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We give the asymptotic distribution of the length of partial coalescent trees for Beta and related coalescents. This allows us to give the asymptotic distribution of the number of (neutral) mutations in the partial tree. This is a first step to study the asymptotic distribution of a natural estimator of DNA mutation rate for species with large families.

1. Introduction 1.1. Motivations. The Kingman coalescent, see [START_REF] Kingman | The coalescent[END_REF][START_REF] Kingman | Origins of the coalescent 1974-1982[END_REF], allows to describe the genealogy of n individuals in a Wright-Fisher model, when the size of the whole population is very large and time is well rescaled. In what follows, we consider only neutral mutations and the infinite allele model, where each mutation gives a new allele. The Watterson estimator [START_REF] Watterson | On the number of segregating sites in genetical models without recombination[END_REF], based on the number of different alleles observed among n individuals alive today, K (n) , allows to estimate the rate of mutation for the DNA, θ. This estimator is consistent and converges at rate 1/ log(n).

Other models of population where one individual can produce a large number of children give rise to more general coalescent processes than the Kingman coalescent, where multiple collisions appear, see Sagitov [START_REF] Sagitov | The general coalescent with asynchronous mergers of ancestral lines[END_REF] and Schweinsberg [START_REF] Schweinsberg | Coalescent processes obtained from supercritical Galton-Watson processes[END_REF] (such models may be relevant for oysters and some fish species [START_REF] Boom | Mitochondrial dna variation in introduced populations of pacific oyster, crassostrea gigas, in british columbia[END_REF][START_REF] Eldon | Coalescent processes when the distribution of offspring number among individuals is highly skewed[END_REF]). In Birkner and al. [START_REF] Birkner | Alphastable branching and beta-coalescents[END_REF] and in Schweinsberg [START_REF] Schweinsberg | Coalescent processes obtained from supercritical Galton-Watson processes[END_REF] a natural family of one parameter coalescent processes arise to describe the genealogy of such populations: the Beta coalescent with parameter α ∈ (1, 2). Results from Beresticky and al. [START_REF] Berestycki | Small time properties of beta-coalescents[END_REF] give a consistent estimator, based on the observed number, K (n) , of different alleles for the rate θ of mutation of DNA. This paper is a first step to study the convergence rate of this estimator or equivalently to the study the asymptotic distribution of K (n) . Results are also known for the asymptotic distribution of K (n) for other coalescent processes, see Drmota and al. [START_REF] Drmota | Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent[END_REF] and Möhle [START_REF] Möhle | On the number of segregating sites for populations with large family sizes[END_REF].

For the Beta coalescent, the asymptotic distribution of K (n) depends on θ but also on the parameter α. In particular, if the mutation rate of the DNA is known, the asymptotic distribution of K (n) allows to deduce an estimation and a confidence interval for α, which in a sense characterize the size of a typical family according to [START_REF] Schweinsberg | Coalescent processes obtained from supercritical Galton-Watson processes[END_REF].

1.2. The coalescent tree and mutation rate. We consider at time t = 0 a number, n ≥ 1 of individuals, and we look backward in time. Let P n be the set of partitions of {1, . . . , n}. For t ≥ 0, let Π (n) t be an element of P n such that each block of Π (n) t corresponds to the initial individuals which have a common ancestor at time -t. We assume that if we consider b blocks, k of them merge into 1 at rate λ b,k , independent of the current number of blocks. Using this property and the compatibility relation implied when one consider a larger number of initial individuals, Pitman [START_REF] Pitman | Coalescents with multiple collisions[END_REF], see also Sagitov [START_REF] Sagitov | The general coalescent with asynchronous mergers of ancestral lines[END_REF] for a more biological approach, showed the transition rates are given by λ b,k = (0,1)

x k-2 (1 -x) b-k Λ(dx), 2 ≤ k ≤ b,
for some finite measure Λ on [0, 1], and that Π (n) is the restriction of the so-called coalescent process defined on the set of partitions of N * . The Kingman coalescent correspond to the case where Λ is the Dirac mass at 0, see [START_REF] Kingman | The coalescent[END_REF]. In particular, in the Kingman coalescent, only two blocks merge at a time. The Bolthausen-Sznitman [START_REF] Bolthausen | On Ruelle's probability cascades and an abstract cavity method[END_REF] coalescent correspond to the case where Λ is the Lebesgue measure on [0, 1]. The Beta-coalescent introduced in Birkner and al. [START_REF] Birkner | Alphastable branching and beta-coalescents[END_REF] and in Schweinsberg [START_REF] Schweinsberg | Coalescent processes obtained from supercritical Galton-Watson processes[END_REF], see also Bertoin and Le Gall [START_REF] Bertoin | Stochastic flows associated to coalescent processes. III. Limit theorems[END_REF] and Beresticky and al. [START_REF] Berestycki | Beta-coalescents and continuous stable random trees[END_REF] , corresponds to Λ(dx) = C 0 x α-1 (1x) 1-α 1 (0,1) (x) dx for some constant C 0 > 0.

Notice Π (n) = (Π (n) t , t ≥ 0) is a Markov process starting at the trivial partition of {1, . . . , n} into n singletons. We denote by R

(n) t the number of blocks of Π (n)
t , that is the number of common ancestors alive at time -t. In particular we have R (n) 0 = n. We shall omit the superscript (n) when there is no confusion. The process R = (R t , t ≥ 0) is a continuous time Markov process taking values in N * . The number of possible choices of ℓ + 1 blocks among k is k ℓ+1 (for 1 ≤ ℓ ≤ k -1) and each group of ℓ + 1 blocks merge at rate λ k,ℓ+1 . So the waiting time of R in state k is an exponential random variable with parameter (1)

g k = k-1 ℓ=1 k ℓ + 1 λ k,ℓ+1 = (0,1) 1 -(1 -x) k -kx(1 -x) k-1 Λ(dx) x 2
and is distributed as E/g k , where E is an exponential random variable with mean 1.

The apparition time of the most recent common ancestor (MRCA) is

T n = inf{t > 0; R t = 1}.
Let Y = (Y k , k ≥ 1) be the different states of the process R. It is defined by Y 0 = R 0 and for k ≥ 1, Y k = R S k , where the sequence of jumping time (S k , k ≥ 0) is defined inductively by S 0 = 0 and for k ≥ 1, S k = inf{t > S k-1 ; R t = R S k-1 }. We use the convention that inf ∅ = +∞ and Y k = 1 for k ≥ τ n , where τ n = inf{k; R S k = 1} is the number of jumps of the process R until it reach the absorbing state 1. The number τ n is the number of coalescences.

We shall write Y (n) instead of Y when it will be convenient to stress that Y starts at time 0 at point n. Notice Y is an N * -valued discrete time Markov chain, with probability transition (2)

P (k, k -ℓ) = k ℓ+1 λ k,ℓ+1 g k .
The sum of the lengths of all branches in the coalescent tree until the MRCA is distributed as

L (n) = τn-1 k=0 Y (n) k g Y (n) k E k ,
where (E k , k ≥ 0) are independent exponential random variables with expectation 1.

