformations, and we can fix the phase factors on imposing that the
set of the operators U(w, 4) equipped with the composition law for the state transformations
form a group G homomorphic to the group G of the spatial rotations. We call to mind that the
kernel K of the homomorphism is an invariant subgroup of G and that the quotient group G/K
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is isomorphic to G [1]. Anyway, no phase factor should be expected without contradiction for
the infinitesimal rotations R(éw, @), so that lim,_o U(w, %) = 1 V& which in turn implies that

3J4:Ubw, @) =1 —i dw Iy + O(6w)? (C.2)
J; is self-adjoint since U(6w, @) is unitary. V& R(6w, @) ¥ = ¥ + dw(i A7) + O(6w?) so that
R(6p, ") R(w, 1) T = T+ dw(it A ¥) + O(dw?) + 6p(f A T) + O(6pdw) + O(5p)?
and, é; being basis vectors, R(0w, @) = R(0w, > ,;(é; - )é;) = IL[R((é; - ©1)dw, &;)] + O(dw)?.

We deduce that
Jo=) (6w, =0-J (C.3)
3
by interpreting the operators Je, as the components é; - J of a vector J over the basis (&:). J
defines the total angular momentum of the quantum system under concern. A finite rotation
can be built up from successive infinitesimal rotations about the same axis, to be precise
R(w, @) = limy . R(%,a)N. Accordingly,

w

N . LW 2\ O
U(w, i) = ngnoo <1 —i (@-J)+0 (N) > =exp{—iw (4-J)} (C4)
Notice that U(w 4 dw, @) = U(dw,a)U(w,d) = [1 —i éw (a - I)|U(w, @) so 0,U(w,d) =
—i (@- J)U(w, @), which, together with U(0,4) = 1, is solved as U(w, @) = exp{—i w (- J)}.

A finite rotation is often described as the succession R(w, @) = R(7, Z)R(3,9")R(c, 2) of a
rotation about the Z—axis through an angle @ = (,9’), a rotation about the new §’—axis
through an angle 8 = (2, Z) and a rotation about the new Z—axis through an angle v = (¢, Y)
a, 3, are called the Euler angles of the rotation, which then is denoted R(a, 8,7). U(w, %) as a
function of these angles writes U(a, 3,7) = exp{—i v (Z-J)} exp{—i B (i -J)} exp{—i o (2-T)}.
The same rotation is obtained by first performing a rotation about the Z—axis through an angle
v, then a rotation about the initial g—axis through an angle 5 and finally a rotation about the
initial Z—axis through an angle «, that is we also have R(w, 1) = R(a, 2)R(8, §)R(7, 2) and

U(a. 3,7) = exp{—i a (2-T)}exp{~i 8 (§- D} exp{~i v (2- 1)} (C.5)

Let O be an operator acting on the states |¢) of the quantum system. If this is submitted
to the rotation R(w, ) then V |[¢) (|O) = (¢'|[U(w, )] O Uw,d)T|y") = ('|O'|¢"). We

deduce that the operator transformations associated Wlth R(w, 1) are given by
O — 0 =U(w,a) O [U(w,a)]" (C.6)

S is a scalar operator if and only if Vw Vi U(w,4) S [U(w,@)]™ =S and Vy, is the component
é; -V of a vector operator V if and only if Vw Vi U(w, @) Ve, [U(w,@)]" = (R(w, @)é;) - V =
é) - V. When the rotation is infinitesimal the operator transformations take the form

0—-0=0-idw[a-J, O]+0(w)? (C.7)
We deduce that V is a vector operator if and only if Vi, Vo [4-J, -V ]=i(aAD)-V,
since 9-V — -V —idw[a-J, oV ]+ O(w)? but also o -V — (R(w,a) 0) -V =



WILL BE SET BY THE PUBLISHER Pr1-33

(6 4 6w (@ A ©) + O(6w?)) - V. An alternative definition of angular momenta is extracted from
this, namely as vector operators J satisfying the commutation relations

(7-J, 5-F])=i (@and)-J (C.8)

where (@, ¥) is any pair of ordinary vectors or of vector operators that commute with each other
and with J. Notice that this is a more general concept, which coincide with that of the total
angular momentum of the quantum system under concern solely if for all the associated scalar
S and vector V operators we further have [7-J, S] =0 and Va V& [@-J, 7-V ] =i (GAT)- V.

Using the covariant é,, or contravariant €™ = é,, Cartesian basis vectors in place of the vectors
i and ¥ the commutation relations defining J are merely expressed in the form

[T, Tn ] =i €™, (C.9)
where J,, = &, - J (m = z,y, z) are the Cartesian components of J and where em! = 1 if
(m,n,l) is co-cyclic to (x,y,z), = —1 if (m,n,!) is anti-cyclic to (z,y, z) and = 0 otherwise.
Using the covariant spherical basis vectors é_; = \%(éz —iéy), €0 =8, 641 = —\%(éz +1iéy)
we get

[T, T 1= V2 Qulv|IN) Iy (p,v, A = +1,0) (C.10)
where
. - 1 . .= . - 1 .
J,1:€,1'J:—(JI7’LJy), JOZGO'J:JZ, J+1:€+1'J:7—(JI+’LJy)

V2 V2

(L4 pt )1 —p— )
=0 ”)\/2@ T = (L T~ 7

are the covariant spherical components of J and a Clebsch-Gordan coefficient (cf. Appendix )
Using the contravariant spherical basis vectors e/ = €}, = (—)"é_,, we rather get

[JH, TV ] = V2 (Aplv[IN) I (u, v, A = +1,0) (C.11)

where J# = [J,|* = (—)*J_,, are the contravariant spherical components of J. We shall take
this opportunity to call to mind that é, -é” =6,, (= 1if p =v and = 0 if u # v) and that

if A=Y, Are, =3, Auét and B=3 Blé, =), Buét
then A- B=Y A,B* =3 (-)FA.B_,

whereas {AA B}y = —i V23, (Lpdv[IN A, B, and {AABY =i V23, (1plv|IN) A#BY.

-,

Whatever the basis vectors é; it is effortlessly inferred that [ J?, é; - J ] = 0, in particular
[J2,6,-J]=0 (u=-1,0,1) | [J? én-J]=0 (m=u,y,2) (C.12)

J2 commuting with Jo share with it common eigenstates |7J M), which, because the operators
are self-adjoint, are orthonormal : (rJM|7'J'M’) = 6 705 5 p m - Using the commutation
relations [ J,,, J, ] = —v2 (1ulv|1)\) J, and [J2, J,]1=0(u,v,A==%1,0) together with the
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fact J2 = 2o, () J -y, it is an easy matter to show that (cf. the case J = L in Appendix [B).

J|r I M) = J(J + 1)|7JM)
Jol7IM) = M|TJM) (C.13)
J+1|TJM>:—X]\/]|TJM+1> -

)

J_ |7 IM) = Xpr_q|rJM — 1)

-

where Xy = [5(J —M)(J+M+1)]* with 2J € Nand 2M € Z : —J < M < J, that is
J =0, %, 1, %, ,-+- and, J being fixed, M = —J, —J+1,--- ,J—1,J. 7 distinguishes between
the orthogonal eigenstates of J2 with the same eigenvalue J(.J +1). The set {I7I MY} _j<ma<s
engenders a state subspace Sy ; of dimension 2J + 1, which then admits the closure relation

zJ: |[TJMY(TIM| =1,y (C.14)

It finally may be shown using the same method as for the spherical harmonics (cf. Appendix E)
that the set {|7J M)}, sar is complete in the state space S of the quantum system under concern.

C.2 Wigner D-Matrix

The matrix representatives of the operators {J,},=—1,0,+1 over the basis {|TJM)},sar, trace-
less and hermitian, materialize the irreducible matrix representations of the su(2) Lie alge-
bra. These ascend faithfully to the associated SU(2) Lie group, because this is simply con-
nected, namely the irreducible components S, ; of the representation space S are also those
of SU(2) and the matrix representatives of the operators U(w, @) or U(a, 3,7) over the basis
{|7J M)} 0 provides with the irreducible matrix representations of SU(2). Using the Euler
angles

(' J'M') U(a, B,7) |TIM) = (C.15)
= (7T M| exp{—ia (2-D}exp{—i B8 (- T)}exp{—i v (2-D)} |rIM) =
= 0r 70,5 exp{—i aM'} d}]wM(ﬁ) exp{—i YM} = 1 707 5 D'J@/M(Oévﬂ,’)’)

D3 (@, B,7) is sometimes dubbed a Wigner D-function and D7 («, 8,7) a Wigner D-matrix.

