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Applying the Z-transform for the static analysis of floating-point numerical filters

Simulink TM is a tool for modelling dynamic systems and control applications, using e.g. networks of numeric filters. The control part may then be compiled to hardware or software.

Introduction

The static analysis of control/command programs, with a view to proving the absence of runtime errors, has recently picked up steam, with the inception of analyzers capable of scaling up to real industrial programs. In particular, it is nowadays possible to build sound and precise static analyzers scaling up to realistic industrial situations. A static analyzer takes as input a program (source code or object code) and outputs a series of facts, warnings or other indications obtained by automatic analysis of that program.

A static analyzer is said to be sound if all the facts that it derives from a program (say, "variable x is always positive") are always true, regardless of how and on which inputs the program is run. Sound static analyzers are based on a semantics, that is, a mathematical definition of possible program executions.

It is well-known that any method for program verification cannot be at the same time sound (all results produced are truthful), automatic (no human intervention), complete (true results can always be proved) and terminating (always produces a result) 1 unless one supposes that program memory is finite and thus that the system is available to model-checking techniques. As a result, sound static analyzers are bound to produce false alarms sometimes; that is, warnings about issues that cannot happen in reality. One thus wants analyzers that are precise, that is, model reality so closely that they seldom produce false alarms -but also, one wants analyzers that are efficient, taking only reasonable amounts of time and memory to perform an analysis.

One crucial class of errors for control/command systems is arithmetic overflows -say, when converting some value to an integer -in programs using floating-point computations. Such errors have already proved to be extremely dangerous, having for instance caused the explosion of the Ariane 5 on its maiden flight [START_REF] Lions | Flight 501 failure[END_REF]. In order to prove the absence of such errors, static analyzers such as Astrée 2 [START_REF] Blanchet | Design and implementation of a specialpurpose static program analyzer for safety-critical real-time embedded software[END_REF][START_REF] Blanchet | A static analyzer for large safety-critical software[END_REF] have to bound all floating-point variables in the program. It is impossible to do so using simple interval arithmetic; in order to bound the output of a numerical filter, one has to make the analyzer understand the stability conditions of the numerical processing implemented in the application to be analyzed.

In current control/command designs, it is commonplace that the executable is obtained by compiling C code, or assembly code, itself obtained by automatic translation from a high-level specification. This high-level specification is typically given in a high-level language such as Simulink 3 Lustre [START_REF] Caspi | LUSTRE: a declarative language for real-time programming[END_REF] or Scade TM , 4 These languages, in their simplest form, consider programs to be the software counterpart of a network of electronic circuits (filters, integrators, rate limiters...) connected by wires; this is actually how several of these languages represents programs graphically. Several circuits can be grouped into a compound filter.

One advantage of these high-level languages is that their semantics is considerably cleaner than those of low-level languages such as C. The filter and compound filter constructions provide natural "boundaries" for blocks of computations that belong together and probably have some interesting and identifiable properties. It is thus interesting to be able to analyze these languages in a compositional and modular fashion; that is, the analysis of some block (compound filter) is done independently of that of the rest of the code, and the result of that analysis may be "plugged in" when analyzing larger programs.

This paper deals with the compositional and modular analysis of linear filters. By this, we mean filters that would be linear had they been implemented over the real field. Of course, in reality, these filters are implemented over floating-point numbers and none of the classical mathematical relationships hold. We nevertheless provide sound semantics for floatingpoint computations and sound analysis for such filters.

Digital filtering

Control/command programs in embedded applications often make use of linear filters (for instance, low-pass, high-pass, etc.). The design principles of these filters over the real numbers are well known; standard basic designs (Butterworth, Chebyshev, etc.) and standard assembly techniques (parallel, serial) are taught in the curriculum of signal processing engineers. Ample literature has been devoted to the design of digital filters implementing some desirable response, for implementation in silicon or in software, in fixed-point and in floating-point. [START_REF] Jackson | Digital Filters and Signal Processing[END_REF] However, discrete-time filters are often discussed assuming computations on real numbers. There is still some considerable literature on the implications of fixed-point or floating-point numbers, but the vast majority of the work has focused on "usual case" or "average case" bounds -it is even argued that worst-case bounds on ideal filters on real numbers are too pessimistic and not relevant for filter design [12, §11.3]. The study of the quantization and roundoff noise generated by fixed-point or floating-point implementations has mostly been done from a stochastic point of view, in order to prove average case properties.

For our analysis purposes, we need sound worst-case bounds, and practical means for obtaining them with reasonable computational resources. For these reasons, the point of view of the designers of static analyzers is different from that of the filter designers.

A favorite tool of filter designers is the Z-transform [12, chapter 3], with which the overall ideal (i.e. implemented over the real numbers) transfer function of a filter is summarized in a rational function with real coefficients, whose poles and zeroes determine the frequency response. In this paper, we shall show how we can use this transform to automatically summarize networks of linear filters; how this transform allows us to compute precise bounds on the outcome of the filter, and to statically summarize complex filters; and how to deal with roundoff errors arising from floating-point computations.

Contributions of the article

This article gives a sound abstract semantics for linear numerical filters implemented in floating-point or fixed-point arithmetics, given as the sum of a linear part (using the Z-transform) and a nonlinear part (given using affine bounds); this latter part comes from the roundoff noise (and, possibly, some optional losses of linear precision done for the sake of the speed of the analysis). (Sect. 4 for the ideal, linear part, 7 for the nonlinear part).

In many occasions, the computed bounds are obtained from the norms (Sect. 2.3) of certain power series. In Sect. 5, we give effective methods on the real numbers for bounding such norms. In Sect.8 we explain how to implement some of these methods efficiently and soundly using integer and floating-point arithmetics. In Sect. 9 we study a few cases.

As with other numerical domains such as those developed for Astrée, we proceed as follows: the exact floating-point concrete semantics is overapproximated by a mathematically simple semantics on real numbers, which is itself overapproximated by proved bounds, which are themselves further overapproximated by an executable semantics (implemented partly in exact 

S n = α 0 E n + α 1 E n-1 + α 2 E n-2 + β 1 S n-1 + β 2 S n-2 into
elementary blocks. The compositional blocks are chained by serial composition. Inside each compositional on the left, elementary gates are composed in parallel. On the right hand side, a feedback loop is used. arithmetics, partly using some variant of interval floating-point computations). This ensures the soundness of the effective computations.

This paper is an extended version of [START_REF] Monniaux | Compositional analysis of floating-point linear numerical filters[END_REF].

Introduction to linear filters and Z-transforms

Let us consider the following piece of C code, which we will use as a running example (called "TF2"):

Y = A0*I + A1*Ibuf[1] + A2*Ibuf[2]; O = Y + B1*Obuf[1] + B2*Obuf[2]; Ibuf[2]=Ibuf[1]; Ibuf[1]=I; Obuf[2]=Obuf[1]; Obuf[1]=O;
All variables are assumed to be real numbers (we shall explain in later sections how to deal with fixed-and floating-point values with full generality and soundness). The program takes I as an input and outputs O; A0 etc. are constant coefficients. This piece of code is wrapped inside a (reactive) loop; the time is the number of iterations of that loop. Equivalently, this filter can be represented by the block diagram in Fig. 1.

Let us note a 0 etc. the values of the constants and i n (resp. y n , o n ) the value of I (resp. Y, O) at time n. Then, assuming o k = 0 for k < 0, we can develop the recurrence:

o n = y n + b 1 .o n-1 + b 2 .o n-2 = y n + b 1 .(y n-1 + b 1 .o n-2 +b 2 .o n-3 )+b 2 .(y n-2 +b 1 .o n-3 +b 2 .o n-4 ) = y n +b 1 .y n-1 +(b 2 +b 2 1 b 0 ).y n-2 +.
. . where . . . depends solely on y k with k < n -2. More generally: there exist coefficients c 0 , c 1 . . . such that for all n, o n = k=0 c k y n-k . These coefficients solely depend on the b k ; we shall see later some general formulas for computing them.

But, itself, y n = a 0 .i n + a 1 .i n-1 + a 2 .i n-2 . It follows that there exist coefficients c ′ n (depending on the a k and the b k ) such that o n = k=0 c ′ k i n-k . We again find a similar shape of formula, known as a convolution product. The c ′ k sequence is called a convolution kernel, mapping i to o. Let us now suppose that we know a bound M I on the input: for all n, |i n | ≤ M I ; we wish to derive a bound M O on the output. By the triangle inequality,

|O n | ≤ k=0 |c ′ k |.M I . The quantity k=0 |c ′ k | is called the l1- norm of the convolution kernel c ′ .
What our method does is as follows: from the description of a complex linear filter, it compositionally computes compact, finite representations of convolution kernels mapping the inputs to the outputs of the sub-blocks of the filter, and accurately computes the norms of these kernels (or rather, a close upper bound thereof). As a result, one can obtain bounds on any variable in the system from a bound on the input.

