
HAL Id: hal-00151251
https://hal.science/hal-00151251v1

Preprint submitted on 1 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying the Z-transform for the static analysis of
floating-point numerical filters

David Monniaux

To cite this version:
David Monniaux. Applying the Z-transform for the static analysis of floating-point numerical filters.
2005. �hal-00151251�

https://hal.science/hal-00151251v1
https://hal.archives-ouvertes.fr

ha
l-

00
15

12
51

, v
er

si
on

 1
 -

 1
 J

un
 2

00
7

Applying the Z-transform for the static analysis of

floating-point numerical filters

David Monniaux

June 2, 2007

1 Introduction

The static analysis of control/command programs, with a view to proving
the absence of runtime errors, has recently picked up steam, with the in-
ception of analyzers capable of scaling up to real industrial programs. In
particular, it is nowadays possible to build sound and precise static ana-
lyzers scaling up to realistic industrial situations. A static analyzer takes
as input a program (source code or object code) and outputs a series of
facts, warnings or other indications obtained by automatic analysis of that
program.

A static analyzer is said to be sound if all the facts that it derives from
a program (say, “variable x is always positive”) are always true, regardless
of how and on which inputs the program is run. Sound static analyzers are
based on a semantics, that is, a mathematical definition of possible program
executions.

It is well-known that any method for program verification cannot be
at the same time sound (all results produced are truthful), automatic (no
human intervention), complete (true results can always be proved) and ter-
minating (always produces a result) 1 unless one supposes that program
memory is finite and thus that the system is available to model-checking
techniques. As a result, sound static analyzers are bound to produce false
alarms sometimes; that is, warnings about issues that cannot happen in
reality. One thus wants analyzers that are precise, that is, model reality so
closely that they seldom produce false alarms — but also, one wants analyz-
ers that are efficient, taking only reasonable amounts of time and memory
to perform an analysis.

One crucial class of errors for control/command systems is arithmetic
overflows — say, when converting some value to an integer — in programs
using floating-point computations. Such errors have already proved to be ex-
tremely dangerous, having for instance caused the explosion of the Ariane 5

1The formal version of this result is a classic of recursion theory, known as Rice’s
theorem.

1

on its maiden flight [16]. In order to prove the absence of such errors, static
analyzers such as Astrée2 [1, 2] have to bound all floating-point variables in
the program. It is impossible to do so using simple interval arithmetic; in
order to bound the output of a numerical filter, one has to make the analyzer
understand the stability conditions of the numerical processing implemented
in the application to be analyzed.

In current control/command designs, it is commonplace that the exe-
cutable is obtained by compiling C code, or assembly code, itself obtained
by automatic translation from a high-level specification. This high-level
specification is typically given in a high-level language such as Simulink3

Lustre [4] or ScadeTM,4 These languages, in their simplest form, consider
programs to be the software counterpart of a network of electronic circuits
(filters, integrators, rate limiters...) connected by wires; this is actually how
several of these languages represents programs graphically. Several circuits
can be grouped into a compound filter.

One advantage of these high-level languages is that their semantics is
considerably cleaner than those of low-level languages such as C. The filter
and compound filter constructions provide natural “boundaries” for blocks
of computations that belong together and probably have some interesting
and identifiable properties. It is thus interesting to be able to analyze these
languages in a compositional and modular fashion; that is, the analysis of
some block (compound filter) is done independently of that of the rest of the
code, and the result of that analysis may be “plugged in” when analyzing
larger programs.

This paper deals with the compositional and modular analysis of lin-
ear filters. By this, we mean filters that would be linear had they been
implemented over the real field. Of course, in reality, these filters are imple-
mented over floating-point numbers and none of the classical mathematical
relationships hold. We nevertheless provide sound semantics for floating-
point computations and sound analysis for such filters.

1.1 Digital filtering

Control/command programs in embedded applications often make use of
linear filters (for instance, low-pass, high-pass, etc.). The design principles
of these filters over the real numbers are well known; standard basic designs
(Butterworth, Chebyshev, etc.) and standard assembly techniques (parallel,
serial) are taught in the curriculum of signal processing engineers. Ample

2http://www.astree.ens.fr
3SimulinkTMis a tool for modelling dynamic systems and control applications, using

e.g. networks of numeric filters. The control part may then be compiled to hardware or
software.
http://www.mathworks.com/products/simulink/

4Scade is a commercial product based on LUSTRE.
http://www.esterel-technologies.com/products/scade-suite/

2

http://www.astree.ens.fr
http://www.mathworks.com/products/simulink/
http://www.esterel-technologies.com/products/scade-suite/

literature has been devoted to the design of digital filters implementing some
desirable response, for implementation in silicon or in software, in fixed-point
and in floating-point.[12]

However, discrete-time filters are often discussed assuming computations
on real numbers. There is still some considerable literature on the impli-
cations of fixed-point or floating-point numbers, but the vast majority of
the work has focused on “usual case” or “average case” bounds — it is
even argued that worst-case bounds on ideal filters on real numbers are too
pessimistic and not relevant for filter design [12, §11.3]. The study of the
quantization and roundoff noise generated by fixed-point or floating-point
implementations has mostly been done from a stochastic point of view, in
order to prove average case properties.

For our analysis purposes, we need sound worst-case bounds, and prac-
tical means for obtaining them with reasonable computational resources.
For these reasons, the point of view of the designers of static analyzers is
different from that of the filter designers.

A favorite tool of filter designers is the Z-transform [12, chapter 3], with
which the overall ideal (i.e. implemented over the real numbers) transfer
function of a filter is summarized in a rational function with real coeffi-
cients, whose poles and zeroes determine the frequency response. In this
paper, we shall show how we can use this transform to automatically sum-
marize networks of linear filters; how this transform allows us to compute
precise bounds on the outcome of the filter, and to statically summarize com-
plex filters; and how to deal with roundoff errors arising from floating-point
computations.

1.2 Contributions of the article

This article gives a sound abstract semantics for linear numerical filters
implemented in floating-point or fixed-point arithmetics, given as the sum
of a linear part (using the Z-transform) and a nonlinear part (given using
affine bounds); this latter part comes from the roundoff noise (and, possibly,
some optional losses of linear precision done for the sake of the speed of the
analysis). (Sect. 4 for the ideal, linear part, 7 for the nonlinear part).

In many occasions, the computed bounds are obtained from the norms
(Sect. 2.3) of certain power series. In Sect. 5, we give effective methods on
the real numbers for bounding such norms. In Sect.8 we explain how to
implement some of these methods efficiently and soundly using integer and
floating-point arithmetics. In Sect. 9 we study a few cases.

As with other numerical domains such as those developed for Astrée, we
proceed as follows: the exact floating-point concrete semantics is overap-
proximated by a mathematically simple semantics on real numbers, which
is itself overapproximated by proved bounds, which are themselves further
overapproximated by an executable semantics (implemented partly in exact

3

delay

delay

+

+

compositional blocks

feedback input

delay

delay

+

+

feedback sub−filter

normal
input

×β1

×β2

×α0

×α2

×α1

Figure 1: Decomposition of the TF2 filter Sn = α0En + α1En−1 + α2En−2

+ β1Sn−1 + β2Sn−2 into elementary blocks. The compositional blocks are
chained by serial composition. Inside each compositional on the left, ele-
mentary gates are composed in parallel. On the right hand side, a feedback
loop is used.

arithmetics, partly using some variant of interval floating-point computa-
tions). This ensures the soundness of the effective computations.

This paper is an extended version of [18].

1.3 Introduction to linear filters and Z-transforms

Let us consider the following piece of C code, which we will use as a running
example (called “TF2”):

Y = A0*I + A1*Ibuf[1] + A2*Ibuf[2];

O = Y + B1*Obuf[1] + B2*Obuf[2];

Ibuf[2]=Ibuf[1]; Ibuf[1]=I;

Obuf[2]=Obuf[1]; Obuf[1]=O;

All variables are assumed to be real numbers (we shall explain in later
sections how to deal with fixed- and floating-point values with full generality
and soundness). The program takes I as an input and outputs O; A0 etc.
are constant coefficients. This piece of code is wrapped inside a (reactive)
loop; the time is the number of iterations of that loop. Equivalently, this
filter can be represented by the block diagram in Fig. 1.

Let us note a0 etc. the values of the constants and in (resp. yn, on) the
value of I (resp. Y, O) at time n. Then, assuming ok = 0 for k < 0, we can
develop the recurrence: on = yn+b1.on−1+b2.on−2 = yn+b1.(yn−1+b1.on−2

+b2.on−3)+b2.(yn−2+b1.on−3+b2.on−4) = yn+b1.yn−1+(b2+b2
1b0).yn−2+. . .

where . . . depends solely on yk with k < n − 2. More generally: there

4

exist coefficients c0, c1. . . such that for all n, on =
∑

k=0 ckyn−k. These
coefficients solely depend on the bk; we shall see later some general formulas
for computing them.

But, itself, yn = a0.in + a1.in−1 + a2.in−2. It follows that there exist
coefficients c′n (depending on the ak and the bk) such that on =

∑

k=0 c′kin−k.
We again find a similar shape of formula, known as a convolution product.
The c′k sequence is called a convolution kernel, mapping i to o.

Let us now suppose that we know a bound MI on the input: for all n,
|in| ≤ MI ; we wish to derive a bound MO on the output. By the triangle
inequality, |On| ≤

∑

k=0 |c′k|.MI . The quantity
∑

k=0 |c′k| is called the l1-
norm of the convolution kernel c′.