J= %6" for J = %, where & is the Pauli operator. The matrix representatives of its Cartesian

components, (Z - &), (&), (2 &), over the basis {|73 + 3), |73 — 3)} are the Pauli matrices

e (00) (UG (1 0)

= laxo (unit 2 X 2 matrix) and o,,0,, = —0p,0m = i0y for any cyclic permutation

(@-G)(T-G)= (@ -7)1+i & (@D (C.17)

for any pair (@, ¥) of ordinary vectors or of vector operators commuting with & but not nec-
essarily with each other. In particular, Vi (4 -&)% = (4-4) 1 = 1 (4 : unit vector). So

exp{—i g (-&)} = cos(g) 1—4 sin(g) (G- &) (C.18)
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and
) cos(8)exp{—i 22} —sin(Z)exp{—i 452}
D2 (a,8,7) = (C.19)

sin(%)exp{i 51} cos(%)exp{i o)

D7 (a, 8,7) or rather dy,,,,(3) for any J is elegantly evaluated from D2 (a, 3,7) using the spinor

formalism, which, for each fixed 7, allows building up the angular momentum states |7JM)

from tensor products of the spinor basis states x+ = exp{i ¢+ }|71 + 1). As to avoid writing

heaviness the tensor products will be denoted multiplicatively, for instance x1 -+ xny = H;\il X1
_ _ N - +

for (" x+ + 0y x-) @+ ® (yx+ +0yx-) = @2y (0 X+ + 1 x-), 1 € C, and x* for

a_-t}@esx. One of the essential tools of the spinor calculus is provided by the mappings

Oxs X1 XN+ Oys (X Z X1 Xi-1 (X | X)) Xk X (C.20)

which might be interpreted as derivation operators. On examining the action of the components
of the vector operator J on the states x4 = exp{i ¢4 }|73 £ 3) (cf. eq. (€13)) the following
identities are inferred

1 , 1
J = 7 exp{i [ — p-]}x-0yx,, Jo= §(><+5><+ —X-0x_), (C.21)

1
Ji= ~7 exp{—i [p+ — o-}x+0x_,

. 1
JP=KK+1) with K= §(x+5x+ +x-0y_)

Using these it easily is shown that Va € N Vb € N Jo(x4x%) = 3(a — b)(x4x%) and
J2 (Xixb_) = (GTH’)(“T“’ + 1)(x‘j_xb_), that is any monomial x‘j_xl’_ is an eigenstate of Jg and of

J? simultaneously. It also is found out that J_ 1(xax”) = %a exp{i [ps — -] T(x4 X
and J11(x4x%) = —%bexp{—i o+ — @_]}(Xiﬂxll 1), that is applying J_; and J;; on

any monomial x§ x? allows generating the irreducible component S, atv of the representation
T2
space S. All this merely suggests that

|[rJM) = C(J, M) J+Mx{ M

ST = N), we find

If C(J,J) is fixed to (%) 27—

\/W then, since (J_1)N|7JJ) =
(exp{i o4 — -]}

C(L M) = VU + M)I(J — M)

by applying J — M times J_; on |rJJ). We are free to also fix the phase (p4 — ¢_) with
some arbitrariness. A conventional choice is (¢4 — ¢—) = (2m + 1)7, with m € Z, so that

exp{i [p4 — -]} = -1 and
J+M_ J-M

e XtHMx?
M) = () M\/(J—:M).(J—M)! (©.22)
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U(0,3,0)|7J M) now can be computed either in the form

(_yI-M (x4 cos & — x_sin 8)7+M(y, sin & + y_ cos £)/—M (C.23)
V(T +M)(J - M)! '
or
J J , XJ—HM/ J—M'
[T M) (r MU0, B,0)|7 T M) = (=) e dipar (B)
P2 N 2
(C.24)
Using the identities
{!
P(1ta) = ()" 1+a)"
o) = (£) oy (L)
) =3 M () =3 ok oy
= El(n — k)! C” = Elln — k) %7 °F

we deduce

N[

M —M

(1+COSB)M 2+M(l—cosﬁ) T X

e 1 (J = M")!
d}]M’]M(ﬁ) = (_)]JFM o7 [(JJrM’)!(JJrM)!(J M)'}

x g7 +M [(1+ cos B)7~M(1 - COSB)J+M]

cos 3

J-M 1

- ﬁLWJUU+MMLwM!G+mm T (1-cos) 7 x

(J —+ M)' :| 2 _ M'4+Mm M —M

x 9~ M {(1 +cos @) M (1 - cosﬂ)J_M/} (C.25)

cos B
then, from this, the expression of D’ («, 3,7) for any J. We find the symmetry properties
d}]w'M(_ﬁ) = d}]wM' (), diM’—M(ﬁ) = (_)I\/IliMd'J{J’M(B)a
i (B) = (_)M/_MdIJV[’M(ﬁ)a AL prap (B) = dip o (9)
diyp (8 + 2nm) = (=) dip o (B) (n €N),
dfpar(B % 2n+ D) = (=)*CFDI=Mal, (8) (n € N)

Setting J =l e NM' =me N (-l<m<l)andM =0or J =1 € NNM =0 and
M =m e N (=] <m <) in the eq. (C.25) and comparing with the functional forms of the
Legendre polynomials P!, and of the spherical harmonics Y}, (cf. eq. (B.7)) it is found out that

() = ()" [ G Pheos) | do(9) = ()7 [ G20 P eos) - (C20)
so that
Dino(aa ﬁ»'Y) = om Yl (Ba _a) | ,Dé)m(a’ 6’ ’7) = om Yl (_ﬁa _’7) (027)

2041 ™ 2041 ™
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If R(as, B3,7v3) = R(az, B2,72) R(a1, B1,71) describe two consecutive rotations then the Wigner
function DY,y (3, B3,73) = Z]{J”:—J Dy (a2, B2, y2) Doy (a1, B1,v1) whereas the Eu-
ler angles as,33,vs are given as functions of the Euler angles «1,31,71 and «q, (2,72 by
cot(az — ag) = f(B2, B1), cos B3 = cos (1 cos B2 — sin By sin B cos(a1 + y2) and cot(ys — 1) =
f(B1,B2), where f(x,y) = cosz cot(ay 4+ 2) + cot y—=22L — whence by setting J = € N and

sin(a1+v2)
M’ = M = 0 we recover the addition theorem for the spherical harmonics (cf. eq. (B.17)).

The rotation R(w, ) can be described as the succession R(asz = @, 03 = —b04,73 = —¢a)
R(az,f2 = 0,72 = 0) R(ar = g, = 04,71 = —pa) of a rotation (1) which align the
Z—axis along @(0g, va), then of a rotation (2) about (04, ps) through an angle w and finally
of a rotation (3) which send back the Z—axis to its initial direction. Using these rotation angle
w—rotation axis (04, pa) variables (7' J' M'| U(w, @) |TJM) = 6, 8.5 Uy 1y (w, 04, pa) with

J

Ui ar (@, 04, 0a) = Z Dipar (i 0a, —pa) exp{—iM"w} Dipia(¢a, —0a, —pa) (C.28)
M/'=—J

Another way obtaining Uy, ;(w, 04, pa) is by the direct (a, 3,7) — (w, 04, ¢a) variable substi-
tution in Di; (v, B3,7), with the aid of the relations

coS (%) = cos (%) coS (QTM) , tan(fy) = tan (%) [Sin (O‘TJW)]71 , pa=GF 4+ 5L

M'+M
o ) 1 —itan ¥ cosfy
UI{[/M(Wa Oa, pa) = MM exp{—i(M' — M)pa} 2 d}{mM(f)
\/1 + tan? ¥ cos? 0
(C.29)
where £ is determined by sin% = sin ¢ sin 0.

The trace Tr [U(w, @)] of the operators U(w, @) = exp{—i w (@-J)} over the basis {|7J M)}, s
provides with the characteristic functions, or simply, the characters of the SU(2) irreducible
representations. Since Tr(Pco(A1---An)) = Tr(A;--- Ay) for any cyclic permutation Po of
the operators A; - -- Ay, the characters are invariant under any unitary transformation. As a
result these are independent of the colatitude 6; and longitude ¢4 of the rotation axis, to be
precise Tr [U(w, )] = x” (w) with

J .
g . Csin[2J+1)%] 1 w
x’ (w) = M:Z_Jexp{ iMw} = e =57 18605 @ oS {(2] +1) 2} (C.30)

U being unitary 7r [U™Y(w, @)] = Tr [U(w, d)]. x”/(w) is a real ([x/(w)]* = x”/(w)) and even
(x” (—w) = x”’(w)) function of w, which is 27 —periodic if 2.J is even and 2r—antiperiodic if 2.J
is odd (x”(w +2m) = (=)*/x’ (w)).

The characters x”/(w) of the irreducible representations of SU(2) can be generalized in the
form

(27 — \)!

J(W) = V2T + 14| e
Xa(w) TN e

(sing)/\ (8COS%)A x7 (w) (C.31)
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where A € N, 0 < A < 2J. x{(w) is dubbed the associated character of order A of the
irreducible representation of rank J. x{(w) = x/(w) and [x{(w)]* = xJ(w) = (=) x{(~w).
The collection {x{(w)} ;> 2 wefo,2n exhibits the orthonormality and completeness properties

70 (w1 — wa)

27 [e'e]
. w
(/ sin Sx{ (@)X (W) do =650, | > xA(w)xd(we) = ——5——  (C.32)
; o

2 sin
J=3 2

Using the generalized characters the function Uy, ,,(w, 04, pa) may be expanded in a series of
spherical harmonics depending on the angles (65, p4) of the rotation axis :

Z2A 1
2J + 1

4
22+ 1

Uipaa (@, 04, 00) = > (i) X3 (w) (JM Al TM)

A

Y 0a,0a)  (C.33)

It then is seen that Uy, (w, 04, pa) depends on M’ and M only through the Clebsch-Gordan
coefficients (JM’'\u|JM) (cf. Appendix [C.3) [17].