Linear filters

In this section, we give a rough outline of what we designate by linear filters and how their basic properties allow them to be analyzed.

Notion of filters

We deal with numerical filters that take as inputs and output some (unbounded) discrete streams of floating-point numbers, with causality; that is, the output of the filter at time t depends on the past and present inputs (times 0 to t), but not on the future inputs. 5 In practice, they are implemented with a state, and the output at time t is a function of the input at time t and the internal state, which is updated. Such filters are typically implemented as one piece of a synchronous reactive loop [2, §4]: while(true) { ... (state, output) = filter(state, input); }

Linear filters

We are particular interested in filters of the following form (or compounds thereof): if (s k ) and (e k ) are respectively the input and output streams of the filter, there exist real coefficients α 0 , α 1 , . . . α n and β 1 , . . . β m such that for all time t, s t (the output at time t) is defined as:

s t = n k=0 α k e t-k + m k=1 β k s t-k (1) 
or, to make apparent the state variables,

   s t-m+1 . . . s t    =      0 1 . . . . . . . . . 0 • • • 0 1 β m • • • β 2 β 1      .    s t-m . . . s t-1    +      0 • • • 0 . . . . . . 0 • • • 0 α n • • • α 0      .    e t-n . . . e n    (2) 
If the β are all null, the filter has necessarily finite impulsional response (FIR) while in the opposite case, it may have infinite impulsional response (IIR). The reason for this terminology is the study of the reaction of the system to a unit impulse (e 0 = 1 and ∀k > 0 e k = 0). In the case of a FIR filter, n + 1 time units after the end of the impulse, the output becomes permanently null. In the case of an IIR filter, the output (when computed ideally in the real numbers) never becomes permanently null, but rather follows some exponential decay if the filter is stable. A badly designed IIR filter may be unstable. Furthermore, it is possible to design filters that should be stable, assuming the use of real numbers in computation, but that exhibit gross numerical distortions due to the use of floating-point numbers in the implementation.

Linear filters are generally noted using their Z-transform6 

α 0 + α 1 z + • • • + α n z n 1 -β 1 z -• • • -β m z m (3) 
The reasons for this notation will be made clear in Sect. 4.5. In particular, all the ideal compound linear filters expressible with elementary elements such as products by constants, delays, etc. can be summarized by their Z-transform (Sect. 4); that is, they are equivalent to a filter whose output is a linear combination of the last n inputs and m outputs. The Z-transform will also be central in the semantics of floating-point and fixed-point filters (Sect. 7).

To summarize some salient points of the following sections, FIR filters given by α's are very easy to deal with for our purposes, while the stability and decay conditions of IIR filters are determined by the study of the above rational function and especially the module of the zeroes of the

Q(z) = 1 -β 1 z -• • • -β m z m polynomial (z 0 is a zero of Q if Q(z 0 ) = 0).
Those roots are the inverses of the eigenvalues of the transition matrix. Specifically, the filter is stable if all the zeroes have module greater than 1.

Bounding the response of the filter

The output streams of a linear filter, as an element of R N , are linear functions of the inputs and the initial values of the state variables (internal state variables).

More precisely, we shall see later that, neglecting the floating-point errors and assuming zero in the initial state variables, the output S is the convolution product Q ⋆ E of the input E by some convolution kernel Q: there exists a sequence (q n ) n∈N of reals such that for any n, s n = n k=0 q k e n-k . The filter is FIR if this convolution kernel is null except for the first few values, and IIR otherwise. If the initial state values r 1 , . . . , r n are nonzero, then

S = Q 0 ⋆ E + r 1 Q 1 + r n Q n where the Q i are convolution kernels.
Let E : (e k ) n∈N be a sequence of real or complex numbers. We call L∞norm of E, if finite, and note E ∞ the quantity sup k∈N |e k |. Because of the isomorphism between sequences and formal power series, we shall likewise note k a k z k ∞ = sup k |a k |. We are interested in bounding the response of the filter with respect to the infinite norm: i.e. we want to construct a function f such that S ∞ ≤ f ( E ∞ ). Said otherwise, if for all the past of the computation since the last reset of the filter, |e| was less than M , then has |s| has been always less than f (|M |) since the last reset.

If we do not have initialization conditions nor floating-point errors, f will be linear, otherwise it will be affine. Let us place ourselves for now in the former case: we are trying to find a number g such that S ∞ ≤ g. E ∞. For any linear function f mapping sequences to sequences, we call subordinate infinite norm of f , noted, f ∞ the quantity sup x ∞=1 f (x) ∞ , assuming is is finite. We are thus interested in g = E → Q ⋆ E ∞ . If this quantity is finite, the filter is stable; if it is not, it is unstable: it is possible to feed an input sequence to the filter, finitely bounded, which we result in arbitrarily high outputs at some point in time.

For a sequence (or formal series) A, we note A 1 = ∞ k=0 |a k |, called its L1-norm, if finite. Then we have the following crucial and well-known result [12, §11.3]:

Lemma 1. E → Q ⋆ E ∞ = Q 1 . Proof. We shall first prove that E → Q ⋆ E ∞ ≤ Q 1 ; that is, for any sequences Q and E, Q ⋆ E ∞ ≤ Q 1 . E ∞ . Let us note C = Q ⋆ E. c n = n k=0 q k e n-k , therefore |c n | ≤ n k=0 |q k ||e n-k | ≤ e ∞ . n k=0 |q k | ≤ e ∞ . Q 1 .
We shall then show equality.

Let M < O 1 . Recall that Q ∞ = ∞ k=0 |q k |. Then there exists N such that N k=0 |q k | ≥ M . Choose e k = 1 if k ≤ N and q n-k ≥ 0, e k = -1 otherwise. Clearly, E ∞ = 1, and c n = n k=0 e k q n-k = n k=0 |q n-k | ≥ M , therefore Q ⋆ E ∞ ≥ M and E → Q ⋆ E ∞ ≥ M . Since this is valid for any M < Q 1 , then the E → Q ⋆ E ∞ = Q 1 equality holds.
Note that most of the discussion on numerical filters found in the signal processing literated is based on the L2-norm

x 2 = ∞ k=0 |x k | 2 1/2 (
which is adapted to energy considerations) -for instance, for estimating the frequency spectrum of the rounding noise. We shall never use this norm in this article.

Convolution kernels as formal power series

In the preceding section, we said that the output of the ideal filter is just the convolution of the input with some (possibly infinite) kernel. In this section, we show how formal power series are a good framework for describing this convolution, and basic facts about the kernels of the filters we are interested, given as rational functions.

Formal power series

We shall first recall a few definitions and facts about formal power series. The algebra formal power series K[[X]] over a field K = R or C is the vector space of countably infinite sequences K N where the product of two sequences A : (a k ) k∈N and B : (b k ) k∈N is defined as A.B : (c k ) k∈N by, for all n ∈ N, c n = n k=0 a k b n-k (convolution). Remark that for any algebra operation (addition, subtraction, multiplication) and any N , we obtain the same results for the coefficients c n for n ≤ N as if A and B were the coefficients of polynomials and we were computing the coefficient c n , the nth degree coefficient of the polynomial A.B. 7 For this reason, we shall from now on note A(z) = ∞ k=0 a k z k by analogy with the polynomials. Note that for most of this article, we are interested in formal power series and not with their possible interpretation as holomorphic functions (i.e. it is not a problem at all if the convergence radius of the ∞ k=0 a k z k series is null); we shall note the rare occasions when we need convergence properties (and we shall prove the needed convergences). If all the a k are null except for a finite number, the formal series A is a polynomial.

Wherever we have a convolution (a k ) ⋆ (b k ) of sequences, we can equivalently consider a product A.B of formal series.

We shall often wish to take the inverse of a power series, and the quotient A/B of two series. This is possible for any series k b k b k such that b 0 is not null. We define a sequence of series A (n) as follows:

A (0) = A, A (n+1) = A (n) -q n * z k B where q n = a (n) n /b 0 . Note that for all n ∈ N, k < n A (n) k = 0 and A = A (n+1) + n k=0 q k z k B; thus for all n, A ≡ n k=0 q k z k B (mod X n ), which may equivalently written as A ≡ Q.B (mod X n ). Therefore, A = Q.B, which explains why Q can be called the quotient of A by B.
A very important case for the rest of the paper is 1/(1 -z) = ∞ k=0 z k . Another important constatation is that this quotient formula applied to

S = E. α 0 + α 1 z + • • • + α n z n 1 -β 1 z -• • • -β m z m (4) 
where S and E are expressed as formal power series is equivalent to running the IIR filter defined by the above rational function with E the inputs and S the output.