In the infinite allele model, one assume that (neutral) mutations appear in the genealogy at random with rate θ. In particular by looking at the number K (n) of different alleles among n individuals, one get the number of mutations which occured in the genealogy of those individuals after the most recent common ancestor. In particular, conditionally on the length of the coalescent tree L (n) , the number K (n) of mutations is distributed according to a Poisson r.v. with parameter θL (n) . Therefore, we have that

K (n) -θL (n) √ θL (n)
converges in distribution to a standard Gaussian r.v. (with mean 0 and variance 1). If the asymptotic distribution of L (n) is known, one can deduce the asymptotic distribution of K (n) .

1.3. Known results.

1.3.1. Kingman coalescence. . For Kingman coalescence, a coalescence corresponds to the apparition of a common ancestor of only two individuals. In particular, we have for 0

≤ k ≤ n -1, Y (n) k = n -k. Thus we get τ n = n -1 as well as g Y (n) k = (n -k)(n -k -1)/2. We also have L (n) 2 = n-2 k=0 1 n -k -1 E k = n-1 k=1 1 k E n-k-1 . The r.v. L (n) /2
is distributed as the sum of independent exponential r.v. with parameter 1 to n -1, that is as the maximum on n -1 independent exponential r.v. with mean 1, see Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF] section I.6. An easy computation gives that L (n) /(2 log(n)) converges in probability to 1 and that

L (n) 2 -log(n) converges in
distribution to the Gumbel distribution (with density e -x-exp -x ) when n goes to infinity.

It is then easy to deduce that

K (n) -θE[L (n) ] θE[L (n) ]
converges in distribution to the standard Gaussian distribution. This provides the weak convergence and the asymptotic normality of the Watterson [START_REF] Watterson | On the number of segregating sites in genetical models without recombination[END_REF] estimator of θ:

K (n) E[L (n) ] = K (n) n-1 k=1 1 k
. See also the appendix in [START_REF] Drmota | Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent[END_REF].

1.3.2. Bolthausen-Sznitman coalescence. In Drmota and al. [START_REF] Drmota | Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent[END_REF], the authors consider the Bolthausen-Sznitman coalescence: Λ is the Lebesgue measure on [0, 1]. In this case they prove that 1 n log(n)L (n) converges in probability to 1 and that L (n)a n b n converges in distribution to a stable r.v. Z with Laplace transform E[e -λZ ] = e λ log(λ) for λ > 0, where

a n = n log(n) + n log(log(n)) log(n) 2 and b n = n log(n) 2 .
It is then easy to deduce that K (n)θa n θb n converges to Z.

1.3.3. The case (0,1] x -1 Λ(dx) < ∞.
In Möhle [START_REF] Möhle | On the number of segregating sites for populations with large family sizes[END_REF], the author investigates the case where

x -1 Λ(dx) is a finite measure and consider directly the asymptotic distribution of K (n) . In particular he gets that K (n) /nθ converges in distribution to a non-negative r.v. Z uniquely determined by its moments: for k ≥ 1,

E[Z k ] = k! k i=1 Φ(i) , with Φ(i) = [0,1] (1 -(1 -x) i )x -2 Λ(dx).
There is an equation in law for Z when Λ is a simple measure, that is when (0,1] x -2 Λ(dx) < ∞.

1.3.4. Beta coalescent. The Beta-coalescent correspond to the case where Λ is the Beta(2 -

α, α) distribution, with α ∈ (1, 2): Λ(dx) = 1 Γ(2 -α)Γ(α)
x 1-α (1x) α-1 dx. The Kingman coalescent can be viewed as the asymptotic case α = 2 and the Bolthausen-Sznitman coalescence as the asymptotic case α = 1.

The first order asymptotic behavior of L (n) is given in [START_REF] Berestycki | Small time properties of beta-coalescents[END_REF], theorem 1.9: n α-2 L (n) converges in probability to Γ(α)α(α -1) 2α . We shall now investigate the asymptotic distribution of L (n) .

1.4. Main result. In this paper we shall state a partial result concerning the asymptotic distribution of L (n) . We shall only give the asymptotic distribution of the total length of the coalescent tree up to the ⌊nt⌋-th coalescence:

(3)

L (n) t = ⌊nt⌋∧(τn-1) k=0 Y (n) k g Y (n) k E k ,
where ⌊x⌋ is the largest integer smaller or equal to x for x ≥ 0. We say g = O(f ), where f is a non-negative function and g a real valued function defined on a set E (mainly here

E = [0, 1] or E = N * or E = N * × [0, 1]), if there exists a finite constant C > 0 such that |g(x)| ≤ Cf (x) for all x ∈ E.
Let ν(dx) = x -2 Λ(dx) and ρ(t) = ν((t, 1]). We assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some α ∈ (1, 2), C 0 > 0 and ζ > 1 -1/α. This includes the Beta(2α, α) distribution for Λ. We have, see Lemma 2.2, that 1) ).

g n = C 0 Γ(2 -α)n α + O(n α-min(ζ,
Let γ = α -1. Let V = (V t , t ≥ 0) be a α-stable Lévy process with no positive jumps (see chap. VII in [START_REF] Bertoin | Lévy processes[END_REF]) with Laplace exponent ψ(u) = u α /γ: for all u ≥ 0, E[e -uVt ] = e tu α /γ . We first give in Proposition 3.1 the asymptotic for the number of coalescences, τ n :

n -1 α n - τ n γ (d) ---→ n→∞ V γ .
See also Gnedin and Yakubovich [START_REF] Gnedin | On the number of collisions in Λ-coalescents[END_REF] and Iksanov and Möhle [START_REF] Iksanov | On a random recursion related to absorption times of death Markov chains[END_REF] for different proofs of this results under slightly different or stronger hypothesis. Then we give the asymptotics of L(n)

t defined as C 0 Γ(2 -α)L (n) t
but for the exponential r.v. E k which are replaced by their mean that is 1 and for g

Y (n) k which is replaced by its equivalent C 0 Γ(2 -α) Y (n) k 2-α : (4) L(n) t = ⌊nt⌋∧(τn-1) k=0 Y (n) k 1-α . For t ∈ [0, γ], we set v(t) = t 0 1 - r γ -γ
dr.

Theorem 5.1 gives that the following convergence in distribution holds for all t ∈ (0, γ)

(5) n -1+α-1/α ( L(n) t -n 2-α v(t)) (d) ---→ n→∞ (α -1) t 0 dr (1 - r γ ) -α V r .
Then we deduce our main result, Theorem 6.

1. Let α ∈ (1, 1 + √ 5 2
). Then for all t ∈ (0, γ), we have the following convergence in distribution ( 6)

n -1+α-1/α L (n) t -n 2-α v(t) C 0 Γ(2 -α) (d) ---→ n→∞ α -1 C 0 Γ(2 -α) t 0 dr (1 - r γ ) -α V r .
We also have that

n α-2 L (n) t converges in probability to v(t) C 0 Γ(2 -α) for α ∈ (1, 2). For t = γ, intuitively we have L (n) γ close to L (n) as τ n is close to n/γ. In particular, one expects that n α-2 L (n) converges in probability to v(γ) C 0 Γ(2 -α) . For the Beta-coalescent, Λ(dx) = 1 Γ(2 -α)Γ(α) x 1-α (1 -x) α-1 dx, we have C 0 = 1/αΓ(2 -α)Γ(α)
and indeed, theorem 1.9

in [START_REF] Berestycki | Small time properties of beta-coalescents[END_REF] gives that

n α-2 L (n) converges in probability to Γ(α)α(α -1) 2 -α = v(γ) C 0 Γ(2 -α)
. Notice theorem 1.9 in [START_REF] Berestycki | Small time properties of beta-coalescents[END_REF] is stated for more general coalescents than the Beta-coalescent. In Corollary 6.2, we give the asymptotic distribution of the number K