C.3 Clebsch-Gordan and 3jm Symbols

Let &1 and S, be the state spaces of two kinematically independent quantum systems or parts
of a quantum system. The state space of their union is the tensor product & = S; Q) So.
Under the spatial rotation R(w, %), the states [¢;) € Sk (k = 1,2) get transformed into [¢},) =
Up(w, @)|0) = exp{—i w (G- J)}|¢r), where Jj, (k = 1,2) defines the total angular momenta
of each of the two quantum (sub-)systems, therefore the states [¢1) ® |t)2) € S get transformed
into [¢1) ®[¥5) = Ur(w, @)[¢1) @ Uz (w, @)[th2) = (Ur(w,d) ® 11)(12 ® Ui(w,d))[v1) @|eh2) =
(Ui (w, @) ® Ug(w, ))|th1) ® |th2), but the whole quantum system is featured by its own total
angular momentum J so that [¢/]) @ [14) = U(w, @)[11) @ [1h2) = exp{—i w (@~ J)}|ih1) @ |1b2).
As a result, U(w,4) = Uy (w, @) ® Us(w, @), namely

exp{—iw (@I} = exp{—iw (a-J1)} @ exp{—i w (i-J2)} (C.34)

and in the case of an infinitesimal rotation R(dw, )
1—idwa-J+00w?= [11 —idwa-T +0(5w)2} ® [12 i dw a-32+0(5w)2}

so that L B
J=J; ® 1,+1; ® Jo (035)

Usually denoted J=J+17 par abus d’écriture, this defines the addition of two angular
momenta. Owing to the kinematic independence of the two quantum (sub-)systems, [J1, Jo | =
0. As an outcome, J shows the commutation relations of an angular momentum. Additionally,
[(Jr)?, J? ] =0and [ (Jx)?, Jo] =0 (k = 1,2), which implies that the eigenstates common to
J2 and Jy (cf. eq. (C.13)), engendering the irreducible components S;. ; of the representation
space S, are eigenstates of (Jj,)2 with the eigenvalues Ji(J, + 1) (k = 1,2), hence denoted
|[7J1JoJ M) (7 = 1172m). These form a complete set in S. The eigentates |7 J M) common to
(j k)2 and (J)o, engendering the irreducible components S, s, of the representation space Sk,
also form for each k a complete set in Si (k = 1,2), so the states |71 J1 M) ® |12JoMa), which
we shall denote |1172.J1 M7 J2 M), form another complete set in S = S1 @) Sa. J2is computed
equal to (J1)% + (J2)2 + 232, (=) (J1)u(JI2) s so that [ Ja, (Je)o ] # 0 (k = 1,2), whereas
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Jo = (J1)o + (J2)o trivially, so that |7 7oJ1 M1J2Ms) is an eigenstate of Jo with the eigenvalue

M = M + M, (C.36)

Let N, -,(J) be the number of sets {|7J1J2JM)}_j<m<y associated to each eigenvalue J of
J? and let Ny (M) be the degeneracy attached to each eigenvalue M of Jg, both for fixed
quantum numbers 7172, N7, (M) = 3_ 15 0 Nrira (J) then Noyr,y (J) = nry 7, (J) =107y, (S +1),
but n,, -, (M) is merely the number of pairs (M7, Mz) such that M = M;+Ms. As to enumerate
them it is helpful to take them as points with the abscissa X = M; and ordinate Y = M,
in the plane. n, -, (M) then is the number of points in the diagonal X +Y = M. We find
nTlT2(M) =0 if |M| > J1 + Jo, nTsz(M) =Ji1+J+1-— |M| if JJy+ Jo > |M| > |J1 — J2|
and np, ., (M) = 2min(Jy, J3) + 1 if |[J; — J2| > |M] > 0, which implies that N(J) = 1 if
J=Jh+J,J1 +J2—1,---,|J1 — J2| and N(J) = 0 otherwise: the quantum number 7 is
limited to a single value then useless (7 = 7172) while J must satisfy the ¢riangular condition

|J1 = Jo| ST < Ji+ 2 (C.37)

Let U7*(w, @) be the matrix representatives of the transformation operators Uy (w, @) over the
basis { |76 s M)} — J. <M<, f Sty gy, defining the irreducible matrix representations of SU(2),
for each quantum (sub-)systems (k = 1,2). The tensor product U”* (w, @) @ U”?(w, @) defines
a matrix representation of SU(2) for the whole quantum system. Its character is computed to
be

Tr U (w,0) @U? (w, )] = Tr U (w,4)] Tr U (w,0)] =

J1 Ja Ji1+J2 J
= Z exp{—i M7 w} x Z exp{—i My w} = Z Z exp{—i M w}:
My=—J Mo=—J> J=|J1—J2| M=
that is
X @) =D {5 J2 I} X7 (w) (C.38)
J
where {J1 Jo J} =1if |J1 — Jo| < J < J1 + J2 and {J; Jo J} = 0 otherwise. As a corollary,
the sum of characters of ranks Jy, J; + 1,J1 + 2, -+, Jo may be factorized according to
J2 Jo+J J J
J2TJ] J2—J7
Yo X =xTT WX (W) (C.39)
J=J1,J1+1,--

U (w, 1) @ U2 (w,0) = @jﬁfﬁhl U’ (w,a), where U7 (w,4) designate the matrix represen-
tatives over the basis {|7J1JaJM)}_ j<m<y of the transformation operators U(w, @) defining
the irreducible matrix representations of SU(2) associated with the whole quantum system,
and S;, s, ® Sy, 5, = @7 77_ 1, Sr.a. Incidentally, (2.7 + 1)(2J2 + 1) = Y5572, (27 +1)
which is easy to directly confirm.

The sets {|7J1JoJ M)} and {|7J1M1J2M>)}, orthonormal and complete in S, are related to
each other by a unitary transformation:

|7 J1Ja d M) = Z Z (|7Jy My Jo M) (7 Jy My JoMs|) |71 o M)
Mi=—J1 Ma=—J2
Ji1+J2 J
[rAMy M) = Y > (Ir S I M) (r i Ja T M) |7.Jy My Ja Ma)
J=|J1—Jo| M=—J

(C.40)
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where the (7J1MyJoMs|7J1J2J M) coefficients are dubbed Clebsch-Gordan. Complex con-
jugate to (rJyJoJM|7TJ1M1JoM>s) they manifestly are 7—independent, then rather denoted
(J1MyJoMy|JM). These can be evaluated in a variety of ways exploiting unitary prop-
erties and recursion formulas or by operator techniques based on commutations or else by
means of group theoretical methods. Use can also be made of the spinor formalism, taking
advantage of its formal analogy with functional analysis to first determine (J; My JoMs|JJ)
then deduce (J1M;JoMs|JM) from the application of J{IM on both side of the equation
|TJ1J2JJ> = ZMI,IV[2<J1M1J2M2|JJ> |TJ1M1J2M2>Z let (Xk)i = ilT% + %) be the spinor
basis states and 9(,,)+ the associated spinor derivative operators of each of the two quantum
(sub-)systems (k = 1,2) for fixed quantum numbers 7172. It is inferred from

J+1|7'J1J2JJ> = — [(X1)+8(X1)7 + (X2)+8(X2)7] |TJ1J2JJ> =0 (041)

S

(cf. eq. (C21)) with (o) — (px)— = 7) and from our knowledge of homogeneous partial
differential equations that

ITJiJ2J ) = f([(x1)-(x2)+) = (x2)- (x)+] (x1)+, (x2)+) (C.42)

Additionally, |7.J; J2JJ) is an eigenstate of J2 =K, (K + 1) with eigenvalues Ji(J; + 1) thus
also of Ky, with eigenvalues Ji,. We then get an Euler partial differential equation

(Xk)+900)s + Xk) =0y f =21 f (C.43)

(cf. eq. (C-21])). This implies that f is an homogeneous function of order 2.J; in (xx)+, that is
of the form

[P T T) = Crl(xa) - (xa)+) — (x2)—(xa)+]" ()3 ()32 " (C.44)

It follows that >, CpL(L — J1 — Ja + J)[(x1)- (x2)+) — (x2)- (1)1 F(x1)3 T (x2) 3277 =0,
since

1
J0|7‘J1J2JJ> = 5 Z [(Xk)+a(xk)+ — (Xk)_a(xk)i} |TJ1J2JJ> = J|TJ1J2JJ> (0.45)
k=1,2

(cf. eq. (C.21)). C1, then is null unless L = J; + J» — J. Accordingly,

(rI127) = C [001)-(2)+) = (x2)- )+ ]2 ) T 72 ) 770 = (C46)
Ji+J2—J
Ji+Jo—J - —J- - - —J—
=0 X < X )[<X1>X<xl>?1 B R O e GOV
X=0

Substituting J; — M; for X and M; + M, for J, the summation extends over all the pairs
(My, Ms) with fixed J = My + M> (notice that we do have n (M =J)=J, +Jo +1—J).
Then

|TJ1J2JJ> =C (Jl + Jy — J)' X (047)

Ji J

_ J1 4+ My)!(J2 + My)!