Stability condition

We manipulate convolution kernels expressed as rational functions where the coefficient of degree 0 of the denominator is 1. We shall identify a rational function with the associated formal power series. Using complex analysis, we shall now prove the following lemma, giving the stability condition familiar to filter designers:

Lemma 2. Q 1 < ∞ if and only if all the poles of Q are outside of the |z| ≤ 1 unit disc.
That is: a filter is stable in ideal real arithmetics if and only if all its poles have module greater than 1.

Proof. Consider the poles of the rational function Q. If none are in the |z| ≤ 1 unit disc, then the radius of convergence of the power series of the meromorphic function Q around 0 has a radius of convergence strictly greater than 1. This implies that the series converges absolutely for z = 1 and thus that Q 1 is finite. On the other hand, if Q 1 < ∞ then the series converges absolutely within the |z| ≤ 1 unit disc and no pole can be within that disc.

Compositional semantics: real field

Now, we have a second look at the basic semantics of linear filters, in order to give a precise and compositional exact semantics of compound filters on the real numbers. We show that any linear filter with one input and one output is equivalent (on the real numbers) to a filter as defined in §2.2.

Definition

A filter or filter element has

• n i inputs I 1 , . . . , I n i (collectively, vector I), each of which is a stream of real numbers;

• n r reset state values r 1 , . . . , r nr (collectively, vector R), which are the initial values of the state of the internal state variables of the filter (inside delay operators) at the beginning of the computation;

• n o output streams O 1 , . . . , O no (collectively, vector O).
If M is a matrix (resp. vector) of rational functions, or series, let N x (M ) be the coordinate-wise application of the norm • x to each rational function, or series, thereby providing a vector (resp. matrix) of nonnegative reals. We note m i,j the element in M at line i and column j.

We note by R(z) the field of rational functions over R and by Q[z] (z) the ring of rational functions of the form P (z)/(1 -zQ(z)) where P and Q are polynomials (that is, the ring of rational functions such that the constant term of the denominator is not null).8 When F ∈ Q[z] (z) , we note F 1 the L1-norm of the associated power series.

When computed upon the real field, a filter F is characterized by:

• a matrix T F ∈ M no,n i (Q[z] (z)
) such that t i,j characterizes the linear response of output stream i with respect to input stream j;

• a matrix D F ∈ M no,nr (Q[z] (z)
) such that d i,j characterizes the (decaying) linear response of output stream i with respect to reset value j.

We note F (I, R) the vector of output streams of filter F over the reals, on the vector of input streams I and the vector of reset values R. Then we have

∀I ∈ (R N ) n i ∀R ∈ R nr F (I, R) = T F .I + D F .R (5) 
When the number of inputs and outputs is one, and initial values are assumed to be zero, the characterization of the filter is much simplerall matrices and vectors are scalars (reals, formal power series or rational functions), and T D is null. We recommend that the reader instantiates our framework on this case for better initial understanding.

Basic arithmetic blocks

Plus node implemented in floating point type f : 

n i = n o = 1, T = 1 1 , D = [];

Composition

Parallel composition T = T 1 0 0 T 2 , D = D 1 0 0 D 2 ;
Serial composition through filter 1, then 2:

T = T 2 .T 1 , D = T 2 .D 1 D 2 .

Feedback loops

Let us consider a filter consisting of a filter F with m+n inputs and n outputs and feedback loops running the n outputs to the last n inputs through unit delays. (Fig. 2) We split T F into sub-matrices

T I ∈ M n,m (Q[z] (z) ) and T O ∈ M n,n (Q[z] (z)
) representing respectively the responses to the global inputs and to the feedback loop. The system then verifies the linear equation over the vectors of formal power series: O = T F I .I + zT F O .P + D.R, and thus

(Id n -zT F O )O = T F I .I + D F .R. By Cor. 4, Id n -zT F O is invertible in M n,n (Q[z] (z) ), 9 thus T = (Id n - zT F O ) -1 .T F I and D = (Id n -zT F O ) -1 .D F .
Section 8.2 explains how to perform such computations in practice.

Examples

A second order IIR linear filter is expressed by S = α 0 .E + α 1 .delay 2 (E) + α 2 .delay 2 (E) + β 1 .delay 1 (S) + β 2 .delay 2 (S). This yields an equation

S = (α 0 + α 1 z + α 2 z 2 )E + (β 1 z + β 2 z 2 )S. This equation is easily solved into S = (α 0 + α 1 z + α 2 z 2 )(1 -β 1 z -β 2 z 2 ) -1 .E. TF2 TF2 + E S delay (2)
N2 N1

×k

Figure 3: A compound filter consisting of two second order filters and a feedback loop. Each TF2 node is a second-order filter whose transfer function is of the form (α

0 + α 1 z + α 2 z 2 )(1 -β 1 z -β 2 z 2 ) -1 .
In Fig. 3, we first analyze the two internal second order IIR filters separately and obtain

Q 1 = α 0 + α 1 z + α 2 z 2 1 -β 1 z -β 2 z 2 (6) 
Q 2 = a 0 + a 1 z + a 2 z 2 1 -b 1 z -b 2 z 2 (7) 
(8)

The we analyze the feedback loop and obtain for the whole filter a rational function with a 6th degree dominator:

S = Q 1 .Q 2 1 + kz 2 .Q 1 .Q 2 .E (9) 
where Q 1 and Q 2 are the transfer function of the TF2 filters (form

(α 0 + α 1 z + α 2 z 2 )(1 -β 1 z -β 2 z 2 ) -1
), which we computed earlier.

5 Bounding the 1-norm of series expansions of rational functions

Inverses of products of affine forms

Let ξ i be complex numbers of module strictly greater than 1. Let Q(z) be the formal power series n i=1 Q i where the Q i (z) are the power series (z

-ξ i ) -1 . The n-th degree coefficient of q i is -ξ (n+1) i
, by the easy expansion:

1 z -ξ = -1/ξ 1 -z/ξ (10) 
q (n) , the coefficient of z n in the Q power series, is obtained by successive convolution products; it is

q (n) = ∀i,k i ∈N∧ i k i =n q (k i ) i (11) 12 
We can therefore bound its module:

q (n) ≤ ∀i,k i ∈N∧ i k i =n q (k i ) i (12) 
The right hand side of the preceding inequality is just the coefficient q(n) of the series n i=1 Qi where q(n)

i = q (n) i = |ξ i | (n+1) is the n-th order coefficient of the 1 |ξ i |-z series. Since |ξ 1 | > 1,
the convergence radius of this last series is strictly greater than 1; furthermore, all its coefficients are nonnegative; therefore, the sum of its coefficients is the value of the function at z = 1, that is,

1 |ξ i |-1 .
We can therefore give an upper bound:

1 (z -ξ 1 ) • • • (z -ξ n ) 1 ≤ 1 (|ξ 1 | -1) • • • (|ξ n | -1) (13) 

Rough and less rough approximation in the general case

Let P (z)/Q(z) be a rational function, with P (z) a polynomial of degree m Q(z) a monic polynomial of degree n. Let zeroes(Q) be the multiset of zeroes of Q (multiple zeroes are counted with their multiplicity).

P (z) = k p k z k Q(z), thus P 1 ≤ k |p k |. Q 1 . Therefore P Q 1 ≤ P 1 ξ∈zeroes(Q) (|ξ| -1) (14) 
This is, however, a very coarse approximation. Intuitively, the mass of the convolution kernel expressed by the P/Q series lies in its initial terms. Still, with the above formula, we totally neglect the cancellations that happen in the computation of this initial part of the kernel; i.e. instead of considering |a -b|, we bound it by |a| + |b|. The solution is to split P/Q 1 into P/Q <N 1 and P/Q ≥N 1 . We shall elaborate on this in Sect. 5.5.