What our method does is as follows: from the description of a complex
linear filter, it compositionally computes compact, finite representations of
convolution kernels mapping the inputs to the outputs of the sub-blocks of
the filter, and accurately computes the norms of these kernels (or rather,
a close upper bound thereof). As a result, one can obtain bounds on any
variable in the system from a bound on the input.

2 Linear filters

In this section, we give a rough outline of what we designate by linear filters
and how their basic properties allow them to be analyzed.

2.1 Notion of filters

We deal with numerical filters that take as inputs and output some (un-
bounded) discrete streams of floating-point numbers, with causality ; that
is, the output of the filter at time t depends on the past and present inputs
(times 0 to t), but not on the future inputs.5 In practice, they are imple-
mented with a state, and the output at time t is a function of the input at
time t and the internal state, which is updated. Such filters are typically
implemented as one piece of a synchronous reactive loop [2, §4]:

while(true) {
...

(state, output) = filter(state, input);

}
5There exist non-causal numerical filtering techniques One striking example is Mat-

lab’s filtfilt function, which runs the same causal filter in one direction, then in the
reverse-time direction over the same signal; the overall filter has zero phase shift at all
frequencies, a very desirable characteristic in some applications. Unfortunately, as seen
on this example, non-causal filters require buffering the signal and thus are not usable for
real-time applications. They are outside the scope of this paper.

5

2.2 Linear filters

We are particular interested in filters of the following form (or compounds
thereof): if (sk) and (ek) are respectively the input and output streams of
the filter, there exist real coefficients α0, α1, . . . αn and β1, . . .βm such that
for all time t, st (the output at time t) is defined as:

st =

n∑

k=0

αket−k +

m∑

k=1

βkst−k (1)

or, to make apparent the state variables,

st−m+1
...
st

 =

0 1
...

. . .
. . .

0 · · · 0 1
βm · · · β2 β1

.

st−m
...

st−1

 +

0 · · · 0
...

...
0 · · · 0
αn · · · α0

.

et−n
...

en

 (2)

If the β are all null, the filter has necessarily finite impulsional response
(FIR) while in the opposite case, it may have infinite impulsional response
(IIR). The reason for this terminology is the study of the reaction of the
system to a unit impulse (e0 = 1 and ∀k > 0 ek = 0). In the case of
a FIR filter, n + 1 time units after the end of the impulse, the output
becomes permanently null. In the case of an IIR filter, the output (when
computed ideally in the real numbers) never becomes permanently null, but
rather follows some exponential decay if the filter is stable. A badly designed
IIR filter may be unstable. Furthermore, it is possible to design filters that
should be stable, assuming the use of real numbers in computation, but that
exhibit gross numerical distortions due to the use of floating-point numbers
in the implementation.

Linear filters are generally noted using their Z-transform6

α0 + α1z + · · · + αnzn

1 − β1z − · · · − βmzm
(3)

The reasons for this notation will be made clear in Sect. 4.5. In particular,
all the ideal compound linear filters expressible with elementary elements
such as products by constants, delays, etc. can be summarized by their
Z-transform (Sect. 4); that is, they are equivalent to a filter whose output is
a linear combination of the last n inputs and m outputs. The Z-transform
will also be central in the semantics of floating-point and fixed-point filters
(Sect. 7).

6An alternate notation [12] replaces all occurrences of z by z−1. In such a formalism,
conditions such as “the poles must have a module greater than 1” are replaced by the
equivalent for the inverse, e.g. “the poles must have a module strictly less than 1”. We
chose polynomials in z because they allow using normal power series instead of Laurent
series.

6

To summarize some salient points of the following sections, FIR filters
given by α’s are very easy to deal with for our purposes, while the stability
and decay conditions of IIR filters are determined by the study of the above
rational function and especially the module of the zeroes of the Q(z) =
1 − β1z − · · · − βmzm polynomial (z0 is a zero of Q if Q(z0) = 0). Those
roots are the inverses of the eigenvalues of the transition matrix. Specifically,
the filter is stable if all the zeroes have module greater than 1.

2.3 Bounding the response of the filter

The output streams of a linear filter, as an element of RN, are linear functions
of the inputs and the initial values of the state variables (internal state
variables).

More precisely, we shall see later that, neglecting the floating-point errors
and assuming zero in the initial state variables, the output S is the convo-
lution product Q ⋆ E of the input E by some convolution kernel Q: there
exists a sequence (qn)n∈N of reals such that for any n, sn =

∑n
k=0 qken−k.

The filter is FIR if this convolution kernel is null except for the first few
values, and IIR otherwise. If the initial state values r1, . . . , rn are nonzero,
then S = Q0 ⋆ E + r1Q1 + rnQn where the Qi are convolution kernels.

Let E : (ek)n∈N be a sequence of real or complex numbers. We call L∞-
norm of E, if finite, and note ‖E‖∞ the quantity supk∈N |ek|. Because of the
isomorphism between sequences and formal power series, we shall likewise
note ‖∑

k akz
k‖∞ = supk |ak|. We are interested in bounding the response

of the filter with respect to the infinite norm: i.e. we want to construct a
function f such that ‖S‖∞ ≤ f(‖E‖∞). Said otherwise, if for all the past of
the computation since the last reset of the filter, |e| was less than M , then
has |s| has been always less than f(|M |) since the last reset.

If we do not have initialization conditions nor floating-point errors, f will
be linear, otherwise it will be affine. Let us place ourselves for now in the
former case: we are trying to find a number g such that ‖S‖∞ ≤ g.‖E‖∞.
For any linear function f mapping sequences to sequences, we call subor-
dinate infinite norm of f , noted, ‖f‖∞ the quantity sup‖x‖∞=1 ‖f(x)‖∞,
assuming is is finite. We are thus interested in g = ‖E 7→ Q ⋆ E‖∞. If this
quantity is finite, the filter is stable; if it is not, it is unstable: it is possible
to feed an input sequence to the filter, finitely bounded, which we result in
arbitrarily high outputs at some point in time.

For a sequence (or formal series) A, we note ‖A‖1 =
∑∞

k=0 |ak|, called
its L1-norm, if finite. Then we have the following crucial and well-known
result [12, §11.3]:

Lemma 1. ‖E 7→ Q ⋆ E‖∞ = ‖Q‖1.

Proof. We shall first prove that ‖E 7→ Q ⋆ E‖∞ ≤ ‖Q‖1; that is, for any
sequences Q and E, ‖Q ⋆ E‖∞ ≤ ‖Q‖1.‖E‖∞. Let us note C = Q ⋆ E.

7

cn =
∑n

k=0 qken−k, therefore |cn| ≤
∑n

k=0 |qk||en−k| ≤ ‖e‖∞.
∑n

k=0 |qk| ≤
‖e‖∞.‖Q‖1.

We shall then show equality. Let M < ‖O‖1. Recall that ‖Q‖∞ =
∑∞

k=0 |qk|. Then there exists N such that
∑N

k=0 |qk| ≥ M . Choose ek = 1
if k ≤ N and qn−k ≥ 0, ek = −1 otherwise. Clearly, ‖E‖∞ = 1, and
cn =

∑n
k=0 ekqn−k =

∑n
k=0 |qn−k| ≥ M , therefore ‖Q ⋆ E‖∞ ≥ M and

‖E 7→ Q ⋆ E‖∞ ≥ M . Since this is valid for any M < ‖Q‖1, then the
‖E 7→ Q ⋆ E‖∞ = ‖Q‖1 equality holds.

Note that most of the discussion on numerical filters found in the signal

processing literated is based on the L2-norm ‖x‖2 =
(∑∞

k=0 |xk|2
)1/2

(which
is adapted to energy considerations) — for instance, for estimating the fre-
quency spectrum of the rounding noise. We shall never use this norm in this
article.

3 Convolution kernels as formal power series

In the preceding section, we said that the output of the ideal filter is just the
convolution of the input with some (possibly infinite) kernel. In this section,
we show how formal power series are a good framework for describing this
convolution, and basic facts about the kernels of the filters we are interested,
given as rational functions.

3.1 Formal power series

We shall first recall a few definitions and facts about formal power series.
The algebra formal power series K[[X]] over a field K = R or C is the
vector space of countably infinite sequences KN where the product of two
sequences A : (ak)k∈N and B : (bk)k∈N is defined as A.B : (ck)k∈N by, for
all n ∈ N, cn =

∑n
k=0 akbn−k (convolution). Remark that for any algebra

operation (addition, subtraction, multiplication) and any N , we obtain the
same results for the coefficients cn for n ≤ N as if A and B were the
coefficients of polynomials and we were computing the coefficient cn, the n-
th degree coefficient of the polynomial A.B.7 For this reason, we shall from
now on note A(z) =

∑∞
k=0 akz

k by analogy with the polynomials. Note that
for most of this article, we are interested in formal power series and not
with their possible interpretation as holomorphic functions (i.e. it is not a
problem at all if the convergence radius of the

∑∞
k=0 akz

k series is null); we
shall note the rare occasions when we need convergence properties (and we
shall prove the needed convergences). If all the ak are null except for a finite
number, the formal series A is a polynomial.

7One can therefore see K[[X]] as the projective limit of the K[X]/Xn quotient rings
with the canonical K[X]/Xn+1

→ K[X]/Xn morphisms in the category of rings.

8

Wherever we have a convolution (ak) ⋆ (bk) of sequences, we can equiv-
alently consider a product A.B of formal series.