—)imM g (7 4 My J1 My J> M.

X Z Z (-) Ml+M2,J\/(J1Ml)!(JQMQ)!h' 1M1 JoMs)
My=—Jy Ma=—J>
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since (—)7x =M (x0) =M () M = /T MO+ Milme M) (k = 1,2) (cf. eq. (E22).

Using the binomial identity
Z n m _(n+m
p)\r—p) r

p

obtained by considering the binomial coefficients of z"y™*"~" in the binomial expansion of
both side of the equality (z + )" (x +y)™ = (z + y)"™™, it is a matter of elementary algebra,
puttingn = J1—Jo—J—-1<0,m=Jo—-J1—J—-1<0,p=J1—M; >0andr = J1+Jo3—J >0,
to prove that

Z 5 (J1+M1)!(J2+M2)! - (J+J1*J2)!(J+J2*Jl)!(JﬁLJl‘FJQ‘Fl)!
S T = M) (T = M) (27 + D)I(J1 + Jo — J)!
Ma=—J2,,Ja

(C.48)
so with

W=

ol [ 27 +1)!
(J+ Jp — JQ)'(J+ Jo — Jl)'(J+ J1+ Jo+ 1)'(J1 + Jy — J)'

|7J1 J2JJ) is normalized to unity. Adopting the conventional choice of phase [12], C is fixed to
|C|. Now to find the general Clebsch-Gordan coefficients it suffices to operate J — M times on
|7J1J2JJ) with either J_; = %[()(1),80(1)+ + (Xg),a(X2)+] (notice that J_1[(x1)-(x2)+) —
(x2)-(x1)+] = 0, which makes the computation easier) or directly with J_; = (J1)_1+ (J2)_1,
calling to mind that

@)V |rIM) = (==)N {(J+M)!(J M + N)!

(J—M)!(J—i—M—N)!] [T IM = N)

-

We find

(J—l)J7M|TJ1J2JJ> =( 1 )J—M [M

V2 (0)!(J + M)!

J1 JZ
=C(Li+l=D" Y Y ("M G

Mi=—J1 Ma=—J>

J—M
<3 (T 0 (@l ) -

1
:| |TJ1J2JM>

(J1 + M1)!(Jo + Mo)!
(J1 — M)\ (Js — Ma)! -

I T
1 ;- _ (J1 + M1)I(J2 + My)!
:(—)J IV[C Ji+ Jy— J)! —)imM 6M1 Mo, J X
V2 ( : MI:ZJl MQ:ZJZ( ) " (Jo = M)H(J2 = Mz)!
y 5 (J — M) [(Jl—M1+X)!(J2—M2+J—M—X)! 3
o XWT M =X (I My = X)N(Jy + My — T + M+ X))
Mi—X>—Jp

Mo—J+M+X>—Js
X |TJ1(M1—X)J2(M2—J+M+X)> (049)
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It finally is inferred, after the substitutions M; = X + p1 and My = J — M — X + ps, that
1
_ 2J+ 1) (J1 + J2 — T + M)H)I(J — M)! 2

Jipn Jape| M) = 6 —)imm (
(TupTopizl IM) = 8y tyiant (=) [(J+ Tt — I + Jo — IO + J1 + Jo + 1)!

(J1 — p)!(J2 — ,u2)!] 2
(J1 + p)! (2 + p2)!

Z(_)_x (J1+p + X))o+ J — 1 — X)!
X'(J*M*X)'(Jl — M1 7X)'(:]2 7J+M1 +X)'

(C.50)

XeN

with the summation over X such that the arguments of the denominator are non negative.
Interestingly this is limited to the single term X = 0 when p; = J1 and to the single term
X =J1 —p1 when J3 = Jy + Jo and p3 = puy + po, which provides with the simpler formulas :

(JyJ1JoM — Jy|JM) =

N[

- (27 + 1)) T1 + Jo + I)(J1 + Jo — M + M)! crl
B (J1+J2—J)!(J1—J2+J)!(J1+J2+J+1)!(—J1+J2+M)!(J—M)J (©51)
(JipaJopalJr + Jopn + p2) =
[ @INN2I)N(J1 + Jo + pr + p2)! (J1 + T2 — g — M2)!} : (C.52)
L @A+ 20) (1 = )Ty A ) (T2 — p2) (T2 + pa)! '

As evident from its algebraic expression, the Clebsch-Gordan coefficient (Jyp1 Japa| J M) is real.
It also exhibit a high degree of symmetry. With the substitution X = J — M — Y, for instance,
we get the result
(Jipr Japa| IM) = (=) 27 (Jopo Jy i | T M) (C.53)
A number of other symmetry relations can be found out. These are better displayed by defining
the 3ym symbol
J1 J2 s a2 [ =17 / . .

(g ) = e [ Gy~ e~ maljama) (C31)
where [ji',j5%, -] is a standard abbreviation for {(2j; + 1)*(2j2 + 1)< --- }%. The inverse
relation is

. . . _ (_\J1—J2+ms3 [, jl j2 j3
(jimajama|jzms) = (=) [js] ( mi me  —ms )

The 3jm symbol are null unless the triangular condition |j1 — j2| < js < j1 + jo and the
zero-sum condition my + mg + mg = 0 are satisfied.

The 3jm symbols are invariant by cyclic permutations of the columns and multiplied by the
phase factor (—)7t*72+4s by exchange of two columns or by sign change of all the projection
quantum numbers :

JuoJ2 g3 N\ _( Jz Jv g2 \_( J2 J3 4 (C.55)
mi; Mo M3 ms3 MMy M2 mo M3 1] )

( g J2 s ):(_)j1+j2+j3( J2 g Js ) (C.56)

mi; Mo M3 mo My M3
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mi Mo M3 —mi; —Mmz —M3

<j1 J2 Js >()j1+j2+j3< J j2 s ) (C.57)

The orthonormal properties of the quantum states

(imajame|jimy jama) = (jumajama| (3, o, [7ama) (Gama|)|jimijzma) = dmyms Oms,my and
(J1d2gzms|iigagsms) = (G1d2dams| (3, m, [T1madame) (Gima joama|)|j1j255m5) = 045 1 Omg.my,

impose on the 3jm symbols the orthonormal conditions

2 Ji o J2 J3 JioJ2 g3\ _
Z []3] ( myp m2 ms ) ( mll m’2 ms ) B 5m1,m’1 5m2,m2 (058)
J3,ms3
Ji J2 Js g1 J2 Jy 0\ _ -2 o
2 ( miy ma ms ) ( my ms  mil ) = 732 04334 Omsmy, {01 Jo J3} (C.59)
mi1,Mms2

where {j1 j2 js} = 1if j1, jo, j3 satisfy the triangular condition and {j; j2 j3} = 0 otherwise.
Since (j1)o+ (j2)o = (j3)o is diagonal in both the |7j1m;jame) and |7j1j2753m3) representations
the orthonormal properties of the quantum states materialize themselves for fixed values of

ms = —my —mg = mjs = —mj —mb as well, which provides with the additional formulas
2 Ji J2 Js Ji J2 Jjz ) _
JZ [jg} ( mp; —mip—m3 M3 ) ( m’l fmll —ms3 ms ) _67”177”1 (0'60)
3
. . . . . y
J1 J2 J3 J1 J2 I3 218, L i
Z< mip  —mi—ms m3 > < mp  —mp—ms3 mg3 > = ™) 035 191 72 Js}
my
(C.61)

The Clebsch-Gordan coefficients or the 3jm symbols are the basic quantities of angular mo-
mentum coupling and get ubiquitously into the formulation of a number of physical quantities.
Let, for instance, D3, 1, (v, B,7) = (JM'| U(a, B3,7) |JM) be the Wigner D-function of a quan-
tum system associated with the rotation R(a, 5,7) (cf. eq. ()) and let ’D]‘\]/’[“, Mk( a,B,7) =
(JM'| Ug(e, 8,7) |JM) (k = 1,2) be the Wigner D-functions of two kmematlcally indepen-
dent components of this system. Calling to mind that U(c, 8,7v) = Ui(a, 8,7) @ Ua(a, 8, 7)
and making use of the appropriate closure relations, it effortlessly is shown that

D}{mM(%ﬁ:’Y) = Z (JM/|J1M{J2M5> Dﬁ{Ml(aaﬁa’y) D}{jéMz(aaﬁa’y) <J1M1J2M2|JM>

M! M,
My, M
Ditoar, (@, 8,7) Dty (@0 B,7) = D (JiM{ T M| TM') Dipys(@, 5,7) (JM|J1My M)

J, M’ M

Setting J = L € N, J; = L1 € N, Jy = Ly € N and M| = M) = 0 in the second equation
interestingly provides with the frequently used multipole expansion of the product of two
spherical harmonics. We indeed get

OM (a, B,7) OIVIQ( o, B,7) = Z<L10L20|L0> DgM(aaﬁ”Y) (LM|Ly M LyMs)
LM
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that is

vh@ve - Y { Bt DR e UL,
S o

Ly Ly L I . L1 Ly L
X( 0 0 0 )[YIV[(Q)] (Ml M2 M)

(cf. eq. (C:27)) where @ = (-8, —a) and [V (-8, —a)]" = (-)MY,,(—B, —a). Using the
orthonormality property of the spherical harmonics (cf. eq. (B.10)) it also is found out that

(2L, +1)(2Ly +1)(2L +1)\
47 } x

v Ly Ly L Li Ly, L
0 0 O My My M

Specialized formulas for the 3jm symbols can be derived from those obtained for the Clebsh-
Gordan coefficients. Using the eq. (C.5() we compute, for instance,

[aovi@yiovie - {
(C.63)

m
10jmljm) = ————— C.64
(10jmljm) = T (C.64)

whence

(6 )=l o (©.65)

As from the eq. (IC.51]) we deduce
jl j2 j3 o —j1+je—ms3 [:—1 Lo . . 7
; ; == — J1 +mgz|jzms) =
( J1 —n+ms —ms > (=) []3 } (J1jrjz — i1 3|jams)

(251) (=1 + j2 + 33)1(j1 + G2 — m3)!(js + ma3)! 2
(J1 + J2 — 33)'(J1 — d2 + 33)1(J1 + g2 + jz + D=1 + j2 + m3)!(jz — ma3)!