Second degree denominators with complex poles

A common case for filtering applications is when the denominator is a second degree polynomial Q of negative discriminant. In this case, the roots of Q are two conjugate complex numbers ξ and ξ and the decomposition is as follows:

P (z) Q(z) = P 0 (z) + λ z -ξ + λ z - ξ ( 15 
)
where λ = P (ξ)/(ξ -ξ). We shall for now leave P 0 out. We are interested in the coefficients a k of this series:

a k = - λ ξ k+1 + λ ξk+1 (16) 
Let us write λ = |λ|e iα and ξ = |ξ|e iβ ; then

a k = - |λ| |ξ| k+1 e iα .e -i(k+1)β + e -iα .e i(k+1)β = -2 |λ| |ξ| k+1 cos (α -(k + 1)β) (17)
To summarize, the sequence is a decreasing exponential of rate 1/|ξ| modulated by a sine wave and multiplied by a constant factor |λ|/|ξ|. Therefore, computing |λ| and |ξ| will be of prime importance. If Q is monic

Q(z) = z 2 + z 1 x + z 0 , then |ξ| 2 = ξ ξ = c 0 .
In the case of a rational function of the form

P (z) Q(z) = α 0 + α 1 z + α 2 z 2 1 -β 1 z -β 2 z 2 (18) 
then |ξ| = |β 2 | -1/2 and λ = P (ξ)/(ξ -ξ). Should we prefer not to compute with complex numbers,

|λ| 2 = λ λ = P (ξ)( ξ -ξ) + P ( ξ)(ξ -ξ) (ξ -ξ) 2 (19) 
The numerator is a symmetric polynomial in ξ and ξ, roots of Q, and therefore can be expressed as a polynomial in the coefficients of Q ; its coefficients are polynomials in the coefficients of P , therefore the whole polynomial can be expressed as a polynomial in the coefficients of P and Q. The denominator is just the discriminant of Q.

|λ| 2 = α 2 2 + β 2 -α 1 2 -α 0 α 1 β 1 + α 0 2 β 2 + α 2 α 1 β 1 + α 0 β 1 2 + 2 β 2 -(β 1 2 + 4 β 2 ) ( 20 
)
We are now interested in bounding |a k |. If we just use | cos (α -(k + 1)β) | ≤ 1, we come back to the earlier bounds obtained by totally separating the series arising from the two poles.

We shall now obtain a better bound using the following constatation: for any real θ,

| cos θ| = √ cos 2 θ = (1 + cos(2θ)) /2 ≤ 2 -1/2 (1 + cos(2θ)/2) ( 21 
)
using the concavity inequality

√ 1 + x ≤ 1 + x/2. Therefore |a k | ≤ √ 2 |λ| |ξ| k+1 (1 + cos(2(α -(k + 1)β))/2) (22) 
Now, we are interested in bounding ∞ k=N [a k |. For any a and b, and 0

≤ r < 1 ∞ k=0 cos(a + kb)r k = cos a -r cos(a -b) 1 -2r cos b + r 2 (23) 
Let us now see the quality of such bounds S 1 ≤ S 2 , S 1 ≤ S 3 :

S 1 = ∞ k=0 | cos(a + kb)|r k (24) S 2 = ∞ k=0 r k = 1 1 -r (25) 
S 3 = 1 √ 2 ∞ k=0 (1 + 2 cos(2(a + kb)))r k (26) S 3 = 1 √ 2 1 1 -r + 1 2 . cos(2a) -r cos(2(a -b)) 1 -2r cos b + r 2 (27) 
Note that S 3 is not necessarily better than S 2 (for a = 0 and b = 0, S 3 /S 2 = 3/(2 √ 2) ≃ 1.06). However, some moderate gains may be obtained ; for instance, for r = 0.7, a = 0 and b = 0.3, S 1 ≃ 2.60, S 2 ≃ 3.33 and S 3 ≃ 2.80. For practical purposes, the bound obtained using S 2 is very sufficient and easy to compute. We thus opt for this one.

Finer bounds using partial fraction decomposition

It is well known that if Q i are pairwise prime polynomials, and Q is their product, then for any polynomial P prime with Q the fraction P/Q admits a partial decomposition as P/Q = P 0 + i P i /Q i , where P 0 is the Euclidean quotient of P by Q and the degree of P i is strictly less than that of Q i .

Using the fundamental theorem of algebra, it follows that if the ξ i are the distinct roots of Q and m i their multiplicity, then there exist λ i,j ∈ C such that

P/Q = P 0 + i m i j=1 λ i,j (z -ξ i ) j ( 28 
)
Since Q is a real polynomial, its roots are either real, either pairs of ξ i and conjugate ξ i ′ = ξ, with the same multiplicity, and also for all j, λ i ′ ,j = λi ′ , j. However, while theoretically sound, this result is numerically delicate when there are multiple roots, or different roots very close to each other.[13, §1.3] For instance, let us consider a first-degree polynomial P and a seconddegree polynomial Q, then

P (z) Q(z) = λ 1 z -ξ 1 + λ 2 z -ξ 2 (29) 
and we obtain λ 1 = P (ξ 1 )/(ξ 2 -ξ 1 ) (and λ 2 = P (ξ 2 )/(ξ 1 -ξ 2 )). Both numbers will get very large, in inverse proportion of ξ 1 -ξ 2 . While it is quite improbable that we should analyze filters where two separate poles have been intentionally be placed very close together, it is possible that we analyze filters with multiple poles (for instance, the composition of a filter with itself), and, with numerical computations, we would have two extremely close poles and thus a dramatic numerical instability.

We still can proceed with a radius r decomposition of P/Q [13, Def 1.3]: instead of factoring Q into a product of z -ξ i factors, we factor it into a product of Q i such that for any i, and any roots ξ 1 and ξ 2 of Q i , then |ξ 1 -ξ 2 | < 2r. The same reference describes algorithms for performing such decompositions. We obtain a decomposition of the form

P Q = P 0 + i P i /Q i ( 30 
)
where the roots of each Q i are close together, the degree of P i is less than the degree of P i . From this we obtain the bound

P Q 1 ≤ P 0 1 + i P i . 1 Q i 1 (31) 
which we can bound using the inequalities given in the preceding subsections. We can, as before, improve on this bound by splitting the series between an initial sequence and a tail.

Development of rational functions and normed bounds

Let P (z)/Q(z) ∈ Q[z] (z) be a rational function representing a power series by its development (u n ) n∈N around 0. We wish to bound u 1 , which we shall note P/Q 1 . As we said before, most of the mass of the development of P/Q lies in its initial terms, whereas the "tail" of the series is negligible (but must be accounted for for reasons of soundness). We thus split P/Q into an initial development of N terms and a tail, and use

P/Q 1 = P/Q <N 1 + P/Q ≥N 1 (32) 
P/Q 1 is computed by computing explicitly the N first terms of the development of P/Q. We shall see in Sect. 8.3 the difficulties involved in performing such a computation soundly using interval arithmetics. Let d Q be the degree of Q. The development D of P/Q yields an equation

P (z) = D(z).Q(z) + R(z).z N . We have P (z)/Q(z) = D(z) + R(z)/Q(z).z N and thus P/Q ≥N 1 = R/Q 1 ≤ R ∞ . 1/Q 1 ( 33 
)
The preceding sub-sections give a variety of methods for bounding 1/Q 1 using the zeroes of Q(z); Section 5.2 gives a rough method based on lower bounds on the absolute values of the zeroes of Q(z). R ∞ is bounded by explicit computation of R using interval arithmetics; as we shall see, we compute D until the sign of the terms is unknown -that is, when the norm of the developed signal is on the same order of magnitude as the numerical error on it, which happens, experimentally, when the terms are small in absolute values. Therefore, R ∞ is small, and thus the roughness of the approximation used 1/Q 1 does not matter much in practice.

Precision properties of fixed-or floating-point operations

In this section, we shall recall a few facts on the errors introduced by fixedand floating-point arithmetics. They will be sufficient for all our reasonings, without need for further knowledge about numerical arithmetics. Most types of numerical arithmetics, including the widely used IEEE-754 floating-point arithmetic, implemented in hardware in all current microcomputers, define the result of elementary operations as follows: if f is the ideal operation (addition, subtraction, multiplication, division etc.) over the real numbers and f is the corresponding floating-point operation, then f = r • f where r is a roundoff function. The roundoff function chooses a value r(x) that can be exactly represented in the used fixed-or floating-point data type, and is very close to x; specifically, most systems, including all IEEE-754 systems, provide the following roundoff functions: 10 • round to 0: r(x) is the representable real nearest to x in the direction of 0;

• round to +∞: r(x) is the representable real nearest to x in the direction of +∞;

• round to -∞: r(x) is the representable real nearest to x in the direction of -∞;

• round to nearest (generally, the default mode): r(x) is the representable real nearest to x.