(n) t of mutations on the coalescent tree up to the ⌊nt⌋-th coalescent for α ∈ (1, 2). In particular, for α >

1 + √ 5 2
, the approximations of the exponential r.v. by their mean are more important than the fluctuations of L(n) , and the asymptotic distribution is gaussian. 1.5. Organization of the paper. In Section 2 we give estimates (distribution, Laplace transform) for the number of collisions in the first coalescence in a population of n individuals. We prove the asymptotic distribution of the number of collisions, τ n , in Section 3, as well as an invariance principle for the coalescent process Y (n) , see Corollary 3.5. In Section 4, we give error bounds on the approximation of

L (n) t by L(n) t /C 0 Γ(2 -α).
Section 5 is devoted to the asymptotic distribution of L(n) t . Eventually, our main result, Theorem 6.1, on the asymptotic distribution of L (n) t , and Corollary 6.2, on the asymptotic distribution of the number of mutations K (n) t , and their proofs are given in Section 6. In what follows, c is a non important constant which value may vary from line to line.

Law of the first jump

Let Y be a discrete time Markov chain on N * with transition kernel P given by ( 2) and started at

Y 0 = n. Let X (n) k = Y k-1 -Y k for k ≥ 1.
We give some estimates on the moment of X (n) 1 and its Laplace transform. For n ≥ 1, x ∈ (0, 1), let B n,x be a binomial r.v. with parameter (n, x). Recall that for 1 ≤ k ≤ n, we have ( 7)

P(B n,x ≥ k) = n! (k -1)!(n -k)! x 0 t k-1 (1 -t) n-k dt.
Recall that ν(dx) = x -2 Λ(dx) and ρ(t) = ν((t, 1]). Use the first equality in ( 1) and ( 7) to get

g n = 1 0 n k=2 n k x k (1 -x) n-k ν(dx) = 1 0 P(B n,x ≥ 2)ν(dx) = n(n -1) 1 0 (1 -t) n-2 tρ(t) dt. (8) 
Notice also that P(X

(n) 1 = k) = P (n, n -k) = 1 g n 1 0 P(B n,x = k + 1)ν(dx) and thus (9) P(X (n) 1 ≥ k) = 1 0 P(B n,x ≥ k + 1)ν(dx) g n = (n -2)! k!(n -k -1)! 1 0 (1 -t) n-k-1 t k ρ(t) dt 1 0 (1 -t) n-2 tρ(t) dt . Let α ∈ (1, 2) and γ = α -1.
We say g = o(f ), where f is a non-negative function and g a real valued function defined on (0, 1], if for any ε > 0, there exists

x 0 > 0 s.t. |g(x)| ≤ εf (x) for all x ∈ (0, x 0 ]. Lemma 2.1. Assume that ρ(t) = C 0 t -α + o(t -α ). Then (X (n) 1 , n ≥ 2) converges in distribu- tion to the r.v. X such that for all k ≥ 1, P(X ≥ k) = 1 Γ(2 -α) Γ(k + 1 -α) k! .
We have E[X] = 1/γ, E[X 2 ] = +∞ and its Laplace transform φ is given by: for u ≥ 0,

φ(u) = E[e -uX ] = 1 + e u -1 α -1 (1 -e -u ) α-1 -1 .
We shall use repeatedly the identity of the beta distribution: for a > 0 and b > 0, we have (10)

1 0 t a-1 (1 -t) b-1 dt = Γ(a)Γ(b) Γ(a + b) .
Proof. The condition ρ(t) = C 0 t -α + o(t -α ) implies that for fixed k ≥ 1, as n goes to infinity, we have

1 0 (1 -t) n-k-1 t k ρ(t) dt = Γ(k + 1 -α)Γ(n -k) Γ(n + 1 -α) (C 0 + o(1)) .
Therefore, we get that

lim n→∞ P(X (n) 1 ≥ k) = lim n→∞ (n -2)! k!(n -k -1)! 1 0 (1 -t) n-k-1 t k ρ(t) dt 1 0 (1 -t) n-2 tρ(t) dt = lim n→∞ (n -2)! k!(n -k -1)! Γ(k + 1 -α)Γ(n -k) Γ(n + 1 -α) Γ(n + 1 -α) Γ(2 -α)Γ(n -1) = 1 Γ(2 -α) Γ(k + 1 -α) k! .
This ends the first part of the Lemma. Notice that

P(X ≥ k) = 1 Γ(α)Γ(2 -α) 1 0 t k-α (1 -t) α-1 dt and as P(X = k) = P(X ≥ k) -P(X ≥ k + 1), we get (11) P(X = k) = 1 Γ(α)Γ(2 -α) 1 0 t k-α (1 -t) α dt = α Γ(2 -α) Γ(k + 1 -α) (k + 1)! .
We have

E[X] = k≥1 P(X ≥ k) = 1 Γ(α)Γ(2 -α) 1 0 k≥1 t k-α (1 -t) α-1 dt = 1 Γ(α)Γ(2 -α) 1 0 t 1-α (1 -t) α-2 dt = 1 Γ(α)Γ(2 -α) Γ(2 -α)Γ(α -1) Γ(1) = 1 α -1 .
The asymptotic expansion

(12) Γ(z) = √ 2πz z-1/2 e -z 1 + 1 12z +o 1 z implies P(X = k) ∼ +∞ α Γ(2 -α) k -α-1 . Therefore we have E[X 2 ] = +∞. We compute the Laplace transform of X. Let u ≥ 0, we have φ(u) = E[e -uX ] = α Γ(2 -α) k≥1 1 (k + 1)! e -ku ∞ 0 x k-α e -x dx = α e u Γ(2 -α) ∞ 0 k≥2 1 k! e -ku x k-1-α e -x dx = α e u Γ(2 -α) ∞ 0 x -1-α e -x (e x e -u -x e -u -1) dx = 1 + e u -1 α -1 (1 -e -u ) α-1 -1 ,
where we used [START_REF] Feller | An introduction to probability theory and its applications[END_REF] with

Γ(k + 1 -α) = ∞ 0
x k-α e -x dx for the first equality and two integrations by parts for the last.

We give bounds on g n . 1) ).