_ ()+izmma [
(C.66)

and from the eq. (IC.52)

( J1 o J2 g1+ g2

My ms  —mg —mo ) = (=) 7T Gy 4 o) T (jimajame i 4 joma +me) =

PR RTR—— [ (251)!(242)! (1 + J2 + ma1 + m2)! (1 + j2 —my —my)! ]2 (C.67)

(21 + 272 + 1)1 — ma)! (1 + ma)! (2 — m2)!(j2 + ma)!

A few particular instances of these formulas are

( 8 Jj o7 ) = (—)itm [ (C.68)
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- % ‘] _ Jj+m—1 .] —m %
1 ) = (=) {m} (C.69)

(

(1370 3 ) - [Uomlom b’ )

N[ D=

as from which, using the symmetry properties of the 3jm symbols (cf. eq. (C.59), eq. (C.56)
and eq. ({C.57)), several other may easily be inferred, for instance

<i;f%;>(wqu%%%ﬁ 1)
< :n _j;n_%; ) = (=)t [%r
( 1 j-1 ):(_)'_j_m{(jjtm)(”m_l)r

2
-1 —-m+1 m (25 —1)25(24+ 1)

N[= D=

A number of recursion relations further easing the computation of the 3jm symbols may be
obtained from the expression displayed in the eq. () of the expansion over 3jm symbols
of the product of a 3jm symbol with a 6j symbol by giving special values to the arguments
l1, lo and I3 of the 6j symbol and taking help, for instance, from the eq. () to compute
the involved particular 6j symbol. An illustrating case is the one with the values I; = %,
lo = j3 — % and I3 = jo — % w1 can take only the two values :I:% and, to comply with the
zero-sum condition for the 3jm symbols, uo must be fixed to p; +mg and u3 to uy —meo. Thus

J1 J2 J3 J1 J2 J3 ) _ (_\ietis—matms VIR
{ljsl j21}<m1 mo ms) (=) Z()

? ? 2 pi==+%
(B Bma o sad 2 B D > Bma B
mi o p1t+mg o —pn A+ me —H1 M2 1 — My H1 —p1—m3 m3

(C.72)

The 6j symbol to compute is the last among those displayed in the eq. () while four among
the six involved 3jm symbols may be derived, using the symmetry properties (cf. eq. (IC.55),

eq. (C:56) and eq. (C.57)), from the one displayed in the eq. (C.69). After substitution, we get

[o+nu—wnﬁ(jl J2 jB):

mia mao ms

=

[(G2 + m2)(jz — m3)] 1 je—3% Js—% >

1 1
mi1 Mo — 5 m3+§

( 2
(G-} (2278 078 e

1
mq m2—|—§ ms— 5
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where j = j1 + j2 + j3. Similarly, by setting {; = 1, I = j3 — 1 and [3 = jo, it may be shown
that

[(j+1><j2j1><j2j2>(j2j3+1>]é< i B s >

mi1 Mmo M3
J1 J2 Jz—1 )

[(J2 —m2)(j2 +ma + 1)(jz + m3)(js +m3 — 1)]2 ( mi ma+1 ms—1

Jj1 o J2 jsl)

—2ma [(j3 + m3)(js — m?’)]% ( mi Mg Mg

; ; ; ; 3 0 J2 Jz—1
— — —_ —_ — 2
G+ 0a) o = ma + D = ma)Gia —ma =12 (20 2 B TR ) ey
Use can be made of this recurrence relation to compute, for instance, the frequently occurring
3jm symbol with all the projection quantum numbers m null. If j = j; 4+ j2 + j3 is odd then by
the symmetry described in the eq. ((C.57)) this 3jm symbol is null. If j = j; + ja + j3 is even
then from the recurrence relation displayed in the eq. (), using the symmetry specified in
the eq. (C.56) and the eq. ((C.57), we may write
JioJ2 o Jz—1\ _
0 1 -1 o

(jl Jo  Js >2[ J2(j2 +1)73(jz — 1) ]
0 0 0 G+ —251) —242)(F — 273 + 1)
(G =2 -DG =25+ (1 G+l js—1
‘[ =220 2 + 1) } (0 0 o ) (G.75)

=

and, iterating this £ times,

(=2j2)! {Qk(%*jz+k)!}
o 2k (§ —jo)! L —js—k)! ’ ’ )
( J1 J2 J3 > _ (G —272 Qk)!(%szfk)! < J1 ojet+k js—k > _
0 0 O , 0 0 0
{ 25 (5—42)! } (=245 +2k)!
1 —ja—k)! 2k (4 —j3+h)!

i 2js)!
i S Y

[ (j — 272)'(j — 243)! ]5(%—j2—k)!(%—j3+k>!<jl jo+k jg—k>
(7 = 272 = 2K)(j — 245 + 2K)! (= 72)!(§ — Ja)! o0 0

whence, setting k = jz — % and making use of the eq. (),

1 g2 J e [U = 25010 — 252)1( — 253)! E
(5 1)- it
(3)!

(£ = )& = j2)1(% — js)!

(C.76)

X

C.4 6j Symbols and 9j Symbols

The addition of n > 3 angular momenta Ji+J+ -+ jn =Jis conceptually not complex,
but now there is not a single way to build up the coupled states. Let us consider the case
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n = 3. We can either couple the states |J; M;) and |JoMs) to give the resultant |Ji2Mi2) then
couple this with |J5M3) to finally give |JM) (we can drop the 7, without loss of generality) :

|(J1J2)J12J3J M) = Z [(J1d2)Jia Mo s M3y (JiaMioJsMs|Ji2J3J M) =

Mi2,M3
= Y | J1MyJoMyJsMs) (Jio Mo JsMs|JioJs JM) (Jy My Jo Mol JyJoJ12Myg)  (C.77)
Mi2,Ms3
M ,Ms

or alternatively couple the states |JoMz) and |J3M3) to give the resultant |Jag Mag) then couple
this with |J; M7) to again give |JM) :

|J1(J2J3)J23 I M) = Z |J1 M1 (JoJ3) JazMaz) (Ji MiJazMag|J1Jaz J M) =

My, Ma3
= Y |[JiMyJ2 My JsMs(Jy My Jos Mos|Jy Jog JM) (Jo Mo JsMs|JoJs.Jos Mas)  (C.78)
My,Mas
Mo, Ms

The transformation which connects the states in these two coupling schemes can be written as

|J1(J2d3)JagJ M) = Z [(J1J2)J12dsI M) ((J1J2) 123 J M |J1(J2J3)JazJ M) (C.79)
Ji2
Operating on both side of this equality with j+1 it is found out that the transformation

coefficients ((JyJ2)J12JJ3J M| J1(J2J3)Jag J M) are independent of M. It then is customary to
omit it and write these in the form

(C.80)

: J: J J
((J1J2)J12J3J|J1(J2J3) Jaz]) = [J12] [Jas] (_)JIHZHSH{ X . }

Ji Ja Jog

which defines the 65 symbol. Inserting the equations of the two coupling schemes into the
transformation equation which connects them, equating the coefficients of |J; M7 Jo M J3 Ms3)
and using the 3jm symbols in place of the Clebsch-Gordan coefficients, it follows that

J: J: J: J J: J
_\Jo—J3+Maz+J1—Jaz3+M 2 3 23 1 23
Z( ) 2] 1] ( My Mz —Mas ) ( My My —M )

M3
J: J J
_ T datds T 3 12
= Y [Ji] [Jas] (-) {J1 Ty s }x

Ji2,M12

J J J J J: J
7J1—J2+]\/112+J12—J3+]\/1J J 1 2 12 12 3
< () st (e e (e )

Using the symmetry properties of the 3jm symbols (cf. egs. ([C.59)-(IC.57)) this, after appro-
priate notation substitutions, is more conveniently rewritten