In this description, we leave out the possible generation of special values such as infinities (+∞ and -∞) and not-a-number (NaN), the latter indicating undefined results such as 0/0. We assume as a precondition to the numerical filters that we analyze that they are not fed infinities or NaNs - 10 On Intel x86 systems, the description of the exact properties of the floating-point arithmetics is complicated by the fact that, by default, with most operating systems and languages, the 80287-compatible floating-point unit performs computations internally using 80-bit long double precision numbers, even when the compiled program suggests the use of standard 64-bit double precision IEEE numbers. Note that such usage of supplemental precision for intermediate computations is allowed by the C standard, for example. The final result of the computation may therefore depend on the register scheduling and optimizations performed by the compiler. Since we reason by maximal errors, our bounds are always sound (albeit pessimistic) in the face of such complications, whatever the compiler and the system do.

indeed, in some DSP (digital signal processor) implementations, the hardware is incapable of generating or using such values, and in many other implementations the system is configured so that the generation or usage of infinities issues an exception resulting in bringing the system into a failure mode. Our framework provides constructive methods for bounding any floating-point quantity x inside the filters as x ∞ ≤ c 0 + n k=1 c k . e k ∞ where the e k are the input streams of the system; it is quite easy to check that the system does not overflow ( x < M ); one can even easily provide some very wide sufficient conditions on the input ( e k ∞ ≤ (M -c 0 )/( n k=1 c k )). We will not include such conditions in our description, for the sake of simplicity.

For any arithmetic operation, the discrepancy between the ideal result x and the floating-point result x is bounded, in absolute value, by max(ε rel |x|, ε abs ) where ε abs is the absolute error (the least positive floatingpoint number) 11 and ε rel is the relative error incurred (ε abs = 2 -1074 ≃ 4.94 • 10 -324 and ε rel = 2 -53 ≃ 1.11 • 10 -16 for IEEE double precision operations, for the worst case with respect to rounding modes). We actually take the coarser inequality

|x -x| ≤ ε rel |x| + ε abs (34) 
See [START_REF]Standard for Binary Floating-Point Arithmetic[END_REF] for more details on floating-point numbers and [START_REF] Miné | Relational abstract domains for the detection of floatingpoint run-time errors[END_REF] for more about the affine bound on the error.

In the case of fixed-point arithmetics, we have ε rel = 0 and ε abs = δ (δ is the smallest positive fixed-point number) if the rounding mode is unknown (round to +∞, -∞ etc.) and δ/2 is it is the rounding mode is known to be round-to-nearest.

Compositional semantics: fixed-and floatingpoint

In this section, we give and a compositional abstract semantics of filters on the floating-point numbers.

Constraint on the errors

Our abstract semantics characterizes a fixed-or floating-point filter F by:

• the exact semantics of the associated filter F over the real numbers 11 The absolute error results from the underflow condition: a number close to 0 is rounded to 0. Contrary to overflow (which generates infinities, or is configured to issue an exception), underflow is generally a benign condition. However, it precludes merely relying on relative error bounds if one wants to be sound.

• an abstraction of the discrepancy ∆(I) = F (I) -F (I) between the ideal and floating-point filters.

We transform F (I) into the sum of a term that we can bound very accurately using algebra and complex analysis, and a nondeterministic input ∆(I) that we cannot analyze accurately and soundly without considerable difficulties, but for which bounds are available: assuming for the sake of simplicity a single input and a single output and no initialization conditions, we obtain an affine, almost linear constraint on the ∆(I) ∞ with respect to

I ∞ : ∆(I) ∞ ≤ ε F rel I ∞ + ε F abs .
In short: since the filter is linear, the magnitude of the error is (almost) linear.

We generalize this idea to the case of multiple inputs and outputs. The abstract semantics characterizing ∆ is given by matrices ε F rel,T ∈ M no,n i (R + ) and ε F rel,D ∈ M no,nr (R + ) and a vector ε F abs ∈ R no + such that

F (I, R) -F (I, R) ∞ ≤ ε F rel,T .N ∞ (I) + ε F rel,D .N ∞ (R) + ε abs . ( 35 
)
where F (I, R) is the output on the stream computed upon the floating-point numbers on input streams I and initial values I.

Basic arithmetic blocks

Plus node implemented in floating point type f : 

n i = n o = 1, T = 1 1 , D = 0, ε rel,T = ε f rel ε f rel , ε rel,D =
ε rel,T = ε 1 rel,T 0 0 ε 2 rel,T , ε rel,D = ε 1 rel,D 0 0 ε 2 rel,D , ε abs = ε 1 abs ε 2 abs .

Serial composition

The serial composition of two filters is more involved. Let F and G be the ideal linear transfer functions of both filters, and F and G the transfer functions implemented over floating-point numbers.

We have ∀I N ∞ (F (I) -F (I)) ≤ ε F rel .N ∞ (I) + ε F abs (mutatis mutandis for G). We are interested in ε = N ∞ (F (I) -F (I)): that is, a vector of positive numbers indexed by the outputs of the system such that on every coordinate k, the difference δ between output k computed over the reals and the floating-point numbers over the same input I verifies δ ∞ ≤ ε k . We extend ≤ to real vectors coordinate-wise.

The following is easier to understand when each filter has a single input and a single output; then, all vectors and matrices are scalars (either in R or Q[z] (z) , and

N x (v) is simply v x .
The vector R of (re)initialization values is split between R F (those concerning F ) and R G (those concerning G). We split the overall output error of the system between the part that was introduced by the first filter (and then amplified or attenuated by the second filter) and the part that was introduced by the second filter, and use the triangle inequality:

N∞((G • F )(I, R) -( G • F )(I, R)) ≤ N∞(G • F (I) -G • F (I)) + N∞(G • F (I) -G • F (I)) ≤ N1(G).(F (I) -F (I)) + ε G rel,T .N∞( F (I)) + ε G rel,D .N∞(R G ) + ε G abs ≤ N1(G).(F (I) -F (I)) + ε G rel,T .(N∞( F (I)) + N∞( F (I) -F (I))) + ε G rel,D .N∞(R G ) + ε G abs ≤ (N1(G) + ε G rel,T ).N∞( F (I) -F (I)) + ε G rel,D .N∞(R G ) + ε G rel .N∞(F (I)) + ε G abs ≤ (N1(G) + ε G rel,T ).(ε F rel,T .N∞(I) + ε F rel,D .N∞(R F ) + ε F abs ) + ε G rel,T .N1(F ).N∞(I) + ε G rel,D .N∞(R G ) + ε G abs ≤ (N1(G) + ε G rel,T ).ε F rel,T + ε G rel,T .N1(F ) .N∞(I) + (N1(G) + ε G rel ).ε F rel,D .N∞(R F ) + ε G rel,D .N∞(R G ) + (N1(G) + ε G rel ).ε F abs + ε G abs (36) Thus ε G•F rel,T = (N 1 (G) + ε G rel ).ε F rel + ε G rel .N 1 (F ), ε G•F rel,D = (N 1 (G) + ε G rel ).ε F rel,D ε G rel,D , and ε G•F abs = (N 1 (G)+ ε G rel ).ε F abs + ε G abs .

Feedback loops

Let us call o (n) the vector of outputs of the filter at step n. It is, ideally, a linear function of the current input, the preceding inputs, and the preceding outputs. 

= (Id n -zT F O ) -1 .C and thus that N ∞ (∆ ≤n ) ≤ N 1 (Id n -zT F O ) -1 .N ∞ (C ≤n ). Let us split ε F rel,T ∈ M n,n+m (R + ) into ε F rel,I ∈ M n,m (R + ) and ε F rel,O ∈ M n,n (R + ). Then N ∞ (C ≤n ) ≤ ε F rel,I .N ∞ (I ≤N ) + ε F rel,O .N ∞ ( Õ<N ) + ε F rel,D .N ∞ (R) + ε F abs ≤ ε F rel,I .N ∞ (I ≤N ) + ε F rel,O .N ∞ (O <N ) + ε F rel,O .N ∞ ( ÕN -O <N ∆ <N ) + ε F rel,D .N ∞ (R) + ε F abs (38) But then, noting A = N 1 (Id n -zT F O ) -1 , N ∞ (∆ ≤n ) ≤ A.(ε F rel,I .N ∞ (I ≤N ) + ε F rel,O .N 1 (T ).N ∞ (I ≤N ) + ε F rel,O .N ∞ (∆ <N ) + ε F rel,D .N ∞ (R) + ε F abs ) (39) Let K 1 = A.ε F rel,O ∈ M n,n (R + ) and K 2 (ι, ρ) = A. ε F rel,I + ε F rel,O .N 1 (T )).ι + ε F rel,D .ρ + ε F abs (40) Then N ∞ (∆ ≤n ) ≤ K 1 .N ∞ (∆ <n )+K 2 (N ∞ (I), N ∞ (R)). This means that the sequence u n = N ∞ (∆ <n ) verifies u 0 = 0 and u n+1 ≤ K 1 .u n +K 2 (N ∞ (I), N ∞ (R)).
This implies that for all n, u n is less than the least fixed point