We shall often wish to take the inverse of a power series, and the quotient
A/B of two series. This is possible for any series

∑

k bkb
k such that b0 is

not null. We define a sequence of series A(n) as follows: A(0) = A, A(n+1) =

A(n) − qn ∗ zkB where qn = a
(n)
n /b0. Note that for all n ∈ N, k < n A

(n)
k = 0

and A = A(n+1) +
∑n

k=0 qkz
kB; thus for all n, A ≡ ∑n

k=0 qkz
kB (mod Xn),

which may equivalently written as A ≡ Q.B (mod Xn). Therefore, A =
Q.B, which explains why Q can be called the quotient of A by B.

A very important case for the rest of the paper is 1/(1 − z) =
∑∞

k=0 zk.
Another important constatation is that this quotient formula applied to

S = E.
α0 + α1z + · · · + αnzn

1 − β1z − · · · − βmzm
(4)

where S and E are expressed as formal power series is equivalent to running
the IIR filter defined by the above rational function with E the inputs and
S the output.

3.2 Stability condition

We manipulate convolution kernels expressed as rational functions where the
coefficient of degree 0 of the denominator is 1. We shall identify a rational
function with the associated formal power series. Using complex analysis, we
shall now prove the following lemma, giving the stability condition familiar
to filter designers:

Lemma 2. ‖Q‖1 < ∞ if and only if all the poles of Q are outside of the
|z| ≤ 1 unit disc.

That is: a filter is stable in ideal real arithmetics if and only if all its
poles have module greater than 1.

Proof. Consider the poles of the rational function Q. If none are in the
|z| ≤ 1 unit disc, then the radius of convergence of the power series of
the meromorphic function Q around 0 has a radius of convergence strictly
greater than 1. This implies that the series converges absolutely for z = 1
and thus that ‖Q‖1 is finite. On the other hand, if ‖Q‖1 < ∞ then the
series converges absolutely within the |z| ≤ 1 unit disc and no pole can be
within that disc.

4 Compositional semantics: real field

Now, we have a second look at the basic semantics of linear filters, in order
to give a precise and compositional exact semantics of compound filters on
the real numbers. We show that any linear filter with one input and one
output is equivalent (on the real numbers) to a filter as defined in §2.2.

9

4.1 Definition

A filter or filter element has

• ni inputs I1, . . . , Ini
(collectively, vector I), each of which is a stream

of real numbers;

• nr reset state values r1, . . . , rnr (collectively, vector R), which are the
initial values of the state of the internal state variables of the filter
(inside delay operators) at the beginning of the computation;

• no output streams O1, . . . , Ono (collectively, vector O).

If M is a matrix (resp. vector) of rational functions, or series, let Nx(M)
be the coordinate-wise application of the norm ‖·‖x to each rational function,
or series, thereby providing a vector (resp. matrix) of nonnegative reals. We
note mi,j the element in M at line i and column j.

We note by R(z) the field of rational functions over R and by Qz the
ring of rational functions of the form P (z)/(1 − zQ(z)) where P and Q are
polynomials (that is, the ring of rational functions such that the constant
term of the denominator is not null).8 When F ∈ Qz, we note ‖F‖1 the
L1-norm of the associated power series.

When computed upon the real field, a filter F is characterized by:

• a matrix TF ∈ Mno,ni
(Qz) such that ti,j characterizes the linear

response of output stream i with respect to input stream j;

• a matrix DF ∈ Mno,nr(Qz) such that di,j characterizes the (decay-
ing) linear response of output stream i with respect to reset value j.

We note F (I,R) the vector of output streams of filter F over the reals, on
the vector of input streams I and the vector of reset values R. Then we
have

∀I ∈ (RN)ni ∀R ∈ Rnr F (I,R) = TF .I + DF .R (5)

When the number of inputs and outputs is one, and initial values are
assumed to be zero, the characterization of the filter is much simpler —
all matrices and vectors are scalars (reals, formal power series or rational
functions), and TD is null. We recommend that the reader instantiates our
framework on this case for better initial understanding.

4.2 Basic arithmetic blocks

Plus node implemented in floating point type f : ni = no = 1,
T =

[
1 1

]
, D = [];

8This last ring is the localization of the ring R[z] of real polynomials at the prime ideal
(z) generated by z, thus the notation.

10

m
n

unit delay

n
F

Figure 2: A feedback filter

Scale by k node implemented in floating point type f : T =
[
k
]
, D = [];

Delay without initializer (delay for n clock ticks): T =
[
zn

]
, D = 0;

Unit delay with initializer : T =
[
z
]
, D =

[
1
]
;

4.3 Composition

Parallel composition T =

[
T1 0
0 T2

]

, D =

[
D1 0
0 D2

]

;

Serial composition through filter 1, then 2:
T = T2.T1, D =

[
T2.D1 D2

]
.

4.4 Feedback loops

Let us consider a filter consisting of a filter F with m+n inputs and n outputs
and feedback loops running the n outputs to the last n inputs through unit
delays. (Fig. 2) We split TF into sub-matrices TI ∈ Mn,m(Qz) and
TO ∈ Mn,n(Qz) representing respectively the responses to the global
inputs and to the feedback loop. The system then verifies the linear equation
over the vectors of formal power series: O = TF

I .I + zTF
O .P +D.R, and thus

(Idn − zTF
O)O = TF

I .I + DF .R.
By Cor. 4, Idn − zTF

O is invertible in Mn,n(Qz),
9 thus T = (Idn −

zTF
O)−1.TF

I and D = (Idn−zTF
O)−1.DF . Section 8.2 explains how to perform

such computations in practice.

4.5 Examples

A second order IIR linear filter is expressed by S = α0.E + α1.delay2(E) +
α2.delay2(E) + β1.delay1(S) + β2.delay2(S). This yields an equation S =
(α0 + α1z + α2z

2)E + (β1z + β2z
2)S. This equation is easily solved into

S = (α0 + α1z + α2z
2)(1 − β1z − β2z

2)−1.E.

9This result is not surprising, because the system, by construction, must admit causal
solutions.

11

TF2TF2+
E S

delay (2)

N2N1

×− k

Figure 3: A compound filter consisting of two second order filters and a feed-
back loop. Each TF2 node is a second-order filter whose transfer function
is of the form (α0 + α1z + α2z

2)(1 − β1z − β2z
2)−1.

In Fig. 3, we first analyze the two internal second order IIR filters sepa-
rately and obtain

Q1 =
α0 + α1z + α2z

2

1 − β1z − β2z2
(6)

Q2 =
a0 + a1z + a2z

2

1 − b1z − b2z2
(7)

(8)

The we analyze the feedback loop and obtain for the whole filter a ra-
tional function with a 6th degree dominator:

S =
Q1.Q2

1 + kz2.Q1.Q2
.E (9)

where Q1 and Q2 are the transfer function of the TF2 filters (form (α0 +
α1z + α2z

2)(1 − β1z − β2z
2)−1), which we computed earlier.

5 Bounding the 1-norm of series expansions of ra-

tional functions

5.1 Inverses of products of affine forms

Let ξi be complex numbers of module strictly greater than 1. Let Q(z) be the
formal power series

∏n
i=1 Qi where the Qi(z) are the power series (z− ξi)

−1.

The n-th degree coefficient of qi is −ξ
(n+1)
i , by the easy expansion:

1

z − ξ
=

−1/ξ

1 − z/ξ
(10)

q(n), the coefficient of zn in the Q power series, is obtained by successive
convolution products; it is

q(n) =
∑

∀i,ki∈N∧
∑

i ki=n

∏

q
(ki)
i (11)

12

We can therefore bound its module:
∣
∣
∣q(n)

∣
∣
∣ ≤

∑

∀i,ki∈N∧
∑

i ki=n

∏ ∣
∣
∣q

(ki)
i

∣
∣
∣ (12)

The right hand side of the preceding inequality is just the coefficient

q̇(n) of the series
∏n

i=1 Q̇i where q̇
(n)
i =

∣
∣
∣q

(n)
i

∣
∣
∣ = |ξi|(n+1) is the n-th order

coefficient of the 1
|ξi|−z series. Since |ξ1| > 1, the convergence radius of

this last series is strictly greater than 1; furthermore, all its coefficients are
nonnegative; therefore, the sum of its coefficients is the value of the function
at z = 1, that is, 1

|ξi|−1 . We can therefore give an upper bound:

∥
∥
∥
∥

1

(z − ξ1) · · · (z − ξn)

∥
∥
∥
∥

1

≤ 1

(|ξ1| − 1) · · · (|ξn| − 1)
(13)

5.2 Rough and less rough approximation in the general case

Let P (z)/Q(z) be a rational function, with P (z) a polynomial of degree
m Q(z) a monic polynomial of degree n. Let zeroes(Q) be the multiset of
zeroes of Q (multiple zeroes are counted with their multiplicity). P (z) =
∑

k pkz
kQ(z), thus ‖P‖1 ≤ ∑

k |pk|.‖Q‖1. Therefore

∥
∥
∥
∥

P

Q

∥
∥
∥
∥

1

≤ ‖P‖1
∏

ξ∈zeroes(Q)(|ξ| − 1)
(14)

This is, however, a very coarse approximation. Intuitively, the mass of
the convolution kernel expressed by the P/Q series lies in its initial terms.
Still, with the above formula, we totally neglect the cancellations that hap-
pen in the computation of this initial part of the kernel; i.e. instead of
considering |a− b|, we bound it by |a|+ |b|. The solution is to split ‖P/Q‖1

into ‖P/Q‖<N
1 and ‖P/Q‖≥N

1 . We shall elaborate on this in Sect. 5.5.