Z(_)l1+lz+m+u2 Ji J2 Js bl g\ _
mp M2 M3 H1  —H2 M3

m3
_lstus 210 J1 J2 s AR DI £ 1l l3 C.8l
Z( ) [3} { i o I3 —H1 M2 U3 myp —p2 —H3 ( )

l3,p3
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s . M Ji J Jq .
Multiplying both sides by (—)~ M ( ]\411 ]\422 7]\142{2 ) and summing over M7 and Mo,
s Jis Jio Iz J ) = S (o)t Mit Mot My

« Js Jy Jas Jy J Jos Jy Jo J1s
Ms My —Mos My —M Moy My —M; Mi,
by making use of the orthonormal conditions and symmetry properties of the 3jm symbols.
After appropriate notation substitutions, this rewrites

J1 J2 Js g2 g3\ Nl oAl ot
{ll Iy lg}(?’fh ma m3> Z() )

M1, 42,143

><( ol I3 )( Lo g2 s )( bl Js ) (C.82)
my M2 —H3 —H1 M2 K3 M1 —pH2 M3

It immediately is inferred that the 6j symbol is null unless the four triple of angular momenta
(J1,72,793), (41,12,13), (I1,72,13) and (l1,l2,j3) all satisfy the triangular condition. Inserting
in the eq. () the algebraic form of the Clebsch-Gordan coefficients gives a comphcated
expression even though to determine the 6j symbol we can set m; = j; and my = —js.
According to [18] this should give

{0 0 = 8000t )50 )0 )
() + 1)

X E - . -
(z=J1—Jg2—33) (z—J1 —l2—=13)!(z—l1 —jo2—13) (z—l1 —l2—J3) ! (1 +je+l1+l2 —2) ! (Jo+i3+la+I3—2)! X
X (ja3+j1+lz+l1—2)!

where

Amw¢g{@+bCMab+ch+c@}

(@+b+c+1)

An advantage of this general expression is to put into evidence the invariance of the 6j symbol
by any permutation of its columns:

g2 3\ _Jas a2\ _Ja oanogs |
{h Iy h}{b L b}{b h h} (C.83)

and by interchange of any of the upper and lower arguments in each of any two of its columns

1o J2 s i 2 Js
=9 . . = C.84
{11 ly 13} {]1 J2 13} (C84)
It is not be a difficult matter to show that the coupled states of the angular momenta form

an orthonormal and complete set in the state space of the quantum system under concern and
that the transformation connecting the states of the different coupling schemes are unitary. It

then is inferred, using the eq. (C.8()), that

((G152)7" 333l (Grg2)i" dada) = ((Gr2)i'dadal | D i1 (Gaga)dja) Gr (s )idal | |(1d2)s" jaja) =
J

. . . . 11
_2: ] {le 1}{@ Pﬂ,}:@W (C.85)
13 J4a ] J3 Ja 7
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or else from
((172)g12737 152 (Gsg1)ds1d) = ((Jij2)irzdsil Z|j1(j2j3)j23j><j1(j2j3)j23j| |72(j3J1)J317)
J23
and from
((Jrd2)dr2dsdldz(Gagn)dsrg) = (=) H2m et =as (s 1) jroga | ja(d173)g319)
(1 (G2ga)d23d1d2 (Gar)dard) = (=) 72279 ((joga) josriliz (g1 ) a1 d)
(cf. eq. (C.59)) that
__\J12+j23+gs1 [;2 J1 o J2 Ji2 }{ Jo Js  Jos }{ Js J1 Ja1 } C.86
2.0) BILL T EHE T R ) e
Although the general algebraic formula might be used to numerically compute any 6j symbol

it reveals more convenient to work out simpler expression for special values of the arguments.
A nice example is provided by setting j3 = I; + lo = mg3 in the eq. (), which then writes

Ji1 g2 L+l Jioj2 L4l ) Nl la Uy oyt pra s
{11 lo I3 }<m1 me li+1ls ) Z (=) x

H1,M42, 143
o b b J2 I3 Ll i+l (C.87)
mi1 pf2  —pH3 —p1 M2 K43 p1 o —pe I+l
The last 3jm symbol is null unless the zero-sum condition p; — pus = —Ily — Iy is satisfied,
but |u1] < I3 and |pz2| < ls so that necessarily p1 = —I; and ps = ls. On further setting
m1 = —j1 the zero-sum condition on the other 3jm symbols impose that ms = j; — 13 — 2 and
3 = —j1 + lo. The summation in the right hand side then is reduced to a single term and,

using the symmetry properties of the 3jm symbols, we may write

jl j2 l1 + l2 (7)j1+j2+11+l2 jl j2 l1 + 12 — (7)—j1—12+13 X
I 1o I3 i —ht+h+l -1

« lo I3 7 l J2 I3 I lo UL+l
lo —lo+71 —J5 h —lh—=ji—1la j1+1l =l =l L+l

The 3jm symbol in the [.h.s and the two first 3jm symbols in the r.h.s. can be computed usin
the eq. ([C.66) while the third 3jm symbol in the 7.h.s can be computed using the eq.
to finally give

=07

jl j2 ll + l2 _ (_)j1+j2+l1+12
li Lo I3

[ @I (Gr+ie+lh++D)!(Gr—de+l+2) (—j1+J2+H 11 +12)!

N[

(1 =l2+13)! (ja—11+13)! (C 88)
(2l 4+204+1)! (G142 —li—12) (G1+Hl2—13) (—j1+Hl2+13) (L1 +72—13) (I1 —j2+13)! ’
(Jr+l2+13+1)! (l1+j2+13+1)!
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A few particular instances of this formula are
Juogz I3 | yipim1—1 L
{ 0 s i } (=Y [ 5] (G =J1+j2+7s)
{ i J2 33 } — (=) [ 20+ 1) —241)0 —252)(G —2j3+1) ]
' ' (272) (22 + 1)(252 + 2) (243 — 1)243(23 + 1)
{ g2 J3 } — (Y [ (J—252)(J —2j3+1) r
' (272 + 1)(22 + 2)243(2J3 + 1)

v g2 J3 N G+1D0 —2h)
{ Lojs—% -4 }( ) [<2j2)<2j2+1>2j3(2j3+1)} (C89)

N

N[

Let us now consider the coupling of n = 4 angular momenta. We can either separately couple
on one side the states |J; M) and |JoMa) to give the resultant |J12Mi2) and on the other side
the states |J3M3) and |JyMy) to give the resultant |J34Ms4) then couple the states | JioMi2)
and |J34 Ms4) to finally give |JM) or else separately couple on one side the states |J3M7) and
|J3M3) to give the resultant |J13M73) and on the other side the states |JoMs) and |JyMy) to
give the resultant |Jog Mays) then couple the states |Ji13Mis3) and |JogMay) to finally give |JM).
The transformation coefficient which connect these two coupling schemes may be written in
the form

((J1d2)Ji2 (J3da)dsa J | (J1d3)J13 (Jada)Jas J) =

Ji Jo Ji2
= [J12 Jaa J13 Jaa] ¢ 3 Ja Jaa (C.90)
Jiz Jos  J

which defines the 95 symbol. It is clear that other coupling schemes can be anticipated giving
rise to different transformations coefficients and the coupling by pairs of angular momenta we
have described can also be viewed in terms of three angular momenta couplings, which provides
with relations between transformation coefficients, for instance

((J1d2) Sz (J3da)dsa J | (J1d3)J1s (J2da)Jas J) =

= Z ((J1d2)Jre (Jsda)Jsa J | J1{J2(JsJs)Jsa} Jaza J) X

Jaza

X (J1 {J2(J3Ja)J3a} Jaza J | Ji {J3(JoJs)J2a} Jaza J) X

x (J1 {J3(Joda)Joa} Jaza J | (J1J3)J13 (Jodu)Joa J) =
= [J12 J34 J13 J24]

J1 J2 S J. J. J: J J: J
_\2T2s4 [ J2 1 Jo Jig 3 Ja1 Jn 13 Jaa C.o1
sz ) [ 234}{ Jza J Jaza }{ Jo Jaza J2 }{ Joza 1 3 } ( )
23

(cf. eq. (IC.80)). Accordingly, after appropriate notation substitutions,

Ju gz gis Ji1 J21 J31 Ji2 J22 J32 J13 J23 733
J21 J22 Jes = E (=) [°] { A }{ . . } { Al }
. . . J32 J33 %z J21 z  J23 Z Ji1 Ji12
J31r  J32  J33 z

(C.92)
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Using the appropriate closure relations (cf. eq. ()), it may be shown that

| (Jid2)Jig (Jsda)Jsa JM) = Z | (J1J2)J12Mag (J3J4) 34 Mss) X

X ((J1J2)J12 Mg (J3Js)JsaMsy | (J1J2)J12 (J3Js)Jsa JM) =

= Z |J1 My Jo Ms) (Jy My Ja Ma|(J1 J2) J12 Mi2) X
Maa,Maa, My, Ma, M, My

|Js M3 JaMa) (J3s Mz JyMa|(J3Js) T34 M3za) X

x ((JyJo) 1o My (JsJa)JsaMsy | (J1Jo)Jra (JsJa)Jss JM)  (C.93)

and similarly for | (J1J3)J13 (J2Js)J2a JM) then, computing the scalar product of the two
vectors, using the eq. ([C.54]) to replace the Clecbsch-gordan coefficients by 3jm symbols and
performing the appropriate notation substitutions,