L of v → K 1 .v + K 2 (N ∞ (I), N ∞ (R)).
Recall that the spectral radius of a matrix M of real numbers is the greatest absolute values of its eigenvalues. If K 1 is contracting (spectral radius less than 1), then v → K 1 .v + K 2 (N ∞ (I), N ∞ (R)) has a unique fixed point, by Banach's fixed point theorem; and 1

-K 1 is invertible. This fixed point is v = (1 -K 1 ) -1 K 2 (N ∞ (I), N ∞ (R)). Let ε rel,T = (1 - K 1 ) -1 .A. ε F rel,I + ε F rel,O .N 1 (T ) , ε rel,D = (1 -K 1 ) -1 .ε F rel,D , and ε abs = (1 - K 1 ) -1 .A.ε F abs . Then N ∞ (∆) ≤ ε rel,T .N ∞ (I) + ε rel,D .N ∞ (R) + ε abs . Recall that K 1 = A.ε F rel,O ∈ M n,n (R + )
where A is the matrix of norms N 1 (Id n -zT F O ) -1 ; K 1 bounds the amount of floating-point imprecision that feeds back into the system. A is the amplification bounding matrix of the filter consisting merely of the feedback loop of the original filter; if the original filter is stable and well-designed, the coefficients of A should be moderate. ε F rel,O measures the creation of imprecision in one iteration of the internal filter; if the filter is numerically well-designed, then its coefficients are very small. On real-world examples, K 1 was on the order of magnitude of 10 -15 .

This suggests an effective method for bounding from above the various quantities of the form (1-K 1 ) -1 .y that we listed, where y is a column vector (if y is a matrix, then split it into its column vectors).

d ∞ = (1 -K 1 ) -1 .y = ∞ k=0 K k 1 .y (41) 
is the unique fixpoint of φ = x → K 1 .x + y, which is monotonic and contracting. Consider the matrix norm subordinate to • ∞ on vectors:

K 1 = sup i j k 1i,j (42) 
This gives a rough bound on d ∞ :

d ∞ ∞ ≤ ∞ k=0 K 1 k . y ∞ = y ∞ 1 -K 1 . (43) 
Let

d n = (x → K 1 .x + y) n (y) = n k=0 K n 1 .y. d ∞ -d n = K n+1 1 .d ∞ , thus d ∞ -d n ∞ ≤ K n+1 1 1 -K 1 . y ∞ . (44) 
Therefore, the following is an upper bound on d ∞ :

B = d n + - K n+1 1 K 1 -1 . y ∞ .V 1 (45) 
where V 1 is a vector of ones of the same dimension as y. This computation may be effectively performed in floating-point arithmetic in order to yield a sound upper bound by computing Eqn. 42 and 45 in round-to-+∞ mode (x → -1/x is monotonic). Remark that we can directly prove the soundness of the resulting B by checking that K 1 . B + y is less than B (this checking phase, though unnecessary assuming a sound implementation, may be cheaply performed for the sake of security; while it is possible that the result should be correct and the check fails, this seems very unlikely in practice, and can be worked around by choosing a slightly larger B).

Trading some accuracy for computation speed; nonlinear elements

We have split the behavior of the filter into the sum of the convolution of the input signal by the power development of a rational function, representing the exact behavior, and some error term. If we compute the rational functions exactly over Q[z] (z) , then the rational coefficients might grow expensively large. It seems silly to use high precision for the coefficients of a system parameterized by floating-point numbers and implemented with floating-point errors. Indeed, we may reduce the precision of the coefficients of the rational function at the expense of adding to the margin of error. An ideal filter of Z-transform the rational function P (z)/(1-Q(z)) where non-ideal feedback filter

P (z) = dp k=0 p k z k and Q(z) =
F ♯ with T F ♯ I = P ♯ , T F ♯ O = Q ♯ , ε rel,I = P ♯ -P 1 , ε rel,I = Q ♯ -Q 1 , ε abs = 0,
which we know how to solve from Sect. 7.4.

More generally: a filter F may be approximated by a filter F ♯ with transfer function

T F ♯ = T G , ε F ♯ rel,T = ε F rel,T + ε G rel,T , ε F ♯ rel,D = ε F rel,D + ε G rel,D , ε F ♯ abs = ε F
abs where G is the feedback filter with internal filter H given

T H I = P ♯ , T H O = Q ♯ , ε H rel,I = P ♯ -P 1 , ε H rel,I = Q ♯ -Q 1 , ε H abs = 0.
Note that this gives a generic method for approximating non-linear elements occuring in filters, provided that it is possible to split them into a linear part and a nonlinear part, the output of which can be bounded by an affine function of bounds on the absolute value of the inputs.

Numerical considerations

We have so far given many mathematical formulas that are exact in the real field. In this section, we explain how to obtain sound abstractions for these formulas using floating-point arithmetics.

Interval arithmetics

IEEE floating-point arithmetics [START_REF]Standard for Binary Floating-Point Arithmetic[END_REF] and good extended precision libraries such as MPFR [START_REF]GMP -GNU multiple precision arithmetic library[END_REF] provide functions computing upward rounded (or roundedto-+∞) and downward rounded (or rounded-to--∞) results: that is, if f (x 1 , . . . , x n ) is the exact operation on real numbers and fand f + are the associated floating-point downward and upward operations, then f (x 1 , . . . , x n ) is guaranteed to be in the interval [ f -(x 1 , . . . , x n ), f + (x 1 , . . . , x n )], which will guarantee the soundness of our approach. Furthermore, for many operations, f -(x 1 , . . . , x n ) and f + (x 1 , . . . , x n ) are guaranteed to be optimal; that is, no better bounds can be provided within the desired floating-point format; this will guarantee optimality of certain of our elementary operations.

Approximate algebraic computations

In many occasions, we ideally would like to compute on real polynomials P = n k=1 p k z k but instead we compute on floating-point polynomials P = n k=1 [l k , h k ]z k abstracting the set γ( P ) of polynomials P such that ∀k p k ∈ [l k , h k ]. In practice, it will often be necessary that 0 / ∈ [l k , h k ] in order to avoid uncertainties on the degree of the polynomial. All the usual polynomial operations (addition, multiplication by a scalar, subtraction, multiplication) may be abstracted using interval arithmetics. We also include a test contains 0 ( P ) whether the null polynomial is in γ( P ). We call this structure an abstract ring.

Given a abstract ring R, we construct the abstract field of fractions over that ring using the following operations: p 1 /q 1 +p 2 /q 2 = (p 1 q 2 +p 2 q 1 )/(q 1 q 2 ), k.(p/q) = (k.p)/q, (p 1 /q 1 ).(p 2 /q 2 ) = (p 1 .p 2 )/(q 1 .q 2 ), (p 1 /q 1 )/(p 2 /q 2 ) = (p 1 .q 2 ) /(q 1 .p 2 ), contains 0 (p/q) = contains 0 (p). We can make a simple attempt at reducing the fractions by checking that there are no trivial cancellations between the numerator and denominator in products and quotients.

Given an abstract ring K, we construct the abstract ring of matrices over that ring with the usual operations: if

M = A + B, m i,j = a i,j + b i,j ; if M = A.B, m i,j = k a i,k .b k,j .
If K is an abstract field, we can also implement Gaussian elimination in order to compute A -1 .B given a square matrix A and a matrix B. When we look for a pivot, we select elements e such that contains 0 (e) is false.

Unfortunately, computations on such approximate structures may yield unfavorable results. In particular, the absence of simplification between the numerator and denominator may yield fractions P (z)/ Q(z) where P and Q have some common zeroes. The spurious poles that are introduced not be that much of a problem if we use partial fraction decomposition (Sect. 5.4), for they will yield very small coefficients in the decomposition; however, they will make the computations more complex. If using the simple tail bounds of Sect. 5.1, the results may be considerably worse.

A solution is to perform all computations on rational functions exactly over Q[z] (z) . Then, cancellation between a numerator and a denominator can be performed exactly by division by their greatest common divisor, which is obtained from Euclide's algorithm over the Euclidean division of polynomials. No spurious poles may be introduced. However, on large filter networks, exact computations may produce exceedingly large integer numerators and denominators. It is then possible to apply the approximation scheme of Sect. 7.5 in order to trade speed for potential precision. This is the solution that we implemented in our system: exact computations on rational numbers and safe approximations to limit the length of the numbers involved in the computations.