5.3 Second degree denominators with complex poles

A common case for filtering applications is when the denominator is a second
degree polynomial Q of negative discriminant. In this case, the roots of Q
are two conjugate complex numbers ξ and ξ̄ and the decomposition is as
follows:

P (z)

Q(z)
= P0(z) +

λ

z − ξ
+

λ̄

z − ξ̄
(15)

where λ = P (ξ)/(ξ − ξ̄). We shall for now leave P0 out.
We are interested in the coefficients ak of this series:

ak = −
(

λ

ξk+1
+

λ̄

ξ̄k+1

)

(16)

13

Let us write λ = |λ|eiα and ξ = |ξ|eiβ ; then

ak = − |λ|
|ξ|k+1

(

eiα.e−i(k+1)β + e−iα.ei(k+1)β
)

= −2
|λ|

|ξ|k+1
cos (α − (k + 1)β) (17)

To summarize, the sequence is a decreasing exponential of rate 1/|ξ| mod-
ulated by a sine wave and multiplied by a constant factor |λ|/|ξ|. There-
fore, computing |λ| and |ξ| will be of prime importance. If Q is monic
Q(z) = z2 + z1x + z0, then |ξ|2 = ξξ̄ = c0. In the case of a rational function
of the form

P (z)

Q(z)
=

α0 + α1z + α2z
2

1 − β1z − β2z2
(18)

then |ξ| = |β2|−1/2 and λ = P (ξ)/(ξ − ξ̄). Should we prefer not to compute
with complex numbers,

|λ|2 = λλ̄ =
P (ξ)(ξ̄ − ξ) + P (ξ̄)(ξ − ξ̄)

(ξ − ξ̄)2
(19)

The numerator is a symmetric polynomial in ξ and ξ̄, roots of Q, and there-
fore can be expressed as a polynomial in the coefficients of Q ; its coefficients
are polynomials in the coefficients of P , therefore the whole polynomial can
be expressed as a polynomial in the coefficients of P and Q. The denomi-
nator is just the discriminant of Q.

|λ|2 =
α2

2 + β2

(
−α1

2 − α0 α1 β1 + α0
2 β2

)
+ α2

(
α1 β1 + α0

(
β1

2 + 2 β2

))

−(β1
2 + 4 β2)

(20)

We are now interested in bounding |ak|. If we just use | cos (α − (k + 1)β) |
≤ 1, we come back to the earlier bounds obtained by totally separating the
series arising from the two poles.

We shall now obtain a better bound using the following constatation:
for any real θ,

| cos θ| =
√

cos2 θ =
√

(1 + cos(2θ)) /2 ≤ 2−1/2(1 + cos(2θ)/2) (21)

using the concavity inequality
√

1 + x ≤ 1 + x/2. Therefore

|ak| ≤
√

2
|λ|

|ξ|k+1
(1 + cos(2(α − (k + 1)β))/2) (22)

Now, we are interested in bounding
∑∞

k=N [ak|. For any a and b, and 0 ≤
r < 1

∞∑

k=0

cos(a + kb)rk =
cos a − r cos(a − b)

1 − 2r cos b + r2
(23)

14

Let us now see the quality of such bounds S1 ≤ S2, S1 ≤ S3:

S1 =

∞∑

k=0

| cos(a + kb)|rk (24)

S2 =

∞∑

k=0

rk =
1

1 − r
(25)

S3 =
1√
2

∞∑

k=0

(1 + 2 cos(2(a + kb)))rk (26)

S3 =
1√
2

(
1

1 − r
+

1

2
.
cos(2a) − r cos(2(a − b))

1 − 2r cos b + r2

)

(27)

Note that S3 is not necessarily better than S2 (for a = 0 and b = 0, S3/S2 =
3/(2

√
2) ≃ 1.06). However, some moderate gains may be obtained ; for

instance, for r = 0.7, a = 0 and b = 0.3, S1 ≃ 2.60, S2 ≃ 3.33 and S3 ≃ 2.80.
For practical purposes, the bound obtained using S2 is very sufficient and
easy to compute. We thus opt for this one.

5.4 Finer bounds using partial fraction decomposition

It is well known that if Qi are pairwise prime polynomials, and Q is their
product, then for any polynomial P prime with Q the fraction P/Q admits
a partial decomposition as P/Q = P0 +

∑

i Pi/Qi, where P0 is the Euclidean
quotient of P by Q and the degree of Pi is strictly less than that of Qi.

Using the fundamental theorem of algebra, it follows that if the ξi are
the distinct roots of Q and mi their multiplicity, then there exist λi,j ∈ C

such that

P/Q = P0 +
∑

i

mi∑

j=1

λi,j

(z − ξi)j
(28)

Since Q is a real polynomial, its roots are either real, either pairs of ξi and
conjugate ξi′ = ξ̄, with the same multiplicity, and also for all j, λi′,j = λ̄i′, j.

However, while theoretically sound, this result is numerically delicate
when there are multiple roots, or different roots very close to each other.[13,
§1.3] For instance, let us consider a first-degree polynomial P and a second-
degree polynomial Q, then

P (z)

Q(z)
=

λ1

z − ξ1
+

λ2

z − ξ2
(29)

and we obtain λ1 = P (ξ1)/(ξ2 − ξ1) (and λ2 = P (ξ2)/(ξ1 − ξ2)). Both
numbers will get very large, in inverse proportion of ξ1 − ξ2. While it is
quite improbable that we should analyze filters where two separate poles
have been intentionally be placed very close together, it is possible that
we analyze filters with multiple poles (for instance, the composition of a

15

filter with itself), and, with numerical computations, we would have two
extremely close poles and thus a dramatic numerical instability.

We still can proceed with a radius r decomposition of P/Q [13, Def 1.3]:
instead of factoring Q into a product of z − ξi factors, we factor it into
a product of Qi such that for any i, and any roots ξ1 and ξ2 of Qi, then
|ξ1 − ξ2| < 2r. The same reference describes algorithms for performing such
decompositions. We obtain a decomposition of the form

P

Q
= P0 +

∑

i

Pi/Qi (30)

where the roots of each Qi are close together, the degree of Pi is less than
the degree of Pi. From this we obtain the bound

∥
∥
∥
∥

P

Q

∥
∥
∥
∥

1

≤ ‖P0‖1 +
∑

i

‖Pi‖.
∥
∥
∥
∥

1

Qi

∥
∥
∥
∥

1

(31)

which we can bound using the inequalities given in the preceding subsections.
We can, as before, improve on this bound by splitting the series between an
initial sequence and a tail.

5.5 Development of rational functions and normed bounds

Let P (z)/Q(z) ∈ Qz be a rational function representing a power series
by its development (un)n∈N around 0. We wish to bound ‖u‖1, which we
shall note ‖P/Q‖1. As we said before, most of the mass of the development
of P/Q lies in its initial terms, whereas the “tail” of the series is negligible
(but must be accounted for for reasons of soundness). We thus split P/Q
into an initial development of N terms and a tail, and use

‖P/Q‖1 = ‖P/Q‖<N
1 + ‖P/Q‖≥N

1 (32)

‖P/Q‖1 is computed by computing explicitly the N first terms of the de-
velopment of P/Q. We shall see in Sect. 8.3 the difficulties involved in
performing such a computation soundly using interval arithmetics.

Let dQ be the degree of Q. The development D of P/Q yields an equation
P (z) = D(z).Q(z) + R(z).zN . We have P (z)/Q(z) = D(z) + R(z)/Q(z).zN

and thus
‖P/Q‖≥N

1 = ‖R/Q‖1 ≤ ‖R‖∞.‖1/Q‖1 (33)

The preceding sub-sections give a variety of methods for bounding ‖1/Q‖1

using the zeroes of Q(z); Section 5.2 gives a rough method based on lower
bounds on the absolute values of the zeroes of Q(z). ‖R‖∞ is bounded
by explicit computation of R using interval arithmetics; as we shall see, we
compute D until the sign of the terms is unknown — that is, when the norm
of the developed signal is on the same order of magnitude as the numerical

16

error on it, which happens, experimentally, when the terms are small in
absolute values. Therefore, ‖R‖∞ is small, and thus the roughness of the
approximation used ‖1/Q‖1 does not matter much in practice.

6 Precision properties of fixed- or floating-point

operations

In this section, we shall recall a few facts on the errors introduced by fixed-
and floating-point arithmetics. They will be sufficient for all our reasonings,
without need for further knowledge about numerical arithmetics.

Most types of numerical arithmetics, including the widely used IEEE-754
floating-point arithmetic, implemented in hardware in all current microcom-
puters, define the result of elementary operations as follows: if f is the ideal
operation (addition, subtraction, multiplication, division etc.) over the real
numbers and f̃ is the corresponding floating-point operation, then f̃ = r ◦ f
where r is a roundoff function. The roundoff function chooses a value r(x)
that can be exactly represented in the used fixed- or floating-point data
type, and is very close to x; specifically, most systems, including all IEEE-
754 systems, provide the following roundoff functions:10

• round to 0: r(x) is the representable real nearest to x in the direction
of 0;

• round to +∞: r(x) is the representable real nearest to x in the direc-
tion of +∞;

• round to −∞: r(x) is the representable real nearest to x in the direc-
tion of −∞;

• round to nearest (generally, the default mode): r(x) is the repre-
sentable real nearest to x.

In this description, we leave out the possible generation of special values
such as infinities (+∞ and −∞) and not-a-number (NaN), the latter indi-
cating undefined results such as 0/0. We assume as a precondition to the
numerical filters that we analyze that they are not fed infinities or NaNs —

10On Intel x86 systems, the description of the exact properties of the floating-point
arithmetics is complicated by the fact that, by default, with most operating systems and
languages, the 80287-compatible floating-point unit performs computations internally us-
ing 80-bit long double precision numbers, even when the compiled program suggests the
use of standard 64-bit double precision IEEE numbers. Note that such usage of supple-
mental precision for intermediate computations is allowed by the C standard, for example.
The final result of the computation may therefore depend on the register scheduling and
optimizations performed by the compiler. Since we reason by maximal errors, our bounds
are always sound (albeit pessimistic) in the face of such complications, whatever the com-
piler and the system do.