Juin Jiz Ji3
Jo1 Jo2 Jes p =
Jar Js2  J33

Z Jjir Jiz2 j13 Jo1 Jo2  jo3 Ja1  Js2 J33 «
mir M2 Mi3 m21 MM22 123 m31 Mm32 M33

All m’s
% Jir o J21 0 Js1 Jiz J22 J32 Ji3 J23 ]33 (C.94)
mip Mm21 M31 mi2 M22 M32 miz Ma23 M33
A merit of this formula is to immediately reveal the symmetry properties of the 9j symbol.
This is invariant under even permutations of the columns or of the rows and by swap of the
lines into columns and the columns into rows. It is multiplied by the phase factor (—)Zaﬁ Jep

under odd permutations of the columns or of the rows. Similarly as for the 6j symbols the
unitary nature of the coupling schemes lead to the orthogonality relation

J1 Jo Jia Ji Ja Jia
Z [Ji2 J3a Ji3 Jaal§ J3 Js I3 Js Ju Jsa p =00,5.00,00,,0,, (C.95)
12,534 Jis Jaaw  J Sz Ja I

A number of sum rules and recursion relations derived from these can be obtained for the 6j
symbols and 9j symbols by considering various coupling schemes. Unfortunately, the expres-
sions often get rather complicated, involving so many parameters that it is difficult to find their
interrelations and to extract the symmetry of the formulas through the appropriate notation
substitutions. It gets of course a further puzzling task to analyze the coupling of n = 5,---
angular momenta, which leads to 3(n-1)j symbols. Graphical methods were proposed that
allows dealing with more ease with the inherent difficulties of this poorly intuitive algebra [17].

D SPHERICAL IRREDUCIBLE TENSOR OPERATORS

D.1 Definition and Examples

A tensor operator T with respect to a symmetry group G is a set of operators T; that satisfy
the equivariance property

VgeG U(g)TiU(9)~" = Z T;Dj,i(g) (D.1)
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where U(g) € G is an image of ¢ in the group G of the state transformations associated
with G and D(g) its matrix representative with respect to a given basis in the state space
of the quantum system under concern. A spherical irreducible tensor operator is a tensor
operator that shows the equivariance property for the group of rotations ¢ = R(#,w) with
respect to matrix representatives D”7(g) of an irreducible representation D7 of the Lie group
G = SU(2). It then consists in a set of 2J + 1 operators and is naturally labeled by the
index J. Since any finite rotation can be built from a succession of infinitesimal rotations it is
equivalent to consider the equivariance property in terms of infinitesimal generators and matrix
representations of the su(2) Lie algebra. It then may be stated that a set of 2k + 1 operators
Tgk) (g =—k,—k+1,--- k) form the components of a spherical irreducible tensor operator
T®) of rank k if and only if these operators satisfy the commutation relations

k
[3,, T8 = S T (kq'|3,0kg) (1= 0,+1) (D.2)

q¢'=—k

more precisely if an only if [ Jo, Tgk)] = ngk) and [ J41, Tgk)] =FikFoktq+ 1)]% T((;Ift)1
(cf. eq. (C.19)). Tt immediately is checked that scalar (k = 0) and vector (k = 1) operators
are effectively those defined in the section [C.J. An example of vector operator (k = 1) is the
differential operator V the spherical components of which, in Cartesian coordinates (z,y, z)
and spherical coordinates (r, 0, ¢), are given by

Vo = 0, = cost 9, — 220 g,
T
1 ) ig cos® ;
Vi1¢ﬁ(axilay)%{51near+ " 3eiﬁ 3so}

Taking the adjoint of the defining relation for T*)  calling to mind that Ut(a,f,v) =

U~Y(a,8,7) and that (ABC)* = CTBTAT, and using the symmetry properties of the

Wigner D-matrices given in the section [C.9 it is found that U(a, B,'y)(Tt(Ik))JrUfl(a,ﬂ7 v) =
k X k ,7 k

Y (TS FD) 5 (0, B,y) = X (T (=) ~9D7 , _ (a, B,%). The set (=) (T¥))* form the

components of a spherical irreducible tensor operator (T*)(k) called the adjoint to T*).

Let T®*1) and U®*2) be two spherical irreducible tensor operators wth components T,(;fl) and
Ug’;z). The quantities

X(QK) = Z TEIUE) (k1 gikagolk k2 K Q) (D.3)

q1,92

transform under rotation similarly as qum |k1g1kaq2) (k1 q1k2qa|k1ke KQ) = |k1k2 KQ), that
is according to the irreducible matrix representation DX of SU(2). They thus form the com-
ponents of a spherical irreducible tensor operator X () of rank K. It also may be shown more
directly that the quantities X(QK) do satisfy the required commutation relations. The values of
K are restricted to K = |k1 — ko, |k1 — ka| + 1, -+ , k1 + k2 and those of @ for a fixed K to

Q=q+q@=-K ~-K+1,--- K. X&) is often denoted {T*1) @ Uk=)1(K),

The set of (2k1 4+ 1)(2k2 + 1) operators T,(Jlfl)Ug}f) define the direct product of T(¥1) and U*2)
and can be interpreted as the components of a spherical irreducible tensor operator X (%)

TEIUED) =3 (kigikagolki k2 K Q) X (D.4)
K
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If k1 = ko = k then setting K = 0 it is found that

k k0
{TUc) } ZT U (kgk — ql00) =Y TP U ( q —q 0 > B

q
_ k _
= (D) TPU) = (—)F [ (1® R (D.5)
q
(cf. eq. (C.69)) where (T®*) . U®)) defines the scalar product of T*) and U®),
If &1 = k2 = 1 then setting K =1 it is found that

{ <1>®U<1>} => THUD (1g11¢:1Q) = > THUD (-) \f( ! IQ)

q1 Qg2
q192 q192
(D.6)
(cf. eq. (C.54)). Using the eq. (C.65) we compute
{T<1> ® U(l)}(l) = (T, Uy~ T,U,) = ~=(F A D). = —= (T AT,
0 V2 v V2 V2
where T,, and U,, (n,m = x,y,2) are the Cartesian components of the vector operators T
. T _r®) ) +10) 1 u)-u) ulu
and U : T, = — =+ =1 T, = - Sl T, = TV, U, = - =22 U, = -2
U, = U(()l). It may similarly be computed that
1) i o o
T U<1>} = ' (TAT
{ © +1 \/_( )71
Accordingly,
o = 1 1 1
TAU), =i(—)"1? T, U D.7
( )g = i \/_Z a q2<q1 % q> (D.7)

q1,92

D.2 Wigner-Eckart Theorem

Let T be a spherical irreducible tensor operator with components Ték). Applying these on
the angular momentum basis states |7JM), we may build, for each 7 and J, (2k +1)(2J + 1)
states Tc(Ik)|TJM> (g=—-k,—k+1,--- Jk; M =—J —J+1,---,J) and from these the states
Yr gk (S M) =D TP |rIM) (kqJM|J' M') (D.8)
q,M
It is an easy matter to invert this, thanks to the orthonormal properties of the Clebsch-Gordan
coefficients : 3 ;, 1, (kqJM|J' M')(kGJM|J' M') = 844 0,,57- We get
TP|rIM) =" e k(S M) (kgJM|J' M') (D.9)
J' M
Using the eq. (C.13) and the commutation relations given in the eq. (D.4), it may be shown
that

JoTP|rIM) = [ 3o, TP rIM) + T Io|rIM) = ¢TI |7 IM) + MTP [T M)

JﬂTgk>|TJM> = [ I, TN I M) + TP I o |rIM) =

=

1 1
—F §(k:Fq)(k:j:q+1) qu1|¢JM> 5(Jq:M)(JiMH) T |rJM £ 1)
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and, applying JH (,LL = 0, :l:l) on |J1J2JM> = 21\41]\/12 |J1M1J2M2><J1M1J2M2|J1J2JM>, that

(q+ M) (kqJM|J' M’y = M’ (kqJM|J' M')

2

2

1 1
F §(k¥q)(k’iq+1)] (k:qilJM|J’M’>1F{§(J$M)(JiM+1) (kqJM +1|J'M") =

2

=+ B(J + M')(JF M + 1)] (kqJM|J'M' F1)

Accordingly,

JoUr, 1 (J'M') = Mt g5 (J' M) (D.10)
1
1 3
Ji1r gk (J' M) =F [E(Jl FMYJ +M + 1)] e gp(J M +1)

which tells that the states 9; j,(J'M’) are either null or proportional to basis states |7/J' M’)

Yrak(J'M') = ar gi|T'J M') where the o, jj, are some unknown coefficients that de-
pends solely on (T, J, k) It then is inferred, since <7'HJ”MH | T/J/M/> = 57-//17-/5.]//1J/5M//11\/[/ is
M" —independent, that

(7" J'M" | TP | 7 IM) = f(7, .k, 7", J") (kqJM|J"M") (D.11)