Computation of developments

When bounding the norm P/Q 1 of a series quotient of two polynomials, we split the series into its N initial terms of development, which we compute explicitly, and a tail whose norm we bound. The first idea is to compute the N first terms of the series by quotienting the series, as explained in Sect. 3.1 or, equivalently, by running the filter for N iterations on the Dirac input 1, 0, 0, . . .. In order to provide a sound result, one would work using interval arithmetics over floating-point numbers. However, as already noted by Feret, after some number of iterations the sign of the terms becomes unknown and then the magnitude of the terms increase fast; it is therefore indicated to compute the development until the first term of unknown sign is reached, and assign N accordingly (one may still also enforce a maximal number of iterations N max ). In order to be able to develop the quotient further with good precision, one can use a library of extended-precision floating-point computations with selectable rounding direction, such as the MPFR library now part of GNU MP [START_REF]GMP -GNU multiple precision arithmetic library[END_REF].

Bounding the roots

In order to bound P/Q 1 , where P and Q may possibly be given using interval coefficients, we have to bound the roots of Q. More formally, we have to solve the following problem: given an interval polynomial P (z) = Often, what we need is actually bounds on the |ξ k |; this can easily be obtained from the preceding bounds using interval arithmetic on plus, minus, multiply and square root.

Our coefficients are intervals [l k , h k ] in order to accommodate possible errors of floating-point computations. As a consequence, it is expected that h k -l k are small. This suggests to us a two-step method for obtaining the desired bounds:

1. Use an efficient and, in practice, very accurate algorithm to obtain approximations x j to the roots of n k=1 l k +h k 2 z k (the "midpoint polynomial").

From those approximations, obtain bounds on the radius of the error committed.

There exist a variety of methods and implementations to perform the first point. We used gsl poly complex solve of the GNU Scientific Library [8], which is based on an eigenvalue decomposition of the companion matrix.

For the second step, Rump describes a variety of bounding methods [START_REF] Rump | Ten methods to bound multiple roots of polynomials[END_REF] which take a polynomial and approximate roots as an input and output error radii; these methods may be performed using interval arithmetics. We implemented the simplest and roughest one: ξ j is in a closed disc of center x j -p j and radius |p j | where

p j = nP (x j ) p n k =j x j -x k , (46) 
which is easily implemented using interval arithmetics (P becomes P etc.).

Implementation and case studies

We implemented the algorithms described above in a simple Objective Caml [START_REF] Leroy | The Objective Caml system, documentation and user's guide[END_REF] program: filters are represented by a record of all their characteristics (transfer matrices, bounding matrices); functions (in the OCaml) sense construct filter records, or perform composition operations. The formal computations on fractions are performed over Q, implemented using GNU MP's mpq type [START_REF]GMP -GNU multiple precision arithmetic library[END_REF]. We initially considered using MPFR [START_REF] Inria | The MPFR Library[END_REF], an extended precision library with sound rounding modes, for interval computations; instead, we simply use the IEEE-754 rounding modes of the hardware floating-point unit, which is much faster.

Composition of TF2 filters

Let us recall the example of Sect. 4.5. It is a composition of two TF2 filters with a feedback loop around it. The serial composition of the filter in Fig. 3 and another TF2 filter, all with realistic coefficients, is analyzed in about 0.10 s on a recent PC; the analyzer finds that S ≤ g E with g ≃ 2, with ε rel ≃ 10 -12 and ε abs ≃ 10 -305 .

The power series developments of rational functions (Sect. 8.3) are done up to around the 27th order.

Complex nonlinear iterated filter

We now consider a nonlinear, iterated filter due to Roozbehani et al. [START_REF] Roozbehani | Modeling, optimization and computation for software verification[END_REF][ §5]. We first analyze separately filter1() (2nd-order linear filter) and filter2() (2nd-order affine filter). So as to simplify matters, we do not give the transfer functions using matrices, matrices inverses etc. but as the solution of a system of linear equations over polynomials in z. We obtain that system very simply from the program: whenever we see an assignment x := e, we turn it into an equation x = e (we assume without loss of generalities that variables are only assigned once in a single iteration step), where e is the original expression where a variable v that has not yet been assigned in the current iteration is replaced by i v + z.v, i v standing for the initialization value of v.

void filter1 () { static float E[2], S[2]; if (INIT1) { S[0] = X; P = X; E[0] = X; E[1]=0; S[1]=0; } else { P =0.5*X-0.7*E[0] +0.4*E[1] p = 0.5e -0.7(i e0 + z.e 0 ) +1.5*S[0]-S[1]*0.7; +0.4(i e1 + z.e 1 ) +1.5(i s0 + z.s 0 ) -0.7(i s1 + z.s 1 ) E[1] = E[0]; e 1 = i e0 + z.e 0 E[0] = X; e 0 = e S[1] = S[0]; s 1 = i s1 + z.e 1 S[0] = P; s 0 = p X=P/6+S[1]/5; x = p/6 + s 1 /5 } }
We call e the input value for X. We solve the system and obtain

x = Q.e + Q ie 0 .i e 0 + Q ie 1 .i e 1 + Q is 0 .i s 0 + Q is 1 .i s 1 . The common denominator of the Q fractions is 10 -15z + 7z 2 , which has complex conjugate roots z such that |z| ≃ 1.2. i e 1 = i s 1 = 0 and i e 0 = i s 0 = ι (the last value for input e such that INIT1 is true), thus x ∞ ≤ Q 1 . e ∞ + Q ie 0 + Q is 0 ∞ . ι .
With a precondition e ∞ ≤ 400, this yields x ∞ < 339. If we take the coarser inequality

x ∞ ≤ Q 1 . e ∞ + ( Q ie 0 ∞ + Q is 0 ∞ ). ι we get x ∞ < 528. Roozbehani et al. find a bound ≃ 531. void filter2 () { static float E2[2], S2[2]; if (INIT2) { S2[0] =0.5*X; P = X; E2[0] = 0.8*X; E2[1]=0; S2[1]=0; } else { P =0.3*X-E2[0]*0.2+E2[1]*1.4 p = 0.3e -0.2(i e0 + z.e 0 ) +S2[0]*0.5-S2[1]*1.7; +1.4(i e1 + z.e 1 ) +0.5(i s0 + z.s 0 ) + 1.7(i s1 + z.s 1 ) E2[1] = 0.5*E2[0]; e 1 = 0.5(i e0 + z.e 0 ) E2[0] = 2*X; e 0 = 2e S2[1] = S2[0]+10; s 1 = i s0 + z.s 0 + τ S2[0] = P/2+S2[1]/3; s 0 = p/2 + s 1 /3 X=P/8+S2[1]/10; x = p/8 + s 1 /10 } }
We proceed similarily (with the introduction of τ = 10/(1 -z) and obtain

x = Q.e + Q ie 0 .i e 0 + Q ie 1 .i e 1 + Q is 0 .i s 0 + Q is 1 .i s 1 + Q c . The common

Related works

In the field of digital signal processing, some sizable literature has been devoted to the study of the effects of fixed-point and floating-point errors on numerical filters. In the area of fixed-point computation, bounds on the sizes of the various operands are of paramount importance: operands that leave the prescribed range will undergo saturation and the output signal will be distorted. For these reasons, operands are scaled so as not to produce digital saturation; yet, the scale factor should be made large enough that rounding errors are very small compared to the typical magnitude of the signal. While the fact that the l1-norm of the convolution kernel is what matters for judging overflow, it is argued that this norm is "overly pessimistic" [12, §11.3] [11, eq 13], not to mention the difficulties in estimating it. In practice, filter designers have preferred criteria that indicate no saturation for most "commonplace" inputs, excluding pathological inputs. Our vision is different: our results must be sound in all circumstances, even pathological inputs.

The impact of fixed-and floating-point errors in digital filters was classically studied from by modeling the errors as random sources of known distribution, independent of each other and with no temporal correlation (i.e. correlations between successive values) [START_REF] Bomar | Roundoff noise analysis of state-space digital filters implemented on floating-point digital signal processors[END_REF][START_REF] Bhaskar | Floating point arithmetic and digital filters[END_REF]. These assumptions are, in reality, false: the computational process is fully deterministic, and not random; the computations are generally interdependent (all computations inside a filter depend on the past of the input variables); and there are temporal correlations. However, circuit designers are concerned with the spectral distribution of output noise [START_REF] Jackson | On the interaction of roundoff noise and dynamic range in digital filters[END_REF], and optimization of hardware or software implementations with respect to this noise, and these tools are adequate for this. On the other hand, we merely aim at providing sound bounds for the outputs of the system, but the bounds that we provide must be sound without any extra and unfounded suppositions.