Lemma 2.2. Assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 0. Then we have, for n ≥ 2, ( 13 
) g n = C 0 Γ(2 -α)n α + O(n α-min(ζ,
Proof. Notice that

g n = n(n -1) 1 0 (1 -t) n-2 t C 0 t -α + O(t -α+ζ ) dt = C 0 n(n -1) Γ(2 -α)Γ(n -1) Γ(n + 1 -α) + h n ,
where

h n = n(n -1) 1 0 (1 -t) n-2 t -α+ζ+1 O(1) dt.
In particular, using [START_REF] Gnedin | On the number of collisions in Λ-coalescents[END_REF], we have for

n ≥ 2 |h n | ≤ cn(n -1) 1 0 (1 -t) n-2 t -α+ζ+1 = cn(n -1) Γ(2 -α + ζ)Γ(n -1) Γ(n + 1 -α + ζ) ≤ cn α-ζ .
Using ( 12) again, we get that Γ(n -1)/Γ(n + 1α) = n α-2 + O(n α-3 ). This implies that

g n = C 0 Γ(2 -α)n α + O(n max(α-1,α-ζ) ).
We give an expansion of the first moment of

X (n) 1 . Lemma 2.3. Assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 0. Let ε 0 > 0. We set (14) ϕ n =      n -ζ if ζ < α -1, n 1-α+ε 0 if ζ = α -1, n 1-α if ζ > α -1.
There exists a constant C 15 s.t. for all n ≥ 2, we have

(15) E[X (n) 1 ] - 1 γ ≤ C 15 ϕ n .
Proof. We have

E[X (n) 1 ] = k≥1 P(X (n) 1 ≥ k) = 1 0 k≥1 P(B n,x ≥ k + 1)ν(dx) g n = 1 0 (E[B n,x ] -P(B n,x ≥ 1))ν(dx) g n (16) = 1 0 nxν(dx) - 1 0 (1 -(1 -x) n )ν(dx) g n = n 1 0 [1 -(1 -t) n-1 ]ρ(t) dt g n (17) = 1 0 (1 -t) n-2 1 t ρ(r) dr dt 1 0 (1 -t) n-2 tρ(t) dt , using (9) 
for the first equality and (8) for the last. Notice that

1 t ρ(r) dr = 1 γ tρ(t) + O(1) + 1 t O(r -α+ζ ) dr + O(t -α+ζ+1 ) = 1 γ tρ(t) + O(t min(-α+ζ+1,0) ) + O(| log(t)|)1 {α-ζ=1} = 1 γ tρ(t) + O(t min(-α+ζ+1,0) ) + O(t -ε 0 )1 {α-ζ=1} .
This implies that

E[X (n) 1 ] = 1 γ + n(n -1) g n 1 0 (1 -t) n-2 O(t min(-α+ζ+1,0) ) + O(t -ε 0 )1 {α-ζ=1} dt.
Using [START_REF] Eldon | Coalescent processes when the distribution of offspring number among individuals is highly skewed[END_REF], [START_REF] Gnedin | On the number of collisions in Λ-coalescents[END_REF] and Lemma 2.2, we get

E[X (n) 1 ] - 1 γ ≤ c n(n -1) g n 1 0 (1 -t) n-2 t min(-α+ζ+1,0) + t -ε 0 1 {α-ζ=1} dt ≤ cn 2-α (n -1-min(-α+ζ+1,0) + n -1+ε 0 1 {α-ζ=1} ) ≤ cϕ n .
We give an upper bound for the second moment of

X (n) 1 .
Lemma 2.4. Assume that ρ(t) = O(t -α ). Then there exists a constant C 18 s.t. for all n ≥ 2, we have

(18) E X (n) 1 2 ≤ C 18 n 2 g n . Proof. Using the identity E[Y 2 ] = k≥1 (2k -1)P(Y ≥ k) for N-valued random variables, we get E X (n) 1 2 = 1 0 k≥1 (2k -1)P(B n,x ≥ k + 1)ν(dx) g n = 1 0 k≥1 (2(k + 1) -1)P(B n,x ≥ k + 1) -2 k≥1 P(B n,x ≥ k + 1) ν(dx) g n = 1 0 E[B 2 n,x ] -2E[B n,x ] + P(B n,x ≥ 1) ν(dx) g n = 1 0 E[B 2 n,x ] -E[B n,x ] ν(dx) g n -E[X (n) 1 ] = 1 0 n(n -1)x 2 ν(dx) g n -E[X (n) 1 ] 
= 2n(n -1)

1 0 tρ(t) dt g n -E[X (n) 1 ],
where we have used [START_REF] Kingman | Origins of the coalescent 1974-1982[END_REF] for the fourth equality. Use

1 0 tρ(t) dt < ∞ and E[X (n) 1 ] ≥ 0 to conclude.
We consider φ n the Laplace transform of

X (n) 1 : for u ≥ 0, φ n (u) = E[e -uX (n) 1 ]. Lemma 2.5. Assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 0. Let ε 0 > 0.
Recall ϕ n given by ( 14). Then we have, for n ≥ 2,

(19) φ n (u) = 1 - u γ + u α γ + R(n, u), where R(n, u) = uϕ n + u 2 h(n, u) with sup u∈[0,K],n≥2 |h(n, u)| < ∞.
Proof. We have

φ n (u) = E e -uX (n) 1 = n-1 k=1 e -uk P(X (n) 1 = k) = n-1 k=1 e -uk P(X (n) 1 ≥ k) - n k=2
e -u(k-1) P(X

(n) 1 ≥ k) = e -u + n-1 k=2 e -uk (1 -e u )P(X (n) 1 ≥ k) = e -u +(1 -e u ) n-1 k=2 e -uk g n 1 0 n! k!(n -k -1)! t k (1 -t) n-k-1 ρ(t) dt = e -u +(1 -e u ) n g n 1 0 (1 -t(1 -e -u )) n-1 -(1 -t) n-1 -(n -1) e -u t(1 -t) n-2 ρ(t)dt = 1 + (1 -e u ) n g n 1 0 (1 -t(1 -e -u )) n-1 -(1 -t) n-1 ρ(t) dt,
where we used [START_REF] Breiman | of Classics in Applied Mathematics[END_REF] for the last equality. Using [START_REF] Möhle | On the number of segregating sites for populations with large family sizes[END_REF], this implies

(20) φ n (u) = 1 + (1 -e u ) n g n A + (1 -e u )E[X (n) 1 ]. with A = 1 0 (1 -t(1 -e -u )) n-1 -1 ρ(t) dt.
Thanks to Lemma 2.3, we have that

(21) (1 -e u )E[X (n) 1 ] = - u γ + u 2 + uϕ n h 1 (n, u), where sup u∈[0,K],n≥2 |h 1 (n, u)| < ∞.
To compute A, we set a = (1e -u ) and

f (t) = t -max(α-1-ζ,0) + t -ε 0 1 {α-ζ=1} .

An integration by part gives

A = -a(n -1) 1 0 (1 -at) n-2 1 t ρ(r) dr dt = -a(n -1)C 0 1 0 (1 -at) n-2 t 1-α γ + O(f (t)) dt = -A 1 + A 2 , with A 1 = a(n -1) γ C 0 1 0 (1 -at) n-2 t 1-α dt and A 2 = a(n -1) 1 0 (1 -at) n-2 O(f (t)) dt. We have A 1 = a α-1 (n -1) γ C 0 a 0 (1 -t) n-2 t 1-α dt = a α-1 (n -1) γ C 0 1 0 (1 -t) n-2 t 1-α dt - a α-1 (n -1) γ C 0 1 a (1 -t) n-2 t 1-α dt = a α-1 (n -1) γ C 0 Γ(n -1)Γ(2 -α) Γ(n + 1 -α) - a α-1 (n -1) γ C 0 1 a (1 -t) n-2 t 1-α dt Since a ≥ 0, we have for u ∈ [0, K] and n ≥ 2 0 ≤ a α-1 (n -1) γ 1 a (1 -t) n-2 t 1-α dt ≤ (n -1) γ 1 a (1 -t) n-2 dt ≤ 1 γ .
Using ( 12) and Lemma 2.2, we get

|A 1 - a α-1 γ g n n | ≤ c(1 + n α-1-min(ζ,1) ) ≤ cn max(α-1-ζ,0) ,
where c does not depend on n and u ≥ 0. We also have, using [START_REF] Eldon | Coalescent processes when the distribution of offspring number among individuals is highly skewed[END_REF] and ( 12)

|A 2 | ≤ ca(n -1) 1 0 (1 -at) n-2 f (t) dt ≤ c(n max(α-1-ζ,0) + n ε 0 1 {α-ζ=1} ).
We deduce, using Lemma 2.2 twice, that

|A + a α-1 γ g n n | ≤ c(n max(α-1-ζ,0) + n ε 0 1 {α-ζ=1} ) ≤ c g n n ϕ n .
We deduce that

(22) (1 -e u ) n g n A = (1 -e u ) - (1 -e -u ) α-1 γ + ϕ n O(1) = u α γ + u α+1 + uϕ n h 2 (n, u),
where sup u∈[0,K],n≥2 |h 2 (n, u)| < ∞. Then use the expression of φ n given by (20) as well as [START_REF] Schweinsberg | Coalescent processes obtained from supercritical Galton-Watson processes[END_REF] and [START_REF] Watterson | On the number of segregating sites in genetical models without recombination[END_REF] to end the proof.