17

indeed, in some DSP (digital signal processor) implementations, the hard-
ware is incapable of generating or using such values, and in many other
implementations the system is configured so that the generation or usage
of infinities issues an exception resulting in bringing the system into a fail-
ure mode. Our framework provides constructive methods for bounding any
floating-point quantity x inside the filters as ‖x‖∞ ≤ c0 +

∑n
k=1 ck.‖ek‖∞

where the ek are the input streams of the system; it is quite easy to check that
the system does not overflow (‖x‖ < M); one can even easily provide some
very wide sufficient conditions on the input (‖ek‖∞ ≤ (M − c0)/(

∑n
k=1 ck)).

We will not include such conditions in our description, for the sake of sim-
plicity.

For any arithmetic operation, the discrepancy between the ideal re-
sult x and the floating-point result x̃ is bounded, in absolute value, by
max(εrel|x|, εabs) where εabs is the absolute error (the least positive floating-
point number)11 and εrel is the relative error incurred (εabs = 2−1074 ≃
4.94 · 10−324 and εrel = 2−53 ≃ 1.11 · 10−16 for IEEE double precision opera-
tions, for the worst case with respect to rounding modes). We actually take
the coarser inequality

|x − x̃| ≤ εrel|x| + εabs (34)

See [9] for more details on floating-point numbers and [17] for more about
the affine bound on the error.

In the case of fixed-point arithmetics, we have εrel = 0 and εabs = δ (δ is
the smallest positive fixed-point number) if the rounding mode is unknown
(round to +∞, −∞ etc.) and δ/2 is it is the rounding mode is known to be
round-to-nearest.

7 Compositional semantics: fixed- and floating-

point

In this section, we give and a compositional abstract semantics of filters on
the floating-point numbers.

7.1 Constraint on the errors

Our abstract semantics characterizes a fixed- or floating-point filter F̃ by:

• the exact semantics of the associated filter F over the real numbers

11The absolute error results from the underflow condition: a number close to 0 is
rounded to 0. Contrary to overflow (which generates infinities, or is configured to issue
an exception), underflow is generally a benign condition. However, it precludes merely
relying on relative error bounds if one wants to be sound.

18

• an abstraction of the discrepancy ∆(I) = F̃ (I) − F (I) between the
ideal and floating-point filters.

We transform F̃ (I) into the sum of a term that we can bound very
accurately using algebra and complex analysis, and a nondeterministic input
∆(I) that we cannot analyze accurately and soundly without considerable
difficulties, but for which bounds are available: assuming for the sake of
simplicity a single input and a single output and no initialization conditions,
we obtain an affine, almost linear constraint on the ‖∆(I)‖∞ with respect
to ‖I‖∞: ‖∆(I)‖∞ ≤ εF

rel‖I‖∞ + εF
abs. In short: since the filter is linear, the

magnitude of the error is (almost) linear.
We generalize this idea to the case of multiple inputs and outputs. The

abstract semantics characterizing ∆ is given by matrices εF
rel,T ∈ Mno,ni

(R+)

and εF
rel,D ∈ Mno,nr(R+) and a vector εF

abs ∈ Rno
+ such that

‖F (I,R) − F̃ (I,R)‖∞ ≤ εF
rel,T .N∞(I) + εF

rel,D.N∞(R) + εabs. (35)

where F̃ (I,R) is the output on the stream computed upon the floating-point
numbers on input streams I and initial values I.

7.2 Basic arithmetic blocks

Plus node implemented in floating point type f : ni = no = 1, T =
[
1 1

]
,

D = 0, εrel,T =
[

εf
rel εf

rel

]

, εrel,D = 0, εabs = εf
abs;

Scale by k node implemented in floating point type f : T =
[
k
]
, D = 0,

εrel,T = |k|.εf
rel, εrel,D = 0; εabs = εf

abs;

Delay without initializer (delay for n clock ticks): T =
[
zn

]
, D = 0,

εrel,T = 0, εrel,D = 0, εabs = 0

Unit delay with initializer : T =
[
z
]
, D =

[
1
]
, εrel,T = 0, εrel,D = 0,

εabs = 0

Parallel composition block matrices and vectors:

εrel,T =

[
ε1
rel,T 0

0 ε2
rel,T

]

, εrel,D =

[
ε1
rel,D 0

0 ε2
rel,D

]

, εabs =

[
ε1
abs

ε2
abs

]

.

7.3 Serial composition

The serial composition of two filters is more involved. Let F and G be
the ideal linear transfer functions of both filters, and F̃ and G̃ the transfer
functions implemented over floating-point numbers.

We have ∀I N∞(F (I) − F̃ (I)) ≤ εF
rel.N∞(I) + εF

abs (mutatis mutandis
for G). We are interested in ε = N∞(F (I) − F̃ (I)): that is, a vector of

19

positive numbers indexed by the outputs of the system such that on every
coordinate k, the difference δ between output k computed over the reals and
the floating-point numbers over the same input I verifies ‖δ‖∞ ≤ εk. We
extend ≤ to real vectors coordinate-wise.

The following is easier to understand when each filter has a single input
and a single output; then, all vectors and matrices are scalars (either in R

or Qz, and Nx(v) is simply ‖v‖x.

The vector R of (re)initialization values is split between RF (those con-
cerning F) and RG (those concerning G). We split the overall output error
of the system between the part that was introduced by the first filter (and
then amplified or attenuated by the second filter) and the part that was
introduced by the second filter, and use the triangle inequality:

N∞((G ◦ F)(I,R) − (G̃ ◦ F̃)(I, R))

≤ N∞(G ◦ F (I) − G ◦ F̃ (I)) + N∞(G ◦ F̃ (I) − G̃ ◦ F̃ (I))

≤ N1(G).(F (I) − F̃ (I)) + εG
rel,T .N∞(F̃ (I)) + εG

rel,D.N∞(RG) + εG
abs

≤ N1(G).(F (I)− F̃ (I)) + εG
rel,T .(N∞(F̃ (I)) + N∞(F̃ (I)− F (I))) + εG

rel,D.N∞(RG) + εG
abs

≤ (N1(G) + εG
rel,T).N∞(F̃ (I) − F (I)) + εG

rel,D.N∞(RG) + εG
rel.N∞(F (I)) + εG

abs

≤ (N1(G) + εG
rel,T).(εF

rel,T .N∞(I) + εF
rel,D.N∞(RF) + εF

abs)

+ εG
rel,T .N1(F).N∞(I) + εG

rel,D.N∞(RG) + εG
abs

≤

[

(N1(G) + εG
rel,T).εF

rel,T + εG
rel,T .N1(F)

]

.N∞(I)

+
[

(N1(G) + εG
rel).ε

F
rel,D

]

.N∞(RF) +
[

εG
rel,D

]

.N∞(RG)

+
[

(N1(G) + εG
rel).ε

F
abs + εG

abs

]

(36)

Thus εG◦F
rel,T = (N1(G) + εG

rel).ε
F
rel + εG

rel.N1(F),

εG◦F
rel,D =

[
(N1(G) + εG

rel).ε
F
rel,D εG

rel,D

]
, and εG◦F

abs = (N1(G)+εG
rel).ε

F
abs +εG

abs.

7.4 Feedback loops

Let us call o(n) the vector of outputs of the filter at step n. It is, ideally, a
linear function of the current input, the preceding inputs, and the preceding
outputs. On = L(I≤n, O<N). Let us call L̃ the associated floating-point
function and Õ the floating-point output of the filter. Let us call ∆ = Õ−O.

∆n = L̃(I≤n, Õ<N) − L(I≤n, O<N)

= L̃(I≤n, Õ<N) − L(I≤n, Õ<N)) + L(I≤n, Õ<N) − L(I≤n, O<N)

=
(

L̃(I≤n, Õ<N) − L(I≤n, Õ<N))
)

+ L(0,∆<N) (37)

Let Cn = L̃(I≤n, Õ<N)− L(I≤n, Õ<N)) be the sequence of vectors of “error
creations” at each iteration. Then ∆ verifies the equation ∆ = C + zTF

O .∆.
As before, this means ∆ = (Idn − zTF

O)−1.C and thus that N∞(∆≤n) ≤
N1

(
(Idn − zTF

O)−1
)
.N∞(C≤n).

20

Let us split εF
rel,T ∈ Mn,n+m(R+) into εF

rel,I ∈ Mn,m(R+) and εF
rel,O ∈

Mn,n(R+). Then

N∞(C≤n) ≤ εF
rel,I .N∞(I≤N) + εF

rel,O.N∞(Õ<N) + εF
rel,D.N∞(R) + εF

abs

≤ εF
rel,I .N∞(I≤N) + εF

rel,O.N∞(O<N) + εF
rel,O.N∞(ÕN − O<N

︸ ︷︷ ︸

∆<N

)

+ εF
rel,D.N∞(R) + εF

abs (38)

But then, noting A = N1

(
(Idn − zTF

O)−1
)
,

N∞(∆≤n) ≤ A.(εF
rel,I .N∞(I≤N) + εF

rel,O.N1(T).N∞(I≤N)

+ εF
rel,O.N∞(∆<N) + εF

rel,D.N∞(R) + εF
abs) (39)

Let K1 = A.εF
rel,O ∈ Mn,n(R+) and

K2(ι, ρ) = A.
(
εF
rel,I + εF

rel,O.N1(T)).ι + εF
rel,D.ρ + εF

abs (40)

Then N∞(∆≤n) ≤ K1.N∞(∆<n)+K2(N∞(I), N∞(R)). This means that the
sequence un = N∞(∆<n) verifies u0 = 0 and un+1 ≤ K1.un+K2(N∞(I), N∞(R)).
This implies that for all n, un is less than the least fixed point L of v 7→
K1.v + K2(N∞(I), N∞(R)).