J. Feret has proposed an abstract domain for analyzing programs comprising digital linear filters [START_REF] Feret | Static analysis of digital filters[END_REF]. He provides effective bounds for first and second degree filters. In comparison, we consider more complex filter networks, in a compositional fashion; but we analyze specifications, and not C code (which is usually compiled from those specifications, with considerable loss of structure). Another difference is that we do not perform abstract iterations. Feret's method currently considers only second-order filters (i.e. TF2), though it may be possible to adapt it to higher-order filters. On second-order filters, the bounds computed by Feret's method and the method in this paper are very close (since both are based on a development of the convolution kernel, though they use different methods of tail estimation).

Lamb et al. [START_REF] Lamb | Linear analysis and optimization of stream programs[END_REF] have proposed effective methods, based on linear algebra, for computing equivalent filters for DSP optimization. They do not compute bounds, nor do they study floating-point errors.

Roozbehani et al. [START_REF] Roozbehani | Modeling, optimization and computation for software verification[END_REF] find program invariants by Lagrangian relaxation and semidefinite programming, with quadratic invariants. In order to make problems tractable, they too apply a blockwise abstraction. The class of programs that they may analyze directly is potentially larger, but the results are less precise than our method on some linear filters. They do not handle floating-point imprecisions (though this can perhaps be added to their framework).

One possible application of our method would be to integrate it as a pre-analysis pass of a tool such as Astrée [START_REF] Cousot | The ASTR ÉE analyzer[END_REF]. Astrée computes bounds on all floating-point variables inside the analyzed program, in order to prove the absence of errors such as overflow. In order to do so, it needs to compute reasonably accurate bounds on the behavior of linear filters. A typical fly-by-wire controller contains dozens of TF2 filters, some of which may be integrated into more complex feedback loops; in some cases, separate analysis of the filters may yield too coarse bounds.

Conclusions and future works

We have proposed effective methods for providing sound bounds on the outcome of complex linear filters from their flow-diagram specifications, as found in many applications. Computation times are modest; furthermore, the nature of the results of the analysis may be used for modular analyses -the analysis results of a sub-filter can be stored and never be recomputed until the sub-filter changes.

The usefulness of these methods is twofold. First, they could be directly implemented in the graphical user interface for designing circuits. Users may then be able to compute gains or to check the stability of filters, taking into account floating-point errors (which conventional Z-transform techniques do not consider). Second, they can be used as a way to automatically obtain static analysis "transformers" or "transfer functions": a static analysis tool such as Astrée may detect that some program sequence implements such or such complex linear filter, and apply some invariant relation computed using the techniques in that paper.

In future works, we will examine the case of non-linear filters and compositional, modular analysis. The analysis of a combination of linear and non-linear filters can be done in two ways or a combination thereof:

• the overall behavior of a nonlinear filter may be constrained by some input-output relationship such as O ∞ ≤ (1 + ǫ) I ∞ (example of a rate limiter), and this input-output relationship can be integrated into the abstract semantics as in Part 7;

• the overall behavior of a linear filter can be precisely bounded, and The result follows by the application of the induction hypothesis, and the fact that BQ[z] (z) is a ring and thus the determinant of any matrix over that ring is itself in the ring. Proof. By the preceding lemma, det(Id n -zA) is of the form 1-zP (z)/Q(z), where P and Q are polynomials such that the constant coefficient of Q is 1, therefore (det(Id n -zA)) -1 = Q(z)/(Q(z) -zP (z) is in Q[z] (z) . All the minor i,j (Id n -zA) are elements of Q[z] (z) , the result follows by applying Equ. 11.
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 11 Figure 1: Decomposition of the TF2 filterS n = α 0 E n + α 1 E n-1 + α 2 E n-2 + β 1 S n-1 + β 2 S n-2 intoelementary blocks. The compositional blocks are chained by serial composition. Inside each compositional on the left, elementary gates are composed in parallel. On the right hand side, a feedback loop is used.
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 2 Figure 2: A feedback filter

  0, ε abs = ε f abs ; Scale by k node implemented in floating point type f : T = k , D = 0, ε rel,T = |k|.ε f rel , ε rel,D = 0; ε abs = ε f abs ; Delay without initializer (delay for n clock ticks): T = z n , D = 0, ε rel,T = 0, ε rel,D = 0, ε abs = 0 Unit delay with initializer : T = z , D = 1 , ε rel,T = 0, ε rel,D = 0, ε abs = 0 Parallel composition block matrices and vectors:

  O n = L(I ≤n , O <N ). Let us call L the associated floating-point function and Õ the floating-point output of the filter. Let us call ∆ = Õ -O. ∆ n = L(I ≤n , Õ<N ) -L(I ≤n , O <N ) = L(I ≤n , Õ<N ) -L(I ≤n , Õ<N )) + L(I ≤n , Õ<N ) -L(I ≤n , O <N ) = L(I ≤n , Õ<N ) -L(I ≤n , Õ<N )) + L(0, ∆ <N ) (37) Let C n = L(I ≤n , Õ<N ) -L(I ≤n , Õ<N )) be the sequence of vectors of "error creations" at each iteration. Then ∆ verifies the equation ∆ = C + zT F O .∆. As before, this means ∆

Figure 4 :

 4 Figure 4: An ideal filter equivalent to a filter of Z-transform P (z)/(1-Q(z)).

  n k=1 [l k ; h k ]z k such that 0 / ∈ [l n , h n ], find a family ( ξk , ρ k ) 1≤k≤n (ξ k ∈ C with ℜξ k and ℑξ k floating-point numbers, ρ k ∈ R + a floating-point number) such that for any polynomial P = n k=1 p k such that ∀k p k ∈ [l k , h k ], then, up to a permutation, the n roots (ξ k ) 1≤k≤n of P are such that ξ k ∈ D( ξk , ρ k ) where D(z, r) is the closed disc of center z and radius r.

Lemma 3 .(- 1 )(- 1 )

 311 If A ∈ M n,n (Q[z] (z) ), then there exists B ∈ Q[z] (z) such that det(Id n -zA) = 1 -zB.Proof. Proof by induction on n. The case n = 1 is trivial. Now let us consider n > 1.det(Id n -zA)= (1 -za 1,1 )minor 1,1 (Id n -zA) + n j=2 n za 1,j minor 1,j (Id n -zA) = minor 1,1 (Id n -zA) + z n j=1 n za 1,j minor 1,j (Id n -zA) (49)

Corollary 4 .

 4 If A ∈ M n,n (Q[z] (z) ), then Id n -zA) has an inverse in M n,n (Q[z] (z) ).

The formal version of this result is a classic of recursion theory, known as Rice's theorem.

There exist non-causal numerical filtering techniques One striking example is Matlab's filtfilt function, which runs the same causal filter in one direction, then in the reverse-time direction over the same signal; the overall filter has zero phase shift at all frequencies, a very desirable characteristic in some applications. Unfortunately, as seen on this example, non-causal filters require buffering the signal and thus are not usable for real-time applications. They are outside the scope of this paper.

An alternate notation[START_REF] Jackson | Digital Filters and Signal Processing[END_REF] replaces all occurrences of z by z -1 . In such a formalism, conditions such as "the poles must have a module greater than 1" are replaced by the equivalent for the inverse, e.g. "the poles must have a module strictly less than 1". We chose polynomials in z because they allow using normal power series instead of Laurent series.

One can therefore see K[[X]] as the projective limit of the K[X]/X n quotient rings with the canonical K[X]/X n+1 → K[X]/X n morphisms in the category of rings.

This last ring is the localization of the ring R[z] of real polynomials at the prime ideal (z) generated by z, thus the notation.

This result is not surprising, because the system, by construction, must admit causal solutions.

denominator of the Q is 60 + 35z + 51z 2 , with complex conjugate roots z such that |z| ≃ 1.08. Then

The two linear filters are combined into an iterated nonlinear filter. filter1() (resp. filter2()) is run with a pre-condition of X ∈ [-400, 400] (resp. [-800, 800]). We replace the call to the filter by its postcondition Note that the non-abstracted program converges to a value ≃ 205, with X ∈ [0, 209]. However, this very simple program illustrates our methodology for compositional analysis: finding the optimal solution is possible here because the program is simple, but would not be possible in practice if we had added more nonlinear behavior and nondeterministic inputs, as in real-life reactive code; whereas by analyzing precisely each linear filter and plugging the results back into a generic analyzer, we get reasonable results. this bound information can be fed into an analysis of a larger nonlinear filter, such as one based on statically computed relationships between intervals [START_REF] Monniaux | Optimal abstraction on real-valued programs[END_REF]