Asymptotics for the number of jumps

Let α ∈ (1, 2). We assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 1 -1/α. Let V = (V t , t ≥ 0) be a α-stable Lévy process with no positive jumps (see chap. VII in [START_REF] Bertoin | Lévy processes[END_REF]) with Laplace exponent ψ(u) = u α /γ: for all u ≥ 0, E[e -uVt ] = e tu α /γ . Lemma 2.1 implies that (X

(n) 1 , . . . , X (n) 
k ) converges in distribution to (X 1 , . . . , X k ) where (X k , k ≥ 1) is a sequence of independent random variables distributed as X. Using Lemma 2.1 and (12), we get that P(X ≥ k) ∼ +∞ 1 Γ(2-α) k -α . Hence Proposition 9.39 in [START_REF] Breiman | of Classics in Applied Mathematics[END_REF] implies that the law of X is in the domain of attraction of the α-stable distribution. We set

W (n) t = n -1/α ⌊nt⌋ k=1 (X k - 1 γ ) for t ∈ [0, γ].
An easy calculation using the Laplace transform of X shows that for fixed t the sequence W (n) t converges in distribution to V t . Then using Theorem 16.14 in [START_REF] Kallenberg | Foundations of modern probability. Probability and its Applications[END_REF], we get that the process (W

(n) t , t ∈ [0, γ]) converges in distribution to V = (V t , t ∈ [0, γ]
). We shall give in Corollary 3.5 a similar result with X k replaced by

X (n) k .
We first give a proof of the convergence of τ n , see also [START_REF] Gnedin | On the number of collisions in Λ-coalescents[END_REF] and [START_REF] Drmota | Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent[END_REF] for a different proof.

We will use that

τn i=1 (X (n) i - 1 γ ) = n -1 - τ n γ .
Proposition 3.1. We assume that ζ > 1 -1/α. We have the following convergence is distribution

n -1 α n - τ n γ (d) ---→ n→∞ V γ .
Proof. Using [START_REF] Mukherjea | A note on moment generating functions[END_REF], it is enough to prove that lim 

M v,k = k i=1 exp -vX (n) i -log φ Y (n) i-1 (v)
is a bounded martingale w.r.t. the filtration Y. Notice that E[M v,k ] = 1. As X i = 0 for i > τ n , we also have

(23) M v,k = k∧τn i=1 exp -vX (n) i -log φ Y (n) i-1 (v) .
Let u ≥ 0 and consider a non-negative sequence (a n , n ≥ 1) which converges to 0. Using [START_REF] Pitman | Coalescents with multiple collisions[END_REF], we get that :

M uan,k = exp -ua n k∧τn i=1 X (n) i - k∧τn i=1 - ua n γ + u α a α n γ + R(Y (n) i-1 , ua n ) .
In particular, we have

(24) M uan,τn = exp -ua n (n -1 - τ n γ ) - u α τ n a α n γ - τn i=1 R(Y (n) i-1 , ua n ) .
We first give an upper bound for τn i=1 R(Y

(n) i-1 , ua n ).
Lemma 3.2. We assume that ζ > 1 -1/α. Let K > 0. Let η ≥ 1 α . There exist ε 1 > 0 and C 25 (K) a finite constant such that for all n ≥ 1 and u ∈ [0, K], a.s. with a n = n -η , (25)

τn i=1 R(Y (n) i-1 , ua n ) ≤ C 25 (K)n -ε 1 . Proof. Notice that τ n ≤ n -1. We have seen in Lemma 2.5 that R(n, u) = uϕ n + u 2 h(n, u) with h(K) = sup u∈[0,K],n≥2 |h(n, u)| < ∞
and ϕ n given by ( 14). We have 2α - [START_REF] Kallenberg | Foundations of modern probability. Probability and its Applications[END_REF], we can take ε 0 small enough so that 1α + ε 0 < 0 and 2α + ε 0 -1/α < 0. We have

1 α = -α(1 -1/α) 2 < 0. As ε 0 > 0 is arbitrary in
a n τn i=1 ϕ Y (n) i-1 ≤ n -1/α n j=1 ϕ j ≤ c      n 1-ζ-1 α if ζ < α -1, n 2-α+ε 0 -1 α if ζ = α -1, n 2-α-1 α if ζ > α -1.
For ε 1 > 0 less than the two positive quantities -1

+ ζ + 1 α and -2 + α -ε 0 + 1 α , we have a n τn i=1 ϕ Y (n) i-1 ≤ cn -ε 1 . We deduce that, for u ∈ [0, K], τn i=1 R(Y (n) i-1 , ua n ) ≤ h(K) τn i=1 ϕ Y (n) i-1 ua n + (ua n ) 2 ≤ h(K) n j=1 ϕ j Ka n + (Ka n ) 2 ≤ c h(K)(Kn -ε 1 + K 2 n 1-2 α ),
for some constant c independent of n, u and K. Taking ε 1 > 0 small enough so that

ε 1 < 2 α -1,
we then get (25).

Next we prove the following Lemma.

Lemma 3.3. We assume that ζ > 1-1/α. Let ε > 0. The sequence (n -(1/α)-ε (n-1-τn γ ), n ≥ 1) converges in probability to 0. Proof. We set a n = n -1 α -ε . Notice that e -uan(n-1-τn γ ) = M uan,τn e u α τnan γ + τn i=1 R(Y (n) i-1 ,uan) .
As τ n ≤ n -1, we have 0 ≤ τ n a α n ≤ n -αε . Using (25), we get for u ≥ 0

E[M uan,τn ] e -C 25 (u)n -ε 1 ≤ E[e -uan(n-1-τn γ ) ] ≤ E[M uan,τn ] e C 25 (u)n -ε 1 + u α n -αε γ .
As τ n is bounded, the stopping time theorem gives E[M uan,τn ] = 1. We deduce that, for all u ≥ 0, lim n→∞ E[e -uan(n-1-τn γ ) ] = 1. Using [START_REF] Mukherjea | A note on moment generating functions[END_REF], we get the convergence in law of a n (n -1 -τn γ ) to 0, and then in probability as the limit is constant.