Recall that the spectral radius of a matrix M of real numbers is the
greatest absolute values of its eigenvalues. If K1 is contracting (spectral
radius less than 1), then v 7→ K1.v + K2(N∞(I), N∞(R)) has a unique
fixed point, by Banach’s fixed point theorem; and 1 − K1 is invertible.
This fixed point is v = (1 − K1)

−1K2(N∞(I), N∞(R)). Let εrel,T = (1 −
K1)

−1.A.
(

εF
rel,I + εF

rel,O.N1(T)
)

, εrel,D = (1 − K1)
−1.εF

rel,D, and εabs = (1 −
K1)

−1.A.εF
abs. Then N∞(∆) ≤ εrel,T .N∞(I) + εrel,D.N∞(R) + εabs.

Recall that K1 = A.εF
rel,O ∈ Mn,n(R+) where A is the matrix of norms

N1

(
(Idn − zTF

O)−1
)
; K1 bounds the amount of floating-point imprecision

that feeds back into the system. A is the amplification bounding matrix
of the filter consisting merely of the feedback loop of the original filter; if
the original filter is stable and well-designed, the coefficients of A should be
moderate. εF

rel,O measures the creation of imprecision in one iteration of the
internal filter; if the filter is numerically well-designed, then its coefficients
are very small. On real-world examples, K1 was on the order of magnitude
of 10−15.

This suggests an effective method for bounding from above the various
quantities of the form (1−K1)

−1.y that we listed, where y is a column vector
(if y is a matrix, then split it into its column vectors).

d∞ = (1 − K1)
−1.y =

∞∑

k=0

Kk
1 .y (41)

21

is the unique fixpoint of φ = x 7→ K1.x + y, which is monotonic and con-
tracting. Consider the matrix norm subordinate to ‖ · ‖∞ on vectors:

‖K1‖ = sup
i

∑

j

k1i,j (42)

This gives a rough bound on d∞:

‖d∞‖∞ ≤
∞∑

k=0

‖K1‖k.‖y‖∞ =
‖y‖∞

1 − ‖K1‖
. (43)

Let dn = (x 7→ K1.x + y)n(y) =
∑n

k=0 Kn
1 .y. d∞ − dn = Kn+1

1 .d∞, thus

‖d∞ − dn‖∞ ≤ Kn+1
1

1 − ‖K1‖
.‖y‖∞. (44)

Therefore, the following is an upper bound on d∞:

B = dn +

(

− Kn+1
1

‖K1‖ − 1
.‖y‖∞

)

.V1 (45)

where V1 is a vector of ones of the same dimension as y. This computa-
tion may be effectively performed in floating-point arithmetic in order to
yield a sound upper bound by computing Eqn. 42 and 45 in round-to-+∞
mode (x 7→ −1/x is monotonic). Remark that we can directly prove the
soundness of the resulting B̃ by checking that K1.B̃ + y is less than B̃ (this
checking phase, though unnecessary assuming a sound implementation, may
be cheaply performed for the sake of security; while it is possible that the
result should be correct and the check fails, this seems very unlikely in prac-
tice, and can be worked around by choosing a slightly larger B̃).

7.5 Trading some accuracy for computation speed; nonlinear

elements

We have split the behavior of the filter into the sum of the convolution of
the input signal by the power development of a rational function, represent-
ing the exact behavior, and some error term. If we compute the rational
functions exactly over Qz, then the rational coefficients might grow ex-
pensively large. It seems silly to use high precision for the coefficients of
a system parameterized by floating-point numbers and implemented with
floating-point errors. Indeed, we may reduce the precision of the coefficients
of the rational function at the expense of adding to the margin of error.

An ideal filter of Z-transform the rational function P (z)/(1−Q(z)) where

P (z) =
∑dp

k=0 pkz
k and Q(z) =

∑dq

k=1 qkz
k with non initialization condition

is equivalent to a filter with ideal input Z-transform P and ideal feedback
Z-transform Q (Fig 4). Such a filter may be soundly approximated by a

22

+P

delay Q

Figure 4: An ideal filter equivalent to a filter of Z-transform P (z)/(1−Q(z)).

non-ideal feedback filter F ♯ with TF ♯

I = P ♯, TF ♯

O = Q♯, εrel,I = ‖P ♯ − P‖1,
εrel,I = ‖Q♯ − Q‖1, εabs = 0, which we know how to solve from Sect. 7.4.

More generally: a filter F may be approximated by a filter F ♯ with
transfer function TF ♯

= TG, εF ♯

rel,T = εF
rel,T + εG

rel,T , εF ♯

rel,D = εF
rel,D + εG

rel,D,

εF ♯

abs = εF
abs where G is the feedback filter with internal filter H given TH

I =
P ♯, TH

O = Q♯, εH
rel,I = ‖P ♯ − P‖1, εH

rel,I = ‖Q♯ − Q‖1, εH
abs = 0.

Note that this gives a generic method for approximating non-linear el-
ements occuring in filters, provided that it is possible to split them into a
linear part and a nonlinear part, the output of which can be bounded by an
affine function of bounds on the absolute value of the inputs.

8 Numerical considerations

We have so far given many mathematical formulas that are exact in the real
field. In this section, we explain how to obtain sound abstractions for these
formulas using floating-point arithmetics.

8.1 Interval arithmetics

IEEE floating-point arithmetics [9] and good extended precision libraries
such as MPFR [7] provide functions computing upward rounded (or rounded-
to-+∞) and downward rounded (or rounded-to-−∞) results: that is, if
f(x1, . . . , xn) is the exact operation on real numbers and f̃− and f̃+ are the
associated floating-point downward and upward operations, then f(x1, . . . , xn)
is guaranteed to be in the interval [f̃−(x1, . . . , xn), f̃+(x1, . . . , xn)], which
will guarantee the soundness of our approach. Furthermore, for many op-
erations, f̃−(x1, . . . , xn) and f̃+(x1, . . . , xn) are guaranteed to be optimal;
that is, no better bounds can be provided within the desired floating-point
format; this will guarantee optimality of certain of our elementary opera-
tions.

23

8.2 Approximate algebraic computations

In many occasions, we ideally would like to compute on real polynomi-
als P =

∑n
k=1 pkz

k but instead we compute on floating-point polynomials
P̃ =

∑n
k=1[lk, hk]zk abstracting the set γ(P̃) of polynomials P such that

∀k pk ∈ [lk, hk]. In practice, it will often be necessary that 0 /∈ [lk, hk]
in order to avoid uncertainties on the degree of the polynomial. All the
usual polynomial operations (addition, multiplication by a scalar, subtrac-
tion, multiplication) may be abstracted using interval arithmetics. We also
include a test contains0(P̃) whether the null polynomial is in γ(P̃). We call
this structure an abstract ring.

Given a abstract ring R, we construct the abstract field of fractions over
that ring using the following operations: p1/q1+p2/q2 = (p1q2+p2q1)/(q1q2),
k.(p/q) = (k.p)/q, (p1/q1).(p2/q2) = (p1.p2)/(q1.q2), (p1/q1)/(p2/q2) = (p1.q2)
/(q1.p2), contains0(p/q) = contains0(p). We can make a simple attempt at
reducing the fractions by checking that there are no trivial cancellations
between the numerator and denominator in products and quotients.

Given an abstract ring K, we construct the abstract ring of matrices
over that ring with the usual operations: if M = A + B, mi,j = ai,j + bi,j;
if M = A.B, mi,j =

∑

k ai,k.bk,j. If K is an abstract field, we can also
implement Gaussian elimination in order to compute A−1.B given a square
matrix A and a matrix B. When we look for a pivot, we select elements e
such that contains0(e) is false.

Unfortunately, computations on such approximate structures may yield
unfavorable results. In particular, the absence of simplification between the
numerator and denominator may yield fractions P̃ (z)/Q̃(z) where P̃ and Q̃
have some common zeroes. The spurious poles that are introduced not be
that much of a problem if we use partial fraction decomposition (Sect. 5.4),
for they will yield very small coefficients in the decomposition; however, they
will make the computations more complex. If using the simple tail bounds
of Sect. 5.1, the results may be considerably worse.

A solution is to perform all computations on rational functions exactly
over Qz. Then, cancellation between a numerator and a denominator can
be performed exactly by division by their greatest common divisor, which is
obtained from Euclide’s algorithm over the Euclidean division of polynomi-
als. No spurious poles may be introduced. However, on large filter networks,
exact computations may produce exceedingly large integer numerators and
denominators. It is then possible to apply the approximation scheme of
Sect. 7.5 in order to trade speed for potential precision. This is the solution
that we implemented in our system: exact computations on rational num-
bers and safe approximations to limit the length of the numbers involved in
the computations.