This is the essence of the Wigner-Eckart theorem. It allows factorizing the matrix elements
of the spherical irreducible tensor operators into a geometric component, the Clebsch-Gordan
coefficient (kgJM|J"M"), and a physical component, the quantity f (7, J, k, 7", J"). It actually
may be derived more elegantly from group theory arguments and is a particular instance of
the so-called theorem of the three representations. According to this, as applied to the SU(2)
Lie group, the matrix elements (7' J"M" | T,(Jk) | 7JM) under a rotation get transformed
according to the D’ "* @ D* @ D’ matrix representation. The reduction of this either contains
the trivial representation once, in which case the matrix element necessarily must not depend
on the azimuthal quantum numbers, or does not contain the trivial representation, in which
case the matrix element is null. No other case exists and this is why the geometric component
factors out. It is customary to express the theorem with a 3jm symbol in the form

1 (k) ; N\ (_\if—m jf k ji

) (e 1T 1 i) a2

where ((vj); || T® || (v5):) is called a reduced matriz element. This is often computed in an
obvious way, for instance from

1 1 1 1.1 i1 3
(s—ms—|so|s—ms—>—< (sp s si)
2 2 2 2/ 2 -3 0 3
we find
3
(sp 1l sl si)= 3 (D.13)

and, more generally, from

(m =11y lm=1) =1

(L6 1)
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we get
(s 1) 1) =10+ DRI+ 1) (D.14)

while from the eq. (C.69) we deduce

v =y e er e (5 5 ) o

The Wigner-Eckart shows its full strength in the computing of the matrix elements of spherical
irreducible tensor operators. Let T(*1) and U(*2) be two spherical irreducible tensor operators
that act on part 1 and 2 of a system with angular momenta j; and jo. The matrix element of

(T ® U(’W)}g() = XEQK) between the states |vjijaJM)y;) may be written

(vi1jaT M) s [X G (v j2 T M)} =
e () (enn xS lenn) - 9

but since T*1) and U®2) are supposed acting on different state spaces, it follows that

((UjleJM)f|X(QK)|(Uj1j2JM)i> = Z [JrJi] (_)jlf*j2f+Mf+j1i*j2i+Mi X

My, M2f,M1i,M24

Jif Jof Jy Jii o J2i Ji ki ky K k1 —kotQ
X — K| x
( myp may —Mjy ) ( my; ma;  —M; ) Z ( o @ —Q =) K]

q1,92

X <(vj1m1j2m2)f| Tglfl)Ut(zlzw) | (Uj1m1j2m2)f>

— Z [JleK] (_)j1f*j2f+Mf+j1i*j2i+1Vfi+k1*szrQ %

mif,M2f,M1i,M25,91,42,P

y Jif  Jof Jy Jui o Joi Ji ki ko K
miy mayr —My mi; Mo, —M; @ ¢ —Q

(o (e () TR o))
)

X

—mif q1 Mi;

o e ks i . .
(e (I () U 0

(D.17)
—Mmaf q2 M2,

J K J
s 1ot \Jy—M f i i . i
On multiplying by (—)“/~"¢ < My Q M, > and summing over My, M; and @Q it may

be shown that
((wirga ) IX w12 T):) =
Jir Ju k1

=3 (@i AIT®lloGin):) (pG2) IO wi)e) Ur BK]S G doe ko p (D.1S)
p Jp i K
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Setting k2 = 0 the reduced matrix element for the operator T(¥1) acting only on part 1 of the
system is given by
(o) T (o)) =
— . Jy k J;
= 8y s (=) FI20 itk [T T { St } ( vj1) ¢ | T®D || (v i) D.19
o) g g B (@i T i) (D19)
Setting k1 = 0 the reduced matrix element for the operator U*2) acting only on part 2 of the
system is given by
((Ujljzn])fHU(kZ)H(Ujlsz)i) -
o Jr  k Ji
S _\jri+jeit+Jp+ke JiJ; { 'f '2 Ji
J1f7J11( ) [ f ] Joi  Jif Jof

b (i) U lwia)s) - (020

If there is no possibility to regard T(kl) and U*2) ag acting on separate parts of a system then
there is no point in indicating that J is the resultant of j j1 and jo. In this case

(I M) X5 | (vIM);) =

ki ke K
_ k1 kz-‘rQ 1 2 IM T(k1)U(kz) JM);) =
= S erew (G Ty ) an e

3 ()’“1’@2*‘?%}(’“ ke K )<<vJM>f|Tg’fl>|7pM><7pM|Ug’;2>|<vJM>Z->

@ ¢ —Q
ki ke K )x
@ @ —Q

Jf ki J J ko Ji (k)| 7 i (k2) ) —
x(_Mf " M)(_M ” Mf)(<vJ>f|T 167) (4710 (07):) =
) _ J K J; Jr K J;
— _N\Jg+Ji+K+Jp—My f i oL [
>C) w0 6 m)lie 5o
J.p

< (n ) 1a7) (o nwn) { 75 o2y

Ji}
X

% (WP pT) (pT[U) | (w1):)  (D.22)

q1,q2,7,p,M

I
s
&
+
O
T
ol
=
+
<
S
kal
7 N

so that

(0 X7 = (e
J,p

o=

E MANY EQUIVALENT ELECTRON STATES

It may be shown that an N'— electron states |sr;) = [(VLMSMsg)y.;) of the configuration
(nl)n can be built up from (N — 1)— electron states [Sf;) = [(TLMSMs)y¢,;) of the configu-
ration (nl)a—1 and 1— electron state |ns,) = |(nlmisms)y.;) of the configuration (nl) as

(WLMLSMs)si) = > (@LSz) [} (vLS)ss) |(OLS nls)y,q)
(WLS)y.i



WILL BE SET BY THE PUBLISHER Pr1-57

where

(@LS nls)si) = Y > ((@Mplm) il (LML) i) ((SMgsms) i (SMg)g.i) %
(Mr ,Ms)y,; (muims)y,i

x |(WLMLSMg)y,) |(nlmysms)g,q)

are the coupled states of (A —1) electrons with the N'*" electron and where ((TLS) |} (vLS)y.:)
are called coefficients of fractional parentage. This concept is extremely useful when deal-
ing with matrix elements of sums O = > O(u) of one-electron operators O(u). Indeed,
owing to the equivalence of the electrons, the matrix element of O(u) between the states
(VLM SMsg)y¢,:) does not depend on which electron v has been chosen to compute it, so that

((ULMLSMs)fl (@) |(’ULMLSM5)1'> :N<(ULMLSMs)f| O(N) |(’ULMLSM5)Z'> (El)

that is
(WLMpSMs)¢| O |(vLMLSMg);) = NZ((vLS)f{|UL_S)(6L_S|}(vLS)Z-) X
TLS

x> (LMglmy) g |(LML) p)(EMplm)i (LMy)i) %

MpsMpMp;

x Y ((SMssm)s|(SMs) ) ((LMssm.)i|(SMs)i) x
MsyMsMs;

x ((Imysmg);| OWN) (Imysms);) = (E.2)
or else

(WLMpSMg)s| O |(VLMLSMs);) =
= ND (04{10)(01}0:)((OLMLSMs) 5| ON) |(OLMLSMs);)  (E-3)
0

by introducing self-explicit shorthand notations to simplify the equations.

If the operator O is a tensor operator of rank k independent of the spin

TH =3 " t"(u) (E.4)

u

then applying the Wigner-Eckart theorem

(WLMpSMs)g| T [(VLMLSMs);) =

L kL.
= () / i ) A
=) ( —Mpry q¢ My, ) ((ULSM)fH T ||(ULSM)Z)

Li—Mp; L kL (B0
— -y (gt MLi)Nprf{wxw}o»x

x (@LSM) €9 (W) BLSM):)  (ES)
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Use can be made of the eq. (D.19) to compute the reduced matrix element assuming that the
part 1 of the system is played by the N*" electron. We get

(WLMpSMs)g| T [(VLMLSMs);) =

I < NI >NZ(9f{|§)(§|}ei)x

<, s (P {0 L L e 1) @

|

The operator T(¥1:%2) comprising the (2k; +1)(2k2 + 1) components Tg’fﬁ}?) is a double tensor
if it behaves as a tensor of rank k; with respect to the spin angular momentum states and as
a tensor of rank ko with respect to the orbital angular momentum states. If this is the sum of
one-electron double tensors, spin (x) - orbit (y) direct products, then

Tk1k2) _ Zt(khkz) Zx(kl (kZ ) (E7)

Its matrix elements are given by

(VLM SMg)s| T*vk2) (v LMSMs);) =

— (_)Sf—Msf-‘rLf—MLf Sf kl SZ Lf k2 L?, X
—Msy q  Msg; —Mry q2 My,

X NS OAD@116:) (ELSM) ]| eF+ () |GLSM):)  (B:8)
6

Use again can be made of the eq. () to compute the reduced matrix element applying it
separately to the spin and to the orbital part of the double tensor with the part 1 of the system
played by the N'** electron. We get

(VLM SMg)s| THvk2) (v LMSMs);) =

— (—)Sr—MssHLg=My Sy kS Ly ke Li )
—Msy q Ms; —Mry q2 My,

x NZ 07{10)(130:)(—)FHHHe STk (S5 L L) x

S¢ ki S; \ [ Ly ke L e
x{ T3 }{ P }(sl| tkk2) () ||sl) (E.9)

(stll %R ) flst) = (sl x =) ) (Ul y = V) 1) (E.10)

where
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