Let a n = n -1 α and u ≥ 0. We have

(26) E e -uan(n-1-τn γ ) = E e -uan(n-1-τn γ ) 1 -e -u α a α n ( τn γ -n) + E e -uan(n-1-τn γ ) e -u α a α n ( τn γ -n) = I 1 + I 2 ,
with

I 1 = E e -uan(n-1-τn γ ) 1 -e -u α a α n ( τn γ -n)
and

I 2 = E M uan,τn e u α + τn i=1 R(Y (n) i-1 ,uan) . Using (25) and E[M uan,τn ] = 1, we get e u α -C 25 (u)n -ε 1 ≤ I 2 ≤ e u α +C 25 (u)n -ε 1 .
This implies that lim n→∞ I 2 = e u α . We now prove that lim n→∞ I 1 = 0. Recall that τ n ≤ n -1 so that τ n a α n ≤ 1 and thanks to (25), we get

E[e -uan(n-1-τn γ ) ] = E M uan,τn e u α τna α n γ + τn i=1 R(Y (n) i-1 ,uan) ≤ M (u)E[M uan,τn ] = M (u),
where M (u) is a constant which does not depend on n. By Cauchy-Schwarz' inequality, we get that

I 1 = E e -uan(n-1-τn γ ) 1 -e -u α a α n ( τn γ -n) 2 ≤ E e -2uan(n-1-τn γ ) E 1 -e -u α a α n ( τn γ -n) 2 ≤ M (2u)E 1 -e -u α 1 n ( τn γ -n) 2
.

Notice ( 1 n ( τn γn), n ≥ 1) is bounded from below and above by finite constants, and thanks to Lemma 3.3 it converges to 0 in probability. Hence, we deduce that

lim n→∞ E 1 -e -u α 1 n ( τn γ -n) 2 = 0.
This implies that lim

n→∞ I 1 = 0.
From the convergence of I 1 and I 2 , we deduce from (26) that lim n→∞ E e -uan(n-1-τn γ ) = e u α . This ends the proof of the Proposition.

We now give a general result. Proposition 3.4. We assume that ζ > 1 -1/α. Let f n : R + → R + be uniformly bounded functions such that

κ = lim n→∞ 1 n ⌊nγ⌋ k=1 f n (k/n) α
exists. Then we have the following convergence in distribution

(27) V (n) (f n ) := n -1 α τn k=1 f n (k/n)(X n k - 1 γ ) (d) ---→ n→∞ κ 1/α V 1 .
In particular, if f : R + → R + is a bounded locally Riemann integrable function, then

(28) V (n) (f ) = n -1 α τn k=1 f (k/n)(X n k - 1 γ ) (d) ---→ n→∞ γ 0 f (t)dV t ,
where the distribution of γ 0 f (t)dV t is characterized by its Laplace transform: for u ≥ 0,

(29) E[exp(-u γ 0 f (t)dV t )] = exp u α γ γ 0 f α (t) dt .
If we apply this Proposition with step functions, we deduce the following result.

Corollary 3.5. We assume that

ζ > 1-1/α. Let V (n) t = V (n) (1 [0,t] ) = n -1/α ⌊nt⌋∧τn k=1 (X (n) k - 1 γ ) for t ∈ [0, γ), and 
V (n) γ = V (n) (1) = n -1/α n -1 -τn γ . The finite-dimensional marginals of the process (V (n) t , t ∈ [0, γ]) converges in law to those of the process (V t , t ∈ [0, γ]).
Proof. Thanks to [START_REF] Mukherjea | A note on moment generating functions[END_REF], it is enough to prove that

E[exp(-uV (n) (f n ))] ---→ n→∞ e κu α /γ .
Taking uf n as f n , we shall only consider the case u = 1.

We set a = sup n≥1,x≥0 |f n (x)| and for any bounded function g,

A n (g) = exp τn k=1 -n -1/α g(k/n)X (n) k -log φ Y (n) k-1 (n -1 α g(k/n)) .
A martingale argument provides that E[A n (g)] = 1. Using [START_REF] Pitman | Coalescents with multiple collisions[END_REF], we get that :

A n (g) = exp -n -1/α τn k=1 g(k/n)(X (n) k - 1 γ ) -n -1 τn k=1 g α (k/n) γ - τn k=1 R(Y (n) k-1 , n -1 α g(k/n)) = exp -V (n) (g) -n -1 τn k=1 g α (k/n) γ - τn k=1 R(Y (n) k-1 , n -1 α g(k/n)) . Let Λ n = n -1 ⌊nγ⌋ k=1 f α n (k/n) γ -n -1 τn k=1 f α n (k/n) γ and write E e -V (n) (fn) = I 1 + I 2 with I 1 = E e -V (n) (fn) 1 -e Λn and I 2 = E e -V (n) (fn) e Λn .
First of all, let us prove that I 1 converges to 0 when n tends to ∞. Recall that the functions f n are uniformly bounded by a. Thanks to (25), we have

E[e -2V (n) (fn) ] = E[e -V (n) (2fn) ] = E A n (2f n ) e n -1 τn k=1 2 α f α n (k/n) γ + τn k=1 R(Y (n) k-1 ,n -1 α 2fn(k)) ≤ M,
where M is a finite constant which does not depend on n. By Cauchy-Schwarz' inequality, we get that

(I 1 ) 2 ≤ E e -V (n) (fn) 1 -e Λn 2 ≤ E e -V (n) (2fn) E 1 -e Λn 2 ≤ M E 1 -e Λn 2 .
Moreover as |1e x | ≤ e |x| -1 and Λ n ≤ a α nγ |⌊nγ⌋τ n |, we get

(30) E 1 -e Λn 2 ≤ E 1 -e |⌊nγ⌋-τn|a α nγ 2 .
The quantity |⌊nγ⌋τ n |a α nγ is bounded and goes to 0 in probability when n goes to infinity.

Therefore, the right-hand side of (30) converges to 0. This implies that lim n→∞ I 1 = 0.

Let us now consider the convergence of I 2 . Remark that

I 2 = E A n (f n ) e n -1 ⌊nγ⌋ k=1 f α n (k/n) γ + τn k=1 R(Y (n) k-1 ,n -1 α fn(k)) .
Recall that f n is bounded by a and that

E[A n (f n )] = 1. Using Lemma 3.2, we get for some ε > 0 (31) e -C 25 (a)n -ε 1 -n -1 ⌊nγ⌋ k=1 f α n (k/n) γ ≤ E A n (f n ) e n -1 ⌊nγ⌋ k=1 f α n (k/n) γ + τn k=1 R(Y (n) k-1 ,n -1 α fn(k)) ≤ e C 25 (a)n -ε 1 +n -1 ⌊nγ⌋ k=1 f α n (k/n) γ . As lim n→∞ 1 n ⌊nγ⌋ k=1 f α n (k/n) = κ,
we get that lim n→∞ I 2 = e κ/γ , which achieves the proof of (27).