24

8.3 Computation of developments

When bounding the norm ‖P/Q‖1 of a series quotient of two polynomials,
we split the series into its N initial terms of development, which we compute
explicitly, and a tail whose norm we bound. The first idea is to compute the
N first terms of the series by quotienting the series, as explained in Sect. 3.1
or, equivalently, by running the filter for N iterations on the Dirac input
1, 0, 0, In order to provide a sound result, one would work using interval
arithmetics over floating-point numbers. However, as already noted by Feret,
after some number of iterations the sign of the terms becomes unknown and
then the magnitude of the terms increase fast; it is therefore indicated to
compute the development until the first term of unknown sign is reached,
and assign N accordingly (one may still also enforce a maximal number of
iterations Nmax). In order to be able to develop the quotient further with
good precision, one can use a library of extended-precision floating-point
computations with selectable rounding direction, such as the MPFR library
now part of GNU MP [7].

8.4 Bounding the roots

In order to bound ‖P/Q‖1, where P and Q may possibly be given using
interval coefficients, we have to bound the roots of Q. More formally, we
have to solve the following problem: given an interval polynomial P̃ (z) =
∑n

k=1[lk;hk]z
k such that 0 /∈ [ln, hn], find a family (ξ̃k, ρk)1≤k≤n (ξk ∈ C

with ℜξk and ℑξk floating-point numbers, ρk ∈ R+ a floating-point number)
such that for any polynomial P =

∑n
k=1 pk such that ∀k pk ∈ [lk, hk], then,

up to a permutation, the n roots (ξk)1≤k≤n of P are such that ξk ∈ D(ξ̃k, ρk)
where D(z, r) is the closed disc of center z and radius r.

Often, what we need is actually bounds on the |ξk|; this can easily be
obtained from the preceding bounds using interval arithmetic on plus, minus,
multiply and square root.

Our coefficients are intervals [lk, hk] in order to accommodate possible
errors of floating-point computations. As a consequence, it is expected that
hk − lk are small. This suggests to us a two-step method for obtaining the
desired bounds:

1. Use an efficient and, in practice, very accurate algorithm to obtain
approximations xj to the roots of

∑n
k=1

lk+hk

2 zk (the “midpoint poly-
nomial”).

2. From those approximations, obtain bounds on the radius of the error
committed.

There exist a variety of methods and implementations to perform the first
point. We used gsl poly complex solve of the GNU Scientific Library [8],
which is based on an eigenvalue decomposition of the companion matrix.

25

For the second step, Rump describes a variety of bounding methods [22]
which take a polynomial and approximate roots as an input and output
error radii; these methods may be performed using interval arithmetics. We
implemented the simplest and roughest one: ξj is in a closed disc of center
xj − pj and radius |pj | where

pj =
nP (xj)

pn
∏

k 6=j xj − xk
, (46)

which is easily implemented using interval arithmetics (P becomes P̃ etc.).

9 Implementation and case studies

We implemented the algorithms described above in a simple Objective Caml
[15] program: filters are represented by a record of all their characteristics
(transfer matrices, bounding matrices); functions (in the OCaml) sense con-
struct filter records, or perform composition operations.

The formal computations on fractions are performed over Q, imple-
mented using GNU MP’s mpq type [7]. We initially considered using MPFR
[10], an extended precision library with sound rounding modes, for interval
computations; instead, we simply use the IEEE-754 rounding modes of the
hardware floating-point unit, which is much faster.

9.1 Composition of TF2 filters

Let us recall the example of Sect. 4.5. It is a composition of two TF2 filters
with a feedback loop around it. The serial composition of the filter in Fig. 3
and another TF2 filter, all with realistic coefficients, is analyzed in about
0.10 s on a recent PC; the analyzer finds that ‖S‖ ≤ g‖E‖ with g ≃ 2, with
εrel ≃ 10−12 and εabs ≃ 10−305.

The power series developments of rational functions (Sect. 8.3) are done
up to around the 27th order.

9.2 Complex nonlinear iterated filter

We now consider a nonlinear, iterated filter due to Roozbehani et al. [21][§5].
We first analyze separately filter1() (2nd-order linear filter) and filter2()

(2nd-order affine filter). So as to simplify matters, we do not give the trans-
fer functions using matrices, matrices inverses etc. but as the solution of a
system of linear equations over polynomials in z. We obtain that system
very simply from the program: whenever we see an assignment x := e, we
turn it into an equation x = e (we assume without loss of generalities that
variables are only assigned once in a single iteration step), where e is the
original expression where a variable v that has not yet been assigned in the

26

current iteration is replaced by iv + z.v, iv standing for the initialization
value of v.

void filter1 () {
static float E[2], S[2];

if (INIT1) {
S[0] = X; P = X;

E[0] = X; E[1]=0; S[1]=0;

} else {
P =0.5*X-0.7*E[0] +0.4*E[1] p = 0.5e − 0.7(ie0

+ z.e0)
+1.5*S[0]-S[1]*0.7; +0.4(ie1

+ z.e1)
+1.5(is0

+ z.s0) − 0.7(is1
+ z.s1)

E[1] = E[0]; e1 = ie0
+ z.e0

E[0] = X; e0 = e
S[1] = S[0]; s1 = is1

+ z.e1

S[0] = P; s0 = p
X=P/6+S[1]/5; x = p/6 + s1/5

}
}

We call e the input value for X. We solve the system and obtain x =
Q.e + Qie0

.ie0
+ Qie1

.ie1
+ Qis0

.is0
+ Qis1

.is1
. The common denominator of

the Q fractions is 10− 15z + 7z2, which has complex conjugate roots z such
that |z| ≃ 1.2. ie1

= is1
= 0 and ie0

= is0
= ι (the last value for input

e such that INIT1 is true), thus ‖x‖∞ ≤ ‖Q‖1.‖e‖∞ + ‖Qie0
+ Qis0

‖∞.‖ι‖.
With a precondition ‖e‖∞ ≤ 400, this yields ‖x‖∞ < 339. If we take the
coarser inequality ‖x‖∞ ≤ ‖Q‖1.‖e‖∞ + (‖Qie0

‖∞ + ‖Qis0
‖∞).‖ι‖ we get

‖x‖∞ < 528. Roozbehani et al. find a bound ≃ 531.

void filter2 () {
static float E2[2], S2[2];

if (INIT2) {
S2[0] =0.5*X; P = X;

E2[0] = 0.8*X; E2[1]=0; S2[1]=0;

} else {
P =0.3*X-E2[0]*0.2+E2[1]*1.4 p = 0.3e − 0.2(ie0

+ z.e0)
+S2[0]*0.5-S2[1]*1.7; +1.4(ie1

+ z.e1)
+0.5(is0

+ z.s0) + 1.7(is1
+ z.s1)

E2[1] = 0.5*E2[0]; e1 = 0.5(ie0
+ z.e0)

E2[0] = 2*X; e0 = 2e
S2[1] = S2[0]+10; s1 = is0

+ z.s0 + τ
S2[0] = P/2+S2[1]/3; s0 = p/2 + s1/3
X=P/8+S2[1]/10; x = p/8 + s1/10

}
}

We proceed similarily (with the introduction of τ = 10/(1 − z) and
obtain x = Q.e + Qie0

.ie0
+ Qie1

.ie1
+ Qis0

.is0
+ Qis1

.is1
+ Qc. The common

27

denominator of the Q is 60 + 35z + 51z2, with complex conjugate roots z
such that |z| ≃ 1.08. Then ‖x‖∞ ≤ ‖Q‖1.‖e‖∞ +‖0.8Qie0

+0.5Qis0
‖∞.‖ι‖+

‖Qc‖∞. This yields ‖x‖∞ ≤ 1105.
The two linear filters are combined into an iterated nonlinear filter.

filter1() (resp. filter2()) is run with a pre-condition of X ∈ [−400, 400]
(resp. [−800, 800]). We replace the call to the filter by its postcondition
X ∈ [−339, 339] (resp. X ∈ [−1105, 1105]).
void main () {
X = 0;

INIT1 = TRUE; INIT2=TRUE;

while (TRUE) {
X = 0.98 * X + 85;

if (abs(X)<= 400) {
filter1 ();

X=X+100;

INIT1=FALSE;

} else

if (abs(X)<=800) {
filter2();

X=X-50;

INIT2=FALSE;

}
}}

The program then can be abstracted into:
while (TRUE) {
X = 0.98 * X + 85;

maybe choose X in [−1155, 1055];
}

We obtain X ∈ [−1155, 4250.02] by running Astrée with a large number
of narrowing iterations, whereas Astrée cannot analyze the original program
precisely and cannot bound X. In this case, the exact solution [−1155, 4250]
(x = 0.98x+85 has for unique solution x = 4250) could have been computed
algebraically, but in more complex filters this would not have been the case.
Roozbehani et al. have a bound of 4560.

Note that the non-abstracted program converges to a value ≃ 205, with
X ∈ [0, 209]. However, this very simple program illustrates our methodology
for compositional analysis: finding the optimal solution is possible here be-
cause the program is simple, but would not be possible in practice if we had
added more nonlinear behavior and nondeterministic inputs, as in real-life
reactive code; whereas by analyzing precisely each linear filter and plugging
the results back into a generic analyzer, we get reasonable results.

28

10 Related works

In the field of digital signal processing, some sizable literature has been de-
voted to the study of the effects of fixed-point and floating-point errors on
numerical filters. In the area of fixed-point computation, bounds on the sizes
of the various operands are of paramount importance: operands that leave
the prescribed range will undergo saturation and the output signal will be
distorted. For these reasons, operands are scaled so as not to produce digital
saturation; yet, the scale factor should be made large enough that round-
ing errors are very small compared to the typical magnitude of the signal.
While the fact that the l1-norm of the convolution kernel is what matters
for judging overflow, it is argued that this norm is “overly pessimistic” [12,
§11.3] [11, eq 13], not to mention the difficulties in estimating it. In prac-
tice, filter designers have preferred criteria that indicate no saturation for
most “commonplace” inputs, excluding pathological inputs. Our vision is
different: our results must be sound in all circumstances, even pathological
inputs.