To get (28), notice that κ = lim

n→∞ 1 n ⌊nγ⌋ k=1 f (k/n) α = γ 0 f (t) α dt.
4. First approximation of the length of the coalescent tree Let α ∈ (1, 2). We assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 1 -1/α. Recall that the length of the coalescent tree up to the ⌊nt⌋-th coalescence is, for t ≥ 0, given by (3). The next Lemma gives an upper bound on the error when one replaces the exponential random variables by their mean. Lemma 4.1. For t ≥ 0, let

L(n) t = ⌊nt⌋∧(τn-1) k=0 Y (n) k g Y (n) k .
There exists a finite constant C 32 such that for all t ≥ 0, we have

(32) E (L (n) t - L(n) t ) 2 ≤ C 32      n 3-2α if α < 3/2, log(n) if α = 3/2, 1 if α > 3/2.
Proof. Conditionally on Y, the random variables

Y (n) k g Y (n) k (E k -1)
are independent with zero mean. We deduce that

E (L (n) t - L(n) t ) 2 |Y = E     ⌊nt⌋∧(τn-1) k=0 Y (n) k g Y (n) k (E k -1)   2 |Y   = ⌊nt⌋∧(τn-1) k=0 Y (n) k g Y (n) k 2 ≤ n ℓ=1 ℓ g ℓ 2 .
Thanks to (13), we get

E (L n t - L(n) t ) 2 |Y ≤ c n ℓ=1 ℓ 2-2α ≤ c      n 3-2α if α < 3/2, log(n) if α = 3/2, 1 if α > 3/2,
where c is non random. This implies the result.

Lemma 4.2. For t ≥ 0, let

L(n) t = ⌊nt⌋∧(τn-1) k=0 Y (n) k -γ
.

There exists a finite constant C 33 such that for all t ≥ 0, we have

(33) | L(n) t - L(n) t C 0 Γ(2 -α) | ≤ C 33      n 2-α-ζ if ζ < 2 -α, log(n) if ζ = 2 -α, 1 if ζ > 2 -α.
Proof. Use [START_REF] Iksanov | On a random recursion related to absorption times of death Markov chains[END_REF] to get that

L(n) t - L(n) t C 0 Γ(2 -α) = ⌊nt⌋∧(τn -1) k=0 Y (n) k -γ O Y (n) k -min(ζ,1)
.

We deduce that

| L(n) t - L(n) t C 0 Γ(2 -α) | ≤ c n ℓ=1 ℓ -α+1-min(ζ,1) ≤ c      n 2-α-ζ if ζ < 2 -α, log(n) if ζ = 2 -α, 1 if ζ > 2 -α. 5. Limit distribution of L(n) t Let α ∈ (1, 2) and γ = α -1. For t ∈ [0, γ], we set v(t) = t 0 1 - r γ -γ
dr.

Theorem 5.1. We assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 1 -1/α. Then for all t ∈ (0, γ), we have that

(1) The following convergence in probability holds:

(34) n -2+α L(n) t P ---→ n→∞ v(t).
(2) The following convergence in distribution holds:

(35) n -1+α-1/α ( L(n) t -n 2-α v(t)) (d) ---→ n→∞ (α -1) t 0 dr (1 - r γ ) -α V r .
Proof of Theorem 5.1. Let ε 2 ∈ (0, γ) and t ∈ (0, γε 2 ). We use a Taylor expansion to get

L(n) t = ⌊nt⌋∧(τn-1) k=0 n - k i=1 X (n) i -γ = ⌊nt⌋∧(τn-1) k=0 n - k γ - k i=1 (X (n) i - 1 γ ) -γ = ⌊nt⌋∧(τn-1) k=0 n - k γ -γ (1 -∆ n,k ) -γ = I n + γJ n + γ(γ + 1)R n (36) with ∆ n,k = k i=1 (X (n) i -1 γ ) n -k/γ
and

I n = ⌊nt⌋∧(τn-1) k=0 n - k γ -γ , J n = ⌊nt⌋∧(τn-1) k=1 n - k γ -γ-1 k i=1 (X (n) i - 1 γ ), R n = ⌊nt⌋∧(τn-1) k=1 n - k γ -γ ∆ n,k 0 (∆ n,k -t) (1 -t) -γ-2 dt.
Notice that a.s. ∆ n,k < 1, so that R n is well defined.

Convergence of I n . We first give an expansion of I n by considering

I n = n 2-α I n,1 1 {nt<τn} + I n 1 {nt≥τn} with I n,1 = 1 n ⌊nt⌋ k=0 1 - k nγ -γ
. Standard computation yields

I n,1 = v(t) + 1 n h 3 (n, t),
where sup t∈(0,γ-ε),n≥1

|h 3 (n, t)| < ∞. By decomposing according to {nt < τ n } and {nt ≥ τ n }, we deduce that,

P n -1+α-1/α I n -n 2-α v(t) ≥ ε ≤ P(n -1/α |h 3 (n, t)| ≥ ε/2) + P(nt ≥ τ n ).
According to Lemma 3.3, τ n /n converges in probability to γ > t. This implies that (37) lim n→∞ P(nt ≥ τ n ) = 0.

As n -1/α |h 3 (n, t)| ≤ ε for n large enough, we deduce the following convergence in probability:

(38) n -1+α-1/α I n -n 2-α v(t) P ---→ n→∞ 0.
Convergence of J n . To get the convergence of J n , notice that (39

) J n = ⌊nt⌋∧(τn -1) i=1 (X (n) i - 1 γ ) ⌊nt⌋∧(τn -1) k=i n - k γ -α = n 1-α J n,1 1 {nt<τn} + J n 1 {nt≥τn} , with J n,1 = ⌊nt⌋∧(τn-1) i=1 f n (i)(X (n) i - 1 γ ) and f n (r) = 1 n ⌊nt⌋ j=⌊nr⌋ 1 - j nγ -α
. The functions f n are finite and uniformly bounded as for n

≥ 2/ε 2 , 0 ≤ f n (r) ≤ f n (0) = 1 n ⌊nt⌋ k=0 1 - k nγ -α ≤ γ-ε 2 /2 0 1 - s γ -α ds < ∞. Notice that κ = lim n→∞ 1 n ⌊nγ⌋ k=1 f n (k) α = t 0 dr t r (1 - s γ ) -α ds α .
We deduce from Proposition 3.4 that (n

-1 α J n,1 , n ≥ 2) converges in distribution to κ 1/α V 1 . For ε ′ > 0, we have P(1 {nt≥τn} |J n | ≥ ε ′ ) ≤ P(nt ≥ τ n ).
Then we use (39) and (37) to conclude that the following convergence in distribution holds:

(40) n -1+α-1/α J n (d) ---→ n→∞ κ 1/α V 1 .
Convergence of R n . We shall now prove that n -1+α-1/α R n converges to 0 in probability. Let ε ∈ (0, γ). We have

R n = R n,1 + R n,2 , with R n,1 = ⌊nt⌋ k=1 n - k γ -γ 1 {k<τn} R n,1,k , R n,1,k = 1 {∆ n,k <1-ε} ∆ n,k 0 (∆ n,k -t) (1 -t) -γ-2 dt, R n,2 = ⌊nt⌋ k=1 n - k γ -γ 1 {k<τn} 1 {∆ n,k ≥1-ε} ∆ n,k 0 (∆ n,k -t) (1 -t) -γ-2 dt.
We have for k

≤ n(γ -ε 2 ), E[|R n,1,k |] ≤ c E[(∆ n,k ) 2 ] ≤ c n 2 E   k i=1 (X (n) i - 1 γ ) 2   . Recall Y = (Y k , k ≥ 0) is the filtration generated by Y . We consider the Y-martingale N r = r j=1 ∆N r , with ∆N r = X (n) r -E[X (n) r |Y r-1 ]. We have E   k i=1 (X (n) i - 1 γ ) 2   ≤ 2E N 2 k + 2E   k i=1 (E[X (n) i |Y i-1 ] - 1 γ ) 2   .
Notice that

E N 2 k = E k i=1 (∆N i ) 2 ≤ E k i=1 E[(X (n) i ) 2 |Y i-1 ] ≤ E k i=1 (X (n) i ) 2 .
Using that, conditionally on Y i-1 , X

n) i and X (Y i-1 ) ( 
have the same distribution, we get that

E N 2 k ≤ n j=1 E[(X (j) 1 ) 2 ].
Thanks to [START_REF] Mukherjea | A note on moment generating functions[END_REF] and ( 13), we deduce that

E N 2 k ≤ C 18 n j=1 j 2 g j ≤ c n j=1 j 2-α ≤ c n 3-α .
Using ( 15) and ( 13), we get

E   k i=1 (E[X (n) i |Y i-1 ] - 1 γ ) 2   ≤ E   k i=1 |E[X (n) i |Y i-1 ] - 1 γ | 2   ≤ E   k i=1 C 15 ϕ Y i-1 2   ≤ c   n j=1 ϕ j   2 ≤ c n 3-α ,
where for the last inequality we used ( 14) with ε 0 > 0 small enough (such that 1+2ε 0 < α) and the fact that

ζ > 1 -1/α implies 2 -2ζ ≤ 3 -α as α ∈ (1, 2). This implies that E[|R n,1,k |] ≤ c n 1-α and therefore E[|R n,1 |] ≤ c n 3-2α . In particular, we get that (n -1+α-1/α R n,1 , n ≥ 1) converges in probability to 0 since -1 + α -1/α + 3 -2α = -(α -1) 2 /α < 0 for α > 1. We now consider R n,2 . Suppose that k ≤ ⌊nt⌋ -1 satisfies ∆ n,k ≥ 1 -ε on {nt < τ n }. Then on {nt < τ n }, we have ∆ n,k+1 = ∆ n,k + X (n) k+1 -1 γ + ∆ n,k γ n -(k + 1)/γ ≥ ∆ n,k + X (n) k+1 -ε γ n -(k + 1)/γ ≥ ∆ n,k ,
where we used that γ > ε for the first inequality and X

(n)

k+1 ≥ 1 for the last. In particular, on {nt < τ n }, if ∆ n,k ≥ 1ε for some k ≤ ⌊nt⌋, then we have ∆ n,⌊nt⌋ ≥ 1ε. This implies that 1 {nt<τn} R n,2 = 1 {∆ n,⌊nt⌋ ≥1-ε} 1 {nt<τn} R n,2 . With the notations of Corollary 3.5, we have {nt < τ n } ∩ {∆ n,⌊nt⌋ ≥ 1 -ε} ⊂ {V Use the convergence of V (n) t , see Corollary 3.5, to get that the right-hand side of the last inequality converges to 0 as n goes to infinity. Then notice that P(n -1+α-1/α |R n,2 | ≥ ε ′ , nt ≥ τ n ) ≤ P(nt ≥ τ n ) which converges to 0 thanks to (37).

Thus the following convergence in probability holds:

(41) n -1+α-1/α R n P ---→ n→∞ 0.

We deduce from (36), (38), ( 40) and ( 41) that (42) n -1+α-1/α L(n) tn 2-α v(t)

(d) ---→ n→∞ γ t 0 dr t r (1 - s γ ) -α ds α 1/α V 1 .
To conclude, use (29) to get that γ . Notice that for α ∈ (1, α 0 ), we have -1 + α -1/α < 0, whereas for α ≥ α 0 , -1 + α -1/α ≥ 0. Recall γ = α -1. We define a(t) for t ∈ [0, γ] by

a(t) = v(t) C 0 Γ(2 -α)
, where v(t) = We also set

V * t = α -1 C 0 Γ(2 -α) t 0 (1 - r γ
) -α V r dr for t ∈ (0, γ).

Theorem 6.1. We assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 1 -1/α. Then for all t ∈ (0, γ), we have that (1) The following convergence in probability holds:

(43) n -2+α L (n) t P ---→ n→∞ a(t).
(2) If α ∈ (1, α 0 ), the following convergence in distribution holds:

(44) n -1+α-1/α L (n) t -a(t)n 2-α (d) ---→ n→∞ V * t .
( Corollary 6.2. We assume that ρ(t) = C 0 t -α + O(t -α+ζ ) for some C 0 > 0 and ζ > 1 -1/α. Let t ∈ (0, γ) and G be a standard Gaussian r.v., independent of V .

(1) For α ∈ (1, √ 2), we have

n -1+α-1/α (K (n) t -θa(t)n 2-α ) (d) ---→ n→∞ θV * t .

  u α for all u ≥ 0. Let Y = (Y k , k ≥ 0) be the filtration generated by Y . Notice τ n is an Y-stopping time. For fixed n, and for any v ≥ 0, the process (M v,k , k ≥ 0) defined by

≥ ( 1

 1 ε)(n -⌊nt⌋ γ )n -1/α } ⊂ {n -1+1/α V (n) t ≥ c},and then for any ε ′ > 0P(n -1+α-1/α |R n,2 | ≥ ε ′ , nt < τ n ) = P(1 {∆ n,⌊nt⌋ ≥1-ε} n -1+α-1/α |R n,2 | ≥ ε ′ , nt < τ n ) ≤ P(∆ n,⌊nt⌋ ≥ 1ε, , nt < τ n ) ≤ P(n -1+1/α V (n) t ≥ c).

)

  If α ∈ [α 0 , 2), the following convergence in probability holds: If ε > 0, First of all, let us consider the case α ∈ (1, α 0 ). Lemma 4.1 and Tchebychev inequality imply that for α ∈ (1, α 0 ), we have the following convergence in probabilitylim n→∞ n -1+α-1/α |L (n) t -L(n) t | = 0.This and Lemma 4.2 imply that for α ∈ (1, α 0 ), we have the following convergence in probabilitylim n→∞ n -1+α-1/α |L (n) t -L(n) t C 0 Γ(2α) | = 0.The result is then a direct consequence of Theorem 5.1. For α ∈ [α 0 , 2), note that α > 3/2 and -1 + α -1/α ≥ 0. As ζ > 1 -1/α and α > α 0 i.e. 1 -1/α > 2α, we get ζ > 2α. We then use Lemma 4.1, Lemma 4.2 (only with ζ > 2α) and Theorem 5.1 to get (45), and then (43).

  of mutations up to the ⌊nt⌋-th coalescence, for t ∈ (0, γ). conditionally onL (n) t , K (n) t is a Poisson r.v. with parameter θL (n) t .The next Corollary is a consequence of Theorem 6.1.

(2) For α ∈ ( √ 2, 2), we have

---→ n→∞ θa(t)G.

(3) For α = √ 2, we have

Proof. Let us compute the characteristic function

Using that, conditionally on L

We first consider the case α ∈ (1, α 0 ). Using Theorem 6.1, we get that -θL

tends to -u 2 /2 in probability and has a non-negative real part. Hence, applying Theorem 6.1 again, we get that (G n , H n ) converges in distribution to (G, V * t ), where G is a standard Gaussian r.v. independent of V . Notice that

We have √ 2 < α 0 . To conclude when α < α 0 , use that 1α + 1/α is smaller (resp. equal to) 1α/2 if and only if α > √ 2 (resp. α = √ 2). Now we consider α ∈ [α 0 , 2). We write

Using Theorem 6.1, we still get that G n converges in law to G. Moreover, (45) implies that n -1+α/2 (L (n) ta(t)n 2-α ) converges to 0 in probability. This gives the result.