The impact of fixed- and floating-point errors in digital filters was clas-
sically studied from by modeling the errors as random sources of known
distribution, independent of each other and with no temporal correlation
(i.e. correlations between successive values) [3, 20]. These assumptions are,
in reality, false: the computational process is fully deterministic, and not
random; the computations are generally interdependent (all computations
inside a filter depend on the past of the input variables); and there are
temporal correlations. However, circuit designers are concerned with the
spectral distribution of output noise [11], and optimization of hardware or
software implementations with respect to this noise, and these tools are
adequate for this. On the other hand, we merely aim at providing sound
bounds for the outputs of the system, but the bounds that we provide must
be sound without any extra and unfounded suppositions.

J. Feret has proposed an abstract domain for analyzing programs com-
prising digital linear filters [6]. He provides effective bounds for first and
second degree filters. In comparison, we consider more complex filter net-
works, in a compositional fashion; but we analyze specifications, and not
C code (which is usually compiled from those specifications, with consid-
erable loss of structure). Another difference is that we do not perform
abstract iterations. Feret’s method currently considers only second-order
filters (i.e. TF2), though it may be possible to adapt it to higher-order fil-
ters. On second-order filters, the bounds computed by Feret’s method and
the method in this paper are very close (since both are based on a devel-
opment of the convolution kernel, though they use different methods of tail
estimation).

Lamb et al. [14] have proposed effective methods, based on linear al-
gebra, for computing equivalent filters for DSP optimization. They do not

29

compute bounds, nor do they study floating-point errors.
Roozbehani et al. [21] find program invariants by Lagrangian relaxation

and semidefinite programming, with quadratic invariants. In order to make
problems tractable, they too apply a blockwise abstraction. The class of
programs that they may analyze directly is potentially larger, but the re-
sults are less precise than our method on some linear filters. They do not
handle floating-point imprecisions (though this can perhaps be added to
their framework).

One possible application of our method would be to integrate it as a
pre-analysis pass of a tool such as Astrée [5]. Astrée computes bounds on
all floating-point variables inside the analyzed program, in order to prove
the absence of errors such as overflow. In order to do so, it needs to com-
pute reasonably accurate bounds on the behavior of linear filters. A typical
fly-by-wire controller contains dozens of TF2 filters, some of which may be
integrated into more complex feedback loops; in some cases, separate anal-
ysis of the filters may yield too coarse bounds.

11 Conclusions and future works

We have proposed effective methods for providing sound bounds on the
outcome of complex linear filters from their flow-diagram specifications, as
found in many applications. Computation times are modest; furthermore,
the nature of the results of the analysis may be used for modular analyses
— the analysis results of a sub-filter can be stored and never be recomputed
until the sub-filter changes.

The usefulness of these methods is twofold. First, they could be directly
implemented in the graphical user interface for designing circuits. Users may
then be able to compute gains or to check the stability of filters, taking into
account floating-point errors (which conventional Z-transform techniques do
not consider). Second, they can be used as a way to automatically obtain
static analysis “transformers” or “transfer functions”: a static analysis tool
such as Astrée may detect that some program sequence implements such
or such complex linear filter, and apply some invariant relation computed
using the techniques in that paper.

In future works, we will examine the case of non-linear filters and com-
positional, modular analysis. The analysis of a combination of linear and
non-linear filters can be done in two ways or a combination thereof:

• the overall behavior of a nonlinear filter may be constrained by some
input-output relationship such as ‖O‖∞ ≤ (1 + ǫ)‖I‖∞ (example of a
rate limiter), and this input-output relationship can be integrated into
the abstract semantics as in Part 7;

• the overall behavior of a linear filter can be precisely bounded, and

30

this bound information can be fed into an analysis of a larger nonlinear
filter, such as one based on statically computed relationships between
intervals [19]

References

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embed-
ded software. In The Essence of Computation: Complexity, Analysis,
Transformation, number 2566 in Lecture Notes in Computer Science,
pages 85–108. Springer Verlag, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In PLDI, pages 196–207. ACM, 2003.

[3] Bruce W. Bomar, L. Montgomery Smith, and Roy D. Joseph. Roundoff
noise analysis of state-space digital filters implemented on floating-point
digital signal processors. IEEE Trans. on Circuits and Systems II,
44(11):952–955, 1997.

[4] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice.
LUSTRE: a declarative language for real-time programming. In POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 178–188. ACM Press, 1987.

[5] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. The ASTRÉE an-
alyzer. In ESOP, number 3444 in Lecture Notes in Computer Science,
pages 21–30, 2005.

[6] Jérôme Feret. Static analysis of digital filters. In ESOP ’04, number
2986 in Lecture Notes in Computer Science. Springer-Verlag, 2004.

[7] Free Software Foundation. GMP — GNU multiple precision arithmetic
library, 2004.

[8] Free Software Foundation. GSL — GNU scientific library, 2004.

[9] IEEE. Standard for Binary Floating-Point Arithmetic. standard 754.

[10] INRIA et al. The MPFR Library.

[11] Leland B. Jackson. On the interaction of roundoff noise and dynamic
range in digital filters. The Bell System Technical J., 49(2):159–184,
February 1970.

31

[12] Leland B. Jackson. Digital Filters and Signal Processing. Kluwer, 1989.

[13] Peter Kirrinnis. Partial fraction decompostion in C(z) and simultaneous
Newton iteration for factorization in C[z]. J. Complexity, 14(3):378–
444, 1998.

[14] Andrew A. Lamb, William Thies, and Saman Amarasinghe. Linear
analysis and optimization of stream programs. In PLDI ’03, pages
12–25. ACM, 2003.

[15] Xavier Leroy. The Objective Caml system, documentation and user’s
guide. INRIA.

[16] Jacques-Louis Lions et al. Ariane 501: Flight 501 failure. Technical
report, ESA / CNES, 1996. Available on WWW.

[17] A. Miné. Relational abstract domains for the detection of floating-
point run-time errors. In ESOP’04, volume 2986 of LNCS, pages 3–17.
Springer, 2004.

[18] David Monniaux. Compositional analysis of floating-point linear nu-
merical filters. In Computer-aided verification: CAV ’05, number 3576
in Lecture Notes in Computer Science, pages 199–212. Springer Verlag,
2005.

[19] David Monniaux. Optimal abstraction on real-valued programs. In
Static analysis symposium (SAS), 2007. To appear.

[20] Bhaskar D. Rao. Floating point arithmetic and digital filters. IEEE
Trans. on Signal Processing, 40(1):85–95, January 1992.

[21] M. Roozbehani, E. Feron, and A. Megretski. Modeling, optimization
and computation for software verification. In HSCC, number 3414 in
LNCS, page 606. Springer, 2005.

[22] Siegfried M. Rump. Ten methods to bound multiple roots of polyno-
mials. J. of Computational and Applied Math., 156(2):403–432, 2003.

For any matrix M , let us note minori,j(M) the determinant of the matrix
obtained by removing line i and column j from M . We recall that for any
matrix M of dimension n

det(M) =
n∑

j=1

(−1)n−1mi,j.minor1,j(M) (47)

and that the determinant is n-linear. Recall that for any matrix M of
invertible determinant,

M−1 = det(M)−1.
[
minori,j(M)

]t
(48)

32

Lemma 3. If A ∈ Mn,n(Qz), then there exists B ∈ Qz such that
det(Idn − zA) = 1 − zB.

Proof. Proof by induction on n. The case n = 1 is trivial. Now let us
consider n > 1.

det(Idn − zA)

= (1 − za1,1)minor1,1(Idn − zA) +

n∑

j=2

(−1)nza1,jminor1,j(Idn − zA)

= minor1,1(Idn − zA) + z

n∑

j=1

(−1)nza1,jminor1,j(Idn − zA) (49)

The result follows by the application of the induction hypothesis, and the
fact that BQz is a ring and thus the determinant of any matrix over
that ring is itself in the ring.

Corollary 4. If A ∈ Mn,n(Qz), then Idn − zA) has an inverse in
Mn,n(Qz).

Proof. By the preceding lemma, det(Idn−zA) is of the form 1−zP (z)/Q(z),
where P and Q are polynomials such that the constant coefficient of Q is
1, therefore (det(Idn − zA))−1 = Q(z)/(Q(z) − zP (z) is in Qz. All the
minori,j(Idn − zA) are elements of Qz, the result follows by applying
Equ. 11.

33

	Introduction
	Digital filtering
	Contributions of the article
	Introduction to linear filters and Z-transforms

	Linear filters
	Notion of filters
	Linear filters
	Bounding the response of the filter

	Convolution kernels as formal power series
	Formal power series
	Stability condition

	Compositional semantics: real field
	Definition
	Basic arithmetic blocks
	Composition
	Feedback loops
	Examples

	Bounding the 1-norm of series expansions of rational functions
	Inverses of products of affine forms
	Rough and less rough approximation in the general case
	Second degree denominators with complex poles
	Finer bounds using partial fraction decomposition
	Development of rational functions and normed bounds

	Precision properties of fixed- or floating-point operations
	Compositional semantics: fixed- and floating-point
	Constraint on the errors
	Basic arithmetic blocks
	Serial composition
	Feedback loops
	Trading some accuracy for computation speed; nonlinear elements

	Numerical considerations
	Interval arithmetics
	Approximate algebraic computations
	Computation of developments
	Bounding the roots

	Implementation and case studies
	Composition of TF2 filters
	Complex nonlinear iterated filter

	Related works
	Conclusions and future works

